
ar
X

iv
:1

21
2.

40
16

v2
 [

cs
.D

S
]

21
 D

ec
 2

01
3

Online Bin Packing with Advice⋆

Joan Boyar1, Shahin Kamali2, Kim S. Larsen1, Alejandro López-Ortiz2

1 University of Southern Denmark, Denmark
2 University of Waterloo, Canada.

Abstract. We consider the online bin packing problem under the advice com-
plexity model where the “online constraint” is relaxed and an algorithm receives
partial information about the future requests. We provide tight upper and lower
bounds for the amount of advice an algorithm needs to achievean optimal pack-
ing. We also introduce an algorithm that, when provided withlog n + o(log n)
bits of advice, achieves a competitive ratio of3/2 for the general problem. This
algorithm is simple and is expected to find real-world applications. We introduce
another algorithm that receives2n+ o(n) bits of advice and achieves a competi-
tive ratio of4/3+ε. Finally, we provide a lower bound argument that implies that
advice of linear size is required for an algorithm to achievea competitive ratio
better than9/8.

1 Introduction

In the classical one-dimensional bin packing problem the goal is to pack a given se-
quence ofitemsinto a minimum number ofbins with fixed and equal capacities. For
convenience, it is assumed that items sizes are in the range(0, 1] and the capacities of
bins are1. In theonlineversion of the problem, the items are revealed one by one, and
an algorithm must pack each item without any knowledge aboutfuture items. The deci-
sions of an online algorithm are irrevocable, i.e., it is notpossible to move an item from
one bin to another after it ispackedin a bin.

The online bin packing problem has many applications in practice, from loading
trucks subject to weight limitations to creating file backups in removable media [10].
Heuristics that have been proposed for the problem include Next-Fit (NF), First-Fit
(FF), Best-Fit (BF), and the Harmonic-based class of algorithms. NF maintains a single
openbin and places an item in that bin; in the case the item does notfit, it closesthe bin
and opens a new one. FF keeps a list of bins in the order they are opened, packs an item
in the first bin that has enough space, and opens a new bin if necessary. BF performs
similarly to FF, except that the bins are ordered in increasing order of their remaining
capacity. Harmonic-based algorithms are based on the idea of packing items of similar
sizes together in a bin. For HarmonicK, an item has typei (1 ≤ i ≤ K − 1) if it is in
the range(1

i+1 ,
1
i], and typeK if it is in the range(0, 1

K]. The algorithm applies the NF
strategy for items of each type separately.

⋆ The work of the first and third author was partially supportedby the Danish Council for In-
dependent Research, Natural Sciences and the Villum Foundation, and most of the work was
carried out while these authors were visiting the University of Waterloo.

http://arxiv.org/abs/1212.4016v2

As for other online problems, the standard method for comparing bin packing al-
gorithms is competitive analysis. Under competitive analysis, the performance of an
algorithmA is compared to that of OPT, which is the optimal offline algorithm. More
precisely, the competitive ratio of an algorithmA is the asymptotically maximum ratio
of the cost ofA to that of OPT for serving the same sequenceσ. FF and BF have the
same competitive ratio of1.7, while the best Harmonic-based algorithm has a competi-
tive ratio of at most1.58889 [22]. It is also known that no online algorithm can have a
competitive ratio better than1.54037 [3].

The total lack of information about the future is unrealistic in many real-world sce-
narios [13]. A natural approach for addressing this issue isto relax the problem by pro-
viding extra information about the input sequence. For the online bin packing problem,
such relaxations have been studied in the contexts oflookahead, in which the online
algorithm can look at the items arriving in the near future [16], andclosed bin packing,
in which the length of the request sequence is known to the online algorithm [1]. In
both cases, the average performance of the online algorithmimproves, compared to the
online algorithms with no information about the future.

The advice complexity model for online algorithms is a more general framework un-
der which the “no knowledge assumption” behind online algorithms is relaxed, and the
algorithm receives some bits ofadviceabout the future requests. The advice can be any
information about the input sequence and is generated by an offline oracle which has
unbounded computational power. Provided with the appropriate advice, the online algo-
rithms are expected to achieve improved competitive ratios. The advice model has re-
ceived significant attention since its introduction [8,17,13,7,18,20,9,4,11,15,19,6,5,21].

In this paper, we study the advice complexity of the online bin packing problem. Our
interest in studying the problem under this setting is mostly theoretical. Nevertheless, in
many practical scenarios, it can be justified to allow a fast offline oracle to take a “quick
look” at the input sequence and send some advice to the onlinealgorithm. For example,
it may be possible to take a quick look and count the number of items which are larger
than1/2 and smaller than2/3 of the bin capacity. We show that this form of advice can
be used to achieve an algorithm which outperforms all onlinealgorithms.

1.1 Model

In the last few years, slightly different models of advice complexity have been pro-
posed for online problems. All these models assume that there is an offline oracle with
infinite computational power, which provides the online algorithm with some bits of
advice. How these bits of advice are given to the algorithm isthe source of difference
between the models. In the first model, presented in [12], an online algorithm poses
a series of questions which are answered by the offline oraclein blocks of answers.
The total size of the answers, measured in the number of bits,defines the advice com-
plexity. The problem with this model is that a lot of information can be encoded in
the individual length of each block. To address this issue, another model is proposed
in [13] which assumes that online algorithms receive a fixed number of bits of advice
per request. We call this model theadvice-with-request model. This model is studied
for problems, such as metrical task systems andk-server, and the results tend to use
at least a constant number of bits of advice per request [13,20]. Nevertheless, there

2

are many online problems for which a sublinear and even a constant number of bits
of advice in total is sufficient to achieve good competitive ratios. However, under the
advice-with-request model, the possibility of sending a sublinear number of advice bits
to the algorithm is not well defined. In [8,7] another model ofadvice complexity is pre-
sented which assumes that the online algorithm has access toan advice tape, written
by the offline oracle. At any time step, the algorithm may refer to the tape and read
any number of advice bits. The advice complexity is the number of bits on the tape
accessed by the algorithm. We refer to this model asadvice-on-tape model. Since its in-
troduction, the advice-on-tape model has been used to analyze the advice complexity of
many online problems including paging [8,17,18], disjointpath allocation [8], job shop
scheduling [8,18],k-server [7,20], knapsack [9], various coloring problems [4,15,5,21],
set cover [19,6], maximum clique [6], and graph exploration[11].

Under the advice-on-tape model, we require a mechanism to infer how many bits
of advice the algorithm should read at each time step. This could be implicitly derived
during the execution of the algorithm or explicitly encodedin the advice string itself.
For example, we may use aself-delimitedencoding as used in [7], in which the value of
a non-negative integerX is encoded by writing the value of⌈log(⌈log(X + 1)⌉ + 1)⌉
in unary (a string of 1’s followed by a zero), the value of⌈log(X + 1)⌉ in binary3, and
the value ofX in binary. These codes respectively require⌈log(⌈log(X+1)⌉+1)⌉+1,
⌈log(⌈log(X + 1)⌉+ 1)⌉, and⌈log(X + 1)⌉ bits. Thus, the self-delimited encoding of
X requires

e(X) = ⌈log(X + 1)⌉+ 2⌈log(⌈log(X + 1)⌉+ 1)⌉+ 1

bits. The existence of self-delimited encodings at the beginning of the tape usually adds
a lower-order term to the number of advice bits required by analgorithm.

Regarding notation, we useA(σ) to denote the costs ofA for packing a request
sequenceσ. Whenσ follows from the context, we simply useA to denote this cost. We
use similar notation for all algorithms, including OPT.

We consider the bin packing problem under the advice-on-tape model, which is
formally defined as follows, based on the definition of the advice model in [7]:

Definition 1. In theonline bin packing problem with advice, the input is a sequence of
itemsσ = 〈x1, . . . , xn〉, revealed to the algorithm in an online manner(0 < xi ≤ 1).
The goal is to pack these items in the minimum number of bins ofunit size. At time step
t, an online algorithm should pack itemxt into a bin. The decision of the algorithm
to select the target bin is a function ofΦ, x1, . . . , xt−1, whereΦ is the content of the
advice tape. An algorithmA is c-competitive with advice complexitys(n) if there exists
a constantc0 such that, for alln and for all input sequencesσ of length at mostn, there
exists some adviceΦ such thatA(σ) ≤ c OPT(σ) + c0, and at most the firsts(n) bits
ofΦ have been accessed by the algorithm. Ifc = 1 andc0 = 0, thenA is optimal.

1.2 Contribution

We answer different questions about the advice complexity of the online bin packing
problem. First, we study how many bits of advice are requiredto achieve an optimal so-

3 In this paper we uselog n to denotelog2(n).

3

lution. We consider two different settings of the problem. When there is no restriction on
the number of distinct items or their sizes, we present the easy result thatn⌈log OPT(σ)⌉
bits of advice are sufficient to achieve an optimal solution,where OPT(σ) is the number
of bins in an optimal packing. We also prove that at least(n − 2 OPT(σ)) log OPT(σ)
bits of advice are required to achieve an optimal solution.

When there arem distinct items in the sequence, we prove that at least(m −
3) logn − 2m logm bits of advice are required to achieve an optimal solution. If m
is a constant, there is a linear time online algorithm that receivesm logn+o(log n) bits
of advice and achieves an optimal solution. We also show that, even ifm is not a con-
stant, there is a polynomial time online algorithm that receivesm⌈log(n+1)⌉+o(logn)
bits of advice and achieves a packing with(1 + ε)OPT(σ) + 1 bins.

We also study a relevant question that asks how many bits of advice are required
to perform strictly better than all online algorithms. We bound this by providing an
algorithm which receiveslogn + o(log n) bits of advice and achieves a competitive
ratio of 3/2. Recall that any online bin packing algorithm has a competitive ratio of at
least1.54037 [3]. Hence, our algorithm outperforms all online algorithms.

Moreover, we introduce an algorithm that receives2n + o(n) bits of advice and
achieves a competitive ratio of4/3 + ε, for any fixed value ofε > 0. We also prove a
lower bound that implies that a linear number of bits of advice are required to achieve
a competitive ratio of9/8− δ for any fixed value ofδ > 0.

2 Optimal Algorithms with Advice

In this section we study the amount of advice required to achieve an optimal solution.
We first investigate the theoretical setting in which there is no restriction on the num-
ber of distinct items or on their sizes. We observe that thereis a simple algorithm that
receivesn⌈logOPT(σ)⌉ bits of advice and achieves an optimal solution. Such an algo-
rithm basically reads⌈log OPT(σ)⌉ bits for each item, encoding the index of the bin
that includes the item in an optimal packing. We show that theupper bound given by
this algorithm is tight up to lower order terms, whenn− 2 OPT(σ) ∈ Θ(n).

Theorem 1. To achieve an optimal packing for a sequence of sizen and optimal cost
OPT(σ), it is sufficient to receiven⌈log OPT(σ)⌉ bits of advice. Moreover, any deter-
ministic online algorithm requires at least(n− 2 OPT(σ)) log OPT(σ) bits of advice to
achieve an optimal packing.

Proof.
Upper Bound:Consider an offline oracle that knows an optimal packing (note that such
an oracle has unbounded computational power). This oracle simply writes on the advice
tape, for each itemx, except for the last two, the index of the bin in an optimal packing
thatx is packed in. To pack any itemx, the online algorithm simply reads the index
of the bin thatx should be packed in and packsx accordingly. For the last two items,
the algorithm simply uses Best-Fit. Since the packing is thesame as one for an optimal
algorithm up to that point, if it is impossible to fit both of the remaining items in the
bins already used, Best-Fit will ensure that at least one fitsif that is possible. If both
of the remaining items fit in the same already open bin, it is fine to put the first one of

4

the last two items anywhere it fits, since there will still be space remaining for the last.
If both of the remaining items fit in open bins, but should be indifferent bins, using
Best-Fit will ensure that they are both placed there.
This requires⌈log OPT(σ)⌉ bits of advice per item which sums up to(n−2)⌈log OPT(σ)⌉
bits of advice. The algorithm should also know the value ofX = ⌈log OPT(σ)⌉ in order
to read the appropriate number of bits on each request. This can be done by encodingX
in unary and terminating with a zero. This uses no more than2⌈log OPT(σ)⌉ bits. Con-
sequently the number of advice bits used by the algorithm isn⌈log OPT(σ)⌉ as stated
by the theorem.

Lower Bound:Consider a setS = {σ1, . . . , σN} of sequences, so that eachσr has
lengthn for 1 ≤ r ≤ N . Let 1 ≤ k ≤ n− 1. Each sequenceσr in the set has the form

〈

1

4
,
1

8
,
1

16
, . . . ,

1

2n−k+1
, ur

1, u
r
2, . . . , u

r
k

〉

in which ur
1, . . . , u

r
k are defined from a setV of vectors in formVr = (vr1 = 1, v22 =

2, . . . , vrk = k, vrk+1, v
r
k+2, . . . , v

r
n−k) such that eachvrh ∈ {1, . . . , k} for 1 ≤ h ≤

n− k.

For example, whenn = 8 andk = 3, the vector(1, 2, 3, 2, 1) is a vector inV .

We associate with each vectorVr ∈ V a sequenceσr ∈ S. For a vectorVr ∈ V
and binj, defineur

j = 1−
∑

1≤i≤n−k
vr

i
=j

ai, whereai is theith item in the sequenceσr, i.e.,

ai =
1

2i+1 . Note that allujs are strictly larger than0.5. Clearly, OPT(σr) = k for all
r. We refer to the firstn − OPT(σ) items assmall items and the last OPT(σ) items as
large items.

For example, assumen = 8 and OPT(σ) = 3. For a vectorVr = (1, 2, 3, 2, 1),
we haveur

1 = 1 − (14 + 1
64) = 0.734375, ur

2 = 1 − (18 + 1
32) = 0.84375,

andur
3 = 1 − 1

16 = 0.9375. Hence, the sequenceσr associated withVr is
〈14 ,

1
8 ,

1
16 ,

1
32 ,

1
64 , 0.734375, 0.84375, 0.9375〉.

In fact,Vr indicates in which bin each of the firstn − OPT(σ) items ofσr should
be packed, and at the end,ur

j fills the empty space of thejth bin to capacity to achieve
an optimal packingP for a given sequence (it is optimal since all bins are fully packed).
The restriction that the sequence starts withk distinct items ensures that we do not need
to consider permutations of the bins inP as additional optimal packings. We claim that
P is the unique optimal packing. Suppose there is another optimal packingP ′. Observe
that each bin includes at most one large item, and indeed exactly one since we assume
it is also optimal. Letai(1 ≤ i ≤ n − OPT(σ)) be the first item which is packed in
some other bin inP ′ than the one prescribed byP . Consider the binB thatai is packed
into in P . This bin cannot be fully packed inP ′ sinceai is strictly larger than the total
size of all remaining small items, i.e., even if we put all of them in the empty space of
ai, there is still some empty space inB. As a resultP ′ cannot be optimal. Hence there
is unique solution for packing each sequence in the setS.

5

Note that there areN = OPT(σ)n−2 OPT(σ) sequencesS. We claim that these se-
quences need separate advice strings. Suppose otherwise, and letσr , σr′ ∈ S (r 6= r′)
be two different sequences with the same advice string. Notethat the firstn − OPT(σ)
items in these sequences are the same. Since the online algorithm performs determinis-
tically and we assume it receives the same advice for bothσr andσr′ , the partial pack-
ings of the algorithms after serving the firstn − OPT(σ) items are the same for both
sequences. However, as discussed earlier, this implies that the final packing of the algo-
rithm is different from the optimal packing prescribed byVr′′ for at least one of the se-
quences. As discussed, such a packing is the unique optimal packing and deviating from
that increases the cost of the algorithm by at least one unit.As a result, the algorithm
performs non-optimally for at least one ofσr or σr′ . We conclude that the sequences
in the setS need separate advice strings. Since there areN = OPT(σ)n−2 OPT(σ) se-
quences inS, at leastlog(OPT(σ)n−2 OPT(σ)) = (n − 2 OPT(σ)) log OPT(σ) bits of
advice are required to get that many distinct advice strings. ⊓⊔

Next, we consider a more realistic scenario where there arem ∈ o(n) distinct items
and the values of these items are known to the algorithm. Assume that the advice tape
specifies the number of items of each size. If we are not concerned about the running
time of the online algorithm, there is enough information toobtain an optimal solution.
If we are concerned, we can use known results for solving the offline problem [2,14,23].
We formalize this in what follows.

Lemma 1 ([2]). Consider the restriction of the bin packing problem to instances in
which the number of distinct item sizes is a constant non-negative integerm. There is a
linear time algorithm that optimally solves this restricted problem.

If there are more than a constant number of distinct items sizes, we can solve the
problem almost optimally if the item sizes are lower boundedby a fixed valueε.

Lemma 2 ([14,23]). There is a polynomial algorithm for the bin packing problem
which opens at most(1 + ε)OPT(σ) + 1 bin, in whichε is any small but constant
value.

We use the above results to otain the following:

Theorem 2. Consider the online bin packing problem in which there arem distinct
items. Ifm is a constant, there is a (linear time) optimal online algorithm that receives
m logn + o(log n) bits of advice. Ifm is not a constant, there is a (polynomial time)
online algorithm that readsm⌈log(n + 1)⌉ + o(log n) bits of advice and achieves an
almost optimal packing with at most(1+ε)OPT(σ)+1 bins, for any small but constant
value ofε.

Proof. The offline oracle simply encodes the input sequence, considered as a multi-set,
in m⌈log(n+1)⌉ bits of advice. In order to do that, it writes the number of occurrences
of each of them distinct items on the tape. The online algorithm uses the algorithms
of Lemma 1 (for constant values ofm) or that of Lemma 2 (for non-constantm) to
compute an (almost) optimal packing. Then it packs the itemsin an online manner
according to such an (almost) optimal packing. The algorithms reads frequencies of

6

items in chunks ofX = ⌈log(n + 1)⌉ bits and consequently needs to know the value
of X . So, we add self-delimited encodings ofX at the beginning of the tape using
e(X) bits. The number of advice bits used by the algorithm is thusm⌈log(n + 1)⌉ +
O (log logn), which ism⌈log(n+ 1)⌉+ o(log n) asm ∈ o(n). ⊓⊔

We show that the above upper bound is asymptotically tight. We start with the fol-
lowing simple lemma.

Lemma 3. Consider the equationx1 +2x2 + . . .+αxα = X in which thexis (i ≤ α)
andX are non-negative integers. IfX is sufficiently large, then this equation has at

least
(

1 + 2X
α(α+1)

)α−1

solutions.

Proof. DefineA =
∑α

i=1 i. Assign arbitrary values in the range[0..X/A] to all xis for
2 ≤ i ≤ α (for simplicity assumeX/A is an integer). There are(1+X/A)α−1 different
such assignments. Any of these assignments defines a valid solution for the equation
since by definition ofA we have

∑α
i=2 ixi ≤ X , and we can assignx1 = X−

∑α
i=2 ixi.

ReplacingA with α(α+ 1)/2 completes the proof. ⊓⊔

Theorem 3. At least(m − 3) logn − 2m logm bits of advice are required to achieve
an optimal solution for the online bin packing problem on sequences of lengthn with
m distinct items, each of size at least12m .

Proof. We define a family of sequences of lengthn and containingm distinct items
and show that the sequences in this family need separate advice strings to be optimally
served by an online algorithm. To define the family, we fixm item sizes as being
{ 1
2m , m+2

2m , m+3
2m , . . . , 2m−1

2m , 1}. To simplify the argument, we scale up the sizes of
bins and items by a factor of2m. So, we assume the item sizes are{1,m + 2,m +
3 . . . , 2m− 1, 2m}, and the bins have capacity2m. Each sequence in the family starts
with n/2 items of size1. Consider any packing of these items in which all bins have
level at most equal tom − 2. Such a packing includesa1 bins of level 1 (one item of
size 1 in each),a2 bins of level 2 (two items of size 1 in each), etc., such that theais are
non-negative integers anda1 + 2a2 + . . .+ (m− 2)am−2 = n/2. By Lemma 3, there

are at least
(

1 + n
(m−1)(m−2)

)m−3

distinct packings with the desired property. For any

of these packings, we define a sequence in our family. Such a sequence starts withn/2
items of size1 and is followed by anothern/2 items. LetB denote the number of bins
in a given packing of the firstn/2 items, so thatB ≤ n/2. The sequence associated
with the packing is followed byB items of size larger thanm+ 1 which completelyfit
these bins (in non-increasing order of their sizes). Finally, we include anothern/2−B
items of size2m in the sequence to achieve a sequence of lengthn.

We claim that any of the sequences in the family has a unique optimal packing of
sizen/2. This is because there are exactlyn/2 large items of size strictly greater than
m (more than half the capacity of the bin), and the othern/2 items havesmall size1
(which fit the empty space of all bins). So each bin is fully packed with one large item
of sizex and2m− x items of size1 (see Figure 1).

The unique optimal packing of each sequence is defined by the partial packing of the
first n/2 small items. Consider a deterministic online algorithmA receiving the same

7

1

11

1

11

1

11

1

11

1

1

10

1

1

10

1

1

1

9

1

1

1

1

8

12 12 12 12 12 12 12

The packing of sequence〈1(15) 11 11 11 11 10 10 9 8 12(7)〉

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

1

1

1

8

1

1

1

1

8

12 12 12 12 12 12

The packing of sequence〈1(15) 11 11 11 11 11 11 11 8 8 12(6)〉

Fig. 1. The optimal packings for two sequences of the family whenn = 30 andm = 6 (item
sizes and bin capacities are scaled by2m = 12).

advice string for two sequenceσ1 andσ2. SinceA is deterministic and both sequences
start with the same sub-sequence of small items, the partialpacking of the algorithm
after packing the firstn/2 items is the same for bothσ1 andσ2. As a result, the final
packing ofA is sub-optimal for at least one them. We conclude that any deterministic
online algorithm should receive distinct advice strings for each sequence in the family.

Since there are at least
(

1 + n
(m−1)(m−2)

)m−3

sequences in the family, at least(m −

3) log
(

1 + n
(m−1)(m−2)

)

> (m− 3) logn− 2m logm bits of advice are required.⊓⊔

3 An Algorithm with Sublinear Advice

In what follows we introduce an algorithm that receiveslogn+ o(logn) bits of advice
and achieves a competitive ratio of3

2 , for any instance of the online bin packing problem.
An offline oracle can compute and write the advice on the tape in linear time, and
the online algorithm runs as fast as First-Fit. Thus, the algorithm might be applied in
practical scenarios in which it is allowed to have a “quick look” at the input sequence.

We call itemstiny, small, medium, andlarge if their sizes lie in the intervals(0, 1/3],
(1/3, 1/2], (1/2, 2/3], and(2/3, 1], respectively. The advice that the algorithm receives
is the number of medium items, which we denote byα.

The algorithm reads the advice tape, obtainsα, opensα bins, calledcritical bins,
and reserves2/3 of the space in each of them. This reserved space will be used to pack
a medium item in each of the critical bins, and these bins havea virtual level of size

8

2/3 at the beginning. All other bins have virtual level zero when they are opened. The
algorithm serves an itemx in the following manner:

– If x is a large item, open a new bin for it. Set the virtual level to its size.
– If x is a medium item, put it in the reserved space of a critical binB. Update the

virtual level to the actual level. (B will not have any reserved space now.)
– If x is small or tiny, use the First Fit (FF) strategy to put it into any of the open bins,

based on virtual levels (open a new bin if required). Add the size of the item to the
virtual level.

Note that the critical bins appear first in the ordering maintained by the algorithm
as they are opened before other bins.

Theorem 4. There is an online algorithm which receiveslogn+o(logn) bits of advice
and has cost3/2 OPT(σ) + 3 for serving any sequenceσ of sizen.

Proof. We prove that the algorithm described above has the desired property. The value
of α is encoded inX = ⌈log(n + 1)⌉ bits of advice. In order to read this properly
from the tape, the algorithm needs to know the value ofX . This can be done by adding
the self-delimited encoding ofX in e(X) = ⌈logX⌉ + 2⌈log log(X)⌉ + 2 bits at the
beginning of the tape. Consequently the number of advice bits used by the algorithm is
X +O (logX), which islogn+ o(logn) as stated by the theorem.

Consider the final packing of the algorithm for serving a sequenceσ. There are two
cases. In the first case, there is a critical binB so that no other item, except a medium
item, is packed in it. Since all tiny items are smaller than1/3 and can fit inB, all
the non-critical bins that are opened afterB include small and large items only. More
precisely, they include either a single large item or two small items (except the last one
which might have a single small item). LetL, M , andS denote the number of large,
medium, and small items. The cost of the algorithm is at mostL+M+S/2+1. Now, if
S ≤ M , this would be at mostL+3/2M+1. SinceL+M is a lower bound on the cost
of OPT, the cost of the algorithm is at most3/2 OPT(σ)+1 and we are done. IfS > M ,
OPT should openL+M bins for large and medium items, and in the best case, it packs
M small items together with medium ones. For the otherS −M bins, OPT has to open
at least(S − M)/2 bins. Hence the cost of OPT is at leastL + M + (S − M)/2 =
L+M/2+ S/2, and we have3/2 OPT(σ) ≥ 3L/2+ 3M/4+ 3S/4 > L+M + S/2.
Thus, the cost of the algorithm is at most3/2 OPT(σ) + 1.

In the second case, we assume that all critical bins include another item in addition
to the medium item. We claim that at the end of serving a sequence all bins, except
possibly two, have level at least2/3. First, we verify this for non-critical bins (bins
without medium items). If a non-critical bin is opened by a large item, it clearly has
level higher than2/3. All other non-critical bins only include items of size at most1/2.
Hence, these bins, except possibly the last one, include at least two items. Among the
non-critical bins that include two items, consider two binsbi andbj (i < j) that have
levels smaller than2/3. Sincebj contains at least two items, at least one of them has
size smaller than1/3. This item could fit inbi by the FF property. We conclude that
all non-critical bins, except possibly two, have level at least2/3. Now, suppose two
critical binsbi andbj have levels smaller than2/3. Consider the first non-medium item

9

x which is packed inbj (in the second case, such an item exists). Since a medium item
is packed in the bin,x should be either tiny or small. Ifx is small, then the level ofbj is
at least1/2 + 1/3, which contradicts the level ofbj being smaller than2/3. Similarly,
x cannot be a tiny item of size larger than1/6 (since1/2 + 1/6 ≥ 2/3). Hence,x is a
tiny item of size at most1/6. This implies that at the time the online algorithm packsx,
bin bi has a virtual level of at least5/6. The virtual level is at most1/6 larger than the
actual level (the final level). Hence, the actual level ofbi is at least5/6 − 1/6 = 2/3.
We conclude that at most one critical bin has level smaller than2/3. To summarize, at
most three bins have level smaller than2/3. Hence, the cost of the algorithm is at most
3/2 OPT(σ) + 3. ⊓⊔

4 An Algorithm with Linear Advice

In this section, we present an algorithm that receives2n + o(n) bits of advice and
achieves a competitive ratio of4/3+ ε for any sequence of sizen, and arbitrarily small
(but constant) values ofε. Consider an algorithm that receives anapproximate sizefor
each sufficiently large itemx encoded usingk bits. The approximate size ofx would
be larger than itsactual sizeby at most an additive term of1/2k. The algorithm can
optimally pack items by their approximate sizes and achieveanapproximate packing
which includes a reserved space of sizex + ε (ε ≤ 1/2k) for each item. Precisely, for
each sufficiently large itemx, the approximate packing includes a reserved space of size
x+ ε (ε ≤ 1/2k) for x. This enables the algorithm to placex in the reserved space for
it in the approximate packing. Smaller items are treated differently and the algorithm
does not reserve any space for them. In the reminder of this section, we elaborate this
idea to achieve a 4/3-competitive algorithm.

Notice that the cost of an approximate packing can be as largeas 3
2 times the cost

of OPT. To see that, consider a sequence which is a permutation of〈12 + ε1,
1
2 − ε1,

1
2 +

ε2,
1
2−ε2, . . . ,

1
2+εn/2,

1
2−εn/2〉, whereεi < 1/2n(1 ≤ i ≤ n/2). Since OPT packs all

bins tightly, an increase in the sizes of items by a constant (small)ε results in opening a
new bin for each two bins OPT uses. Hence the cost of the optimal approximate packing
can be as bad as32 OPT. This example suggests that using approximate packings is not
good for the bins in which a small number of large items are tightly packed. To address
this issue we divide the bins of OPT into two groups:

Definition 2. Consider an optimal packing of a sequenceσ. Given a small parameter
ε′ < 1/60, definegood binsto be those where the total size of the items smaller than
1/4 in the bin is at least5ε′. Define all other bins to bebad bins.

A part of the advice received for each itemx indicates ifx is packed by OPT in a good
bin or in a bad bin. This enables us to treat items packed in these two groups separately.

Lemma 4. Consider sequences for which all bins in the optimal packingare good
(as defined above). There is an online algorithm that receives o(n) bits of advice and
achieves a competitive ratio of4/3.

Proof. Call an itemsmall if it is smaller than or equal to1/6 andlarge otherwise. The
advice bits define the approximate sizes of all large items with a precision ofε′. The

10

amount of advice will be roughly21/ε
′

logn which is o(n) for constant values ofε′.
The online algorithmA can build the optimal approximate packing of large items. In
such a packing, there is a reserved space of size at mostx+ ε′ for any large item of size
x. The algorithm considers this packing as a partial packing and initializes the level of
each bin to be the total sizes of approximated items in that bin. For packing an itemx,
if x is large,A packs it in the space reserved for it in the approximate packing. It also
updates the level of the bin to reflect the actual size ofx. If x is small,A simply applies
the First-Fit strategy to packx in a bin of the partial packing (and opens a new bin for it
if necessary). We prove thatA is 4/3-competitive. In the final packing byA, call a bin
“red” if all items packed in it are small items and call it “blue” otherwise (the blue bins
constitute the approximated packing at the beginning). There are two cases to consider.

In the first case, there is no red bin in the final packing ofA, i.e., all small items fit
in the remaining space of the bins in the approximate packingof large items. Letσ′ be
a copy of the input sequence in which the sizes of large items are approximated, i.e.,
increased by at mostε′; also letX be the number of bins for the optimal packing ofσ′.
Since there is no red bin in the final packing ofA, the cost ofA is equal toX . Consider
the optimal packing of the actual input sequenceσ. Since all bins are good, one can
transfer a subset of items to provide an available space of size at least5ε′ in each bin.
After such a transfer, we can increase the sizes of large items to their approximate sizes.
Since there are at most 5 large items in each bin and also available space of size at least
5ε′, the packing constructed this way is a valid packing for the sequenceσ′. Since the
size of the transferred items for each bin is at most1/4, the transferred items from each
group of four bins can fit in one new bin. Consequently the number of bins in the new
packing is at most5/4 OPT(σ). We know that the final packing byA is the optimal
packing forσ′ (with costX), and in particular not worse than the packing constructed
above. Hence, the cost ofA is not more than5/4 OPT(σ).

In the second case, there is at least one red bin in the final packing of A. We claim
that all bins in the final packing ofA, except possibly the last, have levels larger than3/4.
The claim obviously holds for the red bins since the levels ofall these bins (excluding
the last one) are larger than5/6. Moreover, since there is a bin which is opened by a
small item, all blue bins have levels larger than5/6, i.e., the total size of packed items
and reserved space for the large items is larger than5/6. Since there are at most 5
large items in each bin, the actual level of each bin in the final packing ofA is at least
5/6 − 5ε′, which is not smaller than3/4 for ε′ ≤ 1/60. So, all bins, except possibly
one, have levels larger than3/4. Consequently, the algorithm is4/3-competitive. ⊓⊔

It remains to address how to deal with bad bins. The next threelemmas do this.

Lemma 5. Consider sequences for which all bins in the optimal packinginclude pre-
cisely two items. There is an algorithm that receives1 bit of advice per request and
achieves an optimal packing.

Proof. The single bit of advice for an itemx determines whether or not thep artnerof
x appeared as a previous request, where the partner ofx is the i tem which is packed in
the same bin asx in OPT’s packing. Consider an algori thmA that works as follows: If
the partner ofx has not been requested yet ,A opens a new bin forx. Otherwise, it uses

11

the BF strategy to packx i n one of the open bins.We claim thatA achieves an optimal
packing.

Assume that initially we have a mapping that maps the last item to go into a bin to
the item it goes on top of in the optimal packing, i.e., it mapsthe second item of each
bin to the first item. We update this mapping when necessary and maintain the invariant
that we can always pack optimally according to the mapping. For serving a requestx ,
if BF does not pack according to this mapping, it packsx on top ofy′, while, according
to the mapping, it was supposed to packx on top ofy, and a laterx′ is supposed to go
on top ofy′. Due to the BF strategy,y′ geqy, so we can update the mapping to map the
currently unprocessedx′ to y, and, of course,x to y′. ⊓⊔

Lemma 6. Consider a sequenceσ for which all items have sizes larger than1/4 and
for which each bin inOPT’s packing includes precisely three items. The cost of the
Harmonic algorithm is at most4/3 OPT(σ) + 3 for serving such a sequence.

Proof. The proof is based on a simple weighting function. Call an itemx large if 1/3 <
x < 1/2 andsmall otherwise (1/4 < x ≤ 1/3). Define the weight ofx to be1/2 if
x is large and1/3 if it is small. Consider a binB in the packing ofσ by OPT. Since
there are three items inB, its weight is maximized when there are two large items and
one small item in it (three large item do not fit in the same bin). Hence, the weight of
each bin in the OPT packing is at most2 × 1/2 + 1/3 = 4/3. Consequently, we have
OPT(σ) ≥ 3/4W , whereW is the total weights of all items.

The Harmonic algorithm (HA) simply packs small and large items in separate col-
lections of bins. So, each of the algorithm’s bins, except possibly two bins, contains
either three small items or two large items. In both cases, the weight of each bin is at
least1 and we have HA(σ) ≤ W +2. As a conclusion HA(σ) ≤ 4/3 OPT(σ)+2 which
completes the proof. ⊓⊔

Lemma 7. Consider a sequenceσ for which all bins in the optimal packing are bad
bins (as defined earlier). There is an algorithm that receives two bits of advice for each
request, and opens at most(4/3 + 5ε′

1−5ε′)OPT(σ) + 3 bins.

Proof. By the definition of bad bins, for any bin in the optimal packing, all items are
either smaller than5ε′ or larger than1/4. We call the former group of itemstiny items
and pack them separately using the FF strategy. We refer to other items asnormal items.
Consider an offline packingP which is the same as OPT’s packing, except that all
tiny items are removed from their bins and packed separatelyin new bins using the FF
strategy. This implies that the cost ofP is larger than OPT(σ) by a multiplicative factor
of at most1 + 5ε′

1−5ε′ . LetQ be the optimal packing for normal items. Since all normal
items are larger than1/4, each bin ofQ contains at most three items. We say a bin ofQ
has typei (i ∈ {1, 2, 3}), if it containsi normal items. Similarly, we say an itemx has
typei if it is packed in a typei bin. All items in type 3 bins have sizes smaller than1/2
(otherwise one will have size at most1/4 which contradicts the assumption). Moreover,
the sizes of the items in all type1 bins (except possibly the last one) are larger than1/2
(otherwise a better packing is achieved by pairing two of them). With two bits of advice,
we can detect the type of an item as follows: Letb denote the two bits of advice with
item x. If b is “01” and x > 1/2, thenx has type1; if b is “01” andx ≤ 1/2, thenx

12

has type3; and if b is “10” or b is “11”, thenx has type2. Note that the code “00” is
not used at this point (this is used later on), and the use of “10” and “11” is still to be
detailed.

Let Xi denote the number of bins of typei (1 ≤ i ≤ 3). Hence, the cost ofQ is
X1 +X2 +X3, and consequently the cost ofP is at leastX1 +X2 +X3 +X ′, where
X ′ is the number of bins filled by tiny items. Consider an algorithm A that performs
as follows. If an itemx has type1, A simply opens a new bin forx. If x has type2,
A applies the strategy of Lemma 5 to place it in one of the bins maintained for items
of type2. Recall that the advice in this case is either “10” or “ 11”, so the second bit
provides the advice required by Lemma 5. Ifx has type3, A applies the Harmonic
strategy to pack the item in a set of bins maintained for type3 items. By Lemma 6, the
cost ofA for these items is at most4/3X3 + 3. Finally,A uses the FF strategy to pack
tiny items in separate bins. Consequently, the cost of the algorithm is at mostX1+X2+
4/3X3+X ′+3 ≤ (1+ 5ε′

1−5ε′)OPT(σ)+X3/3+3 ≤ (4/3+ 5ε′

1−5ε′)OPT(σ)+3. ⊓⊔

Provided with the above results, we arrive at the following result:

Theorem 5. There is an online algorithm which receives two bits of advice per request,
plus an additive lower order term, and achieves a competitive ratio of4/3 + ε, for any
positive value ofε.

Proof. Defineε′ to be 11ε
60 . For ε < 1/11, we haveε′ < 1/60. Moreover, we have

5ε′

1−5ε′ ≤
5ε′

1−1/12 = 60ε′

11 = ε. In an optimal packing, divide bins into good and bad bins
using Definition 2. Also, letGd andBd respectively denote the number of good and
bad bins. Use advice bits to distinguish items which are packed in good and bad bins,
and pack them in separate lists of bins. More precisely, let the two bits of advice for an
itemx be “00” if it is packed by OPT in a good bin, and apply Lemma 4 to pack these
items in at most4/3Gd bins. Similarly, apply Lemma 7 to pack items from bad bins in
at most(4/3+ 5ε′

1−5ε′)Bd+3 ≤ (4/3+ ε)Bd+3 bins, using bits of advice of the form
“01”, “ 10”, or “11”, as discussed in the proof of Lemma 7. Consequently, the cost of
the algorithm will be at most4/3Gd+ (4/3+ ε)Bd+3 ≤ (4/3+ ε)OPT(σ) + 3. ⊓⊔

5 A Lower Bound for Linear Advice

TheGMP problem[13] and theString Guessing Problem[6] both contain a core special
case of guessing a binary sequence. We use their results to show that an online algorithm
needs a linear number of bits of advice to achieve a competitive ratio better than9/8
for bin packing.

Definition 3 ([13,6]). The Binary String Guessing Problem with known history (2-
SGKH) is the following online problem. The inputI = (n, σ = 〈x1, x2, . . . , xn〉)
consists ofn items that are either “0” or “ 1” and that are revealed one by one. For
each itemxt, the online algorithmA must guess if it is a “0” or a “ 1”. After the algo-
rithm has made a guess, the value ofxt is revealed to the algorithm.

Lemma 8 ([6]).On any input of lengthn, any deterministic algorithm for2-SGKH that
is guaranteed to guess correctly on more thanαn bits, for1/2 ≤ α < 1, needs to read
at least(1 + (1− α) log(1 − α) + α logα)n bits of advice.

13

Since the number of bits needed to express the number of “0”s in the input is at
most⌈log(n+1)⌉ ≤ log n+1, and this number can be given as advice by an oracle, if
it is not given to the algorithm otherwise, we easily obtain the following lemma. Recall
that the definition ofe, the length of the encoding function, is given in Section 1.1.

Lemma 9. Consider instances of sizen of the2-SGKH problem in which the number of
“0”s is given to the algorithm as part of the input. For these instances, any deterministic
algorithm that is guaranteed to guess correctly on more thanαn bits, for1/2 ≤ α < 1,
needs to read at least(1 + (1− α) log(1 − α) + α logα)n− e(n) bits of advice.

Proof. Assume to the contrary that the statement is not true. Hence,there is an algo-
rithm, BSGA, that knows the number of “0”s and receives fewer than(1+(1−α) log(1−
α) + α logα)n − e(n) bits of advice while guessing correctly on more thanαn bits.
This algorithm can be used to serve arbitrary instances of the 2-SGKH problem (in
which the number of “0”s is not known). Modify the advice tapeused by the algorithm
BSGA so that it contains at moste(n) additional bits at the beginning specifying the
number of “0”s. (This can be done with the self-delimited encoding of the number of
“0”s.) The algorithm for2-SGKH reads this number and gives it to BSGA. Then it asks
BSGA for its guess for each bit in the sequence and answers the sameas BSGA. It also
informs BSGA of when it is correct and when it is wrong, with the same information it
is given. The algorithm is correct exactly when BSGA is correct. The total number of
advice bits will be less thane(n) + (1 + (1 − α) log(1 − α) + α logα)n − e(n) =
(1+ (1−α) log(1−α) +α logα)n. However, Lemma 8 implies that no algorithm can
guess correctly on more thanαn bits with this many bits of advice. In conclusion, the
initial assumption is incorrect and the statement holds. ⊓⊔

In order to relate the Binary String Guessing Problem to the online bin packing
problem, we introduce another problem called the Binary Separation Problem.

Definition 4. TheBinary Separation Problemis the following online problem. The in-
put I = (n1, σ = 〈y1, y2, . . . , yn〉) consists ofn = n1 + n2 positive values which are
revealed one by one. There is a fixed partitioning of the set ofitems into a subset ofn1

large items and a subset ofn2 small items, so that all large items are larger than all
small items. Upon receiving an itemyi, an online algorithm for the problem must guess
if y belongs to the set of small or large items. After the algorithm has made a guess, it is
revealed to the algorithm whetheryi actually belongs to class of small or large items.

We provide reductions from the modified Binary String Guessing Problem to the
Binary Separation Problem, and from the Binary Separation Problem to the online bin
packing problem. In order to reduce a problemP1 to another problemP2, given an
instance ofP1 defined by a sequenceσ1 and a set of parametersη1 (such as the length
of σ1 or the number of “0”s in it), we create an instance ofP2 which is defined by a
sequenceσ2 and also a set of parametersη2. In our reductions, we assumeη2 is derived
from η1, and sinceσ1 is revealed in an online manner,σ2 is created in an online manner
by looking only atη1 and the revealed items ofσ1.

14

Algorithm 1 Implementing Binary String Guessing via Binary Separation.
The Binary Guessing algorithm knows the number of “0”s (n1) and passes it as a parameter
(the number of large items) to the Binary Separation algorithm

1: small = 0; large = 1
2: repeat
3: mid = (large− small) / 2
4: classguess = SeparationAlgorithm.ClassifyThis(mid)
5: if classguess = “large”then
6: bit guess = 0
7: else
8: bit guess = 1
9: actualbit = Guess(bitguess){The actual value is received after guessing (2-SGKH).}

10: if actualbit = 0 then
11: large = mid{We let “large” be the correct decision.}
12: else
13: small = mid{We let “small” be the correct decision.}
14: until end of sequence

Lemma 10. Assume that there is an online algorithm that solves the Binary Separation
Problem on sequences of lengthn with b(n) bits of advice, and makes at mostr(n) mis-
takes. Then there is also an algorithm that solves the BinaryString Guessing Problem
on sequences of lengthn, assuming the number of “0”s is given as a part of input, so
that the algorithm receivesb(n) bits of advice and makes at mostr(n) errors.

Proof. We assume that we have an algorithm BSA that solves the Binary Separation
Problem under the conditions of the lemma statement. Using that algorithm, we define
the numbern1 of large items to be the number of “0”s in the instance of the Binary
String Guessing Problem. Then, we implement our algorithm BSGA for the Binary
String Guessing Problem as outlined in Algorithm 1, which defines the reduction. This
BSGA implementation, defined in Algorithm 1, functions as an adversary for BSA, e.g.,
in Line 4, BSGA gives BSA its next request. Notice that we ensure that the BSGA makes
a correct guess if and only if BSA makes a correct guess. The advice tape is filled with
bits of advice for this combined algorithm. The BSGA uses the BSA as a sub-routine,
but all the questions are effectively coming from the BSA.

The set-up, reminiscent of binary search, is carried out as specified in the algorithm
with the purpose of ensuring that when the BSA is informed of the actual class of the
item it considered, no result can contradict information already obtained. Specifically,
the next item for the BSA to consider is always in between the largest item which
has previously been deemed “small” and the smallest item which has previously been
deemed “large”. The fact that we give the middle item from that interval is unimportant;
any value chosen from the open interval would work. ⊓⊔

Now, we prove that if we can solve a special case of the bin packing problem, we
can also solve the Binary Separation Problem.

Lemma 11. Consider the bin packing problem on sequences of length2n for which
OPT opensn bins. Assume that there is an online algorithmA that solves the problem

15

on these instances withb(n) bits of advice and opens at mostn + r(n)/4 bins. Then
there is also an algorithmBSA that solves the Binary Separation Problem on sequences
of lengthn with b(n) bits of advice and makes at mostr(n) errors.

Proof. In the reduction, we encode requests for the BSA as items for bin packing. As-
sume we are given an instanceI = (n1, σ = 〈y1, y2, . . . , yn〉) of the Binary Separation
problem, in whichn1 is the number of large items (n1 + n2 = n), and the values of
yts are revealed in an online manner(1 ≤ t ≤ n). We create an instance of the bin
packing problem which has length2n. Algorithm 2 shows the details of the reduction.
The bin packing sequence starts withn1 items of size1

2 + εmin (in Algorithm 2, the
variable “NumberOfLargeItems” isn1 from the Binary Separation Problem). Any algo-
rithm needs to open a bin for each of thesen1 items. We create the nextn items in an
online manner, so that we can use the result of their packing to guess the requests for the
Binary Separation Problem. Letτ = yt (1 ≤ t ≤ n) be a requested item of the Binary
Separation Problem; we ask the bin packing algorithm to packan item whose size is
an increasing function ofτ , and slightly less than12 . Depending on the decision of the
bin packing algorithm for opening a new bin or placing the item in one of the existing
bins, we decide the type ofτ as being consecutively small or large. The lastn2 items
of the bin packing instance are defined as complements of the items in the bin packing
instance associated with small items in the binary separation instance (the complement
of itemx is 1−x). We do not need to give the last items complementing the small items
in order to implement the algorithm, but we need them for the proof of the quality of
the correspondence that we are proving.

Call an item in the bin packing sequence “large” if it is associated with large items
in the Binary Separation Problem, and “small” otherwise. For the bin packing sequence
produced by the reduction, an optimal algorithm pairs each of the large items with one
of the firstn1 items (those with size12 + εmin), placing them in the firstn1 bins. OPT

pairs the small items with their complements, starting one of the nextn2 bins with each
of these small items. Hence, the cost of an optimal algorithmis n1 + n2 = n. The
valuesεmin andεmax in Algorithm 2 must be small enough so that no more than two
of any of the items given in the algorithm can fit together in a bin. No other restriction
is necessary.

We claim that each extra bin used by the bin packing algorithm, but not by OPT,
results in at most four mistakes made by the derived algorithm on the given instance of
the Binary Separation Problem. Consider an extra bin in the final packing ofA. This
bin is opened by a large item which is incorrectly guessed as being small (bins which
are opened by small items also appear in OPT’s packing). Note that large items do not
fit in the same bins as complements of small items. The extra bin has enough space for
another large item. Moreover, there are at most two small items which are incorrectly
guessed as being large and placed in the space dedicated to the large items of the extra
bin. Hence, there is an overhead of at least one for four mistakes. To summarize,A
has to decide if a given item is small or large and performs accordingly, and it pays a
cost of at least1/4 for each incorrect decision. IfA opens at mostn + r(n)/4 bins,
the algorithm derived fromA for the Binary Separation Problem makes at mostr(n)
mistakes. ⊓⊔

16

Algorithm 2 Implementing Binary Separation via Special Case Bin Packing.

1: Chooseεmin andεmax so that0 < εmin < εmax < 1
6

2: Choose a decreasing functionf : R → (εmin..εmax)
3: for i = 1 to NumberOfLargeItemsdo
4: BinPacking.Treat(1

2
+ εmin) {The decision can only be to open a bin.}

5: repeat
6: Letτ be the next request
7: decision = BinPacking.Treat(1

2
− f(τ))

8: if decision = “packed with an1
2
+ εmin item” then

9: classguess = “large”
10: else
11: classguess = “small”

actualclass = Guess(classguess)
12: if actualclass = “small”then
13: SmallItems.append(1

2
− f(τ)) {Collecting small items for later.}

14: until end of request sequence
15: for i = 1 to len(SmallItems)do
16: BinPacking.Treat(1− SmallItems[i]){The decision is not used.}

Theorem 6. Consider the online bin packing problem on sequences of length n. To
achieve a competitive ratio ofc (1 < c < 9/8), an online algorithm needs to receive at
least(n(1+(4c−4) log(4c−4)+(5−4c) log(5−4c))−(⌈log(n+1)⌉+2⌈log(⌈log(n+
1)⌉+ 1)⌉+ 1))/2 bits of advice.

Proof. Consider a bin packing algorithmA that receivesb(n) bits of advice and achieves
a competitive ratio ofc. This algorithm opens at most(c − 1)OPT(σ) bins more than
OPT, so when OPT(σ) = n/2, it opens at most(c − 1)n/2 more bins. By Lemma 11,
the existence of such an algorithm implies that there is an algorithmA that solves the
Binary Separation Problem on sequences of lengthn/2 with b bits of advice and makes
at most2(c − 1)n errors. By Lemma 10, this implies that there is an algorithmB that
solves the Binary String Guessing Problem on sequences of length n/2 with b bits
of advice and makes at most2(c − 1)n mistakes, i.e., it correctly guesses the other
n/2− 2(c− 1)n = (5− 4c)n/2 items. Letα = 5− 4c, and note thatα is in the range
[1/2, 1)whenc is in the range(1, 9/8]. Lemma 9 implies that in order to correctly guess
more thanαn/2 of the items in the binary sequence, we must haveb(n) larger than or
equal to((1 + (1 − α) log(1 − α) + α logα)n − e(n))/2. Replacingα with 5 − 4c
completes the proof. ⊓⊔

Thus, to obtain a competitive ratio strictly better than9/8, a linear number of bits of
advice is required. For example, to achieve a competitive ratio of 17/16, at least0.188n
bits of advice are required asymptotically.

Corollary 1. Consider the bin packing problem for packing sequences of lengthn. To
achieve a competitive ratio of9/8− δ, in whichδ is a small, but fixed positive number,
an online algorithm needs to receiveΩ(n) bits of advice.

17

6 Concluding Remarks

We conjecture that a sublinear number of bits of advice is enough to achieve competi-
tive ratios smaller than4/3. Note that our results imply that we cannot hope for ratios
smaller than9/8 with sublinear advice.

References

1. E. Asgeirsson, U. Ayesta, E. Coffman, J. Etra, P. Momcilovic, D. Phillips, V. Vokhshoori,
Z. Wang, and J. Wolfe. Closed on-line bin packing.Acta Cybernet., 15(3):361–367, 2002.

2. J. Baewicz and K. Ecker. A linear time algorithm for restricted bin packing and scheduling
problems.Oper. Res. Lett., 2(2):80–83, 1983.

3. János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes of
bin packing algorithms.Theoret. Comput. Sci., 440–441:1–13, 2012.

4. Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovic, and Lucia Keller. On-
line coloring of bipartite graphs with and without advice. In COCOON ’12, volume 7434 of
LNCS, pages 519–530, 2012.

5. Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovic, Sacha Krug, and Björn
Steffen. On the advice complexity of the onlineL(2, 1)-coloring problem on paths and
cycles. InCOCOON ’13, volume 7936 ofLNCS, pages 53–64, 2013.

6. Hans-Joachim Böckenhauer, Juraj Hromkovic, Dennis Komm, Sacha Krug, Jasmin Smula,
and Andreas Sprock. The string guessing problem as a method to prove lower bounds on the
advice complexity. InCOCOON ’13, volume 7936 ofLNCS, pages 493–505, 2013.

7. Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and Richard Královič. On
advice complexity of thek-server problem. InICALP ’1s1, volume 6755 ofLNCS, pages
207–218, 2011.

8. Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. InISAAC ’09, volume 5878 of
LNCS, pages 331–340, 2009.

9. Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. On
the advice complexity of the knapsack problem. InLATIN ’12, volume 7256 ofLNCS, pages
61–72, 2012.

10. Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor,Approximation algorithms for NP-hard
Problems. PWS Publishing Co., 1997.

11. Stefan Dobrev, Rastislav Královic, and Euripides Markou. Online graph exploration with
advice. InSIROCCO ’12, volume 7355 ofLNCS, pages 267–278, 2012.

12. Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input.RAIRO Inform. Theor. Appl., 43(3):585–613, 2009.

13. Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice.Theoret.
Comput. Sci., 412(24):2642 – 2656, 2011.

14. W. Fernandez de la Vega and G. Lueker. Bin packing can be solved within 1 + ǫ in linear
time. Combinatorica, 1:349–355, 1981.

15. Michal Forišek, Lucia Keller, and Monika Steinová. Advice complexity of online coloring
for paths. InLATA ’12, volume 7183 ofLNCS, pages 228–239, 2012.

16. Edward F. Grove. Online binpacking with lookahead. InSODA ’95, pages 430–436, 1995.
17. Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity of on-

line problems. InMFCS ’10, volume 6281 ofLNCS, pages 24–36, 2010.

18

18. D. Komm and R. Královič. Advice complexity and barely random algorithms.RAIRO Inform.
Theor. Appl., 45(2):249–267, 2011.

19. Dennis Komm, Richard Královic, and Tobias Mömke. On the advice complexity of the set
cover problem. InCSR ’12, volume 7353 ofLNCS, pages 241–252, 2012.

20. Marc P. Renault and Adi Rosén. On online algorithms withadvice for thek-server problem.
In WAOA ’11, volume 7164 ofLNCS, pages 198–210, 2011.

21. Sebastian Seibert, Andreas Sprock, and Walter Unger. Advice complexity of the online
coloring problem. InCIAC ’13, volume 7878 ofLNCS, pages 345–357, 2013.

22. Steven S. Seiden. On the online bin packing problem.J. ACM, 49:640–671, 2002.
23. Vijay V. Vazirani.Approximation Algorithms. Springer, 2004.

19

	Online Bin Packing with Advice

