
THE ACCOMMODATING FUNCTION

– A GENERALIZATION OF THE COMPETITIVE RATIO ∗†

JOAN BOYAR ‡ , KIM S. LARSEN § , AND MORTEN N. NIELSEN ¶

Abstract. A new measure, the accommodating function, for the quality of on-line algorithms is
presented. The accommodating function, which is a generalization of both the competitive ratio and
the competitive ratio on accommodating sequences, measures the quality of an on-line algorithm as
a function of the resources that would be sufficient for an optimal off-line algorithm to fully grant
all requests. More precisely, if we have some amount of resources n, the function value at α is the
usual ratio (still on some fixed amount of resources n), except that input sequences are restricted to
those where the optimal off-line algorithm will not obtain a better result by having more than the
amount αn of resources.

The accommodating functions for three specific on-line problems are investigated: a variant of
bin-packing in which the goal is to maximize the number of items put in n bins, the Seat Reservation
Problem, and the problem of optimizing total flow time when preemption is allowed.

We also show that when trying to distinguish between two algorithms, the decision as to which
one performs better cannot necessarily be made from the competitive ratio or the competitive ratio on
accommodating sequences alone. For the variant of bin-packing considered, we show that Worst-Fit
has a strictly better competitive ratio than First-Fit, while First-Fit has a strictly better competitive
ratio on accommodating sequences than Worst-Fit.

Key words. on-line algorithms, performance measures, competitive analysis, restricted adver-
saries, bin packing, seat reservations, flow time

AMS subject classifications. 68Q25, 05B40, 90B35

1. Introduction. The competitive ratio [17, 29, 23], as a measure for the quality
of on-line algorithms, has been criticized for giving bounds that are unrealistically
pessimistic [5, 7, 18, 22, 25], and for not being able to distinguish between algorithms
with very different behavior in practical applications [7, 18, 25, 28]. Though this
criticism also applies to standard worst-case analysis, it is often more disturbing in
the on-line scenario [18].

The basic problem is that the adversary is too powerful compared with the on-
line algorithm. For instance, it would often be more interesting to compare an on-line
algorithm to other on-line alternatives than to an all-powerful off-line algorithm. A
number of papers have addressed this problem [16] by making the on-line algorithm
more powerful, by providing the on-line algorithm with more information, or by re-
stricting the set of legal input sequences.

With regards to providing the on-line algorithm with more information, most
progress has been made on paging problems. It has been observed [7] that programs
exhibit “locality of reference”. By supplying an “access graph” as part of the input
to the algorithms, this behavior can be modeled. In [7, 19], a number of classes of

∗A few of the results in this paper appeared in the proceedings of the Sixth International Work-
shop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 1663, Springer-
Verlag, 74–79, 1999.

†Department of Mathematics and Computer Science, University of Southern Denmark, Main
campus: Odense University, Campusvej 55, DK-5230 Odense M, Denmark. Supported in part by
the esprit Long Term Research Programme of the EU under project number 20244 (alcom-it) and
by grants from the Danish Natural Sciences Research Council (SNF).

‡joan@imada.sdu.dk.
§kslarsen@imada.sdu.dk.
¶nyhave@imada.sdu.dk.

1

2 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

access graphs have been studied. In [11], it is shown that LRU is never worse than
FIFO on any access graph.

The “loose competitive ratio” from [31] represents another attempt at improving
the ratio. When determining the loose competitive ratio c, the following steps are
taken. First, from an infinite set of input sequences, a set of sequences, asymptotically
smaller than the whole set, may be disregarded. The remaining sequences should then
either be c-competitive or have small cost. The assumption is that sequences of small
cost are relatively unimportant.

With regards to making the on-line algorithm more powerful, this has been
achieved through so-called “extra-resource analysis” of scheduling problems. In [22]
and [28], processor speed is a resource which to some degree compensates for the on-
line algorithm’s lack of knowledge of the future compared with the (optimal) off-line
algorithm. In [28], reduced job arrival rate is also considered as an extra resource
the on-line algorithms could be allowed. Another possibility for an extra resource in
scheduling problems is extra machines. Graham in [17] compares two arbitrary algo-
rithms, allowing different numbers of processors for the two algorithms. This work
was done before the competitive ratio was formally defined, but if one of these two
algorithms is the optimal off-line algorithm, this result can be viewed as allowing the
on-line algorithm extra machines. In [30, 31], the competitive ratio is improved by
allowing some limited look-ahead.

In [25], unrealistic sequences can be removed by specifying a collection of possible
distributions. The off-line adversary will choose the distribution which maximizes the
ratio of the expected performance of the on-line algorithm to the expected performance
of the adversary.

In this paper, we obtain new and stronger results by restricting the adversary.
This can be done various ways; we move in the direction of restricting the set of
input sequences, the adversary can supply. However, instead of a “fixed” restriction,
we consider a function of the restriction, the accommodating function. Informally, in
on-line problems, where requests are made for parts of some resource, we measure the
quality of an on-line algorithm as a function of the resources that would be sufficient
for an optimal off-line algorithm. More precisely, if we have some amount of resources
n, the function value at α is the usual ratio (still on some fixed amount of resources
n), except that input sequences are restricted to those where the optimal off-line
algorithm will not obtain a better result by having more than the amount αn of
resources.

In the limit, as α tends towards infinity, there is no restriction on the input se-
quence, so this is the competitive ratio. However, when α is very large, the allowed
sequences cannot necessarily be handled very well by the optimal off-line algorithm
and can, depending on the application, be quite unrealistic. To avoid comparing an
on-line algorithm to the optimal off-line algorithm on problematic sequences of this
type, we consider smaller values of α and restrict the adversary so that it can only
supply sequences which the optimal off-line algorithm could handle optimally with
only αn resources. In the case where increasing the amount of resources available will
not improve the optimal off-line algorithm’s result, the sequences are called accommo-

dating sequences [9]1. Thus, when α = 1, the function value is the competitive ratio on
accommodating sequences. Consequently, the accommodating function is a true gen-

1In that paper and a preliminary version of the current paper [10], this competitive ratio on
accommodating sequences was called the accommodating ratio. The change is made here for consis-
tency with common practice in the field.

THE ACCOMMODATING FUNCTION 3

eralization of the competitive ratio as well as the competitive ratio on accommodating
sequences.

In addition to giving rise to new interesting algorithmic and analytical problems,
which we have only begun investigating, this function, compared to just one ratio,
contains more information about the on-line algorithms. For some problems, this
information gives a more realistic impression of the algorithm than the competitive
ratio does. Additionally, this information can be exploited in new ways. The shape
of the function, for instance, can be used to warn against critical scenarios, where
the performance of the on-line algorithm compared to the off-line can suddenly drop
rapidly when more sequences are allowed.

In the next section, we formally define the accommodating function. In the fol-
lowing sections, the accommodating functions for three specific on-line problems are
investigated: a variant of bin-packing in which the goal is to maximize the number
of items put in n bins, the seat reservation problem, and the problem of optimizing
total flow time when preemption is allowed.

In Section 3, where we consider the variant of bin-packing, we consider two spe-
cific algorithms, First-Fit and Worst-Fit. We show that although First-Fit performs
worse than Worst-Fit with respect to the competitive ratio, it performs better with
respect to the competitive ratio on accommodating sequences. Thus, the choice as
to which algorithm to use depends on which ratio is more relevant in a specific situ-
ation. This would depend on the actual distribution of request sequences and on the
accommodating functions for the algorithms.

2. The Accommodating Function. Consider an on-line problem with a fixed
amount of resources n. For a maximization problem, A(I) is the value of running the
on-line algorithm A on I, and OPT(I) is the maximum value that can be achieved on
I by an optimal off-line algorithm, OPT.

For a minimization problem, A(I) is a cost and OPT(I) is the minimum cost

which can be achieved.
A and OPT use the same amount of resources, n. For a problem with some

limited resource, OPTm(Am) denotes the value/cost of an optimal off-line algorithm
(the on-line algorithm) when the amount m of the limited resource is available.

Definition 2.1. Let P be an on-line problem with a fixed amount n of resources.

For any α > 0, an input sequence I to the problem P is said to be an α-sequence, if
OPTαn(I) = OPTn′(I), for all n′ ≥ αn. 1-sequences are also called accommodating
sequences.

If an input sequence is an α-sequence, then an optimal off-line algorithm does
not benefit from having more than the amount αn of resources. For maximization
problems, this will often mean that the optimal off-line algorithm could have fully
granted all requests with the amount αn of resources. If an input sequence is an
accommodating sequence, then an optimal off-line algorithm does not benefit from
having more resources than the amount already available.

For a maximization problem, the algorithm A is c-competitive on α-sequences if
c ≤ 1, and for every n and every α-sequence I, An(I) ≥ c ·OPTn(I)− b, where b is a
fixed constant for the given problem, and, thus, independent of I.

Let Cα
A
= {c | A is c-competitive on α-sequences}. The accommodating function

A is defined as AA(α) = sup Cα
A
.

For a minimization problem, A is c-competitive on α-sequences if c ≥ 1 and for
every n and every α-sequence I, An(I) ≤ c · OPTn(I) + b, and the accommodating
function is defined as AA(α) = inf Cα

A
.

4 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

With this definition, the competitive ratio on accommodating sequences from [9]
is A(1) and the competitive ratio is limα→∞ A(α). In this paper, we only consider
α ≥ 1. In Figure 2.1, these relationships are depicted using a hypothetical example
for a maximization problem.

✲

✻

0 1 α

1

on-line
off-line

acc.rat

comp.rat

Fig. 2.1. A typical accommodating function for a maximization problem.

The extra information contained in the accommodating function compared with
the competitive ratio can be used in different ways. If the user knows that estimates of
required resources cannot be off by more than a factor three, for instance, then A(3)
is a bound for the problem, and thereby a better guarantee than the bound given by
the competitive ratio. The shape of the function is also of interest. Intervals where
the function is very steep are critical, since there earnings, compared to the optimal
earnings, drop rapidly. Thus, the user misses out on business. So, the function can
warn against algorithms with unfortunate behavior, and, if such an algorithm must
be used, the function can be used to locate resource critical areas.

3. Fair Bin Packing. Consider the following bin packing problem: Let n be
the number of bins, all of size k. Given a sequence of integer-sized items of size at
most k, the objective is to maximize the total number of items in these bins. This
problem has been studied in the off-line setting, starting in [14], and its applicability
to processor and storage allocation is discussed in [13]. (For surveys on Bin Packing,
see [12, 15].) The problem we are considering is on-line, so the requests occur in a
definite order. We require the packing to be fair , that is, an item can only be rejected
if it cannot fit in any bin at the time when it is given. We refer to the problem as Fair
Bin Packing2. Notice that the fairness criterion is a part of the problem specification.
Thus, even though the optimal off-line algorithm knows the whole sequence of requests
in advance, it must process the requests in the same order as the on-line algorithm,
and do so fairly.

In this problem, for a given α, we only consider sequences which could be packed
in αn bins by an optimal off-line algorithm.

3.1. Summary of Results. The following six theorems summarize our results
for deterministic algorithms for Fair Bin Packing. Note that since this is a maxi-
mization problem, lower bounds are obtained by proving a bound on the worst case
behavior of algorithms, and upper bounds are obtained by giving adversary argu-
ments.

2In [10], where a preliminary version of some of these results was presented, the same problem
was referred to as Unit Price Bin Packing.

THE ACCOMMODATING FUNCTION 5

Theorem 3.1. For any Fair Bin Packing algorithm, the accommodating function

is at most

A(α) ≤

6
7 : α = 1
2

2+(α−1)(k−2) : 1 < α ≤ 5
4

8
6+k

: α > 5
4

for k ≥ 3.

Theorem 3.2. For any Fair Bin Packing algorithm, the accommodating function

is at least

A(α) ≥

1
2 : α = 1
α

max{1+(α−1)k,2+(α−1) k
2 }

: 1 < α < 2

2− 1
k

k
: α ≥ 2

for k ≥ 3.

The bounds presented in the previous two theorems are depicted in Figure 3.1.

✲

✻

5
4

α1

6
7

2
k

1
2

on-line
off-line

✠

2
2+(α−1)(k−2)

❄

8
6+k

✠

α

max{1+(α−1)k,2+(α−1) k
2 }

Fig. 3.1. General upper and lower bounds on the accommodating function for Fair Bin Packing.

Drawn for k = 60.

The specific algorithms we consider are First-Fit (FF) and Worst-Fit (WF). First-
Fit places an item in the lowest numbered bin in which it fits, while Worst-Fit places
an item in one of the bins which are least full.

Theorem 3.3. An upper bound on the accommodating function for First-Fit is

AFF(α) ≤

7
11 : α = 1
α

1+(α−1)(k−1) : 1 < α < 2

2− 1
k

k
: α ≥ 2

The general lower bounds from Theorem 3.2 apply to all algorithms, including
First-Fit. A better lower bound on the competitive ratio on accommodating sequences
can be shown.

6 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

✲

✻

α3
2

1

1

5
8

2
k

on-line
off-line

✠

α
1+(α−1)(k−1) α

max{1+(α−1)k,2+(α−1) k
2 }

■

Fig. 3.2. Upper and lower bounds on the accommodating function for First-Fit. Drawn for

k = 60.

Theorem 3.4. For First-Fit the competitive ratio on accommodating sequences

is at least

AFF(1) ≥
5

8
.

The bounds on First-Fit presented in the previous three theorems are depicted in
Figure 3.2.

Theorem 3.5. An upper bound on the accommodating function for Worst-Fit is

AWF(α) ≤

1
2− 1

k

: α = 1

3− 1
n

2− 1
n
+(α−1)k

: 1 < α < 1 + 1
n
⌈ (n−1)(k−n)+(n−1)

k
⌉

3+ 1
n−1

3+ 1
n−1+(1− 1

β
)k

: α ≥ 1 + 1
n
⌈ (n−1)(k−n)+(n−1)

k
⌉, k ≥ βn, β ≥ 1

The general lower bounds from Theorem 3.2 apply to all algorithms, including
Worst-Fit. A better lower bound on the competitive ratio can be shown.

Theorem 3.6. The competitive ratio of Worst-Fit is at least 3
2+k

.

3.2. Upper Bounds for All Deterministic Algorithms. Here we prove
bounds which apply to all deterministic algorithms for Fair Bin Packing, beginning
with an upper bound on the accommodating function. All of the results in this sub-
section also hold if one relaxes the restriction that all items must be integer-sized to
a restriction that the bins have unit size and the smallest item has size 1/k.

Theorem 3.7. For any Fair Bin Packing algorithm, if α ≤ 5
4 and k ≥ 3, then

A(α) ≤ 2
2+(α−1)(k−2) .

Proof. Consider an arbitrary fair on-line algorithm A. An adversary can give A

the following request sequence, divided into three phases. Phase 1 consists of n small
items of unit size. Phase 2 consists of items, one for each bin which A did not fill
completely with size equal to the empty space in that bin, sorted in decreasing order.
After these are given, A has filled all bins completely and so must reject the items in
Phase 3, which consists of (αn − n)k items of unit size. Let q denote the number of
empty bins in A’s configuration after the first phase.

In the case where q < n
4 , we know that A has at least n−2q ≥ 2(αn−n) bins with

exactly one item after Phase 1. OPT can arrange the items from Phase 1 such that

THE ACCOMMODATING FUNCTION 7

half of the bins contain two items and half contain no items. In the second request
phase, there are at least 2(αn− n) items of size k − 1. OPT rejects at least αn− n,
leaving room for at least (αn − n)(k − 1) of the unit size items from Phase 3. This
gives a total gain of at least (k − 2)(αn − n), and the performance ratio is at most

2n
2n+(αn−n)(k−2) =

2
2+(α−1)(k−2) .

In the case where q ≥ n
4 , we know that A has at least αn − n empty bins after

Phase 1. OPT places each of the items from Phase 1 in a different bin. This gives
a performance ratio of at most 2n

2n+(αn−n)(k−1) = 2
2+(α−1)(k−1) , since OPT rejects

αn− n items of size k.

Using the value α = 5
4 in the above theorem, gives an upper bound on the

competitive ratio.

Corollary 3.8. If k ≥ 3, no Fair Bin Packing algorithm is more than 8
6+k

-

competitive.

The next theorem improves the bound on the accommodating function for α = 1.

Theorem 3.9. For k ≥ 7, any Fair Bin Packing algorithm has a competitive

ratio on accommodating sequences of at most 6
7 .

Proof. Consider an arbitrary fair on-line algorithm A and assume n is even. An
adversary first gives n items of size ⌈k

2 ⌉ − 1. Since k ≥ 7, A has packed at most two
items per bin. Let q denote the number of empty bins in A’s packing. In the case
where q < 2n

7 , the off-line algorithm can pack these n requests in the first n
2 bins.

Now the adversary can give n
2 long requests of size k. The performance ratio is then

n+q
n+n

2
= 2n+2q

3n < 6
7 .

In the case where q ≥ 2n
7 , observe that A has q bins with exactly two items. Let

the off-line algorithm place one item in each bin. In this case, the adversary can now
give n requests of size ⌊k

2 ⌋+1. The performance ratio is then 2n−q
2n ≤ 6

7 .

3.3. Lower Bounds for All Deterministic Algorithms. Now we prove lower
bounds which apply to all deterministic algorithms for Fair Bin Packing. The first
lower bound is on the competitive ratio. Fix an on-line algorithm A, and consider
the configuration of A after a given sequence I has been packed. Let e denote the
maximal empty space in any bin. Since all items are integer-sized, if the bins are not
all full, e ≥ 1.

Lemma 3.10. If e ≥ 1, the performance ratio of A is at least 3
2+k

, for k ≥ 3.

Proof. Let V denote the volume of the first n requests, all of which must be
accepted by A. Note that n ≤ V ≤ nk. All items of size at most e have been accepted
by A due to the fairness criterion. Let M count the number of such small items which
arrive after the first n requests.

In the case where e = 1, M counts the number of unit size items. As argued
above, A must accept the first n items, plus the M unit size items, and together they
have volume V +M . Since A fills every bin with volume at least k − 1, these items
account for all of what A places in at most ⌊V+M

k−1 ⌋ bins. Thus, it must accept at least

n − ⌊V+M
k−1 ⌋ additional items. The optimal off-line algorithm OPT must also accept

the first n items and the M unit size items. For other items, it has nk − V − M
space remaining. All other items in the request sequence have size at least 2, so OPT
accepts at most nk−V−M

2 additional items. Hence, the performance ratio is at least

n+M + n− ⌊V+M
k−1 ⌋

n+M + nk−V−M
2

≥
n+M + n− V+M

k−1

n+M + nk−V−M
2

,

8 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

defined for n ≤ V ≤ nk and 0 ≤ M ≤ nk − V . By finding the minimum with respect
to M , it can be shown that the following is a lower bound for the performance ratio:

2n− V
k−1

n+ nk−V
2

≥
2n− n

k−1

n+ nk−n
2

=
4k − 6

k2 − 1
.

The last inequality is obtained by finding the minimum with respect to V .
In the case where e ≥ 2, the performance ratio is at least

n+M + (n− ⌊V+M
k−e

⌋)

n+M + nk−V−M
e+1

≥
n+M

n+M + nk−n−M
e+1

=
(e+ 1)(M + n)

en+ eM + nk

≥
(e+ 1)n

en+ nk
≥

3

2 + k
.

For k ≥ 3, the case e ≥ 2 gives the smallest value.
Theorem 3.11. The competitive ratio for any Fair Bin Packing algorithm is at

least
2− 1

k

k
, when k ≥ 3.

Proof. Consider an algorithm A for Fair Bin Packing. When k ≥ 3, the ratio 3
2+k

from Lemma 3.10 is larger than
2− 1

k

k
. Thus, it suffices to consider the case where e = 0.

Again, let V denote the volume of the first n requests, all of which must be accepted
by A, since it is fair. Since e = 0, every bin has been filled up by the on-line algorithm,
but the first n requests filled at most ⌊V

k
⌋ bins. Thus, A accepted at least n+(n−⌊V

k
⌋)

items. Since all items have size at least 1, OPT accepts at most n+ (nk − V) items,

giving a performance ratio of at least
2n−⌊V

k
⌋

n+nk−V
≥

2n−V
k

n+nk−V
≥

2n−n
k

nk
=

2− 1
k

k
.

Next we give a lower bound on the competitive ratio on accommodating sequences,
A(1). Note that the result does not depend on the items being integer-sized.

Theorem 3.12. Let I be an input sequence which can be accommodated within n
bins. The performance ratio is greater than 1

2 for any Fair Bin Packing algorithm.

Proof. Let A denote the set of items accepted by the on-line algorithm, and let
R denote the set of items rejected. The set R could be empty, but then the on-line
algorithm would have accommodated every request, giving a performance ratio of
1. If R is non-empty, at least n items are accepted. Since the performance ratio is

|A|
|A|+|R| , it is enough to show that |R| < n. Let e denote the maximal empty space in

any bin. Every item in R has size greater than e. If |R| ≥ n, then the volume of R is
greater than ne. However, this contradicts the fact that the total empty space is at
most ne and the entire sequence can be packed in n bins.

The final general lower bound is on the accommodating function.
Theorem 3.13. For any Fair Bin Packing algorithm, the accommodating func-

tion can be bounded by A(α) ≥ α

max{1+(α−1)k,2+(α−1) k
2 }

, for 1 < α < 2 and k ≥ 4.

Proof. Consider a worst-case sequence I for an on-line algorithm A. We may
assume that I contains no item which is rejected by both A and OPT, since such an
item has no influence on the ratio.

Again, let A denote the set of items accepted by the on-line algorithm A, and
let R denote the set of items rejected. Let ρ(I) denote the least number of bins in
which the sequence can be packed and define l = ρ(I) − n. If l = 0, we can use the

THE ACCOMMODATING FUNCTION 9

result from Theorem 3.12. Assume that l ≥ 1 and note that l is a lower bound on the
number of items rejected by OPT. The first n items are accepted by both algorithms.
Since, by assumption, the on-line algorithm accepts all those items OPT rejects, it
must accept at least n + l items. Thus, |A| ≥ n + l. Again, let e denote the size of
the maximal empty space in any bin. The proof is divided into two cases depending
on e.

If e = 0, all n bins have been filled by the on-line algorithm, so the number of
rejected items is at most lk.

In the case where e ≥ 1, an upper bound on the number of items rejected is
|R| ≤ 1

e+1 (en + lk) using the same arguments as in the previous theorem. We can

now bound the accommodating function: A(α) ≥ |A|
|A|+|R|−l

≥ n+l

n+l+max{lk, en
e+1+l k

e+1}−l

≥ n+(αn−n)

n+max{(αn−n)k,n+(αn−n) k
2 }

= α

1+max{(α−1)k,1+(α−1) k
2 }

, for 1 < α < 2.

3.4. Separation of First-Fit and Worst-Fit using the Accommodating

Function. In this section, we prove that the accommodating function provides extra
information, by showing that the best choice between two different algorithms for
the same natural problem (Fair Bin Packing) cannot be made based on either the
competitive ratio or the competitive ratio on accommodating sequences alone.

The two specific algorithms that we consider are First-Fit (FF) and Worst-Fit
(WF). First-Fit places an item in the lowest numbered bin in which it fits, while
Worst-Fit places an item in a bin which is least full. We show that Worst-Fit has a

better competitive ratio (rWF ≥ 3
2+k

) than First-Fit (rFF ≤
2− 1

k

k
), while First-Fit has

a better competitive ratio on accommodating sequences (AFF(1) ≥
5
8) than Worst-Fit

(AWF(1) ≤
1

2− 1
k

). All of the results proven in this section for First-Fit also hold for

Best-Fit (BF). Best-Fit is the algorithm which places an item in the most full among
the bins where it fits. If the “most full” is not unique, then Best-Fit chooses the first
among those “most full” bins.

Worst-Fit’s Competitive Ratio on Accommodating Sequences. First, we
prove an upper bound on Worst-Fit’s competitive ratio on accommodating sequences.

Theorem 3.14. Worst-Fit has a competitive ratio on accommodating sequences

of at most 1
2− 1

k

, for all k.

Proof. Assume that n is divisible by k. An adversary can give the following
request sequence:

1. n items of unit size.
2. n− n

k
items of size k.

Worst-Fit places one small item in each bin, and must reject all the following
items. The optimal algorithm behaves like First-Fit and accepts all items giving the
following performance ratio: n

n+n−n
k

= 1
2− 1

k

.

First-Fit’s and Best-Fit’s Competitive Ratios on Accommodating Se-

quences. Now we show that First-Fit’s and Best-Fit’s competitive ratios on accom-
modating sequences are at least 5

8 , which is strictly greater than Worst-Fit’s com-
petitive ratio on accommodating sequences, when k > 2. Thus, according to this
performance measure, First-Fit and Best-Fit are better algorithms than Worst-Fit.
The proof which shows this lower bound on Best-Fit’s competitive ratio on accommo-
dating sequences is essentially the same as the one for First-Fit, after the following
two lemmas are proven giving lower bounds on the sizes of the first items Best-Fit
places in a new bin. We let A(A, I) denote the set of items accepted by an on-line

10 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

algorithm A, and we let R(A, I) denote the set of items it rejects. The first lemma
shows that if Best-Fit packs items so that some bin is no more than half full, then
the performance ratio is at least 2/3 > 5/8, so we can safely ignore such sequences.
In fact, this result holds for First-Fit, too, but we only need to apply it for Best-Fit.

Lemma 3.15. Suppose that OPT accepts all items in some request sequence I.
Suppose further that in Best-Fit’s packing of the sequence I, there is some bin which

is no more than half full. Then Best-Fit accepts at least 2/3 of the items in I.
Proof. If Best-Fit leaves some bin b no more than half full, then every item in

R(BF, I) must have size strictly greater than k/2. Suppose that among the items
which Best-Fit accepts, there are x not in b which it places in bins alone. All of these
x items must be larger than the empty space in bin b. Otherwise they would have
been placed in bin b or some of the contents in bin b would have been placed on top
of them. Thus, these x items also have size strictly greater than k/2. We consider
two cases:

1. Case 1, bin b contains more than one item.
2. Case 2, bin b contains exactly one item.

In the first case, since OPT accepts all of the items in I, there cannot be more than
n items of size strictly greater than k/2, so x + |R(BF, I)| ≤ n. If Best-Fit rejects
any items at all, it has at least two items in all except x bins, so the number of
items accepted by Best-Fit, A(BF, I) ≥ 2n− x, and the total number of items in I is

A(BF, I)+R(BF, I). Thus, Best-Fit’s performance ratio is at least A(BF,I)
A(BF,I)+R(BF,I) ≥

2n−x
2n−x+R(BF,I) ≥

2n−x
3n−2x ≥ 2

3 .

The second case is argued similarly. Since b has only one item, it cannot fit
with any of the x items which are placed alone or with any of the rejected items, so
1 + x + |R(BF, I)| ≤ n. Another difference is that there is now an additional bin, b,
which Best-Fit does not give at least two items. In this case, A(BF, I) ≥ 2n− x− 1.

Thus, Best-Fit’s performance ratio is at least A(BF,I)
A(BF,I)+R(BF,I) ≥ 2n−x−1

2n−x−1+R(BF,I) ≥
2n−x−1
3n−2x−2 ≥ 2

3 .
When considering Best-Fit in the following, we only look at sequences which Best-

Fit packs, such that all bins are more than half full. The next lemma shows that if
Best-Fit packs more than one item in some bin, b, then either at least one of them has
size greater than k/2 or at least two of them have size greater than the final empty
space in any bin which was first used before bin b. We call a bin which was first used
before that bin an “earlier” bin. This lemma can be seen to follow from Claim 2.2.2
in [21], but a direct proof is included below for completeness.

Lemma 3.16. Suppose that OPT accepts all items in some request sequence I,
and that in Best-Fit’s packing of the sequence I, all bins are more than half full. Then

every bin contains either an item of size greater than k/2 or at least two items of size

greater than the empty space in any earlier bin.

Proof. Best-Fit only places an item in an empty bin when it will not fit in any
earlier bin. Suppose that Best-Fit puts the first item in bin b at time t. This first
item must be larger than the empty space in any earlier bin at time t and thus larger
than the final empty space in any earlier bin. Suppose that this first item has size no
more than k/2. Then, by the assumption that all bins are eventually more than half
full, Best-Fit must put some other item x in bin b. In addition, all of the earlier bins
must have been more than half full at time t. Thus, when this second item x is put
in bin b, all earlier bins were more full than b, so this x was too large to fit in them.
Thus, if the first item in a bin has size no more than k/2, the first two both have size
larger than the final empty space in any earlier bin.

THE ACCOMMODATING FUNCTION 11

Given a request sequence I = 〈s1, s2, ..., st〉, where si is the size of item i, we can
represent the final configuration of an algorithm A by conf(A, I) = 〈S1, S2, ..., Sn〉,
a list of n multisets, where the multiset Sj contains the sizes of the items in bin
j. In order to prove a lower bound on First-Fit’s or Best-Fit’s competitive ratio on
accommodating sequences, we compare conf(FF, I) or conf(BF, I) to conf(OPT, I).
In the following, we only write First-Fit or FF, but everything applies to Best-Fit as
well. The sizes which appear in conf(FF, I) will correspond to items in A(FF, I), but
since we are assuming that OPT can accommodate all t items from I, there will be
t items in conf(OPT, I). Consider rearranging the items in conf(FF, I) so that the
items from A(FF, I) are placed in exactly the same bins as they are in conf(OPT, I),
creating a new configuration good(I) = 〈S′

1, S
′
2, ..., S

′
n〉, which also contains exactly

those items in A(FF, I).
First, we prove a lemma which relates the number of moves necessary for changing

from conf(FF, I) to good(I) to the number of items from I which First-Fit rejects. In
fact, this lemma holds for any algorithm for Fair Bin Packing, not just for First-Fit
and Best-Fit.

Lemma 3.17. For any request sequence I which could be accommodated by OPT,

the minimal number of items which have to be moved, in order to change from

conf(A, I) to good(I), is an upper bound on the number of items from I which the

algorithm A rejects.

Proof. Consider any request sequence I and any algorithm A for Fair Bin Packing.
The process of changing from conf(A, I) to good(I) involves moving items out of some
bins and into others. Those bins that become less full after this rearrangement may
have space for one or more items from R(A, I). Let s denote the size of the smallest
item in R(A, I), and write the size of item i as si = qis+ri, where 0 ≤ ri ≤ s−1, and
the amount of empty space in bin j as ej = k −

∑

si∈Sj
si. The new empty space in

bin j is e′j = ej +
∑

si∈Sj\S′
j
si −

∑

si∈S′
j\Sj

si. When item i moves from bin j to bin

j′, the value si = qis + ri is added to the empty space in bin j and subtracted from
the empty space in bin j′. So if we sum, over all bins in the configuration good(I),
the number of items of size s which could fit in their empty space, the value qi is
added to bin j and subtracted from bin j′, giving a net gain of zero. Thus, the only
real contribution comes from the original empty space, ej , and the values ri. Let g(j)
denote the net gain attributed to bin j. Then

g(j) ≤ ⌊ 1
s
(ej +

∑

si∈Sj\S′
j
ri)⌋

≤ ⌊ 1
s
(s− 1 + |Sj \ S

′
j |(s− 1))⌋

= ⌊ s−1
s

(|Sj \ S
′
j |+ 1)⌋

≤ |Sj \ S
′
j |

which is the number of items moved out of bin j. Since all of the items from R(A, I) fit
in the empty space available in good(I), the total number of items in R(A, I) is at most
the total net gain after rearranging. This net gain is

∑n
j=1 g(j) ≤

∑n
j=1 |Sj\S

′
j |, which

is the total number of items moved from one bin to another to get from conf(A, I) to
good(I).

Note that the ordering of the sets in conf(OPT, I) is irrelevant, so we may order
them in any way. The above result holds for the minimum number of moves over all
of these arrangements.

In order to prove a lower bound on the competitive ratio on accommodating
sequences for First-Fit, we prove a lower bound on |A(FF, I)|, which holds for all I.
This is done by proving a lower bound on the number of items which do not move

12 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

when changing from conf(FF, I) to good(I). First, we prove a general result which
applies to all algorithms for Fair Bin Packing, and then we use this result and the
special properties of First-Fit and Best-Fit to prove the lower bound of 5/8.

Define B(A, I) to be the set of items in I of size greater than k/2 which A accepts.
Some of the items moved, in changing from conf(A, I) to good(I), will be moved to be
in the same bins as the items in B(A, I) or moved out of some bin containing an item
from B(A, I). Suppose that these moves are done first. Let O(A, I) denote the items
in A(A, I) \ B(A, I) which have not moved yet. We use Vol[·] to denote the volume
of a collection of items, e.g., Vol[O(A, I)] is the total volume of all items in O(A, I).

Lemma 3.18. There must be an ordering of the sets in conf(OPT, I) in which at

least
Vol[O(A,I)]

k
of the items in A(A, I) \B(A, I) are not moved.

Proof. Consider the bipartite graph G = ((X,Y), E) defined as follows:

1. For each bin b, there are two vertices xb ∈ X and yb ∈ Y .
2. For each item in O(A, I), there is one edge. If the item is in bin i in conf(A, I)

and in bin j in good(I), the corresponding edge is (xi, yj).

A matching in this graph G corresponds to a partial renumbering of the bins, and
the edges in the matching correspond to items which have not been moved. A well
known result due to König [26, 6] states that the size of a maximum matching in a
bipartite graph is equal to the size of a minimum vertex cover. However, a vertex
cover of G corresponds to a set of bins (possibly with some from conf(A, I) and some
from good(I)), which contain all of the items in O(A, I). Thus, the number of items
which have not been moved is at least the minimum number of bins needed to contain
all the items in O(A, I). The value Vol[O(A,I)]

k
is a lower bound on this number of bins.

Theorem 3.19. The competitive ratios on accommodating sequences for First-Fit

and Best-Fit are at least 5
8 .

Proof. Within this proof, First-Fit and Best-Fit are the only on-line algorithms
considered, and the sequence I will be fixed, but arbitrary, subject to the restriction
that all requests would have been accepted by OPT (and for Best-Fit subject to the
further restriction that, given I, Best-Fit packs all bins to more than half full). We use
the following short-hand notation, for legibility: A is used for A(FF, I) or A(BF, I),
B is used for B(FF, I) or B(BF, I), R is used for R(FF, I) or R(BF, I), and V is used
for Vol[O(FF, I)] or Vol[O(BF, I)].

No two items from B can be placed in one bin, since they all have size greater than
k/2. So when counting moves as in Lemma 3.17, the items from B can be assumed
not to have moved, since the bins can be reordered such that these items stay in their
original bins.

According to Lemma 3.17, in order to get from conf(BF, I) to good(I), at least
one item must move for each item in R. All of these items must be in A, along with
the items which are not moved. Lemma 3.18 shows that at least V

k
of these items in

A \B are not moved, so |A| ≥ |R|+ |B|+ V
k
.

We consider two cases based on the value of s, the size of the smallest item in R.
In each case, we first prove a lower bound on V and then use that to prove a lower
bound on the performance ratio.

1. Case s > k
3 : Let T denote those bins which do not contain items of size

greater than k/2, and let ei denote the size of the empty space in the ith bin in T .
For First-Fit, it is clear that, for 2 ≤ i ≤ n− |B|, there are at least two items in bin i
in T which have size greater than ei−1. For Best-Fit, since we assume that ei < k/2
for all bins i in T , this follows from Lemma 3.16. The empty space in those bins

THE ACCOMMODATING FUNCTION 13

containing items from B is at most s − 1, since no items from R could fit in them.
Thus, the total volume of those items which are moved to be in the same bins as the
items in B is no more than |B|(s− 1). The first bin in T has volume k − e1. Hence,

the volume V > (k − e1) + 2(
∑n−|B|−1

i=1 ei)− |B|(s− 1). The empty space above the
first n− |B| − 1 bins in T , plus the empty space above the other bins, must be large

enough to contain all of the rejected items. Thus,
∑n−|B|−1

i=1 ei ≥ |R|s−(|B|+1)(s−1).
Hence,

V > (k − e1) + 2(
∑n−|B|−1

i=1 ei)− |B|(s− 1)
≥ k − (s− 1) + 2|R|s− 2(|B|+ 1)(s− 1)− |B|(s− 1)
= k − 3s+ 3 + 2|R|s− 3|B|s+ 3|B|
≥ k − 3s+ 2|R|s− 3|B|s

Note that either the performance ratio is greater than 5
8 or 5

8 ≥ |A|
|A|+|R| ≥

|R|+|B|
2|R|+|B| , so

2|R| ≥ 3|B|. Thus, for s ≥ k
3 , this lower bound for V is at least the value at s = k

3 .

Hence, V ≥ 2|R|k
3 − |B|k. This volume V requires at least V

k
≥ 2

3 |R| − |B| bins.

The performance ratio is then |A|
|A|+|R| ≥

5
3 |R|
8
3 |R|

= 5
8 .

2. Case s ≤ k
3 : Each of the bins must contain items with size adding up to

at least k − s + 1, or neither First-Fit nor Best-Fit would have rejected an item of
size s. As in the previous case, the total volume of those items which are moved to
be in the same bins as the items in B is no more than |B|(s− 1). Thus, the volume
V ≥ (n− |B|)(k − s+ 1)− |B|(s− 1) = nk − ns+ n− |B|k, and V

k
≥ n− ns

k
− |B|.

For s ≤ k
3 , this is minimized when s = k

3 , giving V
k

≥ 2n
3 − |B|. In the proof

of Theorem 3.12, it was shown that |R| < n, so the performance ratio is at least
|A|

|A|+|R| ≥
|R|+ 2n

3

2|R|+ 2n
3

≥
5n
3
8n
3

= 5
8 .

Therefore, the competitive ratios on accommodating sequences for First-Fit and
Best-Fit are at least 5

8 .

We now show an upper bound which applies to both First-Fit’s and Best-Fit’s
competitive ratios on accommodating sequences.

Theorem 3.20. For Fair Bin Packing, First-Fit’s and Best-Fit’s competitive

ratios on accommodating sequences are at most 7
11 .

Proof. Assume that n is divisible by 13 and that k is greater than 72 and divisible
by 3. An adversary can give the following request sequence, divided into four phases:

1. 3n
13 of size k

3 − 6.

2. 6n
13 pairs, one of size k

3 − 1 followed by one of size k
3 + 3.

3. 6n
13 of size 2k

3 + 1.

4. 12n
13 of size k

3 .

FF and BF will pack Phase 1 in n
13 bins, with three items in each bin. The

assumption that k > 72 assures that four items from this phase cannot be packed
together. From Phase 2, FF and BF will pack one pair in each bin using 6n

13 bins. In
Phase 3, each item will be placed in its own bin, using the last 6n

13 bins. There will be
no space for items from Phase 4.

OPT can pack one item from Phase 1 with two of the items of size k
3 + 3 from

Phase 2, using a total of 3n
13 bins for this. Then, it can place one item of size k

3 − 1
from Phase 2 together with one item from Phase 3, using a total of 6n

13 for this. There
are now 4n

13 empty bins which can each hold three items from Phase 4. The ratio is
thus 3+12+6

3+12+6+12 = 7
11 .

14 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

This bound has been improved later to 5
8 [1], showing that the lower bound from

Theorem 3.19 is tight.

First-Fit’s Competitive Ratio. Turning to the competitive ratio, we show
that according to this measure, Worst-Fit is the better algorithm. First, we prove
an upper bound on First-Fit’s competitive ratio. Note that this result also applies to
Best-Fit.

Theorem 3.21. For Fair Bin Packing, First-Fit has a competitive ratio which

is no more than
2− 1

k

k
, when k divides n.

Proof. An adversary gives the following request sequence, divided into three
phases:

1. n items of unit size.
2. n− n

k
items of size k.

3. n(k − 1) items of unit size.

First-Fit accepts the first two phases of requests. The optimal algorithm places
each of the first n items in a separate bin, and accepts all requests in phases 1 and 3,

giving the following performance ratio:
n+n−n

k

nk
=

2− 1
k

k
.

For arbitrary n and k, a very similar request sequence gives an upper bound on

the competitive ratio for First-Fit of
2− 1

k
+ 1

n

k
. By Theorem 3.11, this result is tight.

Worst-Fit’s Competitive Ratio. Finally, we prove a lower bound on Worst-
Fit’s competitive ratio, but first we prove a tight upper bound, since it can provide
some intuition for the lower bound rWF ≥ 3

2+k
. The request sequence used to prove

this upper bound involves items with sizes dependent on n, the number of bins.
However, it is relatively easy to prove an upper bound of 4

k+2 using a sequence where
the sizes only depend on k, rather than also on n.

Theorem 3.22. For k ≥ βn and β ≥ 1, the competitive ratio for Worst-Fit is

no more than
3+ 1

n−1

3+ 1
n−1+(1− 1

β
)k
.

Proof. An adversary can give the following request sequence with four phases:

1. n− 1 items of size n− 1.
2. n− 1 items of size 1.
3. n items of size k − (n− 1).
4. (n− 1)(k − n) + (n− 1) items of size 1.

After Phase 2, WF has free space of size k − (n − 1) in every bin, and all items
from Phase 3 must be accepted. OPT places items from Phase 1 in separate bins, and
each item from Phase 2 on top of an item from Phase 1. OPT will then only accept
one item from Phase 3, making space for all the unit size items from Phase 4. The

THE ACCOMMODATING FUNCTION 15

performance ratio is then

(n− 1) + (n− 1) + n

(n− 1) + (n− 1) + 1 + (n− 1)(k − n) + (n− 1)

=
3n− 2

3n− 2 + (n− 1)(k − n)

=
3n− 3 + 1

3n− 3 + 1 + (n− 1)(k − n)

=
3 + 1

n−1

3 + 1
n−1 + k − n

≤
3 + 1

n−1

3 + 1
n−1 + (1− 1

β
)k

.

In order to compare this ratio to the lower bound of 3
2+k

, note that it can be

made arbitrarily close to 3
3+k

if n and β are made large enough.
We now move on to the lower bound. Consider any request sequence I for Fair

Bin Packing. Throughout this section, we assume that there are no items in I which
both WF and OPT reject. This cannot affect the results since any such item could
simply be removed from the request sequence without affecting the competitive ratio.

The upper bound can give some intuition for the lower bound. In order to allow
OPT to accept many more items than WF, the adversary must give some large items
which WF will accept, but OPT will reject. In a worst case example, WF packs none
of these large items alone. Since OPT is fair, OPT must pack two items in some bins,
such that these bins have more contents than the WF bins just before the large items
are accepted. The second small item OPT packs in each bin cannot be large enough
to cause a rejection alone. Thus for each large item accepted by WF it will accept
additionally two items, while OPT will accept at most k small items. Unfortunately,
there are many possibilities for sequences, so it is necessary to argue that it is possible
to make certain assumptions about them.

We define the following sets:
X is the set of items which both WF and OPT accept.
Y is the set of items which WF accepts, but OPT rejects.
Z is the set of items which WF rejects, but OPT accepts.

Let ylast ∈ Y be the last item from Y in the request sequence I, and let i be the
bin where WF places it.

We define the following additional sets:
Xf ⊆ X are those items from X which appear before ylast in I.
Zf ⊆ Z are those items from Z which appear before ylast in I.

For any item z ∈ Zf , define the following two sets:
Y (z) contains those items from Y which appear after z in I.
Zf (z) contains the item z and all z′ from Zf appearing after z in I.

If necessary, when more than one sequence is involved, we subscript these sets
with the name of the sequence, Zf

I , for instance.
Let e denote the maximal empty space in any of WF’s bins, after processing the

request sequence I. The case e ≥ 1 was considered in Lemma 3.10. We now turn
to the case e = 0, beginning with some lemmas which allow us to make assumptions
about the request sequences which give the worst performance ratio for Worst-Fit.

16 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

Lemma 3.23. If, for some sequence I, WF places two items from YI in the same

bin, then there exists another sequence I ′ on which WF places all items from YI′ in

separate bins, and on which the performance ratio of WF is smaller.

Proof. First we show that if, for some sequence I, WF places some item x ∈ XI

on top of some item y ∈ YI (call this an inversion), then there is another sequence I ′,
containing exactly the same items as I, for which WF and OPT accept exactly the
same items as when given I, but WF never places an item from XI′ on top of an item
from YI′ .

We modify I to obtain I ′, correcting one of these inversions at a time. Suppose
that WF places x ∈ XI directly on top of y ∈ YI in bin j. Clearly, y occurs before
x in I. Due to fairness, y must also be larger than x since OPT accepts x, but not
y. Let I ′ be identical to I up until the point where y appears. Replace y by x. Then
x will still be placed in bin j. Let the next items from I ′ be the same as the next
items from I up to the point where WF would put something on top of x in bin j.
Assuming there was room for it, insert the item y at this point, and let the rest of
I ′ be the same as I. Since x is smaller than y, the item y will appear in I ′ no later
than where x appeared in I. Thus, WF will place the items from I ′ in exactly the
same bins as the items from I, the only difference being that one item from X will be
placed below an item from Y which it had been placed on top of when I was given.
OPT will accept exactly the same items as before and place them exactly as before,
since the only difference is that it receives an item it would accept anyway earlier and
an item it would reject anyway later. Thus the performance ratio is unchanged. This
process can be repeated until there are no inversions.

Suppose that for some sequence I, WF places more than one item from YI in
some bin. From the above, we may assume without loss of generality that WF never
places an item from XI on top of an item from YI . Modify I to obtain I ′ as follows:
Consider each bin which receives more than one item from YI , one at a time. Among
the items from YI in the bin, choose the item O which occurs first in the request
sequence I. Replace O in the sequence by a single item of size exactly equal to the
sum of the sizes of all of the items from YI in that bin. Remove all of those other
items from the request sequence. Note that all of the items which are merged had
originally been placed directly on top of each other.

By induction, carrying out this modification for one bin at a time, it follows that
WF places a new item in the same bin as all of the old items from YI that it replaced,
and gives the same placement to all other items.

In addition, OPT cannot improve its ratio by accepting some of these new items,
since then it could also have done it on the sequence I by accepting some of the items
from YI . Thus, it accepts exactly the same items as from the sequence I. Hence, WF
accepts fewer items from I ′, while OPT accepts the same number, so the performance
ratio becomes smaller.

The following proposition is used in the next lemma and in the proof of the
theorem.

Proposition 3.24. Given a request sequence I and a z ∈ Zf and suppose that

for all w ∈ Zf (z) it is the case that |Zf (w)| ≤ |Y (w)|, then there exists a 1–1 mapping

g : Zf (z) → Y (z) such that for all w ∈ Zf (z), g(w) occurs after w in I.

Proof. Enumerating the items in Y (z) and Zf (z) separately, starting from ylast
and working in the direction of the beginning of the sequence I, g could be defined
as the mapping which takes an item from Zf (z) numbered j to the item in Y (z)
numbered j.

THE ACCOMMODATING FUNCTION 17

It would be tempting to move items accepted by OPT to the end of the sequence
and then convert these to unit size items. Since OPT must be fair, there is no
guarantee that it would accept exactly the same items. In fact, it might be forced to
accept some items from Y , which could use up more volume than the moved elements
from Z. However, under some circumstances, it is possible to perform these moves
which will be used in the next lemma. It shows that an additional assumption can be
made on worst-case request sequences, in those cases where Worst-Fit packs all bins
so that they are completely full.

Lemma 3.25. If, for some sequence I for which e = 0, there exists an item

z ∈ Zf
I such that |Zf

I (z)| ≥ |YI(z)|, then there exists another sequence I ′, where for

all items z ∈ Zf
I′ , |Z

f
I′(z)| < |YI′(z)|, and on which the performance ratio of WF is

no larger.

Proof. Let I be a sequence such that there exists a z ∈ Zf
I with |Zf

I (z)| ≥ |YI(z)|.

Let z be the last item such that |Zf
I (z)| ≥ |YI(z)|. It must be the case that

|Zf
I (z)| = |YI(z)|, and |Zf

I (w)| < |YI(w)| for all w ∈ Zf
I which occur after z. From

Proposition 3.24, we know that there must exist a 1–1 mapping g : Zf
I (z) → YI such

that for all w ∈ Zf
I (z), g(w) occurs after w in I. Since WF is fair and rejects w while

accepting g(w), g(w) must be smaller than w. This means that the total volume of

all items in Zf
I (z) must be greater than the total volume in YI(z).

Modify I to obtain I ′ by removing all items from Zf
I (z) and adding that many

items of size 1 right after the last item accepted by WF. This will not affect which
items WF accepts, since, by assumption, e = 0, which means that all bins are full
at that point. On the other hand, from the new sequence I ′, OPT will accept some
items from YI(z), and since every moved item has size one, it can accept at least one
additional item for each item from YI(z) which it rejects.

Since |Zf
I (z)| = |YI(z)|, OPT accepts at least as many items from I ′ as from I,

so the performance ratio of WF is no larger.

There is no problem in assuming the forms implied by Lemmas 3.23 and 3.25
simultaneously.

Corollary 3.26. Given k and n, there exists a request sequence I such that the

following hold:

1. There is no request sequence I ′ which WF packs so that e = 0, for which we

have that
WF(I′)
OPT(I′) <

WF(I)
OPT(I) .

2. WF places all items from YI in separate bins.

3. If WF packs I so that e = 0, then for all items z ∈ Zf
I , |Z

f
I (z)| < |YI(z)|.

Proof. Since one can assume that not both WF and OPT reject the same item
from I, there are only a finite number of sequences to be considered; one of them must
give the worst performance ratio. Begin with that request sequence. The construction
from Lemma 3.23 can be applied to ensure that the second condition holds. If e =
0 now, the construction from Lemma 3.25 can be applied, without changing WF’s
behavior, so the last two properties can hold simultaneously.

Now we are ready to prove a lower bound on the competitive ratio of Worst-Fit.

Theorem 3.27. For Fair Bin Packing, the competitive ratio of Worst-Fit is at

least 3
2+k

.

Proof. If for some sequence I, the largest empty space, e, remaining in WF is
greater than zero, then by Lemma 3.10, the performance ratio r is at least 3

2+k
. So

we assume that e = 0.

By Corollary 3.26, we can assume that WF places no two items from Y in the same

18 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

bin. Let BWF be the set of bins which receive items from Y , and let b = |BWF| = |Y |.
We first show that |X| ≥ 2(b− |Zf |).

Let U ⊆ X be those items from X which are placed in bins belonging to BWF.
For any item x ∈ U , OPT must place it with another item from X or from Zf , or
it would be unable to reject the item from Y , which WF placed with x. So if we let
BOPT be those bins which receive items from U ∪ Zf from OPT, then every bin in
BOPT receives either at least two items from X or at least one from Zf .

Consider those bins which are not in BOPT. When the last item ylast ∈ Y is given
to OPT, such bins only contain items from Xf \ U . Recall that i is the bin where
WF placed the last item ylast ∈ Y . Let V be the total volume of all items from U
placed in bin i by WF. If j is a bin, not in BWF, WF placed at least one item from
Xf there. If it received more than one item from Xf , only the last one could have
size greater than V . Otherwise, by its strategy, WF would have placed the next item
(after the one of size greater than V) from bin j in bin i.

Thus, only this last item could be placed by OPT in a bin which has no other
items from X ∪ Zf . The reason for this is that, since the other items have size at
most V , a bin with such an item alone would have to accept the item ylast.

This means that only n − b of OPT’s bins could have no more than one item
from X and no items from Zf , so at least b bins have either at least two items from
X or at least one from Zf . Hence, even if all those from Zf are in separate bins,
|X| ≥ 2(b− |Zf |).

Now WF places the first n items, all of which must be in X, in different bins,
so no item in Y can be larger than k − 1. By Corollary 3.26, Proposition 3.24, and
fairness, items in Zf must be larger than corresponding items in Y , so since e = 0,
|Z \ Zf | ≤ (k − 1)(|Y | − |Zf |), which implies that |Z| ≤ |Zf |+ (k − 1)(b− |Zf |).

Thus, the ratio r is bounded by
|X|+|Y |
|X|+|Z| ≥

|X|+b

|X|+|Zf |+(k−1)(b−|Zf |)
≥ 1

|X|+|Zf |
|X|+b

+
(k−1)(b−|Zf |)

3b−2|Zf |

≥ 1
1+ k−1

3

= 3
2+k

.

3.5. The Accommodating Functions for First-Fit and Worst-Fit. Fi-
nally, we prove upper bounds on the accommodating functions for First-Fit and
Worst-Fit. All of the results in this subsection also hold if one relaxes the restriction
that all items must be integer-sized to a restriction that the bins have unit size and
the smallest item has size 1/k. The upper bound for First-Fit is close to the general
lower bound of Theorem 3.13, so it is almost tight.

Theorem 3.28. For Fair Bin Packing, First-Fit has an accommodating function

of at most α
1+(α−1)(k−1) , for 1 < α < 2.

Proof. The adversary’s request sequence is divided into four phases. First, give
αn− n items of unit size, and second, give one item of size k − (αn− n) mod k. If k
divides αn−n, this item has size 0 and is not given. Third, give n−⌈αn−n

k
⌉ items of

size k. Fourth, give (αn− n)(k − 1) items of unit size.

First-Fit accepts those items in the first three phases. The off-line algorithm
places the first n items in separate bins, rejects the remaining long items, and accepts

all items from Phase 4. The performance ratio is at most
(αn−n)+(n−⌊αn−n

k
⌋)

n+(αn−n)(k−1) ≤
αn

n+(αn−n)(k−1) =
α

1+(α−1)(k−1) .

The proof of Theorem 3.22, giving an upper bound on Worst-Fit’s competitive
ratio, can be extended to prove an upper bound on Worst-Fit’s accommodating func-
tion.

Theorem 3.29. For Worst-Fit, if 1 ≤ α ≤ 1 + 1
n
⌈ (n−1)(k−n)+(n−1)

k
⌉ and k ≥ n,

THE ACCOMMODATING FUNCTION 19

then AWF(α) ≤
3− 2

n

3− 3
n
+(α−1)k(1− 1

k−n+1)
.

Proof. In the proof of Theorem 3.22, since all of the items in the first three
phases of the request sequence fit in n bins, to determine how many bins would be
necessary for an optimal off-line algorithm, one only needs to compute how many

bins are necessary for Phase 4. Thus, α = 1 + 1
n
⌈ (n−1)(k−n)+(n−1)

k
⌉. Hence, for any

value of α less than this, replacing Phase 4 by (α − 1)kn items of size 1, gives an
α-sequence for which WF will accept exactly those requests in the first three phases,
while OPT can accept all items, except some of the items from Phase 3. The number

of items from Phase 3 which OPT can accept is ⌊kn−((n−1)(n−1)+n−1+(α−1)kn)
k−(n−1) ⌋ =

⌊n(k−n+1)−(α−1)kn
k−n+1 ⌋. Thus, the accommodating function is

AWF(α) ≤ 3n−2

2n−2+(α−1)kn+n−⌊
(α−1)kn

k−n+1 ⌋

≤
3− 2

n

3− 3
n
+(α−1)k(1− 1

k−n+1)

4. The Unit Price Seat Reservation Problem. The competitive ratio on
accommodating sequences was introduced in [9]3 in connection with the Seat Reser-
vation Problem, which was originally motivated by some ticketing systems for trains
in Europe. The set-up is as follows: A train with n seats travels from a start station to
an end station, stopping at k ≥ 2 stations, including the first and last. Reservations
can be made for any trip from a station s to a station t. The passenger is given a
single seat number when the ticket is purchased, which can be any time before depar-
ture. The algorithms (ticket agents) attempt to maximize income, i.e., the sum of the
prices of the tickets sold. For political reasons, the problem must be solved in a fair

manner, i.e., the ticket agent may not refuse a passenger if it is possible to accommo-
date him when he attempts to make his reservation. In this paper, we consider only
the pricing policy in which all tickets have the same price, the unit price problem; for
the proportional price problem, where the price of the ticket is proportional to the
distance traveled, there does not appear to be any significant difference between the
competitive ratio and the competitive ratio on accommodating sequences. We define
the accommodating function A(α) for the Seat Reservation Problem to be the ratio
of how well an on-line algorithm can do compared to the optimal off-line algorithm,
OPT, when an optimal off-line algorithm could have accommodated all requests if it
had had αn ≥ n seats. The accommodating function could help the management in
determining how much benefit could be gained by adding an extra car to the train,
given their current distribution of request sequences. Notice that the fairness crite-
rion is a part of the problem specification. Thus, even though the optimal off-line
algorithm knows the entire sequence in advance, it too must process the sequence in
the given order and do so fairly.

The Seat Reservation Problem is similar to the problem of coloring an interval
graph on-line, which has been well studied because of applications to dynamic storage
allocation. The difference is that with graph coloring, all vertices must be given a
color and the goal is to minimize the number of colors. With the Seat Reservation
Problem, there is a fixed number of colors, and the goal is to maximize the number
of vertices that get colors. We use, however, an interesting result from interval graph
theory: Interval graphs are perfect [20], so the size of the largest clique is exactly the

3It was called the accommodating ratio there.

20 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

number of colors needed. Thus, when there is no pair of stations (s, s+1) such that the
number of people who want to be on the train between stations s and s+1 is greater
than n, the optimal off-line algorithm will be able to accommodate all requests. The
contrapositive is clearly also true; if there is a pair of stations such that the number
of people who want to be on the train between those stations is greater than n, the
optimal off-line algorithm will be unable to accommodate all requests. We will refer
to the number of people who want to be on the train between two stations as the
density between those stations.

4.1. Bounds on the Accommodating Function. In [9], the following lower
bounds for the competitive ratio and the competitive ratio on accommodating se-
quences were proven: Any algorithm for the Unit Price Seat Reservation Problem is
2
k
-competitive, and any algorithm for the Unit Price Seat Reservation Problem is 1

2 -
competitive on accommodating sequences. The key idea for the proof of the theorem
bounding the competitive ratio on accommodating sequences is also used to prove a
lower bound on the accommodating function, and the result generalizes the one for
the competitive ratio on accommodating sequences.

Theorem 4.1. A(α) ≥ 1
2+(k−2)(1− 1

α
)
is a lower bound for the Unit Price Seat

Reservation Problem.

Proof. Consider any algorithm A for the Unit Price Seat Reservation Problem and
any request sequence, I, which an optimal off-line algorithm could have accommodated
with ρ(I) ≥ n seats. Let l = ρ(I) − n, and suppose that A accepts h intervals. We
first show that A rejects at most h+ l(k − 1) intervals.

Let S denote the seating assignment found by the on-line algorithm, and let U
be the set of unseated intervals. First, some of the intervals in U will be assigned to
distinct intervals in S. Let S′ be a seating assignment which is initialized to be the
same as S, but which will be altered by the following process. Note that the only
changes will be to increase the lengths of some intervals in S′.

First order the intervals in U by increasing left endpoint (starting station), break-
ing ties arbitrarily. Now process these intervals, one by one, in increasing order.

For a given interval I ∈ U , if there is no seat which is empty in S′ from the
point where the passenger wants to get on until at least the next station, leave I in
U . Otherwise, find such a seat. Since A is fair and the interval I was rejected, the
interval I could not be placed on that seat, so there must be a first (leftmost) interval
J assigned to that seat in S′ which overlaps the interval I. Assign the interval I to the
interval J . Now remove I from U and replace J on this seat in S′ by an interval K,
which is as much of I ∪J as will currently fit on that seat. Clearly, all of the intervals
which are now seated in S′ and all of the unseated intervals currently in U could be
seated by an optimal algorithm on αn seats, since this operation cannot increase the
density anywhere. This process can be repeated. The order of processing ensures that
each interval I ∈ U which gets assigned to an interval in S gets assigned to a distinct
interval in S. Thus, after all of U has been processed, at most h intervals have been
removed from it. For every interval I ′ remaining in U , the leftmost unit segment
(the point where the passenger wants to get on until the next station) has density
n in S′, so there is now density at most l for that unit segment in U . The number
of possible distinct leftmost segments in U is at most k − 1, so the total number of
leftmost segments remaining in U , and thus the total number of intervals in U , is at
most l(k − 1). We have now shown that A rejects at most h+ l(k − 1) intervals.

To compute a lower bound on the ratio of what A accepts to what OPT accepts,
we need to have a lower bound on the number of intervals A accepts and an upper

THE ACCOMMODATING FUNCTION 21

bound on the number of intervals OPT accepts. We may assume that there are no
intervals in the request sequence which both A and OPT reject, since removing them
from the sequence changes nothing. Since an optimal off-line algorithm could not
have accommodated all of the requests with fewer than ρ(I) seats, but OPT has only
n seats, OPT must reject at least l intervals, and all of these must have been accepted
by A. Clearly, the first n intervals in the request sequence must have been accepted
by both A and OPT. Thus, A accepts h ≥ n+ l = ρ(n) intervals. Of the h intervals
which A accepts, OPT rejects at least l of them. Additionally, there are at most
h + l(k − 1) intervals which OPT accepts, but A does not. Thus, a lower bound on
the accommodating function is A(α) ≥ h

2h+l(k−1)−l
= 1

2+(k−2) l
h

≥ 1

2+(k−2)
ρ(n)−n

ρ(n)

≥

1
2+(k−2)(1− 1

α
)
.

In [9], the following upper bounds for the competitive ratio and the competitive
ratio on accommodating sequences were proven: No deterministic algorithm for the
Unit Price Seat Reservation Problem is more than 8

k+5 -competitive, and no deter-

ministic algorithm for the Unit Price Seat Reservation Problem is more than 8k−9
10k−15 -

competitive on accommodating sequences, when k is divisible by 3. The proof proving
an upper bound on the accommodating function for any algorithm for Unit Price Bin
Packing, is very similar to the proof of the theorem in [9] giving the upper bound on
the competitive ratio. The result obtained is very close to that for the competitive
ratio when α > 5

4 .
Theorem 4.2. A(α) ≤ 4

3+2(k−2)min{ 1
4 ,α−1}

is an upper bound for the Unit Price

Seat Reservation Problem.

Proof. The following is an adversary argument, so the request sequence depends
on the on-line algorithm A’s behavior. Assume that n is divisible by 2. The adversary
begins with n

2 pairs of requests for [1, 2] and [k − 1, k] intervals. Suppose that the
algorithm A places them such that after these requests there are exactly q seats
which contain two intervals. Then n− 2q of the seats have exactly one short interval
scheduled. Next, the adversary will give q requests for [1, k] intervals, followed by
n−2q

2 requests for [1, k − 1] intervals, n−2q
2 requests for [2, k] intervals, and q requests

for [2, k− 1] intervals, all of which can be accommodated by A. Now the train is full.
One of two cases will occur:

1. Case 1: q ≥ n
4 , or

2. Case 2: q < n
4 .

If Case 1 occurs, the adversary will give min{q, αn − n} requests for each of the
intervals [1, 2], [2, 3], [3, 4],. . . , [k − 1, k], none of which can be accommodated by A.
On the other hand, OPT could put each of the short intervals on a separate seat, so
that it would be unable to accommodate the q [1, k] intervals, but all of the other
intervals would fit. The on-line algorithm A is able to accommodate 2n requests, while
OPT can accommodate 2n − q +min{q, αn − n}(k − 1) requests. Since n

4 ≤ q ≤ n
2 ,

this ratio is less than 2n
2n−n

2 +min{n
4 ,αn−n}(k−1) =

4
3+2(k−1)min{ 1

4 ,
αn−n

n
}
.

If Case 2 occurs, the adversary will give min{n−2q
2 , αn − n} requests for each

of the intervals [2, 3], [3, 4],..., [k − 1, k], none of which can be accommodated by A.
On the other hand, OPT could pair up the short intervals, putting two per seat, so
that it would be unable to accommodate the n−2q

2 [2, k] intervals, but all of the other
intervals would fit. The on-line algorithm A is able to accommodate 2n requests,
while OPT can accommodate 2n− n−2q

2 + (k− 2)min{n−2q
2 , αn− n} requests. Since

q < n/4, this ratio is less than 2n
2n−n

4 +(k−2)min{n
4 ,αn−n} = 8

7+4(k−2)min{ 1
4 ,

αn−n
n

}
.

This argument assumes that k ≥ 4, but the result clearly holds for k = 2 and

22 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

k = 3, too.

As an example of a specific on-line algorithm, one might consider First-Fit, which
always processes a new request by placing it on the first seat which is unoccupied
for the length of that journey. The lower bound from Theorem 4.1, on the accom-
modating function for any algorithm, clearly applies to this specific algorithm. It
also applies to Best-Fit, which always processes a new request by placing it on a seat
so it leaves as little total free space as possible on that seat immediately before and
after that passenger’s trip. The following result, giving an upper bound on the ac-
commodating function for these two specific algorithms, should be compared with the
results in [9], which give upper bounds for the competitive ratio and the competitive
ratio on accommodating sequences for First-Fit and Best-Fit: First-Fit and Best-Fit

have competitive ratios which are no better than
2− 1

k−1

k−1 and competitive ratios on

accommodating sequences no better than k
2k−6 , for the Unit Price Seat Reservation

Problem. The proof is very similar to the proof of the theorem in [9] which gives the
upper bound on the competitive ratios for First-Fit and Best-Fit.

Theorem 4.3. For the Unit Price Seat Reservation Problem, First-Fit and Best-

Fit have A(α) ≤ max{
2− 1

k−1

k−1 ,
2− 1

k−1

1+(k−1)(α−1)}.

Proof. We will state everything in terms of the First-Fit algorithm, but Best-Fit
would behave exactly the same. We will assume that n is divisible by k−1. The request
sequence will start with n

k−1 requests for each of the intervals [1, 2], [2, 3], [3, 4], ..., [k−
1, k] which First-Fit will put in the first n

k−1 seats. Then there will be n − n
k−1

requests for [1, k] intervals, which First-Fit will put in the remaining seats. At this
point, the train will be full, but there will now be min{n − n

k−1 , αn − n} requests
for each of the intervals [1, 2], [2, 3], [3, 4], ..., [k − 1, k], all of which First-Fit will be
unable to accommodate. It will accommodate a total of 2n − n

k−1 requests. OPT
will put each of the original first intervals on a different seat, thus arranging that
it can reject the longest intervals. Then, it will be able to accommodate all of the
additional short intervals. Thus, it will accommodate n of the original short intervals,
plus min{n − n

k−1 , αn − n}(k − 1) of the later short intervals. This gives a ratio of

max{
2− 1

k−1

k−1 ,
2− 1

k−1

1+αn−n
n

(k−1)
}. This argument assumes that k ≥ 3, but the result trivially

holds for k = 2 too.

5. Other Problems. It is natural to ask if the accommodating function can be
defined for any on-line problem. This is equivalent to asking if α-sequences can be
defined for every on-line problem. The answer is clearly “yes” if there is no requirement
that a relevant resource be considered; then the accommodating function is constant
and its value is the competitive ratio. This answer is not particularly interesting. It
seems, however, that for most on-line problems, there is some relevant resource which
can be used to define α-sequences and therefore also the accommodating function. For
Paging, the obvious resource is the number of pages in fast memory; for Scheduling,
it is the number of machines available; and for server problems, it is the number of
servers.

Unfortunately, for some on-line problems, using the accommodating function with
the obvious resource choice and α ≥ 1 fails to result in additional insight compared
with what is already known from the competitive ratio. For example, one of the best
known on-line problems is Paging. The well-known lower bound results, which show
that any deterministic on-line algorithm has a competitive ratio of at least k, where
k is the number of pages in main memory, holds even if there are only k + 1 pages

THE ACCOMMODATING FUNCTION 23

in all. Thus, nothing further is said about how much it helps to have extra memory,
unless one actually has enough extra memory to hold all of a program and its data. In
fact, however, it was shown later [8] that the accommodating function for the Paging
Problem becomes more interesting when α < 1.

The situation is similar when considering the accommodating function for prob-
lems which generalize the Paging Problem, such as the k-Server Problem and metrical
task systems.

5.1. Minimizing Flow Times on m Identical Machines. As an example of
a very different type of problem where the accommodating function can be applied,
we have considered a scheduling problem: the problem of minimizing flow time in a
situation where there are m identical machines and preemption is allowed. Let J be
the sequence of jobs. A job j ∈ J arrives at its release time rj , and its processing time
pj is known. The total flow time is

∑

j∈J(Cj − rj), where Cj denotes the completion
time of job j. There are some very nice results in [27] showing that Shortest Remaining
Processing Time (SRPT) has a competitive ratio of O(logP) for this problem, where
P is the ratio between the processing time for the longest job and the shortest job.
They also show that any randomized algorithm for the problem has a competitive
ratio of Ω(logP).

The concept of an accommodating function can be applied to this problem, even
though it is a minimization problem and no rejections are allowed. Given a request
sequence J , there is an absolute minimum flow time—the sum s of the processing
times for all jobs in J . Thus, one can define the competitive ratio on accommodating
sequences, by restricting the request sequences to those which OPT could schedule
with total flow time s. This means that all jobs can be scheduled immediately when
they arrive. Thus, any on-line algorithm which assigns an in-coming job to some free
processor, when such a processor exists, will also schedule that sequence with total
flow time s, giving a competitive ratio on accommodating sequences of 1, which is
significantly different from the competitive ratio. The accommodating function A(α)
can be defined by restricting the request sequences to those in which an optimal off-
line algorithm could have begun each job immediately upon arrival if it had αm ≥ m
machines available.

Using the techniques from the result in [27], proving a lower bound on the com-
petitive ratio for SRPT, and lengthening the adversary’s sequence appropriately gives
a lower bound of Ω(logm P) on the performance ratio of SRPT, even when OPT could
have handled the request sequence with only m + 1 processors. Thus, SRPT’s be-
havior is similar to that of all Paging algorithms; restricting to sequences which OPT
could accommodate with only one extra unit of the resource gives essentially the same
result as allowing any sequence whatsoever. It is also possible to show that all other
algorithms for this problem also have a sudden change from the competitive ratio on
accommodating sequences to the competitive ratio.

Although some of the ideas from the Ω(logP) lower bound on the competitive
ratio in [27] are used in the proof here, their adversary uses sequences with α = 3

2 ,
while our adversary only needs αm = m+ 1.

Theorem 5.1. For αm = m + 1 and m > 4, the performance ratio of any

deterministic on-line algorithm is Ω(logm P).
Proof. Consider a deterministic on-line algorithm A and assume P is a power of

m. An adversary can give a request sequence consisting of L = ⌊logm P −1− logm 4−

2 logm logm P ⌋ phases. For phase i = 0, . . . , L− 1, let pi =
P
mi , and ri = m ∗

∑i−1
j=0 pj .

The adversary will repeat the same set of jobs m times. Let j denote the repetition

24 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

number, and let rij = ri + j ∗ pi, j = 0, . . . ,m− 1. The following jobs are given

1. One job of size pi at time rij .
2. m unit size jobs at each of the times rij + k, k = 0, . . . , pi(1−

1
m
)− 1.

Let Sij denote the set of all unit size jobs given in phase i and repetition j, and
let Uij count the number of jobs from Sij that are not finished by A before time
wij = rij + pi(1−

1
m
).

There are two cases depending on the Uij .

1. Case 1, there exist i, j, such that Uij ≥ m logm P .
2. Case 2, for all i, j, Uij < m logm P .

If Case 1 occurs for i0, j0, the above release pattern is stopped at time wi0j0 .
Instead, the adversary gives m unit size jobs at each of the next P 3 time units.

An off-line algorithm OPT could finish all jobs from one repetition before the
next starts by processing the long job on one machine, and the unit size jobs on the
other machines. Beginning with phase i0 and repetition j0, OPT should process all
unit size jobs, including the unit size jobs given after wi0j0 , immediately when they
are released. Then OPT only has one long unfinished job at time wi0j0 , which will be
delayed for time P 3.

The total flow time for OPT is then at most m2P 2 logP + (m+ 1)P 3 + P , since
from the first part there are less than m2P logP jobs, which will be delayed for at
most P time.

Since Case 1 has occurred, the on-line algorithm has at leastm logm P jobs delayed
at every time unit for P 3 time steps. The total flow time for the on-line algorithm is
then more than mP 3 logm P .

In Case 1, the performance ratio is then more than mP 3 logm P

m2P 2 logP+(m+1)P 3+P
.

If Case 2 occurs, an off-line algorithm, OPT, can follow a pattern similar to Case
1 and finish every job from Phase i before Phase i+1 starts. Call the time just after
the last phase ends rL. Starting at time rL, the adversary gives m unit size jobs at
each of the next P 3 time units. OPT can process them immediately upon arrival.

In this case, OPT has a total flow time of less than m2P 2 logP +mP 3.

The on-line algorithm A will have many long jobs hanging at time rL. Fixing a
phase i, we want to calculate the possible processing time for long jobs in this and the
following phases. In Phase i, the long jobs appear one at a time, so in repetition j there
are j + 1 available. After time wij there are P

mi+1 time units remaining in repetition
j, and since this is Case 2, there is a total of less than m logm P time units available
on all the processors together before time wij . Thus, the maximum amount of time
the m long jobs from Phase i can be processed within Phase i is in total bounded
by

∑m

j=1(j
P

mi+1 + m logm P). For the following phases the total time available for

processing these m jobs from Phase i is bounded by
∑L−1

j=i+1(m
P

m(j+1) +m2 logm P).

This adds up to at most 2m2 log2m P + pi

m

m(m+1)
2 + pi ≤ pi

m+2
2 + pi, since by the

definition of L, 2m2 log2m P ≤ pi

2 , for all i. It follows that for a fixed phase i, at
most ⌊m+4

2 ⌋ of the long jobs could be run to completion. Since we have L phases, at
least ⌈m−4

2 L⌉ long jobs are unfinished at time rL. This gives a flow time of at least
m−4
2 P 3 logm P .

In Case 2, the performance ratio is at least
m−4

2 P 3 logm P

m2P 2 logP+mP 3 .

The difference between this lower bound and the lower bound on the competitive
ratio from [27] is quite small: Ω(logm P) versus Ω(log2 P), i.e., for any fixed m, the
bounds are the same.

THE ACCOMMODATING FUNCTION 25

6. Concluding Remarks. It is now clear that in comparing on-line algorithms,
the competitive ratio on accommodating sequences can give different information
than the competitive ratio. This is true for Fair Bin Packing and two algorithms
investigated in this paper, but these results also indicate that the competitive ratio
on accommodating sequences and the accommodating function could be very useful
measures generally.

With respect to Fair Bin Packing, the choice as to which algorithm to use depends
on which ratio is more relevant in a specific situation. This, in turn, would depend
on the actual distribution of request sequences. However, one might guess that the
competitive ratio on accommodating sequences actually gives the more useful answer
in most cases, since the sequences which cause First-Fit to perform so poorly with
respect to the competitive ratio are in some sense rather artificial. The sequences are
designed so that OPT can arrange to reject certain “difficult” requests, but continue
to be “fair”. This may simply be a blatant example of how some unusual request
sequences can cause the competitive ratio to be excessively pessimistic.

We believe that there is a broad range of on-line problems for which analysis
using the competitive ratio on accommodating sequences and the accommodating
function will give interesting insights. More of these problems should be investigated.
In particular, an open problem left here is finding a minimization problem which has
a more gradual change from the competitive ratio on accommodating sequences to
the competitive ratio.

In this paper, the accommodating function was only investigated for α ≥ 1. It was
natural to use this restriction, since it spans from the competitive ratio on accommo-
dating sequences to the standard competitive ratio, the two known interesting points.
It has later been discovered [8] that the accommodating function is also interesting
for α < 1. There appear to be more problems which have interesting accommodating
functions if one considers α < 1, further distinctions can be made between known
algorithms, and new interesting algorithms can be developed.

Two of the upper bounds proven in this paper have since been improved. The
upper bound on First-Fit’s competitive ratio on accommodating sequences for Fair
Bin Packing has been improved to 5

8 [1]. Thus, we can conclude that the competitive
ratio of First-Fit on accommodating sequences is exactly 5

8 . In addition, it has been
shown [3] that for any deterministic algorithm for the fair Unit Price Seat Reservation
Problem with 3 seats, the competitive ratio on accommodating sequences is at most
1
2 + 3

k+5 , where k ≥ 7 and k ≡ 1 (mod 6). This gives an upper bound of 1
2 +

3n−3
2k+6n−(8+2c) for n seats with the same restrictions on k.

Recently, the restriction of input sequences has proven useful in another context,
congestion control on the internet [24], where the competitive ratio is a function
of this restriction. It does not appear that the functions in [24] can be viewed as
accommodating functions.

7. Acknowledgments. We would like to thank the referees for their careful
reading of the paper and their helpful suggestions for improvements.

REFERENCES

[1] Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen,
Fair versus unrestricted bin packing, Technical Report PP-2000-20, Department of
Mathematics and Computer Science, University of Southern Denmark, Odense, 2000,
ftp://ftp.imada.sdu.dk/pub/papers/pp-2000/20.ps.gz, preliminary version in [2].

26 JOAN BOYAR, KIM S. LARSEN, AND MORTEN N. NIELSEN

[2] Y. Azar, J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen, Fair versus un-

restricted bin packing, in Proc. 7th Scandinavian Workshop on Algorithm Theory, volume
1851 of Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 200–213.

[3] E. Bach, J. Boyar, L. Epstein, L. M. Favrholdt, T. Jiang, K. S. Larsen, G.-H.

Lin, and R. van Stee, Tight bounds on the competitive ratio on accommodating se-

quences for the seat reservation problem, Technical Report PP-2000-16, Department
of Mathematics and Computer Science, University of Southern Denmark, Odense, 2000,
ftp://ftp.imada.sdu.dk/pub/papers/pp-2000/16.ps.gz, preliminary version in [4].

[4] E. Bach, J. Boyar, T. Jiang, K. S. Larsen, and G.-H. Lin, Better bounds on the ac-

commodating ratio for the seat reservation problem, in Proc. 6th Annual International
Computing and Combinatorics Conference, volume 1858 of Lecture Notes in Computer
Science, Springer-Verlag, 2000, pp. 221–231.

[5] S. Ben-David and A. Borodin, A new measure for the study of on-line algorithms, Algorith-
mica, 11 (1994), pp. 73–91.

[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North Holland, 1976,
pp. 72–74.

[7] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of

reference, Journal of Computer and System Sciences, 50 (1995), pp. 244–258.
[8] J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen, Extending the accommodating

function, submitted, 2001.
[9] J. Boyar and K. S. Larsen, The seat reservation problem, Algorithmica, 25 (1999), pp. 403–

417.
[10] J. Boyar, K. S. Larsen, and M. N. Nielsen, The accommodating function — a generalization

of the competitive ratio, in Proc. 6th International Workshop on Algorithms and Data
Structures, volume 1663 of Lecture Notes in Computer Science, Springer-Verlag, 1999,
pp. 74–79.

[11] M. Chrobak and J. Noga, LRU is better than FIFO, Algorithmica, 23 (1999), pp. 180–185.
[12] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin

packing: a survey, in D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard
Problems, chapter 2, PWS Publishing Company, 1997, pp. 46–93.

[13] E. G. Coffman, Jr. and J. Y-T. Leung, Combinatorial analysis of an efficient algorithm for

processor and storage allocation, SIAM Journal on Computing, 8 (1979), pp. 202–217.
[14] E. G. Coffman, Jr., J. Y-T. Leung, and D. W. Ting, Bin packing: maximizing the number

of pieces packed, Acta Informatica, 9 (1978), pp. 263–271.
[15] J. Csirik and G. Woeginger, On-line packing and covering problems, in G. J. Woeginger,

A. Fiat, editor, Online Algorithms, volume 1442 of Lecture Notes in Computer Science,
chapter 7, Springer-Verlag, 1998, pp. 147–177.

[16] A. Fiat and G. J. Woeginger, Competitive odds and ends, in G. J. Woeginger, A. Fiat,
editor, Online Algorithms, volume 1442 of Lecture Notes in Computer Science, chapter 17,
Springer-Verlag, 1998, pp. 385–394.

[17] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Systems Technical Journal,
45 (1966), pp. 1563–1581.

[18] S. Irani and A. R. Karlin, Online computation, in D. S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, chapter 13, PWS Publishing Company, 1997, pp. 521–
564.

[19] S. Irani, A. R. Karlin, and S. Phillips, Strongly competitive algorithms for paging with

locality of reference, SIAM Journal on Computing, 25 (1996), pp. 477–497.
[20] T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, 1995.
[21] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, Worst-case

performance bounds for simple one-dimensional packing algorithms, SIAM Journal on
Computing, 1974, pp. 299–325.

[22] B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, in Proc. 36th
Annual IEEE Foundations of Computer Science, 1995, pp. 214–221.

[23] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, Competitive snoopy caching,
Algorithmica, 3 (1988), pp. 79–119.

[24] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker, Optimization problems in

congestion control, in Proc. 41th Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, 2000, pp. 66–74.

[25] E. Koutsoupias and C. H. Papadimitriou, Beyond competitive analysis, SIAM Journal on
Computing, 30 (2001), pp. 300–317.

[26] D. König, Graphs and matrices, Mat. Fiz. Lapok, 38 (1931), pp. 116–119. In Hungarian.
[27] S. Leonardi and D. Raz, Approximating total flow time on parallel machines, in Proc. 29th

THE ACCOMMODATING FUNCTION 27

Annual ACM Symp. on the Theory of Computing, 1997, pp. 110–119.
[28] C. A. Philips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via

resource augmentation, in Proc. 29th Annual ACM Symp. on the Theory of Computing,
1997, pp. 140–149.

[29] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
of the ACM, 28 (1985), pp. 202–208.

[30] E. Torng, A unified analysis of paging and caching, Algorithmica, 20 (1998), pp. 175–200.
[31] N. Young, The k-server dual and loose competitiveness for paging, Algorithmica, 11 (1994),

pp. 525–541.

