
Exact Colour Reassignment in Tabu Search for

the Graph Set T-Colouring Problem

Marco Chiarandini1, Thomas Stützle2 and Kim Skak Larsen1

1 University of Southern Denmark, IMADA, Odense, Denmark
marco,kslarsen@imada.sdu.dk

2 Université Libre de Bruxelles, CoDe, IRIDIA, Brussels, Belgium
stuetzle@ulb.ac.be

Abstract. The graph set T -colouring problem (GSTCP) is a generali-
sation of the classical graph colouring problem and it is used to model,
among other problems, the assignment of frequencies in mobile networks.
The GSTCP asks for the assignment of sets of nonnegative integers to
the vertices of a graph so that constraints on the separation of any two
numbers assigned to a single vertex or to adjacent vertices are satisfied
and some objective function is optimised. Among the various objective
functions of interest, here we focus on the minimisation of the difference
between the largest and the smallest integers used, the span.
The large size of the instances arising in practical applications makes
the use of heuristic algorithms necessary. In this article, we propose two
hybrid algorithms that combine a basic tabu search algorithm for this
problem with an exact algorithm for the re-assignment of the colours
to a vertex. We compare these two algorithms to the basic tabu search
algorithm and tabu search algorithms working on a transformation of
the GSTCP into a T -colouring problem. The experimental comparison
of these algorithms, which is based on a rigorous statistical analysis,
establishes that the two hybrids perform better on a variety of instance
classes for the graph set T -colouring problem.

1 Introduction

A set T -colouring of a graph is an assignment of sets of nonnegative integers
(colours) to the vertices of the graph such that (i) every vertex receives exactly
the number of colours it requires, (ii) each pair of integers assigned to a single
vertex satisfies the vertex separation constraints, and (iii) every pair of numbers
assigned to two adjacent vertices satisfies the edge separation constraints. The
edge and vertex separation constraints are expressed by sets of integers that
represent the forbidden differences between the integers assigned to the vertices.
In the special case of the sets being composed of only consecutive integers, we
speak of separation distance constraints and the largest integer in each set suffices
to represent them.

There exist various objective functions for the optimisation version of the
Graph Set T -Colouring Problem (GSTCP). Common objective functions to be
minimised are the span, that is, the difference between the largest and the small-
est integers assigned to any vertex or the order, that is, the number of integers [1,

2] effectively used. In frequency assignment, more often, it is required to minimise
the constraints violations by keeping the number of colour fixed. However, in the
literature on this problem the focus has been mainly on the minimisation of the
span since most solution approaches tend to solve this problem by minimising
constraint violations. Here we also address the minimal span objective.

The GSTCP is a generalisation of the vertex colouring problem and it arises
in the modelling of various real-life problems, the most important being the
assignment of frequencies to radio transmitters when designing mobile phone
networks. In this case, vertices represent transmitters and colours the frequen-
cies to be assigned to the transmitters subject to certain interference constraints,
the T -constraints [1]. Other applications arise in traffic phasing and fleet main-
tenance [3] or in the task assignment problem, where a large task is divided into
incompatible subtasks (for example, due to resource conflicts) and the problem
is to assign a set of time periods to each subtask so that incompatible subtasks
are in different time periods [2].

Due to its practical interest, the GSTCP has received significant atten-
tion both in graph theory [2–6] as well for its algorithmic solution. The de-
velopment of solution algorithms has mainly focused on approximate meth-
ods, mainly because exact methods cannot efficiently solve large size instances
as those arising in frequency assignment [7, 8]. Among the approximate al-
gorithms, the overwhelming part of the literature focuses on stochastic local
search (SLS) [9] algorithms. Among the first of these approaches, Dorne and
Hao apply a tabu search algorithm for the GSTCP [10]. Further research on the
GSTCP has been inspired by the Computational Challenge on Graph Colour-

ing and its Generalisations organised by Johnson, Mehrotra and Trick (see
http://mat.gsia.cmu.edu/COLORING02/). 3 Phan and Skiena build a meta-
heuristic algorithm based on swap operations and simulated annealing using
their general-purpose platform Discropt [11], while Prestwich proposes a ran-
domised backtracking algorithm [12]. In later research, Lim, Zhang and Zhu
designed a squeaky wheel algorithm for this problem [13].

In this article, we present a new tabu search algorithm for the GSTCP.
This algorithm is very similar to that of Dorne and Hao, but it uses an exact
algorithm for the re-assignment of the colours at a vertex. A further contribution
of this article is a comprehensive experimental comparison of the new and known
algorithms on GSTCP instances with separation distance constraints. This study
uses a rigorous statistical analysis and it shows that our new tabu search search
algorithms perform better than previous known versions on specific GSTCP
instance classes.

The paper is organised as follows. Section 2 introduces some formalism, trans-
formations of the problem and the benchmark instances. Section 3 describes the
SLS algorithms that are experimentally compared in Section 4. We end with
some concluding remarks in Section 6.

3 Note that in this challenge, the separation distance GSTCP is called bandwidth
multi-colouring problem.

2 Definitions, Transformations and Benchmark Instances

A GSTCP instance is defined by (i) an undirected graph G = (V, E), with V
being the set of n = |V | vertices and E being the set of edges, (ii) a set of integer
numbers (called colours) Γ , (iii) a number r(v) of required colours at each vertex
v ∈ V , and (iv) a collection of sets T (called T-set), such that there is a set Tuv

for each edge uv ∈ E and a set Tu for each vertex u ∈ V of disallowed separations
of colours between vertices and within vertices. The task in the decision version
of the GSTCP is to find a multi-valued function ϕ : V 7→ Γ such that that the
three following groups of constraints

|ϕ(v)| = r(v) ∀ v ∈ V (1)

|ϕ(u, i) − ϕ(u, j)| 6∈ Tu ∀ϕ(u, i), ϕ(u, j) ∈ ϕ(u), i 6= j (2)

|ϕ(u, i) − ϕ(v, j)| 6∈ Tuv ∀uv ∈ E, ∀ϕ(v, i) ∈ ϕ(v), ϕ(u, j) ∈ ϕ(u) (3)

are satisfied. We call such a multi-valued function ϕ a proper set T-colouring, if
all these constraints are satisfied and improper, otherwise. The three groups of
constraints to be satisfied are called requirement constraints, vertex constraints,
and edge constraints, respectively. Various objective functions can be defined for
the GSTCP. Here, we consider the span, that is, maxu,v,i,j |ϕ(v, i)−ϕ(u, j)|, the
maximal difference between the colours used. With minu,j{ϕ(u, j)} fixed to 1,
the span corresponds to k − 1 if Γ = {1, 2, . . . , k}. In the optimisation version,
we are searching for the minimal span, that is, for the minimal value of k such
that a proper set T-colouring exists.

Finding a proper set T -colouring for a graph G and a T -set T is known as
the graph set T -colouring problem (GSTCP). The case r(v) = 1, ∀v ∈ V , is a
special case of it which is called graph T -colouring problem. In the T -colouring
problem there are no particular requirement and vertex constraints. Both, graph
set T -colouring and T -colouring problems, are NP–complete because they are
generalisation of the k-colouring problem.

An instance of the GSTCP problem, consisting of a graph G, a T -set T
and vertex requirements r(v), ∀v ∈ V , is equivalent to an instance of the T -col-
ouring problem on a graph GS(V S , ES). The graph GS is obtained from G by
creating a vertex u for each requirement of a vertex v ∈ V (G) so that at the
end |V S | =

∑

v∈V r(v). The vertices u ∈ V S derived from a vertex v ∈ V form a
clique of order r(v) in which each edge receives the set of constraints Tv. Every
such vertex is then connected with each vertex of the clique induced by another
vertex w ∈ V if vw ∈ E. The colour separation associated with these edges is
Twv. The graph GS is called split graph and there is a bijective correspondence
between a solution on G and on GS .

Our benchmark set comprises two classes of randomly generated instances.
The first comprises the instances introduced by Michael Trick for the “Compu-
tational Challenge on graph colouring and its generalisations,” the second class
comprises random uniform graphs. Such graphs were also used in [10] for testing
a tabu search algorithm. We generated an additional large number of relatively
small such instances, since the instances proposed by Dorne and Hao result in
very high computation times due to their size, which would limit strongly the

number of trials run. A final instance set stems from a well known frequency
assignment instance. All benchmark instances we consider are separation dis-

tance instances, that is, the sets of disallowed distances are composed only of
consecutive integers and represented by a single integer, tu or tuv. The instance
classes are described next.

Random Geometric instances (DIMACS). The graphs are formed by ver-
tices that correspond to points in a [10, 000 × 10, 000] grid with randomly
generated coordinates. Each vertex is connected by an edge to another one,
if the points are close enough. Distances associated to edges are inversely
proportional to the distances between nodes in the grid. Requirements and
vertex distances are assigned to vertices by uniformly choosing in the sets
{1, . . . , r} and {1, . . . , t}, respectively. The size of these instances ranges from
20 to 120 vertices. We denote sparse instances as GEOMn and denser instances
as GEOMna and GEOMnb. The instances GEOMnb have higher requirements per
node than GEOMna. Statistics of this class of instances are summarised in
Table 1a.

Random Uniform instance. Uniform graphs are typically identified as Gnp

where n is the number of vertices and each of the
(

n
2

)

possible edges is present
with a probability p. These instances were generated by the algorithm of [14],
which was modified to produce set T -colouring instances. The requirement,
vertex and edge constraints are constructed as in the previous class, with
t = tu = tuv , ∀ u, v ∈ V . The values assigned to the parameters and the
number of instances are reported in Table 1a. Note that the instances in [10]
were generated in an analogous way.

Philadelphia instances. These instances are characterised by 21 hexagons
representing the cells of a cellular phone network around Philadelphia [15].
For each cell, a demand r(v) is given. In case the mutual distance between
the centre of two cells is less than d (normalised by the radius of the cells), it
is not allowed to assign the same frequency to both cells. This case is gener-
alised by replacing the reuse distance d by a series of non-increasing values
d0, . . . , dk. For more on these instances we refer to the FAP web repository.4

In conformity with the frequency assignment literature we denote these in-
stances by P1-P9.

3 SLS Algorithms for the GSTCP

In this section, we describe the main components of the SLS algorithms we exam-
ine: the construction heuristic for generating the initial solution, the local search
approaches to the GSTCP and the high-level description of the SLS method
(that is, the metaheuristic part of the SLS algorithm).

A design choice of our overall SLS algorithms, which are all based on Tabu
Search, is that they solve directly the optimisation version of the GSTCP. This
is done by starting with some large value of k and successively trying to reduce

4 A. Eisenblätter and A. Koster. “FAP web – A website devoted to frequency assign-
ment”. September 2005. http://fap.zib.de. (January 2006).

|V | ρ̄ r tu tuv # instances
20, 30, . . . , 120 0.1 3 10 4.5 –

10 10 4.5 11 (GEOMn)
0.2 3 10 4.5 11 (GEOMna)

10 10 4.5 11 (GEOMnb)

(a) Random Geometric instances

|V | p r t # instances
60 0.1 5 5 10

10 10
10 5 10

0.5 5 5 10
10 10

10 5 10
0.9 5 5 10

10 10
10 5 10

(b) New Random Uni-
form instances

Inst ρ̄ [rmin; rmax] tu [tmin

uv
; tmax

uv
]

P1 0.73 [8;77] 5 [1; 2]
P2 0.49 [8; 77] 5 [1; 2]
P3 0.73 [5; 45] 5 [1; 2]
P4 0.49 [5; 45] 5 [1; 2]
P5 0.73 [20; 20] 5 [1; 2]
P6 0.49 [20; 20] 5 [1; 2]
P7 0.73 [16; 154] 5 [1; 2]
P8 0.73 [8; 77] 5 [1; 2]
P9 0.73 [32; 308] 5 [1; 2]

(c) FAP instances

Table 1: Statistics on the benchmark instances. tu and tuv, respectively are used to
indicate that the range of values differs among vertex and edge constraints.

the number of colours used, which directly minimises also the span. The best
solution returned is the minimum value of k for which a proper set T-colouring
is found.

3.1 Construction Heuristic

We use a generalised DSATUR heuristic for constructing the initial solution. This
heuristic resulted to be the best one in a study reported in [16]. This heuristic
works on the split graph and for each colour assignment, first a next vertex is
chosen and next this vertex is assigned a colour. Generalised DSATUR chooses
the vertex to colour next based on the saturation degree, i.e., the number of
different colours forbidden by the assignment of colours in the adjacent vertices.
For every vertex u ∈ GS receiving a colour c, the list of forbidden colours of the
vertices v adjacent to u is updated with the colours in the interval {c− tuv , c +
tuv}. The order of vertices is recomputed by assigning higher priority to vertices
with higher saturation degree. In cases of ties, priority is given to vertices with
the largest adjusted vertex degree, which is defined as d(v) =

∑

u∈V S,uv∈ES tuv .
The application of the DSATUR heuristic generates a proper set T-colouring

and, hence, an upper bound k which is the maximal colour used.

3.2 Local search approaches

For applying local search to the GSTCP, we may distinguish between two fun-
damentally different approaches. The first tackles the problem as a series of
decision problems, where for each current value k of available colours it is tried
to find a proper set T-colouring. (In this first case, we further distinguish the

approaches based on the problem representation in what follows.) The second
leaves the value of k variable. These approaches form the basis of the tabu search
algorithms that are explained later.

Approach 1: split graph, k fixed. In this case, solutions are represented as
complete assignments, i.e., one colour is assigned to each vertex. The advantage
of this solution representation is that the requirement constraints of the GSTCP
are always satisfied. The evaluation function f is defined as the number of vertex
and edge constraints broken and, hence, the goal becomes to minimise f to
zero. The neighbourhood in this approach is defined through the well-known
one-exchange neighbourhood, where the solutions s and s′ are neighboured if
they differ in the colour assignment of one single vertex. Often, it is useful to
restrict the neighbourhood examination of the one-exchange to vertices that are
involved in constraint violations. We call this restricted neighbourhood NE in
the following.

Approach 2: original graph, k fixed. A variant to the previous approach
uses the original graph representation. The main implication of this choice is
on the representation of a solution, which is now given naturally by a set of
r(v) colours for each vertex v ∈ V . Contingently, the vertex constraints may be
used to reduce the effective search space to only those candidate assignments
that satisfy them. Hence, requirement constraints and vertex constraints are
always satisfied and the evaluation function needs only to count the number of
unsatisfied edge constraints.

The one-exchange neighbourhood can here be restricted to N ′
E , that is, the

collection of colour changes at a vertex that maintain the vertex constraints
satisfied. This operator is similar to NE with an additional restriction on the
set of new colours. In addition, the vertex exact colour reassignment NR is
defined, which entails the reassignment of all the colours of one single vertex.
We require that the reassignment must satisfy the requirement, vertex and edge
constraints acting on that vertex. As such, it can be seen as an exact solution
to a subproblem, where the assignment of {1, . . . , k} colours to one vertex is
searched under the condition that none of the other vertices changes its colour
assignment.

Approach 3: split graph, k variable. In this approach, a first solution and
an initial kI is provided by a construction heuristic but the number of colours
is then left free to vary at run time. Here, solutions can again be represented
as complete colourings as in Approach 1. The difference is that solutions can be
proper and improper set T-colourings and that the number of colours is bound by
kI which remains the same throughout the whole search. An evaluation function
to guide the search toward proper colourings and toward colourings with smaller
span was proposed by [17]. It is defined as

f(s) = kmax + kI ·
(

∑

uv∈E

Ie(u, v)+
∑

v∈V

Iv(v)
)

+(kmax − kmin)+

kI
∑

i=1

Ig(i) (4)

where kmax is the maximal colour, Ie(u, v) and Iv(v) are indicator functions that
are one if the corresponding edge and vertex constraints are broken, kmax−kmin

is the span of the colouring, and Ig(c) is an indicator function to determine
whether any vertex has colour i; this last term computes the order. The edge
conflicts are weighted by the largest number of colours, thus a solution which
reduces the number of violations will always be preferred with respect to those
that modify the other terms of the sum. The inclusion of the order in the sum
contributes to break ties. The term kmax is the least important and contributes
only to use the first colours, avoiding to move with the same span over and over
through the interval [1, kI].

Finally, as in Approach 1, the same one-exchange neighbourhood may be
used.

3.3 Exact colour reassignment neighbourhood

The effect of this neighbourhood operator is to modify the colour assignment
to one vertex such that the requirement, vertex and edge constraints are all
satisfied. Once a vertex is chosen, a set F is determined comprising the colours
which are proper given the edge constraints and the colours assigned to the
adjacent vertices. The construction of this set can be done in O(|V |k) if the usual
speed-up techniques known from the graph colouring problem are implemented.
If we simply looked for r(v) colours from F such that the vertex constraints are
satisfied this would be easy: we just have to order the values in F and scan the set
once, skipping the values that are not sufficiently distant from the previous ones.
Yet, this procedure is deterministic and we would obtain the same reassignment
of colours visiting a vertex twice if nothing in the adjacent vertices changed.
We want to avoid this and make the search randomised, such that, visiting the
vertex the second time, we obtain a different configuration that can be profitably
propagated. Implementing this strategy corresponds to determine all subsets of
F of size r(v) that are proper, i.e., that satisfy the vertex constraints, and pick
one at random.5

We solve the problem of determining all the proper subsets of F in a dynamic-
programming fashion by solving subproblems and saving their answers in a table.
Given the ordered sequence of integers in F a proper colouring is an ordered
subsequence of integers composed by other subsequences, each allowing a number
of proper solutions. The total number of such solutions can be defined recursively
and computed in a bottom-up fashion. Afterwards it is possible to choose one
solution randomly by selecting among all the existing solutions.

More specifically, let s be the ordered vector of integers in F , L = |F |,
D = tv and H = r(v). Then for each position i of the vector s we define

5 Formally, the problem can be stated as:
Subsequence of length L of K integers with mutual distance not smaller than D.

Given an arbitrary sequence of integers s = {s1, . . . , sK}, a subsequence l =
{l1 . . . lL} of length L with li ∈ s, ∀ i = 1, . . . , L and mutual distance not smaller
than D is a subsequence satisfying: |li − lj | ≥ D, ∀ij. The goal is to find one such
subsequence. Enumerating all subsequences of length L of K integers with mutual dis-

tance not smaller than D. Given an arbitrary sequence of integers S = {s1, . . . , sK}
find all subsequence of length L of S with mutual distance not smaller than D.

1 2 5 6 7 8 10

next(1)=3 next(3)=7

next(4)=7next(2)=4
0

12345670

000126110

3 1 0 0 0 0 0

2 3 4 5 6 7

1

2

3

10

h

i

Fig. 1: An example of reassignment interchange for a case with F = {1, 2, 5, 6, 7, 8, 10},
L = |F | = 7, D = tv = 4 and K = r(v) = 3. On the left the vector s of 7 integers. For
each integer in the sequence the pointer next() is computed, where not indicated it is
set to 0. On the right the table of Nh[i] values. Its construction starts from the low
right corner. Arrows indicate which stored values are used for computing the entries.
The grey cells indicate the values without a proper meaning and hence assigned by
convention.

next(i) = minj{j|j > i, s[j] − s[i] >= D}. For each subsequence l of s, the
number of proper subsequences of s of length h ∈ {1, . . . , H} containing l, can
be determined by the recursion

Nh[i] =

L − i if h = 1 i ≥ 1
Nh−1[next(i)] + Nh[i + 1] if L − i > h + 1
0 otherwise

(5)

with Nh[0] = 0 by convention.
Hence, the total number of proper subsequences of length r(v) corresponds

to NH [1]. To select one solution at random among the Nh[i] solutions one has
then simply to scan the sequence s and select each element with probability
Nh−1[next(i)]/Nh[i]. Scanning the sequence of numbers takes linear time, but
computing each time the recursion 5 takes exponential time. However, this can
be done much more efficiently if all values Nh[i] are computed at the beginning
and recorded in a table. Referring to Figure 1, right, if the table is filled from
bottom to top and from right to left within each row, each new entry needs the
values of Nh−1[next(i)] and Nh[i + 1] which are already determined and stored.
The table can then be computed in O(max(D, H, log L)L). The exact colour
reassignment of a vertex requires then only one more scan of the sequence s.

3.4 Tabu search algorithms

As said, all the SLS algorithms we applied here rely on tabu search, a technique
that has shown to work particularly well for graph colouring problems. We give
details on all the five algorithms that we tested in our experimental comparison.

Approach 1: split graph, k fixed, complete colourings We use a standard
tabu search algorithm that chooses at each iteration a best non-tabu move or
a tabu but “aspired” neighbouring solution from the restricted one-exchange
neighbourhood (NE). The tabu list forbids to reverse a move and the tabu
tenure is chosen as tt = random(10) + 2δ|V c|, where V c is the set of vertices

which are involved in at least one conflict, δ is a parameter, and random(10) is
an integer random number uniformly distributed in [0, 10]; this choice follows
that of the successful tabu search algorithms for the graph colouring problem
[18]. We denote this algorithm SF-TS.

SF-TS is very similar to the Tabu Search algorithms proposed in [19], [20],
and [17]. In those papers, Tabu Search was shown to perform better than simu-
lated annealing and other genetic algorithms. We tested the FASoft system [17]
on the random geometric graphs and results were worse than those of SF-TS.
The reason for this may also be due to the worse solution quality reached by
the construction heuristics in FASoft when compared to that obtainable by our
generalised DSATUR.

Approach 2: original graph, k fixed, complete colourings An application
of Tabu Search on the one exchange neighbourhood N ′

E on the original graph
was already designed by [10]. Other versions of this algorithm for frequency
assignment [21] differ only in the management of the tabu length or are more
rudimentary [22]. Our version uses the same tabu tenure definition as SF-TS and
is in this equal to the version by [10]. We denote this algorithm OF-TS.

We also include two enhanced versions of OF-TS which make use of the newly
introduced vertex reassignment neighbourhood NR. Since the exploration of the
union of N ′

E and NR would be computationally expensive, we adopt a heuristic
rule for choosing the next move to apply. For short, first the best non tabu move
in the neighbourhood N ′

E is determined. If it improves on the current solution,
it is accepted. If it leaves the evaluation function value unchanged or worsens it,
a move is searched in neighbourhood NR, restricted to only vertices involved in
at least one conflict. If a proper reassignment is found it is applied, otherwise the
best non-tabu move in N ′

E is applied. We call the overall algorithm OF-TS+R.
A variant of OF-TS+R considers a random vertex from V after no move is

found in NR of conflicting vertices. The motivation for this is that a random
reassignment of colours to vertices where no conflict is present may produce a
change that can propagate profitably. We denote this variant OF-TS+R∗.6

The tabu search mechanism applied to moves in N ′
E is the same used in NE

and [10] (aspiration criterion included). No tabu search mechanism is instead
applied to moves in NR. In this case repetitions in the search are avoided by the
randomisation of the reassignment. This is the reason why preliminary experi-
ments clearly indicated that the use of a randomised reassignment instead of a
deterministic one is preferable.

Approach 3: split graph, k variable, complete colourings We test a tabu
search algorithm on N ′′

E based on the same framework as in the case of k fixed
and neighbourhood NE , but using the evaluation function of Equation 4. We
denote this algorithm as SV-TS.

6 By chance a randomly chosen vertex can happen to be in conflict; in this case the
best non tabu move in NE is chosen as in OF-TS+R. Clearly, this can be avoided in
another implementation.

Parameter settings The tabu search algorithms require a number of parame-
ters to be adapted to the class of problem instances under consideration. To ac-
complish this task we used the racing algorithm of Birattari [23], which is a fully
automatic procedure based on sequential testing. In the tabu search algorithms
designed the only parameter to be decided is δ. For each of the algorithms (except
OF-TS+R) we used as candidates the set of numbers {0.5; 1; 10; 20; 30; 40; 50; 60;
70; 100} and the best values found were 10 for the uniform, 30 for random, and 40
for Philadelphia instances. In the following for each algorithm we only consider
the version with the best set of parameters for the instance class.

4 Experimental Analysis

We evaluate experimentally the five versions of tabu search. We maintain the
classes of instances separated as we expect to see differences in performance.
Unfortunately, given the larger among of computational effort for solving even
small GSTCP instances, we could not use the large instances of Dorne and Hao;
we used them, however, to check that our re-implementation of OF-TS gives
results comparable to those earlier published [16].

To compare the algorithms under roughly fair conditions, we imposed a same
computation time limit for them. This is necessary, since the single iterations of
OF-TS and OF-TS+R have different computation time requirements. To deter-
mine a time limit we run OF-TS for Imax = 105 ×

∑

v∈V r(v) iterations. Being
the only algorithm previously published the choice of OF-TS as reference algo-
rithm is justified. Note that the time limit varies among instances, moreover,
it is a stochastic variable. We used, therefore, a multiple regression model from
the results of 5 runs per instance to define the time limits. We omit here the
details of this procedure and in the tables given next we report the time limits
predicted by the model which refer to a machine 2GHz AMD Athlon MP 2400
Processor with 256 KB cache and 1 GB RAM, running Debian Linux.

On the 27 random geometric instances (disconnected graphs were removed)
and the 90 random uniform instances, we collected 3 runs per algorithm per in-
stance. On the 9 Philadelphia instances we collected instead 5 runs per algorithm
per instance.

4.1 Tabu search comparison

The analysis of results is carried out through simultaneous confidence intervals
for multiple comparisons. In particular the Friedman rank-based statistical pro-
cedure is used to infer the simultaneous confidence intervals of the average rank
performance of each algorithm [24, 25]. In this procedure, each result in terms of
colour span is ranked with all other results in the same instance, thus removing
the problem of different scale of results among the instances and allowing an
aggregate analysis (within the class).

We report the results in Figure 2, 3 and 4 where two algorithms are signifi-
cantly different if the two confidence intervals of the corresponding average rank
do not overlap. The more the interval is shifted towards the left the better are
the algorithm results.

4 6 8 10 12 14

OF−TS

OF−TS+R

OF−TS+R*

SF−TS

SV−TS

GEOM p=0.1 r=10 tu=10 tuv=4.5 (7 Instances)

4 6 8 10 12 14

GEOMa p=0.2 r=3 tu=10 tuv=4.5 (10 Instances)

4 6 8 10 12 14

GEOMb p=0.2 r=10 tu=10 tuv=4.5 (11 Instances)

Fig. 2: Multiple comparisons through simultaneous confidence intervals on the random
geometric instances. The x-axis indicates the average rank while the confidence intervals
are derived from the Friedman test..

The first observation is that, as expected, results vary among the instances.
On the geometric graphs the exact colour reassignment does not introduce any
significant improvement and, in fact, seems to worse the basic OF-TS. Note,
however, that the random geometric graphs are representative of only a restricted
portion of the space of all possible instances: they represent only graphs with
very small edge density and fixed separation constraints.

More informative in this sense is the analysis on the random uniform graphs
(Figure 3). Here the space of instances is better sampled as graphs with different
edge density and vertex requirement are also present. This allows to conjecture
on performance variations due to instance features. The most important result is
that exact colour reassignment becomes worth when the edge density is at least
0.5. In these cases, indeed, the performance of OF-TS+R becomes clearly better
than that of OF-TS. The vertex requirements appear also to have an influence
which is reflected by the better performance of OF-TS+R∗ when vertex require-
ments are high. This latter tendency seems to be confirmed on the Philadelphia
instances where OF-TS+R

∗ outperforms all other versions of tabu search.
Finally a note on SV-TS and SF-TS. Given the much worse performance of

these two algorithms compared to the other three, we conclude that the use of
the split graph is not a promising approach for local search algorithms for the
GSTCP. (This seems to be different for constructive heuristics [16].) Addition-
ally, the worse performance of SV-TS compared to SF-TS suggests that the usage
of a variable k is not advisable for the GSTCP.

4.2 Comparison with state-of-art

In tables 2 and 3 we report the numerical results for comparison with previously
published results. On the random geometric graphs previous results on the span
are due to [11–13]. On the Philadelphia instances results on lower bounds and
upper bounds are available at http://fap.zib.de/problems/Philadelphia/.
In all the instances the best upper bounds of approximate algorithms went over
time to coincide with the lower bound thus proving optimality for these in-
stances. Note however that no algorithm has solved all the instances alone and
we refer to the FAP web repository for a complete list of references for each

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.1 (10 Instances) TG−5.10−60−0.1 (10 Instances) TG−10.5−60−0.1 (10 Instances)

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.5 (10 Instances) TG−5.10−60−0.5 (10 Instances) TG−10.5−60−0.5 (10 Instances)

5 10

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.9 (10 Instances)

5 10

TG−5.10−60−0.9 (10 Instances)

5 10

TG−10.5−60−0.9 (10 Instances)

Fig. 3: Confidence intervals for the all pairwise comparisons of SLS algorithms on
aggregated uniform random instances of the GSTCP. The x-axis indicates the average
rank while the confidence intervals are derived from the Friedman test.

result (the most robust seems to be the genetic algorithm by [26]). The same
reasoning holds for the construction heuristics whose results we also report for
comparison. On both instance classes the results that we report are the lower
bounds produced by the procedure described in [16], and the best and median
value for the generalised DSATUR heuristic and the tabu search algorithms. Re-
sults are in terms of maximal number of colours used, hence to derive the span
one has to subtract one.

On the random geometric graphs our results improve the best known colour-
ings on 11 instances, are worse on 9 instances and reach the same performance
on 8 instances. There seems to be therefore no significant difference. However,
such kind of comparison is not reliable as our data are based on aggregated best
values from more than one algorithm and more than one run. Nevertheless, the
results prove the high quality of the results here discussed.

On the Philadelphia instances OF-TS+R∗ produces 7 times out of 9 the
optimal solution. Only the algorithm by [26] can reach similar performance with
8 out of 9 optimal results. As far as the results of our generalised DSATUR
construction heuristic its results are worse than those attained by a portfolio
of heuristics implemented in the system FASoft [17]. However a comparison
with the results of [10] shows that our generalised DSATUR is much better. No

5 10 15 20

OF−TS+R*

OF−TS+R

OF−TS

SF−TS

SV−TS

Philadelphia (9 Instances)

Fig. 4: Confidence intervals for the all pairwise comparisons of SLS algorithms on
Philadelphia instances of the GSTCP. The x-axis indicates the average rank while the
confidence intervals are derived from the Friedman test.

result for the construction heuristic is instead reported on the random geometric
instances.

5 Summary

In this article, we studied a hybrid tabu search algorithm for the GSTCP prob-
lem. This algorithm uses a canonical tabu search algorithm based on a one-
exchange neighbourhood operator and it enhances the canonical tabu search by
an exact reassignment of colours to vertices when opportune. The exact reassign-
ment would be trivial if implemented in a deterministic manner. We proposed
instead an algorithm which is capable to return a random exact colour reassign-
ment. This feature favours the diversification of the search, which is often a key
mechanism for making an SLS algorithm successful. A major contribution of this
article is, hence, the recursive formula with polynomial time-complexity for this
random reassignment.

Another contribution is the experimental analysis of various tabu search al-
gorithms on 3 classes of instances. The results of this comparisons are that (i)
tabu search algorithms working on a split-graph representation are less efficient
than the tabu search algorithms working on the “natural” problem representa-
tion, (ii) on instances characterised by a low edge density in the graph and low
vertex requirements, the occasional exact reassignment does not improve the un-
derlying tabu search algorithms, (iii) on the other instances and above all on the
Philadelphia instances, which stem from the literature on frequency assignment,
the hybrid algorithm performs, often by quite a large margin, better than the
basic tabu search algorithms.

Acknowledgements. Thomas Stützle acknowledges support of the Belgian
FNRS, of which he is a research associate. Kim S. Larsen was supported in part
by the Danish Natural Science Research Council (SNF).

Instance LWB Best DSATUR max time OF-TS OF-TS+R OF-TS+R
∗

SF-TS SV-TS

GEOM60 230 258 258 258 710 258 258 258 258 258 258 258 258 258 258
GEOM70 260 273 283 287.5 1060 269 270 270 271 271 272 270 278 274 285
GEOM80 365 383 392 395 1490 384 385 386 386 388 390 389 389 393 394
GEOM90 313 332 335 338.5 1810 332 333 332 332 335 337 333 334 335 340
GEOM100 378 404 412 416 2170 411 414 412 414 411 411 411 414 414 415
GEOM110 348 383 400 410 2510 383 383 381 382 387 389 381 389 403 404
GEOM120 343 402 412 419 2730 402 404 404 405 404 405 409 417 416 419
GEOM30a 182 209 238 238 380 212 213 212 212 212 212 222 228 234 235
GEOM40a 160 213 229 229 500 214 215 215 216 217 217 220 220 225 226
GEOM50a 199 318 335 345 1080 318 318 319 321 321 322 329 337 337 340
GEOM60a 290 358 369 373 1420 361 361 361 362 362 364 363 363 373 373
GEOM70a 425 469 487 487 1470 484 484 484 484 481 484 483 486 487 487
GEOM80a 241 379 388 396 1510 371 372 371 371 368 369 378 383 391 394
GEOM90a 285 377 398 405 1910 398 401 398 401 389 389 398 402 398 405
GEOM100a 302 459 462 471 2500 444 448 445 446 443 447 454 459 462 465
GEOM110a 385 494 523 523 3120 506 506 504 505 498 500 507 509 516 518
GEOM120a 514 556 571 578 3690 550 556 553 556 558 560 556 558 578 578
GEOM20b 39 44 45 45 30 44 44 44 44 44 44 44 44 44 44
GEOM30b 38 77 78 78 80 77 77 77 77 77 77 77 77 77 77
GEOM40b 74 74 79 86 140 74 74 74 74 74 74 75 75 76 76
GEOM50b 67 87 92 94 200 84 85 85 85 84 85 86 87 87 88
GEOM60b 79 116 123 132 300 120 120 118 119 119 119 120 120 121 122
GEOM70b 94 121 133 135 380 121 121 120 122 122 122 122 123 125 125
GEOM80b 110 141 148 149 490 140 140 139 140 141 142 140 141 140 142
GEOM90b 112 157 160 161 590 150 150 149 149 149 150 152 153 153 155
GEOM100b 133 170 173 179 690 162 163 164 164 162 165 169 170 172 172
GEOM110b 182 206 221 225.5 790 208 209 206 209 213 213 212 213 214 215
GEOM120b 172 199 206 219.5 910 195 198 197 198 201 201 200 201 202 203

Table 2: Numerical results on the random geometric instances. Given are the instance identifier, a
lower bound, the best solution known so far, the results of our generalised DSATUR, our computation
time limits, and the results of our five tabu search algorithms.

Instance OPT LWB Known
Heur.

DSATUR max
time

OF-TS+R
∗

OF-TS+R OF-TS SF-TS SV-TS

P1 427 371 448 480 485 490 427 427 427 427 427 427 479 480 480 480
P2 427 428 476 458 464 712 427 427 427 448 428 459 482 483 484 484
P3 258 258 285 268 268 333 258 258 258 258 258 258 266 266 262 263
P4 253 254 269 260 266 225 253 254 253 253 253 253 264 264 264 264
P5 240 240 251 250 255 327 240 240 240 240 240 240 240 240 240 240
P6 180 179 231 195 199 279 183 184 185 185 185 186 195 197 195 197
P7 856 743 895 969 973 2439 856 857 871 877 860 871 967 969 967 969
P8 525 461 593 539 539 610 525 525 525 525 527 528 548 548 549 549
P9 1714 1487 1801 1938 1946 10381 1715 1717 1756 1758 1755 1759 1938 1938 1938 1938

Table 3: Numerical results on the Philadelphia instances. Given are the instance identifier, the
known optimum, a lower bound, the best heuristic solution of the FASoft system, the results of our
generalised DSATUR, our computation time limits, and the results of our five tabu search algorithms.

References

1. Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the
IEEE 68 (1980) 1497–1514

2. Tesman, B.A.: Set T -colorings. Congressus Numerantium 77 (1990) 229–242
3. Roberts, F.S.: T-colorings of graphs: Recent results and open problems. Discrete

Mathematics 93 (1991) 229–245
4. Tesman, B.A.: List T -colorings. Discrete Applied Mathematics 45 (1993) 277–289
5. Giaro, K., Janczewski, R., Malafiejski, M.: The complexity of the T -coloring prob-

lem for graphs with small degree. Discrete Applied Mathematics 129 (2003) 361–
369

6. Giaro, K., Janczewski, R., Malafiejski, M.: A polynomial algorithm for finding
T -span of generalized cacti. Discrete Applied Mathematics 129 (2003) 371–382

7. Eisenblätter, A., Grötschel, M., Koster, A.M.C.A.: Frequency assignment and
ramifications of coloring. Discussiones Mathematicae Graph Theory 22 (2002)
51–88

8. Aardal, K.I., van Hoesel, C.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for the frequency assignment problem. ZIB-
report 01–40, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, Ger-
many (2001)

9. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA (2004)

10. Dorne, R., Hao, J.: Tabu search for graph coloring, T-colorings and set T-colorings.
In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimiza-
tion. Kluwer Academic Publishers (1998)

11. Phan, V., Skiena, S.: Coloring graphs with a general heuristic search engine. In
Johnson, D.S., Mehrotra, A., Trick, M., eds.: Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA
(2002) 92–99

12. Prestwich, S.: Hybrid local search on two multicolouring models. In: International
Symposium on Mathematical Programming, Copenhagen, Denmark (2003)

13. Lim, A., Zhu, Y., Lou, Q., Rodrigues, B.: Heuristic methods for graph coloring
problems. In: SAC ’05: Proceedings of the 2005 ACM Symposium on Applied
Computing, New York, NY, USA, ACM Press (2005) 933–939

14. Culberson, J., Beacham, A., Papp, D.: Hiding our colors. In: Proceedings of the
CP’95 Workshop on Studying and Solving Really Hard Problems, Cassis, France
(1995) 31–42

15. Anderson, L.G.: A simulation study of some dynamic channel assignment algo-
rithms in a high capacity mobile telecommunications system. IEEE Transactions
on Communications 21 (1973) 1294–1301

16. Chiarandini, M.: Stochastic Local Search Methods for Highly Constrained Com-
binatorial Optimisation Problems. PhD thesis, Computer Science Department,
Darmstadt University of Technology, Darmstadt, Germany (2005)

17. Hurley, S., Smith, D.H., Thiel, S.U.: FASoft: A system for discrete channel fre-
quency assignment. Radio Science 32 (1997) 1921–1939

18. Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3 (1999) 379–397

19. Costa, D.: On the use of some known methods for T-colorings of graphs. Annals
of Operations Research 41 (1993) 343–358

20. Castelino, D., Hurley, S., Stephens, N.: A tabu search algorithm for frequency
assignment. Annals of Operations Research 63 (1996) 301–320

21. Hao, J.K., Dorne, R., Galinier, P.: Tabu search for frequency assignment in mobile
radio networks. Journal of Heuristics 4 (1998) 47–62

22. Hao, J.K., Perrier, L.: Tabu search for the frequency assignment problem in cellular
radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique Georges
Besse, Nimes, France (1999)

23. Birattari, M.: The race package for R. Racing methods for the selection of the
best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université Libre de Brux-
elles, Brussels, Belgium (2003)

24. Conover, W.: Practical Nonparametric Statistics. third edn. John Wiley & Sons,
New York, NY, USA (1999)

25. Chiarandini, M., Basso, D., Stützle, T.: Statistical methods for the comparison
of stochastic optimizers. In Doerner, K.F., Gendreau, M., Greistorfer, P., Gut-
jahr, W.J., Hartl, R.F., Reimann, M., eds.: MIC2005: The Sixth Metaheuristics
International Conference, Vienna, Austria (2005) 189–196

26. Matsui, S., Tokoro, K.: Improving the performance of a genetic algorithm for
minimum span frequency assignment problem with an adaptive mutation rate and
a new initialization method. In: Proc. of GECCO-2001 (Genetic and Evolutionary
Computation Conference), Morgan Kaufmann Publishers (2001) 1359–1366

