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Abstract Relative worst order analysis is a supplement or alternative to com-
petitive analysis which has been shown to give results more in accordance with
observed behavior of online algorithms for a range of different online problems.
The contribution of this paper is twofold. As the first contribution, it adds the
static list accessing problem to the collection of online problems where rela-
tive worst order analysis gives better results. List accessing is a classic data
structuring problem of maintaining optimal ordering in a linked list. It is also
one of the classic problems in online algorithms, in that it is used as a model
problem, along with paging and a few other problems, when trying out new
techniques and quality measures. As the second contribution, this paper adds
the non-trivial supplementary proof technique of list factoring to the theo-
retical toolbox for relative worst order analysis. List factoring is perhaps the
most successful technique for analyzing list accessing algorithms, reducing the
complexity of the analysis of algorithms on full-length lists to lists of length
two.
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1 Introduction

The static list accessing problem [28,4] is a well-known problem in online algo-
rithms. Many deterministic as well as randomized algorithms are known, and
these have been investigated theoretically as well as experimentally. See [10]
for a discussion of the importance of the problem in relation to dictionary
implementation, connections to paging, and applications in compression algo-
rithms. For readers unfamiliar with the standard algorithms for list accessing
or relative worst order analysis, we refer to the rigorous definitions in Section 2
and Section 3.

The most standard performance measure for online algorithms is compet-
itive analysis [20,28,22]. The starting point for our work was the discrepancy
between the findings obtained regarding list accessing when analyzed using
competitive analysis and when investigated through experimental work. Com-
petitive analysis finds that Move-To-Front is optimal, with a competitive ratio
of two, while Frequency-Count and Transpose have lower bounds on their com-
petitive ratio which grow linearly with the length of the list [10]. The point
is that the difference is dramatic and that Frequency-Count is placed in the
“bad” group.

In contrast, experimental work [9] on Move-To-Front and Frequency-Count
suggests that these algorithms are almost equally good and both are far better
than Transpose. That paper [9] reports on numerous algorithms and experi-
ments directly investigating list accessing or applications of list accessing. The
authors of [9] conducted experiments on real data. They pointed out that real
data is always biased in some direction, and consequently for concrete appli-
cations, real data properties may give specific insight. They concluded that
Frequency-Count is among the top algorithms in both of the two data sce-
narios they consider [9, p. 58]. MTF is not in the top group, but variants of
MTF are. Also, Transpose is never in the top group. Thus, considering this
experimental data, it seems that Frequency-Count is misplaced by competitive
analysis.

Other experiments [7] reach similar conclusions. The authors of [7] find that
Transpose is consistently significantly worse than both MTF and Frequency-Count.
With regards to MTF and Frequency-Count, the former is most often a little
better than Frequency-Count, but the difference is smaller and in 2 out of 9
tests, Frequency-Count is better. This also indicates that if these algorithms
should be categorized in two groups, Transpose should be in the “bad” group
and MTF and Frequency-Count together in the better group.

To a large extent driven by the paging problem [10] and the difficulties
encountered in theoretically separating various algorithm proposals, many al-
ternative performance measures have been developed to supplement standard
competitive analysis. Examples include [30,8,23,24,11,5]; see [16] for a survey.
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Some of these measures are tailored towards a specific online problem, whereas
others are more generally applicable; see [13] for a comparative study of these
measures on a simple problem.

Of these alternatives to competitive analysis, relative worst order analy-
sis [11,12] is the measure that has been applied to the largest variety of online
problems. Results that are in accordance with experiments have been derived
for a range of fairly different online problems in situations where competitive
analysis has given the “wrong” answer. Online problems of this nature include
(but are not limited to) the following:

– For classical bin packing, Worst-Fit is better than Next-Fit [11].
– For dual bin packing, First-Fit is better than Worst-Fit [11].
– For paging, LRU is better than FWF (Flush-When-Full) and look-ahead

helps [12].
– For scheduling, minimizing makespan on two related machines, a post-

greedy algorithm is better than scheduling all jobs on the fast machine [18].
– For bin coloring [25], a natural greedy-type algorithm is better than just

using one open bin at a time [17].
– For seat reservation, First-Fit is better than Worst-Fit [14] with regards to

proportional price.

We apply relative worst order analysis to the static list accessing problem.
We first extend the list factoring technique [9,3] known from competitive anal-
ysis to relative worst order analysis. We then apply the technique to the three
deterministic online list accessing algorithms Move-To-Front, Time-Stamp,
and Frequency-Count. We show that these algorithms are equally good and
much better than Transpose when analyzed using relative worst order analysis,
thereby obtaining results that are in accordance with the cited experimental
work.

Adding static list accessing to the collection of problems above where rela-
tive worst order analysis gives better or more nuanced results than competitive
analysis is a step in documenting to what extent relative worst order analy-
sis is generally applicable. However, we find it more interesting that relative
worst order analysis can be equipped with a powerful supplementary proof
technique such as list factoring. To our knowledge, relative worst order analy-
sis is the first of the alternative performance measures to be equipped with a
list factoring lemma.

Some of the deterministic list accessing algorithms are quite old. It is diffi-
cult to pin-point the origin of Frequency-Count, since it is intimately related
to probability theoretical considerations, and it is not clear when it started
being viewed as an algorithm. Move-To-Front and Transpose were formulated
in [26]. Time-Stamp [1] is a deterministic algorithm that arose as a special
case of a family of randomized algorithms.
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We also consider BIT [27] and Randomized-Move-To-Front1, both of which
are randomized algorithms. Deterministic and randomized online algorithms
are often compared informally, but it is not clear how much sense it makes to
compare a worst-case guarantee with an average-case performance. We com-
pare the two randomized algorithms to each other and find them incompara-
ble whereas competitive analysis slightly favors the former (often referred to
as a “surprising” result [10, p. 27]), showing that BIT is 7

4
-competitive and

Randomized-Move-To-Front is 2-competitive, in both cases against an oblivi-
ous adversary [27,19].

For early related work, we refer the reader to [4,10]. Newer work obtains
separations between list accessing algorithms by analyzing these with respect
to some measure of locality of reference [2,6,15].

2 List Accessing

In the static list accessing problem [28,4], we have a fixed collection of items
arranged in a linear list, L = (a1, a2, . . . , aℓ), of length ℓ. The request sequence,
I, consists of requests of access to items in the list, and the accesses must be
served in an online manner. To access an item, one must start searching from
the front of the list, inspecting each item until the correct item is found. Thus,
if we are searching for some item x, we first compare x with a1. If they are
the same, we stop. Otherwise, we proceed to compare x with a2. The process
continues until x is found.

Thus, accessing an item currently at index j also involves comparisons to
j − 1 other items in front of it. In treating one request, the final comparison,
which determines that the requested item has been found, is referred to as a
positive comparison, whereas the comparisons to the j − 1 items in front of it
are referred to as negative comparisons.

The cost of accessing an item depends on its position (index) in the list.
In the full cost model, one pays for every comparison, so accessing the item
at index j costs j. In the partial cost model, the final positive comparison is
not counted, so accessing an item currently at index j costs j − 1. Since every
access to an item in the list must end with a positive comparison, it is only
the total number of negative comparisons that can be affected by the choice of
algorithm. The partial cost model measures exactly this parameter. Also, when
using this model, proofs often become more elegant, making this a common
choice during the analysis, e.g., when using the list factoring technique. Since
we know the number of requests, one can easily compute the total costs in one
model from the result found in the other.

After accessing an item, it can be moved to any position further towards
the front of the list without any additional cost. Such a move can be seen
as a number of transpositions of the accessed item with items preceding it

1 In the many papers that discuss Randomized-Move-To-Front, we have not been able to
find a reference to the paper with the first definition of the algorithm. However, [7] cites
personal communication with J. Westbrook from 1996 regarding properties of the algorithm.
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in the list. The transpositions used to perform such a move are called free.
Furthermore, at any time, an algorithm may exchange two adjacent items in
the list at a cost of one. Such a transposition is denoted a paid transposition.
The objective of a list accessing algorithm is to use free and paid transpositions
in order to minimize the overall cost of serving the request sequence. Further
discussion of the modelling issues can be found in [10].

In this paper, we only consider algorithms that do not use paid transpo-
sition, and unless otherwise noted, we use the full cost model. Many of the
proofs are carried out using the partial cost model.

Many different algorithms have been proposed for the list accessing prob-
lem. Some of the most well-known deterministic paging algorithms are the
following.

MTF (Move-To-Front): After accessing the requested item, MTF moves the
item to the front of the list.

FC (Frequency-Count): After accessing the requested item, FC moves the
item forward in the list such that the resulting list is in sorted order with
respect to the frequency with which the items have been accessed, i.e.,
for every item, FC maintains a counter which is incremented on an access
to the item and the list is sorted in non-increasing order of the counters.
FC only moves the accessed item forward the least number of positions
necessary to maintain the sorted order.

TS (Time-Stamp): After accessing item ai, it is inserted in front of the first
item aj (from the front of the list) that precedes ai in the list and was ac-
cessed at most once since the last access to ai. The algorithm does nothing
if there is no such item aj or if ai is accessed for the first time.

TRANS (Transpose): After accessing the requested item, it is transposed with
the item in front of it in the list. If the item is already at the front of the
list, it stays there.

In addition to the above deterministic algorithms, we also consider the
following well-known randomized algorithms.

BIT: For each item in the list, BIT [27] maintains a bit. Before processing a
request sequence, BIT initializes the bits independently and uniformly at
random. On a request for an item, BIT first complements the item’s bit.
If the bit is then one, the item is moved to the front of the list. Otherwise,
BIT does not move the item.

RMTF (Randomized-Move-To-Front): After each access to a requested item,
RMTF moves the item to the front of the list with probability 1

2
.

As an example, in the full cost model consider MTF on the input sequence
I = 〈b, a, a, c, b〉 and the initial list L = (a, b, c). The first request to b has a
cost of two, since b is initially at index two. The algorithm MTF then changes
the list to (b, a, c), i.e., it moves the requested item to the front of the list. By
definition of the list accessing problem, it may do so at no cost since b is the
requested item. In treating these five requests, the list starts in state (a, b, c)
and then goes through the states (b, a, c), (a, b, c), (a, b, c), (c, a, b), and (b, c, a)
at a cost of 2, 2, 1, 3, and 3, respectively, summing up to a total cost of 11.
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3 Relative Worst Order Analysis

Relative worst order analysis was first introduced in [11] in an effort to com-
bine the desirable properties of the max/max ratio [8] and the random-order
ratio [23]. The measure was later refined in [12].

Instead of comparing online algorithms to an optimal offline algorithm (and
then comparing their competitive ratios), two online algorithms are compared
directly. However, instead of comparing their performance on the exact same
request sequence, they are compared on their respective worst permutations
of the same sequence.

Formally, if I is a request sequence of length n and σ is a permutation
on n elements, then σ(I) denotes I permuted by σ. Let A be a list accessing
algorithm and let A(I) denote the cost of running A on I. In the examples
below, we use the full cost model, but point out that the definitions given in
this section are independent of cost model, and therefore also can be used with
the partial cost model. Define AW(I) to be the performance of A on a worst
possible permutation of I with respect to A, i.e., AW(I) = maxσ{A(σ(I))}.

Continuing the example from the previous section, where we considered
MTF on I = 〈b, a, a, c, b〉 with the initial list L = (a, b, c), the total cost was
11, so MTF(I) = 11. However, a worst permutation of I would be IMTF =
〈c, b, a, b, a〉, which has a cost of 13. Thus, MTFW (I) = 13.

For any pair of algorithms A and B, we define

cu(A,B) = inf{c | ∃b : ∀ I : AW(I) ≤ cBW(I) + b} and

cl(A,B) = sup{c | ∃b : ∀ I : AW(I) ≥ cBW(I)− b}.

Note that the additive constant b must be independent of the request sequence
I, but is allowed to depend on the initial state of the list that A is working on.
This is similar to how the additive constant is treated when using competitive
analysis.

Intuitively, cl and cu can be thought of as tight lower and upper bounds,
respectively, on the performance of A relative to B.

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable.
For instance, if cu(A,B) ≤ 1, this means that there exists a constant c ≤ 1 such
that, possibly ignoring an additive constant, the cost of A is at most c times the
cost of B for all input sequences. Thus, again ignoring the additive constant,
A never has a higher cost than B. This is the most important information we
want to compute concerning the relationship between two algorithms.

If two algorithms are comparable, then the relative worst order ratio,
WRA,B, of algorithm A to algorithm B is defined. Otherwise, WRA,B is unde-
fined.

If cu(A,B) ≤ 1, then WRA,B = cl(A,B), and

if cl(A,B) ≥ 1, then WRA,B = cu(A,B).

Having already established that the algorithms are comparable, and, thus,
one algorithm at least as good as the other, the relative worst order ratio is a
bound on how much better the one algorithm can be.
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If the ratio is strictly smaller or larger than one, then one algorithm is
strictly better than the other: if WRA,B < 1, then A is better than B, and if
WRA,B > 1, then B is better than A. We introduce a combined term for this: if
A and B are comparable and A is better than B according to the relative worst
order ratio, then A and B are comparable in A’s favor. Finally, if the ratio is
one, then the algorithms perform identically according to relative worst order
analysis.

In [11,12], it was shown that the relative worst order ratio is a transitive
measure, i.e., the relative worst order ratio defines a partial ordering of the
algorithms for a given problem.

Though we discuss results obtained using competitive analysis, all our re-
sults are obtained using relative worst ordering analysis.

4 List Factoring

The list factoring technique was first introduced by Bentley and McGeoch [9]
and later extended and improved in a series of papers [21,29,1,3]. It reduces the
analysis of list accessing algorithms to lists of size two. Previously the technique
was developed and applied only in the context of competitive analysis, where
it can be used to prove upper bounds on the competitive ratio [10]. In this
section, we show that list factoring can also be applied in the context of relative
worst order analysis to separate online algorithms and prove upper bounds.

For the definitions in this section, let A denote any online list accessing
algorithm that does not use paid transpositions. We are going to consider the
partial cost model where accessing the ith item in the list costs i− 1. For any
request sequence I, we use the standard notation (from [10], for instance) of
A⋆(I) to denote the cost A incurs while processing I in the partial cost model.

Consider the list when A is about to process the ith request Ii and define

A⋆(aj , i) =

{

1 if aj is in front of Ii in the list

0 otherwise (including aj = Ii)

for all items aj in the list.
We also define

A⋆
ab(I) =

∑

i:Ii∈{a,b}

(A⋆(a, i) + A⋆(b, i)) .

A⋆(aj , i) can be viewed as representing the cost due to aj of accessing the
ith item, Ii, since if aj is in front of Ii just before the request to Ii is processed,
a comparison with aj will result. Similarly, A⋆

ab(I) then represents the part of
the total cost of processing the entire request sequence which is due to a and
b being in front the requested items, but only considering requests to a and b

in the sequence. Thus, for each term in the sum, either A⋆(a, i) or A⋆(b, i) is
zero. Thus, the sum, A⋆(a, i) + A⋆(b, i) is one if Ii is a request to a and b is
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in front of a at the time or if Ii is a request to b and a is in front of b at the
time. Otherwise, the term is zero.

The above leads to the observation, also made in [10], that we can express
the total cost of A on a sequence I in the partial cost model by considering
A⋆

ab(I) over all pairs of a and b, i.e.,

A⋆(I) =
∑

{a,b}⊆L,a 6=b

A⋆
ab(I).

Let Iab be the projection of I over a and b, i.e., the sequence obtained from
I by deleting all requests to items other than a or b. Similarly, let Lab be the
initial list with items other than a and b deleted.

An algorithm A is said to have the pairwise property, if for all pairs, a and
b, of two items in L, we have

A⋆
ab(I) = A⋆(Iab).

where, on the left-hand side, A is processing I on the full list L, whereas on
the right-hand side, A is processing Iab on the list Lab.

Thus, on the left-hand side, A processes the full request sequence, but we
are only summing the costs having to do with the relative position of a and
b and only on requests to one of these items, i.e., the cost of processing a
request is one if we are accessing one of these items and the other is in front.
Otherwise the cost of that access is zero. On the right-hand side, we process
the projected input sequence on the projected list and count all costs (still in
the partial cost model).

Intuitively, the equality then holds when the algorithm’s treatment of an
accessed item is independent of other items. The algorithm MTF behaves that
way, whereas Transpose does not. To see this, assume that at some point, the
full list is in the state (a, c, b). Then in accessing b, Transpose would move b

forward to obtain (a, b, c). However, in the projected list of (a, b), Transpose
would change the state to (b, a). Thus, the relative positions of a and b end
up being different in the full list and the projected list. This means that the
costs of the two sides of the equation defining the pairwise property end up
being different, and then that equality does not hold.

In competitive analysis, this setup can be used to prove upper bounds on
the competitive ratio (in the partial cost model) of algorithms that have the
pairwise property. In addition, if the algorithms are also cost independent,
then the ratio carries over to the full cost model [10]. An algorithm is cost
independent if the decisions it makes are independent of the cost. There are
online algorithms (for other online problems) that use accumulated cost as
part of the decision making in order to obtain a particular end result. Such
algorithms would simply function differently if the cost model was changed. Of
course one might be able to modify the algorithm with regards to the modified
cost, but it may be non-trivial if it is not just the total cost that is used, but
for instance a ratio of accumulated cost compared to accumulated cost by an
optimal offline algorithm.



List Factoring and Relative Worst Order Analysis 9

For relative worst order analysis, we show that the setup above can also be
used to separate algorithms and prove upper bounds. Consider an algorithm
A that has the pairwise property. It follows that

A⋆
W(Iab) = max

σ
A⋆(σ(Iab)) = max

σ
A⋆((σ(I))ab) = max

σ
A⋆

ab(σ(I)).

The three equalities follow from the definition of a worst order, simple
properties of permutations, and the pairwise property, respectively.

We now say that A has the worst order projection property, if and only if
for all sequences I, there exists a worst ordering σA(I) of I with respect to A,
such that for all pairs {a, b} ⊆ L (a 6= b), σA(I)ab is a worst ordering of Iab
with respect to A on the initial list Lab.

It is most illustrative to show how it could be possible that an algo-
rithm does not have the property. Consider Transpose on the input sequence
〈a, b, c, c〉 with initial list (a, b, c). A worst ordering is 〈c, c, b, a〉 which has a
cost of 11. Considering the projection 〈c, c, a〉 on a and c on the projected list
(a, c), we get a cost of 2, but then 〈c, a, c〉 is a worse ordering, since it has a
cost of 3. Thus, the projection is not the worst ordering.

Using the above, we obtain a lemma similar to the Factoring Lemma for
competitive analysis [10].

Lemma 1 Let A and B be two online list accessing algorithms that do not use
paid transpositions and that have the pairwise property and the worst order
projection property, and let L be a list. If there exists constants c and b1 such
that for every pair {a, b} ⊆ L (a 6= b), and for every request sequence I,
A⋆

W(Iab) ≤ cB⋆
W(Iab) + b1, then there exists a constant b2 such that for every

request sequence I, A⋆
W(I) ≤ cB⋆

W(I) + b2.
In addition, if A and B are cost independent and c ≥ 1, then AW(I) ≤

cBW(I) + b2.

Proof Consider any algorithm A satisfying the hypothesis. Then

A⋆
W(I) = max

σ
A⋆(σ(I)) = max

σ

∑

{a,b}⊆L,a 6=b

A⋆
ab(σ(I))

=
∑

{a,b}⊆L,a 6=b

max
σ

A⋆
ab(σ(I)) =

∑

{a,b}⊆L,a 6=b

A⋆
W(Iab).

Now consider two algorithms A and B satisfying the hypothesis. We get

A⋆
W(I) =

∑

{a,b}⊆L,a 6=b

A⋆
W(Iab) ≤

∑

{a,b}⊆L,a 6=b

(cB⋆
W(Iab) + b1)

= c
∑

{a,b}⊆L,a 6=b

B⋆
W(Iab) +

∑

{a,b}⊆L,a 6=b

b1 = cB⋆
W(I) +

(
ℓ

2

)

b1.

Hence, we have the result in the partial cost model. Now assume A and
B are cost independent and c ≥ 1. It is clear that for a cost independent
algorithm A, the cost in the partial and the full cost model are related as
AW(I) = A⋆

W(I) + | I |. Hence, A⋆
W(I) ≤ cB⋆

W(I) + b implies that AW(I) ≤
cBW(I) + b and the result follows. ⊓⊔
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It follows from the above that we can use list factoring to separate online
algorithms, and an upper bound on the relative worst order ratio on lists of
size two carries over to lists of any size. In particular, using c = 1, if algorithm
A is never worse than algorithm B in the partial cost model, except for an
additive constant, then this also applies to the full cost model. However, as
it is also the case for competitive analysis, the list factoring technique cannot
be used to prove lower bounds, i.e., even if algorithm A is at least a factor
c > 1 worse than algorithm B in the partial cost model (except for an additive
constant), this may not be the case in the full cost model.

For randomized algorithms, the worst ordering is defined in terms of the
algorithm’s expected cost when run on the sequence. In this case, a randomized
algorithm is said to have either of the two properties if for all settings of
the random choices made by the algorithm (a deterministic execution of the
algorithm), the property holds. With this definition, it is clear that the list
factoring technique can also be applied to randomized algorithms.

In the following, we repeatedly use the fact that MTF, FC, and TS have
the pairwise property and are cost independent [10].

5 Worst Orderings

Intuition suggests that one can obtain a worst ordering of any sequence for
most online list accessing algorithms by considering the request sequence as
a multiset of items and always requesting the item from the multiset which
currently is farthest back in the list.

Formally, for any deterministic online list accessing algorithm A and any
request sequence I, we inductively define the FB ordering (Farthest Back or-
dering) of I as follows. Let S0 be the multiset of all items requested in I. Let
Si−1 be S0 with the first i − 1 items in the FB ordering removed. The ith
item in the FB ordering of I with respect to A, FBA(I)i, is the item in Si−1

which currently is farthest back in the list after A has processed the first i− 1
requests of FBA(I). In addition, we say that A has the FB property if for any
request sequence the FB ordering of that sequence is a worst ordering with
respect to A.

When the algorithm in question is obvious, we drop it from the notation
and write FB(I). Note that for any deterministic algorithm and request se-
quence, the FB ordering of this input sequence is uniquely determined.

Observe that TRANS does not have the FB property as the following exam-
ple illustrates. Consider the request sequence I = 〈a, b, c, c〉 with the initial list
L = (a, b, c). In this case, we have FB(I) = 〈c, b, c, a〉 with TRANS(FB(I)) =
10. However, on the ordering I′ = 〈c, c, b, a〉, TRANS incurs a cost of 11. Hence,
FB(I) is not a worst ordering for TRANS.

The other deterministic algorithms considered in this chapter do have the
FB property.

In the following three lemmas, the overall proof idea is the same when we
want to show that some algorithm A has the FB ordering. We give it here to
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avoid repetition: Consider any request sequence and let I be a worst ordering
of this sequence with respect to A. We gradually reorder this sequence into the
FB ordering, maintaining at least the same cost, thereby proving the result.
At each step we increase the length of the FB ordered prefix by at least one
request. Hence, the process terminates after a number of steps bounded by the
length of the request sequence.

Lemma 2 MTF has the FB property.

Proof Following the outline above, consider the first request Ii in I, which
differs from the FB ordering of I, i.e., Ii = a 6= b = FB(I)i. Let Ij be the
first request to b in I after Ii. Such a request to b must exist since FB(I) is
a permutation of I and the two sequences were identical up to Ii. If b is also
requested later than Ij in I, let Ik be this next request. Otherwise, let Ik denote
the last request in I.

Reorder I into I′ by moving Ij = b just in front of Ii = a, i.e.,

I = 〈· · · , Ii−1, a, Ii+1, · · · , Ij−1, b, Ij+1, · · · 〉, and

I′ = 〈· · · , Ii−1, b, a, Ii+1, · · · , Ij−1, Ij+1, · · · 〉.

First note that since MTF has the pairwise property, moving b in the
request sequence only affects b’s position in the list, the relative order of all
other items remaining the same. Hence, if b is accessed more than once after
Ij in I, then after the second access to b (at Ik), the list is ordered the same
for I and I′. Consequently, we only need to consider items requested in the
subsequence 〈Ii, . . . , Ik〉 to prove that the cost of I′ is at least the cost of I.
Again, since MTF has the pairwise property, for each of these items, we only
need to consider the number of negative comparisons between b and the item
accessed in both sequences.

Let d be any item requested in 〈Ii, . . . , Ik〉, d 6= b. In the following, the pair
(n,m) denotes that in I, d is requested n times in 〈Ii, . . . , Ij−1〉 and m times
in 〈Ij+1, . . . , Ik〉. We now have several cases depending on n and m.

First, consider the pair (0,m), m ≥ 0. Since d is not accessed in the se-
quence 〈Ii, . . . , Ij−1〉, the relative order of b and d in the list is the same whether
they are requested in 〈Ii, . . . , Ik〉 or 〈I

′
i, . . . , I

′
k〉. Consequently, we have the same

number of negative comparisons between b and d in the two sequences.
Next, consider the pair (n, 0), n > 0. For both 〈Ii, . . . , Ik〉 and 〈I′i, . . . , I

′
k〉,

we have a negative comparison with d at the first access to b, since b is at the
end of the list. For I, there are no negative comparisons at the n accesses to
d. If Ik is an access to b, this does not give rise to any negative comparisons,
since, with m = 0, there are no accesses to d after b is moved to the front by
request Ij . For I′, since b is moved to the front of the list at its first access,
there is one negative comparison at the first of the n accesses to d. Also, if
Ik is an access to b, there is always one negative comparison at this access.
Hence, in this case the number of negative comparisons always increase.

Now consider the pair (n,m), n > 0,m > 0. Again, for both 〈Ii, . . . , Ik〉
and 〈I′i, . . . , I

′
k〉, we have one negative comparison at the first access to b. For I,



12 Martin R. Ehmsen et al.

since d is before b in the list just after Ii−1, there are no negative comparisons
at the first n accesses to d. There is one negative comparison at the first of
the m accesses to d, and one at the access Ik if it is an access to b. For I′,
there is one negative comparison at the first of the n+m accesses to d, and a
negative comparison at the access Ik if it is an access to b. Hence, in this case
the number of negative comparisons is the same in I′ as in I.

In all cases, the cost for MTF when processing I′ with respect to b and d

is at least the same as the cost when processing I. ⊓⊔

Lemma 3 TS has the FB property.

Proof We follow the outline given immediately before Lemma 2. Observe that
for TS and any input sequence, the ordering of the items in the list at any
point in time only depends on the initial ordering of the items and the last two
accesses to each item. By this observation and the definition of TS, it follows
by induction that the FB ordering of a request sequence repeatedly accesses
the same item twice in a row (possibly except for the last access to any item),
i.e., the item farthest back in the list. Note that the second access moves the
item to the front of the list.

Divide FB(I) into phases corresponding to these pairs, i.e., a phase has
length one or two.

Consider the first request Ii in I which differs from the FB ordering, i.e.,
FB(I)i = a 6= Ii. Hence, a is the item farthest back of the items with remaining
requests.

First, assume that FB(I)i is the only request in its phase, i.e., this is the last
access to a in FB(I). By the observation above, a does not change its position
in the list. It follows that the cost of this access is the same, independently of
when it is made, i.e., we maintain the same cost by moving the one remaining
request for a in I forward to just before Ii and as a consequence increase the
prefix which is identical with the FB ordering.

Now, assume that FB(I)i is the first of two requests to a in its phase.
Further, assume that at least two other requests to a remains in FB(I) after
this phase. We reorder I in the following way (ai, 1 ≤ i ≤ 4, are the first four
of the remaining requests to a).

I = 〈· · · ,

A
︷ ︸︸ ︷

Ii, · · ·, a1,

B
︷︸︸︷
· · · , a2,

C
︷︸︸︷
· · · , a3,

D
︷︸︸︷
· · · , a4, · · · 〉, and

I′ = 〈· · · , a1, a2,

A
︷ ︸︸ ︷

Ii, · · ·,

B
︷︸︸︷
· · · ,

C
︷︸︸︷
· · · , a3,

D
︷︸︸︷
· · · , a4, · · · 〉.

We need to show that the cost for TS to serve I′ is at least as high as the
cost for serving I. By the observation about TS, the behavior of TS after a4
is the same for both sequences. Consider any item d 6= a which is requested
in A,B,C, or D. Since TS has the pairwise property, we only need to show
that the number of negative comparisons between d and a has not decreased.
Again, it follows from the observation that we can assume d is requested 0, 1,
or 2 times in each subsequence.
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Recall that a does not change its position as the last item in the list when
accessed at a1 (in both sequences). Hence, for both sequences, there are neg-
ative comparisons between a and d at the accesses a1 and a2. In I, there are
no negative comparisons in A and B.

First assume that d is requested two or more times in total in A, B, and
C. In I′, we have two negative comparisons in total in A, B, and C and one
at each of a3 and a4 for a total of four negative comparison between a and
d. Now consider I. If d occurs two or more times in C, we have two negative
comparisons in C and one at both a3 and a4 (no negative comparisons in D

since a is not moved in front of d at a3). If d occurs only once in C, we have at
most one negative comparison in C, one at a3, at most one in D, and at most
one negative comparison at a4. Finally, if d does not occur in C, we have at
most one negative comparison at a3, two in D, and one at a4. In all cases, we
have at most four negative comparisons. Hence, the cost for TS to serve I′ is
at least as high as the cost for serving I.

Next, assume that d is requested once in total in A, B, and C. In I′, we
have one negative comparison in total in A, B, and C, and if d occurs in D, we
have one negative comparison in D and one at a4. Now consider I. As noted
above, if the access to d occurs in either A or B, then we have no negative
comparisons in total in A, B, and C. If the access to d occurs in C, then we
have one negative comparison at that access. If d occurs in D, we have one
negative comparison in D and one at a4. In all cases, we have at least the same
number of negative comparisons in I′ as in I.

As the last case, assume that d does not occur in A, B, and C. It is clear
that from the perspective of a and d, the two sequences I and I′ are identical.
Hence, they have the same number of negative comparisons between a and d.

Finally, observe that the arguments above still hold in the case where there
are one or no further requests for a after a2, i.e., a4 or both a4 and a3 do not
exist. Similarly, if FB(I)i is not the first but the second of the two requests for
a in its subphase, the arguments still hold (this case corresponds to A being
the empty sequence). ⊓⊔

Lemma 4 FC has the FB property.

Proof Following the outline given immediately before Lemma 2, consider the
first item in I which differs from the FB ordering of I, i.e., Ii 6= FB(I)i = b.
Let Ij be the first request to b in I after Ii. Such a request to b must exist
since FB(I) is a permutation of I and the two sequences were identical up to
Ii. Reorder I into I′ by swapping Ij with the preceding item, i.e., with the item
at position Ij−1 = c.

I = 〈· · · , Ij−2, c, b, Ij+1, · · · 〉, and

I′ = 〈· · · , Ij−2, b, c, Ij+1, · · · 〉.

Below, we show that the cost incurred by FC in serving I′ is at least the
cost incurred when serving I. If we can accomplish this, then we can use this
technique repeatedly to move b all the way from its location as the jth request
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in the input sequence closer to the front as the ith request in the input sequence
without reducing the overall cost. This would conclude the proof.

We now prove that I′ incurs at least the same cost as I. Since FC has the
pairwise property, we only need to consider the relative positions of b and c

and the number of negative comparisons between the two.
We have three cases.
First, assume that the frequency of c just after Ij−2 is lower than the

frequency of b. The frequency of c just before Ii was also lower than the
frequency of b at that point. Hence, by the FC policy c was further back than
b in the list just before Ii. Thus, the next request in the FB ordering would
not have been to b, and we have reached a contradiction with the assumption
that b is the ith request in the FB ordering.

Next, assume that the frequency of c just after Ij−2 is equal to the frequency
of b. Since b is further back in the list than c, there is one extra negative
comparison in I′ in comparison with I up until just before Ij+1. However, the
relative ordering of b and c in the list is now reversed going from I to I′, which
may later cause one fewer negative comparison in I′ in comparison with I.
Overall, the number of negative comparisons have not decreased.

Finally, assume that the frequency of c just after Ij−2 is higher than the
frequency of b. In this case, c stays in front of b in the list for both sequences.
Hence, the cost for FC to serve both sequences is exactly the same. ⊓⊔

When applying the list factoring technique in the next section, we need
the following lemma and the corollary immediately implied by it.

Lemma 5 If a deterministic algorithm has the FB property and the pairwise
property, it also has the worst order projection property.

Proof The following is stated in [10, Lemma 1.1]: An algorithm A satisfies the
pairwise property if and only if for every request sequence I, when A serves I,
the relative order of every two elements a and b in the list is the same as their
relative order when A serves Iab.

Now, consider an algorithm A with both the FB property and the pairwise
property. Let I be any request sequence in FB order, and let a and b be two
different items in I. By the above, the relative order of these two items is the
same when A serves I as when it serves Iab, hence Iab is also an FB ordering.
As A has the FB property, Iab is a worst possible request sequence. Since this
is true for any a and b, A also has the worst order projection property. ⊓⊔

Corollary 1 MTF, FC, and TS have the worst order projection property.

6 Algorithm Comparisons

We now have the tools necessary to compare the online list accessing algo-
rithms.
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6.1 Deterministic Algorithms

When comparing MTF to FC and MTF to TS below, we apply the list factoring
technique introduced in Section 4 since all the considered algorithms have the
pairwise, FB, and worst order projection properties. The proofs are carried
out in the partial cost model, but since, for any cost independent algorithm
A, A⋆(I)−A(I) = | I |, they immediately carry over to the full cost model.

Theorem 1 In both the partial and full cost model, the algorithms MTF and
FC perform identically according to relative worst order analysis.

Proof Following the outline from above, consider any request sequence I and
any pair {a, b} ⊆ L, a 6= b. Assume without loss of generality that the initial
list has a in front of b, i.e., Lab = (a, b).

Now, the FB ordering of Iab for MTF is of the form 〈(b, a)m〉 with a possible
tail of repeated requests to either a or b, whichever is requested the most in
I. The FB ordering for FC is of the form 〈(b, a, a, b)⌊

m
2
⌋〉 with a possible tail

of repeated requests to either a or b, whichever is requested the most in I.
Observe that if m is not divisible by two, there is an extra request to either a
or b. However, such a request only contributes a constant extra cost which we
can ignore. It now follows that the cost for FC on its worst permutation (the
FB ordering) is the same as the cost for MTF on its worst permutation (the
FB ordering), except for a possible additive constant. ⊓⊔

Theorem 2 In both the partial and full cost model, the algorithms MTF and
TS perform identically according to relative worst order analysis.

Proof Following the outline from above, consider any request sequence I and
any pair {a, b} ⊆ L, a 6= b. Assume without loss of generality that the initial
list projected onto a and b has a at the front, i.e., Lab = (a, b).

The FB ordering of Iab for TS is of the form 〈(b, b, a, a)⌊
m
2
⌋〉. The remaining

arguments are exactly the same as in the proof of Theorem 1. ⊓⊔

Combining the previous two theorems and using the fact that the relative
worst order ratio is a transitive measure, we arrive at the following corollary.

Corollary 2 In both the partial and full cost model, the algorithms MTF, TS,
and FC perform identically according to relative worst order analysis.

We now show that TRANS cannot be better than any of MTF, TS, and
FC according to relative worst order analysis.

Lemma 6 In both the partial and full cost model, there exists an additive
constant b such that for any request sequence, the cost of MTF is at most b
larger than the cost of TRANS on their worst orderings.

Proof The proof is carried in the full cost model, but in the same way as in
the outline from above, the result immediately carries over to the partial cost
model.
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Consider any request sequence I. Reorder I into an FB ordering with respect
to MTF, IMTF, and recursively divide it into phases as follows. Each phase
starts where the previous phase ends. Let nd be the number of distinct items
in the remaining part of the sequence (the part which has not yet been divided
into phases). The next phase contains the next nd requests in the sequence,
and these are all distinct. This is because IMTF is an FB ordering with respect
to MTF and MTF moves items to the front at each request. Thus, after having
moved one item to the front, the other nd−1 items must be requested before the
same item is again farthest back. Thus, the requests in IMTF appear cyclically,
and therefore the relative order of the items accessed in a phase is the same
immediately before and after the phase.

Now group the phases into super phases, where each super phase is a
maximal sequence of consecutive phases under the restriction that the phases
request the same number of distinct items. Hence, the accesses in each phase
of a super phase are to the same set of items. Let ri denote the number of
phases in the ith super phase, and let ni denote the number of distinct items
accessed in each phase of the ith super phase. We have numbered the super
phases starting from one. However, for mathematical convenience, we define
n0 = ℓ, recalling that ℓ is the length of the list L.

Observe that the number of distinct items in the super phases are decreas-
ing and the number of distinct items in the first phase is at most ℓ. Hence,
there are at most ℓ super phases.

For MTF, the cost of the ith super phase can now be calculated as follows.
The first phase of the ith super phase costs at most ni−1ni, since the ni accesses
in the worst case is for items at index ni−1 in the list (by the MTF policy).
The remaining ri − 1 phases in the super phase cost n2

i each. Hence, the total
cost for MTF of the ith super phase is ni(ni−1 − ni) + rin

2
i . The only term

we are interested in is rin
2
i , since the remaining terms, over all super phases,

can be bounded by a constant depending only on ℓ. Thus, this constant is
independent of the length of the request sequence.

Hence, we need to show that we can find an ordering making TRANS incur
a cost of at least rin

2
i , up to an additive constant.

We ignore super phases with ri ≤ 2ℓ. The cost for MTF on such phases is
at most riniℓ ≤ 2ℓ3. Since there are at most ℓ phases, the total cost incurred
by MTF on these super phases is only a constant dependent on ℓ.

Now, assume that the ith super phase has ri > 2ℓ. We reorder the requests
for TRANS. First, we access each of the ni items ℓ times, which moves the ni

items to the first ni positions in the list. Assume that the first ni items in the
list after this are (a1, a2, . . . , ani

) where a1 is at the front of the list.
First, if ni is one, simply repeatedly access the item, giving a total cost of

at least ri = rin
2
i .

Next, if ni is even, let r
′
i = ri− ℓ−ni > 0. Access ani

and ani−1
alternately

r′i times with a cost of ni for each access. Subsequently, access ani
ni times,

and then ani−1
ni times, thereby moving them to the front of the list. Repeat

this process for the remaining ni − 2 items in groups of two. The total cost is
at least (ℓ+ r′ini + ni)ni = ℓni + rin

2
i − ℓn2

i − n3
i + n2

i .
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Finally, if ni is odd and at least three, we do as in the previous case, except
when we are down to the last three items, a1, a2, and a3 at positions ni, ni−1,
and ni−2. Let r

′′
i =

⌊
ri−ℓ−2

2

⌋
and request

〈(a1, a2)
r′′i , a1, a1, (a2, a3)

r′′i , a2, a2, (a3, a1)
r′′i , a3, a3〉.

All requests have a cost of ni except for the last of the double accesses to a1,
a2, and a3 each with a cost of ni−1. In total, the three items are each accessed
ℓ+ 2r′′i + 2 ∈ {ri − 1, ri} times. If this is ri − 1, request the items 〈a1, a2, a3〉,
each at a cost of ni. In total, the cost per item is rini − 1.

In both of the above two cases, we can ignore all terms, except for terms
involving ri. Hence, the total cost for TRANS in this super phase is at least
rin

2
i , except for a constant dependent only on ℓ, i.e., the difference in cost for

MTF and TRANS is bounded by a constant only dependent on ℓ. ⊓⊔

On the other hand, TRANS can be much worse than MTF, FC, and TS
under relative worst order analysis.

Theorem 3 In both the partial and full cost model, MTF performs better
than TRANS with a relative worst order ratio of WRTRANS,MTF ≥ ℓ

2
and

WRTRANS,MTF ≥ ℓ− 1, respectively.

Proof Lemma 6 shows that TRANS cannot be better than MTF according to
relative worst order analysis. Assume that the initial list is L = (a1, a2, . . . , aℓ)
and consider the request sequence I = 〈(aℓ, aℓ−1)

m〉.
In the partial cost model, it is clear that MTF incurs a cost of 2(ℓ− 1) +

2(m − 1) on its worst permutation of I. On the other hand, TRANS leaves
the two items at the end of the list and incurs a cost of 2m(ℓ − 1). For m

approaching infinity, the ratio approaches ℓ− 1.
In the full cost model, MTF has a cost of 2ℓ+ 4(m− 1), whereas TRANS

has a cost of 2mℓ. For m approaching infinity, the ratio approaches ℓ
2
. ⊓⊔

6.2 Randomized Algorithms

In this section, to make the proofs more readable, we use the partial cost model,
except for the final algorithm comparison which is in both cost models.

Lemma 7 For integers n ≥ 1 and m ≥ 2 and a request sequence I = 〈(b, am)n〉
with initial list L = (a, b), the expected cost of BIT for a single repetition of
〈b, am〉 is 7

4
, and I is its own worst permutation with respect to BIT.

Proof For each access to b, at most the next two accesses to a contribute to
the expected cost of BIT. It follows by induction that after each repetition
of 〈b, am〉, a is at the front of the list for BIT. Hence, the expected cost of
the prefix 〈b, a〉 of the next repetition is 3

2
, and after that a is at the front of

BIT’s list with probability 3

4
. Thus, the expected cost of the following access

to a is 1

4
, after which a is at the front of BIT’s list with probability 1, and the
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remaining accesses to a in the current repetition do not cost anything. Hence,
for any m, the total expected cost of a single repetition is 7

4
for BIT. It is clear

that I is its own worst permutation for BIT. ⊓⊔

The following three lemmas establish various properties regarding RMTF’s
behavior on sequences of the form 〈(b, am)n〉. Together, these results will enable
us to prove that there exists a sequence where RMTF has a better expected
cost than BIT.

Lemma 8 The following holds concerning RMTF’s behavior on sequences of
the form 〈b, am〉, for m ≥ 1, and for repetitions of such sequences of the form
〈(b, am)n〉, for n ≥ 1.

– If a is in the front of the list with probability p, then after serving 〈b, am〉,
a is in the front of the list with probability 1− 2−p

2m+1 and the expected cost

of serving this sequence is cm(p) = 2− 2−p
2m

.
– For n going towards infinity, the probability of a being at the front of the

list after each repetition of 〈b, am〉 approaches pm = 1 − 1

2m+1−1
and the

expected cost of serving each repetition approaches 2
m+2−4

2m+1−1
.

Proof Assume that a is at the front of the list with probability p and consider
a sequence 〈b, am〉.

After the access to b, a is not at the front with probability 1 − p
2
. In this

case, the up to m requests to a while it is not at the front can be described by
a truncated geometric distribution [10, Lemma 4.1] with an expected number
of 2

(
1− 1

2m

)
. Hence, the total cost of this sequence is

cm(p) = p+
(

1−
p

2

)

2

(

1−
1

2m

)

= 2−
2− p

2m
.

The probability of a being at the front of the list after the repetition is then

1−
1− p

2

2m
= 1−

2− p

2m+1
.

Now, consider the sequence 〈(b, am)n〉 for n approaching infinity. The prob-
ability of a being at the front of the list after each repetition of 〈b, am〉 ap-
proaches pm, where

pm = 1−
2− pm

2m+1
⇒ pm = 1−

1

2m+1 − 1
.

Hence, the cost of a repetition approaches

cm(pm) = 2−
2− pm

2m
= 2−

1

2m
−

1

2m(2m+1 − 1)
=

2m+2 − 4

2m+1 − 1
.

⊓⊔

Table 1 lists the results from Lemma 8 for small m and bounds the values
for larger m.
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m cm(p) p after subseq. pm cm(pm)

0 p
p

2
0 0

1 1 + p

2

1

2
+ p

4

2

3

4

3

2 3

2
+ p

4

3

4
+ p

8

14

15

12

7

3 7

4
+ p

8

7

8
+ p

16

30

31

28

15

≥ 4 ≤ 2 ≤ 1 ≤ 1 ≤ 2

Table 1 Consider RMTF serving 〈(b, am)n〉, i.e., n repetitions of the subsequence 〈b, am〉.
Assume that before serving a subsequence, the probability of a being at the front of the list
is p. For various m, the table lists the expected cost cm(p) of serving the subsequence, the
probability of a being at the front of the list after serving the subsequence, the limit value
pm of the probability of a being at the front of the list for n going towards infinity, and the
expected cost cm(pm) of serving a subsequence for n going towards infinity.

Lemma 9 Consider a sequence 〈(b, a, a)n〉 for some positive integer n with
the initial list L = (a, b). The expected cost of RMTF serving this sequence if
a is initially at the front of the list with any probability p is at most 2

49
larger

than the expected cost of RMTF serving this sequence if a is initially at the
front of the list with probability c2(p2).

Proof As a worst case assumption, we assume that the length of the sequence
is infinite and that p = 1.

Starting with a probability of 1, the probability of a being at the front of
the list just before RMTF starts to serve subsequence j, j ≥ 0, is,

3

4
+

1

8
·
3

4
+

1

82
·
3

4
+ · · ·+

1

8j−1
·
3

4
+

1

8j

=
3

4

(
j−1
∑

i=0

1

8i

)

+
1

8j
=

3

4
·
1− 1

8j

1− 1

8

+
1

8j
=

6

7
+

1

7
·
1

8j
.

Hence, the contribution of subsequence j to the extra cost is

c2

(
6

7
+

1

7
·
1

8j

)

− c2(p2) =
3

2
+

6

28
+

1

28
·
1

8j
−

12

7
=

1

28
·
1

8j
.

Summing all the contributions, we get the extra cost of the sequence beginning
with p = 1 in comparison with starting with probability c2(p2) expressed as

∞∑

j=0

1

28
·
1

8j
=

1

28
·

1

1− 1

8

=
2

49
.

⊓⊔

Lemma 10 Consider the request sequence I = 〈(b, a, a)n〉 for some positive
integer n with the initial list L = (a, b). The sequence I is a worst ordering
with respect to RMTF.
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Proof Let I′ be any other ordering of the requests in I. We prove that the
expected cost of serving I is at least as high as the expected cost of serving I′.

Since a is initially at the front of the list, we assume without loss of gen-
erality that the first request in I′ is for b.

We divide the sequences I and I′ up into phases. Each phase starts with
a b and continues until just before the next b (or to the end of the sequence
if there are no more b’s). We let m denote the number of a’s in a phase. The
proof idea is to match phases in I′ for values of m 6= 2 up against a number
of phases in I (which all have m = 2), such that the number of a’s and b’s
correspond.

We let stable state refer to the situation we are approaching for growing
n when serving I, i.e., the situation where a is at the front of the list with
probability c2(p2).

As a worst case assumption, we assume that whenever we start serving
phases with m 6= 2 in I′, a is at the front of the list with probability 1.

Before we start matching up phases, we make the following observation
which enables us to reduce the number of cases to be considered later. Consider
the case where a phase in I′ is followed by a sequence of phases with m = 2.
If we start processing such a following sequence of phases with m = 2 in a
situation where a is at the front of the list with probability p > 6

7
, then the cost

of the sequence will be higher than if we started in the stable state. However,
by Lemma 9, we have upper bounded the extra cost by 2

49
. Now, by Table 1,

only phases with m ≥ 3 can end with p > 6

7
. Hence, in the following matching

of phases below, we add a contribution of 2

49
to the cost whenever we match

a phase with m ≥ 3. Then we do not need to be concerned with how many
phases with m = 2 follows a phase with m 6= 2.

Consider the phases in I′. We repeatedly apply the following matching of
phases until there are no phases or only phases with m = 2 are left, which we
have accounted for by adding a contribution of 2

49
to the possibly preceding

phase.

– If there is an unmatched phase with m = 3 and an unmatched phase with
m = 1 left in I′, then they correspond to exactly two phases with m = 2.
An upper bound on the cost for RMTF when serving the requests in I′ is
then (

7

4
+

1

8

)

+

(

1 +
1

2

)

+
2

49
,

which is strictly less than the cost of the corresponding two phases in I
when RMTF is in the stable state, 2 · 12

7
.

– If there are two unmatched phases with m = 3 and an unmatched phase
with m = 0 left in I′, then they correspond to exactly three phases with
m = 2. An upper bound on the cost for RMTF when serving the requests
in I′ is then

2

(
7

4
+

1

8

)

+ 1 + 2 ·
2

49
,

which is strictly less than the cost of the corresponding three phases in I
when RMTF is in the stable state, 3 · 12

7
.
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– If there are still phases with m = 3 left in I′ after applying the above two
cases (repeatedly), then it follows that there must exist at least one phase
with an odd m > 3 and a number of phases with m = 0 such that the
resulting number of a’s in the phases is two times the number of phases.
Let x denote the value of m in the unmatched phase in I′ with the smallest
value of m under the restriction that m is odd and m ≥ 5. Then there are
at least 3+x

2
− 2 = x−1

2
phases with m = 0. These phases in I′ correspond

to 3+x
2

phases with m = 2 in I. An upper bound on the cost for RMTF
when serving the requests in I′ is then

(
7

4
+

1

8

)

+ 2 +
x− 1

2
· 1 + 2 ·

2

49
=

x

2
+

1355

392
,

which is strictly less than the cost of the corresponding phases in I when
RMTF is in the stable state, 3+x

2
· 12

7
= 6

7
x+ 18

7
, for x ≥ 5.

– If there is an unmatched phase with m = 4 and two unmatched phases
with m = 1 left in I′, then they correspond to three phases with m = 2.
An upper bound on the cost for RMTF when serving the requests in I′ is
then

2 + 2

(

1 +
1

2

)

+
2

49
,

which is strictly less than the cost of the corresponding three phases in I
when RMTF is in the stable state, 3 · 12

7
.

– If there is an unmatched phase with m = 4 and an unmatched phase with
m = 0 left in I′, then they correspond to two phases with m = 2. An upper
bound on the cost for RMTF when serving the requests in I′ is then

2 + 1 +
2

49
,

which is strictly less than the cost of the corresponding two phases in I
when RMTF is in the stable state, 2 · 12

7
.

– Finally, if there is an unmatched phase with m > 4, let x denote the value
of m in the unmatched phase, and set y = ⌈x

2
⌉ ≥ 3. In I′, there must be

y − 1 phases with m ≤ 1. As a worst case assumption, we assume that
all such phases have m = 1. Now, an upper bound on the cost for RMTF
when serving the requests in I′ is then

2 + (y − 1)

(

1 +
1

2

)

+
2

49
,

which is strictly less than the cost of the corresponding y phases in I when
RMTF is in the stable state, y 12

7
, for y ≥ 3.

Observe that the above covers all cases. Hence, the ordering in I is indeed
a worst ordering for RMTF. ⊓⊔

Combining the lemmas above, we can now prove that there exists a se-
quence where RMTF has a better expected cost than BIT.
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Theorem 4 In both the partial and full cost model, there exists a request
sequence I such that the expected cost for RMTF on its worst permutation of
I is a constant factor of c < 1 less than the expected cost for BIT on its worst
permutation.

Proof Consider the request sequence I = 〈(b, a, a)n〉 for some positive integer
n with the initial list L = (a, b). First, consider this in the partial cost model.

For BIT, by Lemma 7, the expected cost of each repetition of 〈b, a, a〉 is
7

4
, and by Lemma 10, I is a worst permutation with respect to RMTF. Thus,

we just need to argue that the expected cost of RMTF for serving I is strictly
smaller than the cost of BIT.

For the first repetition, a is at the front, so the expected cost for RMTF is
c2(1) =

7

4
. For all subsequent repetitions, the probability p of a being at the

front of the list is strictly smaller than one, and the expected cost of serving
the repetition is then c2(p) <

7

4
(see Table 1). The expected cost of a repetition

approaches c2(p2) =
12

7
for n approaching infinity. This is strictly smaller than

7

4
, which was the cost of BIT.
In the full cost model, for both algorithms, the cost of each repetition

increases by three, i.e., RMTF is still a constant factor better than BIT. ⊓⊔

Lemma 11 In both the partial and full cost model, there exists a request se-
quence I such that the expected cost for BIT on its worst permutation of I is
a constant factor of c < 1 less than the expected cost for RMTF on its worst
permutation.

Proof Consider the request sequence I = 〈(b, a, a, a)n〉 for some positive integer
n with the initial list L = (a, b). First consider this in the partial cost model.

For BIT, by Lemma 7, the cost of each repetition of 〈b, a, a, a〉 is 7

4
, and I

is its own worst permutation.
For RMTF, by Table 1, the cost of each repetition approaches c3(p3) =

28

15

from above, which is strictly more than 7

4
.

In the full cost model, for both algorithms, the cost of each repetition
increases by four, i.e., BIT is still a constant factor better than RMTF. ⊓⊔

An interesting observation is that the sequences used in the previous lem-
mas are both repetitions of the pattern 〈b, am〉 for the values of m = 2 and
m = 3, respectively.

The previous two results, Theorem 4 and Lemma 11, imply the following:

Corollary 3 BIT and RMTF are not comparable using relative worst order
analysis.

7 Open Problems

In order to apply the list factoring technique together with relative worst order
analysis, both of the pairwise property and the worst order projection property
must hold. By Lemma 5, the pairwise property together with the FB property
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implies the worst order projection property. Apart from this lemma, we have
not been able to show a direct dependence between the two properties, i.e.,
does one follow directly from the other? On the other hand, we have not been
able to exhibit an example for which one holds and the other does not.

Another interesting question is whether the list factoring technique can
be used with performance measures other than competitive analysis and, as
demonstrated here, relative worst order analysis.
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