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Abstract

The idea of relaxed balance is to uncouple the rebalancing in search

trees from the updating in order to speed up request processing in

main-memory databases. In this paper, we describe a relaxed version

of AVL trees. We prove that each update gives rise to at most a

logarithmic number of rebalancing operations, and that the number of

rebalancing operations in the semi-dynamic case is amortized constant.

1 Introduction

Relaxed balance is the term used for search trees where the rebalancing

has been uncoupled from the updating. Normally, in balanced search trees,

rebalancing is tightly coupled to the updating: as soon as an update has

been performed, rebalancing operations are applied until the given balance

constraints are again ful�lled. In search trees with relaxed balance, updating

and rebalancing are processes which can be controlled separately. Typically,

this means that balance constraints must be relaxed such that an update

can leave the tree in a well-de�ned state. Thus, the assumptions under

which rebalancing is carried out are changed. This poses the problem of

still carrying out the rebalancing e�ciently.

Relaxed balance deals with a fundamental question concerning one of the

most important classes of data structures in computer science, the balanced

�

To appear in Journal of Computer and System Sciences. A preliminary version of this

paper appeared in the proceedings of the 8th International Parallel Processing Symposium

(IPPS'94), pages 888-893, IEEE Computer Society Press, 1994.

y

kslarsen@imada.sdu.dk, http://www.imada.sdu.dk/�kslarsen/

z

Department of Mathematics and Computer Science, University of Southern Denmark,

Main Campus: Odense University, Campusvej 55, DK-5230 Odense M, Denmark.

1



search trees. It is therefore important to obtain as full an understanding of

the issue as possible. Additionally, there are practical applications for this

line of work.

In standard search trees, the rebalancing part of an update is the more

time-consuming part of the whole update. If search and update requests

come in bursts (possibly from several external sources), the search tree may

occasionally be unable to process the requests as fast as desirable. In search

trees with relaxed balance, rebalancing can be \turned o�" for a short period

of time in order to speed up the request processing. When the burst is over,

the tree can be rebalanced again, while searching and updating still continue

at a slower pace. Of course, if rebalancing is postponed for too long, the

tree can become completely unbalanced.

A di�erent motivation comes from using search trees on shared-memory ar-

chitectures. If rebalancing is carried out in connection with updates, either

top-down or bottom-up, this creates a congestion problem at the root in par-

ticular, and all the locking involved seriously limits the amount of parallelism

possible in the system. In search trees with relaxed balance, rebalancing op-

erations can be carried out such that they, and their associated locks, are

very localized in time as well as in space. In particular, exclusive locking of

whole paths or step-wise exclusive locking down paths can be avoided. This

means that the amount of parallelism possible is not limited by the height of

the tree. The question as to what extent these properties can be exploited

by present or future architectures is still only partly answered [9].

We give a brief account of previous work in relaxed balancing. The idea of

uncoupling the rebalancing from the updating was �rst mentioned in [8], and

the �rst partial result, dealing with insertions only, is from [12]. The �rst

relaxed version of AVL trees [1] was de�ned in [25]. A di�erent AVL based

version was treated in [19, 28]. There, rebalancing is only performed at lo-

cations where all subtrees are known to be in balance. This is di�erent from

rebalancing just because some balance information exceeds some bounds.

One update could have caused the balance information in some node to ex-

ceed the bound, re
ecting some imbalance at that time, but another later

update could have balanced the tree. However, the fact that the tree is

balanced may not immediately be re
ected in the balance information, be-

cause information from the last update may take some time to progress to

the problem node, and this may cause unnecessary structural changes to the

tree. In order to avoid this by only working on problem nodes with balanced

subtrees, it must be registered which trees are in balance and which are not.

In [19, 28], this was obtained by having updaters mark their search paths.
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The �rst relaxed version of B-trees [3] is also from [25] with proofs of com-

plexity matching the sequential ones in [16, 17]. Everything in [16, 17] is

really done for the more general (a; b)-trees [11], so results are implied also

for 2-3 trees [2], as well as for (a; b)-trees with other choices of a and b.

A relaxed version of red-black trees [8] was presented in [23, 24] and com-

plexities matching the sequential case were established in [6, 7] and [4, 5]

for variants of the original proposal. In [15], all these results were matched

while only using single and double rotations. Some of the earlier results are

surveyed in [28]. In [18, 27], it is shown how a large class of standard search

trees can automatically be equipped with relaxed balance, and a version of

red-black trees based on these general ideas is described in [10]. Finally, a

description and an analysis of group updates in relaxed trees can be found

in [21], and experimental results which indicate that relaxed trees improve

the performance in multi-processor environments are reported in [9].

As mentioned above, the �rst proposal for relaxed AVL trees is from [25].

A collection of rebalancing operations are de�ned, but there is no proof of

complexity. In this paper, we introduce a modi�ed collection of rebalancing

operations which allows for a higher degree of parallelism in the rebalancing.

For this set of operations, we can prove that each update gives rise to at

most a constant number of rebalancing operations, and that rebalancing

after insertions is amortized constant. These results match the complexities

from the sequential case. A preliminary account of some of these results can

be found in [14]. With these results we have shown that relaxed AVL trees

can be de�ned such that they have all the properties one would hope for

based on the knowledge from the sequential case.

In greater detail, suppose that the original tree T has jT j nodes before k

insertions and m deletions are performed. Then N = jT j + 2k is the best

bound one can give on the maximum number of nodes the tree ever has, since

each insertion creates two new nodes (see below). We show that the tree will

become rebalanced after at most kblog

�

(N+2)+log

�

(

p

5

2

)�2c+m(blog

�

(N+

2) + log

�

(

p

5

2

) � 3c) rebalancing operations, where � is the golden ratio.

This is O(log(N)) per update. Additionally, we show that starting with an

empty tree, rebalancing after an insertion is amortized constant. Recall that

even though the standard red-black trees and AVL trees are almost equally

e�cient in practice, the amortized constant rebalancing result for red-black

trees [11, 20] does not hold in full generality for AVL trees [22], but only for

the semi-dynamic case.

3



2 AVL Trees with Relaxed Balance

In this section, we de�ne standard AVL trees as well as AVL trees with

relaxed balance. The trees considered are leaf-oriented binary search trees,

so the keys are stored in the leaves and the internal nodes only contain

routers which guide the search through the tree. The router stored in a

node is larger than or equal to any key in the left subtree and smaller than

any key in the right subtree. The routers are not necessarily keys which are

present in the tree, since we do not want to update routers when a deletion

occurs. The tree is a full binary tree, so each node has either zero or two

children.

If u is an internal node, then we let u

l

and u

r

denote the left and right child

of u, respectively. The height of a node u is de�ned by

h(u) =

(

0; if u is a leaf

max(h(u

l

); h(u

r

)) + 1; otherwise

The balance factor of an internal node u is de�ned by b

u

= h(u

l

) � h(u

r

).

An AVL tree is a binary search tree, where the heights of the children of

any internal node u di�er with at most one, i.e., b

u

2 f�1; 0; 1g.

We want to use AVL trees, but at the same time we want to uncouple

updating from rebalancing. The question arises as to how we allow the

tree to become somewhat unbalanced without loosing control completely. A

technique introduced in [12] can be used in a modi�ed form, as it is done

in [25].

Every node u has an associated tag value, denoted t

u

, which is an integer

greater than or equal to �1, except that the tag value of a leaf must be

greater than or equal to zero. We can now de�ne the relaxed height of a

node u as follows.

rh(u) =

(

t

u

; if u is a leaf

max(rh(u

l

); rh(u

r

)) + 1 + t

u

; otherwise

In analogy with the balance factor, the relaxed balance factor is de�ned as

b

u

= rh(u

l

)�rh(u

r

). The non-relaxed balance factor will not be used again,

so we reuse the symbol, and let b

u

denote the relaxed balance factor from

now on. A search tree is now an AVL tree with relaxed balance if for every

internal node u, b

u

2 f�1; 0; 1g. Clearly, if all tags have the value zero, then

the tree is an AVL tree.
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We now describe the operations which can be performed on AVL trees with

relaxed balance. The operations are given in the appendix. By symmetry,

it is su�cient in the proofs to show that we can handle problems in a left

child. All the operations for this, are listed in Appendix A. In an actual

implementation, there must be operations available for the symmetric cases

as well. The operations which should be added in order to complete the

set are listed in Appendix B. These operations will not be discussed in the

proofs.

For notational convenience, we use l(v) and r(v), where v is an internal

node, letting l(v) = 1 if the relaxed height of the left child of v is larger than

the relaxed height of the right child, and l(v) = 0 otherwise. We use r(v)

similarly. In other words,

l(v) =

(

1; if b

v

= 1

0; otherwise

r(v) =

(

1; if b

v

= �1

0; otherwise

Searching can be carried out exactly as for standard leaf-oriented AVL trees.

The same is true for insertion and deletion (see the appendix, operations (i)

and (d)), except that tag values are adjusted.

The purpose of the rebalancing operations is to modify an AVL tree with

relaxed balance until it is a standard AVL tree and, thus, guaranteed to be

balanced. Obviously, this is done by removing non-zero tag values. The

di�culty is to do this without violating the relaxed balance constraint that

b

u

2 f�1; 0; 1g for all internal nodes u.

Assume that we have a balance problem, i.e., a node with non-zero tag value.

Now rebalancing can be performed provided that the tag value of the parent

node is at least zero (see the appendix, operations (n) and (p)). Notice that

in [25, 26], t

u

must be zero, whereas we only require that t

u

be di�erent

from �1, thus allowing for a higher degree of parallelism. If one of the two

children of u has tag value �1 and the other has tag value greater than zero,

then we require that the negative tag value be taken care of �rst.

Applying operation (n) or (p) has the e�ect of either removing a problem

(changing a �1 to 0, or decreasing a positive tag value), or moving it closer

to the root. At the root, problems disappear as the tag value of the root

can always be set to zero without violating the relaxed balance constraints.

However, operations (n) and (p) might violate the constraints since the

relaxed balance factor of the top node can change to 2 or �2. So, as an

indivisible part of the rebalancing step, a check for this problem is made, and

the appropriate action is taken. In case of a violation after having applied

5



operation (n), one of the operations (n1) through (n4) are performed. If

operation (p) is the cause of a violation, then we consider the node w, the

sibling of v. Because of the requirement that negative values be taken care

of �rst, we can assume that t

w

� 0. If t

w

> 0, then operation (p0) is applied.

If t

w

= 0, then one of the operations (p1) through (p4) are applied. Only

after this has been taken care of, and the tree is indeed an AVL tree with

relaxed balance, has this rebalancing step been completed.

It is an easy exercise to check that the rebalancing operations will not violate

the relaxed balance constraints. We merely state the result here. It can be

veri�ed by simple case analysis proofs for one operation at a time.

Lemma 1 Assume that one of the operations (n) or (p) are performed on an

AVL tree with relaxed balance. In case the relaxed balance factor of u (see

the appendix) changes to 2 or �2, if the relevant one of the operations (n1)

through (n4) and (p0) through (p4) is applied, then the tree is still an AVL

tree with relaxed balance.

Additionally, insertion and deletion (operations (i) and (d)) cannot be the

cause of a violation of the relaxed balance constraints.

2

One particular implication of this lemma which will be used later is the

following.

Corollary 1 Every operation leaves the relaxed height of the top node in-

volved in the operation unchanged.

2

Finally, notice that if the tree has tag values which are non-zero, then one

of the operations (n) and (p) can be applied. To see this, consider the path

from the root down to a node with non-zero tag value. On this path, let

v be the �rst node with non-zero tag value. The tag value of the root is

always zero, so v is not the root. Thus, one of the operations (n) and (p)

can be applied to v and its parent.

In the next section, we bound how many times operations (n) and (p) can

be applied. So, if updating stops at some point, then the tree will eventually

become a standard AVL tree. As the next section will show, this happens

fast.
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3 Logarithmic Rebalancing

For the complexity analysis, we assume that initially the search tree is an

AVL tree, and then a series of search, insert, and delete operations occur.

These operations may be interspersed with rebalancing operations. The

rebalancing operations may also occur after all of the search and update

operations have been completed; our results are independent of the order

in which the operations occur. In any case, the search tree is always an

AVL tree with relaxed balance, and after enough rebalancing operations, it

will again be an AVL tree. We only need to bound the number of times

operations (n) and (p) are applied, since the operations (n1) through (n4)

and (p0) through (p4) are only used immediately after operations (n) or (p),

if they give rise to a violation of the relaxed balance constraints. So, the

operations (n1) through (n4) and (p0) through (p4) are considered to be a

part of the operation which gave rise to their application.

If some of the operations are done in parallel, they must involve edges and

nodes which are completely disjoint from each other. The e�ect will be

exactly the same as if they were done sequentially, in any order. Thus

throughout the proofs, we assume that the operations are done sequentially.

At time 0, there is an AVL tree, at time 1 the �rst operation has just

occurred, at time 2 the second operation has just occurred, etc.

It is well known that the minimum size of AVL trees is closely related to the

Fibonacci sequence. In the following, we use the de�nition of the Fibonacci

sequence from [13]. Let F

0

= 0, F

1

= 1, and for n � 0, let F

n+2

= F

n+1

+F

n

.

The Fibonacci sequence is closely related to the golden ratio.

Proposition 1 Let � =

1+

p

5

2

and

^

� = 1 � �. Then F

n

=

1

p

5

(�

n

� (

^

�)

n

).

Furthermore,

�

n

p

5

rounded to the nearest integer equals F

n

.

Proof See [13].

2

Clearly, if a node u in an AVL tree has a large height, then the subtree in

which u is the root will also be large. In an AVL tree with relaxed balance,

however, a node could have a large relaxed height because many nodes below

it have been deleted and have caused tag values to increase. In this case, u

may not have a large subtree remaining. In order to establish that large tag

values can only be caused by large subtrees, we have to somehow count those

nodes below u which have been deleted. Nodes are inserted and deleted and
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we want to associate every node which has ever existed with nodes currently

in the tree.

De�nition 1 Any node in the tree at time t is associated with itself. When

a node is deleted, the two nodes which disappear, and all of their associated

nodes, will be associated with the node which remains, i.e., the sibling of

the node to be deleted (this is node v in the appendix, operation (d)).

2

Thus, every node that was ever in the tree is associated with exactly one

node which is currently in the tree.

De�nition 2 De�ne an A-subtree (associated subtree) of a node u at a

particular time t to be the set of all the nodes associated with any of the

nodes in the subtree with root u at time t.

2

We can now prove a strong connection between relaxed heights and A-

subtrees.

Lemma 2 At time t, if u is a node in the tree, then there are at least

2F

rh(u)+2

� 1 nodes in the A-subtree of u.

Proof By induction in t.

The base case is when t = 0. At that point, the tree is a standard AVL

tree and rh(u) = h(u). A simple induction argument shows that the result

holds here. The smallest leaf-oriented trees of heights 0 and 1 have 1 and

3 nodes, respectively. The minimum number of nodes in a leaf-oriented AVL

tree of height h � 2 is 1 for the root plus the minimum number of nodes

in a leaf-oriented AVL tree of height h � 1 and one of height h � 2. By

induction, this value is 1 + (2F

(h�1)+2

� 1) + (2F

(h�2)+2

� 1) = 2F

h+2

� 1.

This concludes the base case of the outermost induction argument.

For the induction part, assume that the lemma holds up until time t, where

t � 0. By checking all the operations, we prove that the lemma also holds

at time t+ 1.

When an insertion takes place, two new nodes are added. These are given

tag values zero, which results in a relaxed height which is also zero. Since

2F

2

� 1 = 1, the result holds here. The relaxed height of the top node is

maintained while the size of its A-subtree is increased, so the result holds

for that node too.

When a deletion occurs, two nodes are deleted. However, these two nodes,

and all their associated nodes, are now associated with the parent node at

8



the time of the deletion. So, the size of the A-subtree of u is unchanged as,

by Corollary 1, is rh(u).

For the remaining operations, we �rst make some general observations. No-

tice �rst that the number of nodes is always preserved. So, by Corollary 1,

the result always holds for the top node. Additionally, if the tag value of

a node is decreased while its subtree remains unchanged (or has its size

increased), then the lemma cannot fail for that node either.

We have dealt with the top nodes and the following argument will take care

of the major part of the remaining nodes. It turns out that a node which is

given the tag value zero and which gets two subtrees that were not changed

in the operation cannot make the lemma fail. To see this, assume that v is

the node in question and that it has children v

l

and v

r

. Assume without loss

of generality that rh(v

l

) � rh(v

r

). Then rh(v

l

) = rh(v)� 1. Since we have

already dealt with the top nodes, we can assume that v is not such a node.

Thus, we know that the relaxed balance factor of v belongs to f�1; 0; 1g,

and so we can assume that rh(v

r

) � rh(v) � 2. The number of nodes in

the A-subtree of v is now at least (2F

rh(v

l

)+2

� 1) + (2F

rh(v

r

)+2

� 1) + 1 �

2F

rh(v)+1

+ 2F

rh(v)

� 1 = 2F

rh(v)+2

� 1.

The v node in operation (n2) and the w node in operation (p2) are the

only nodes which have not been covered by one of the cases in the above.

However, their relaxed heights are decreased while their A-subtrees remain

unchanged.

2

Corollary 2 The relaxed height of any node at any time is at most

blog

�

(N + 2) + log

�

(

p

5

2

)� 2c:

Proof Notice �rst that since tag values cannot be smaller than �1, relaxed

heights cannot decrease when moving towards the root. Thus, no relaxed

height can be larger than the relaxed height of the root.

At any time, the number of nodes in the A-subtree of the root r is bounded

by N . Since, by Lemma 2, there are at least 2F

rh(r)+2

� 1 nodes in the

A-subtree of r, the inequality 2F

rh(r)+2

� 1 � N must hold.

By Proposition 1, F

n

�

�

n

p

5

�

1

2

, so �

rh(r)+2

�

p

5

2

(N +2), which implies that

rh(r) � log

�

(

p

5

2

(N + 2)) � 2. The result follows from the fact that rh(r)

must be an integer.

2

The values of � and log

�

(

p

5

2

) are approximately 1:618 and 0:232, respec-

tively.
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In order to bound the number of operations which can occur, it is useful to

consider a positive tag value t

u

as consisting of t

u

positive units. Likewise,

a negative tag value will be referred to as a negative unit. We can now, for

the purpose of the complexity proof, assume that units have identities such

that they can be followed around in tree from the moment they are created

until they disappear. If, as the e�ect of an operation, a negative or positive

unit is deleted from some node only to be introduced at another, we say

that the unit has been moved.

Proposition 2 An insertion can create at most one extra negative unit and

a deletion can create at most one extra positive unit. No other operation

creates positive or negative units.

Proof The claim for insertion is trivially ful�lled. For deletion, observe

that in order to make the tag value negative, t

u

and t

v

must both be �1 and

r(u) must be 0, in which case, we actually get rid of at least one negative

unit. The question is whether a deletion can create more than one positive

unit. Clearly, this will happen if and only if t

u

� 0, t

v

� 0, r(u) = 1,

and t

w

= 0 (if t

w

> 0, then we would loose at least one positive unit when

deleting w). Now, t

w

= 0 implies that rh(w) = 0 (since w is a leaf). So,

since r(u) = 1 means that b

u

= �1, we get that rh(v) = b

u

+ rh(w) = �1.

However, this is impossible since the relaxed height of a leaf is at least zero

and the relaxed height of an internal node is at least the relaxed height of

its children.

In the operations (n), (p), (n2), (n4), (p0), (p2), and (p4), negative or

positive units either disappear or are moved to other nodes.

It could appear that operations (n1) and (n3) might introduce a new positive

unit at the top node. However, these operations are only applied immedi-

ately after operation (n) and only in the case where b

u

becomes 2. In that

case, r(u) = 0, so a negative unit is moved to the top node u. Adding one to

the tag value of u in an immediately succeeding operation will simply make

that negative unit disappear.

Likewise, operations (p1) and (p3) might increase the tag value of the top

node. However, these operations are only applied immediately after opera-

tion (p) in case b

u

becomes �2. In that case, l(u) = 0, so a positive unit

disappeared at �rst, but then if one of the operations (p1) or (p3) are ap-

plied, it may be added again, and we simply consider it to have moved.

2
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We now prove that whenever a positive or negative unit is moved to another

node, then the relaxed height of the new node will be larger than the relaxed

height of the old node. Since there is a limit to how large relaxed heights

can become, this is a crucial step towards limiting the number of times

operations can be applied.

Lemma 3 When a negative unit is involved in operation (n), it either dis-

appears or it is moved to a node with a larger relaxed height. Additionally,

no operation will decrease the relaxed height of a node with tag value �1.

Proof Consider operation (n) and assume that the negative unit does not

disappear. Since t

u

� 0, clearly rh(u) before the operation is larger than

rh(v). By Corollary 1, the negative unit is moved to a node with larger

relaxed height. It might be necessary to apply one of the operations (n1)

through (n4) afterwards, but again by Corollary 1, they preserve the relaxed

height of the top node.

For the remaining operations, an insertion does not involve an existing neg-

ative unit, and a deletion removes negative units unless t

u

= t

v

= �1 and

r(u) = 0, in which case one disappears and the other is associated with the

node v with relaxed height rh(u).

The remaining operations may involve a negative unit associated with the

top node, but this unit will also be associated with the top node after the

operation, which, by Corollary 1, is safe. Finally, operations (n4) and (p4)

involve a negative unit t

w

and t

x

, respectively, but this unit disappears.

2

Lemma 4 When a positive unit is involved in operation (p), it either dis-

appears or it is moved to a node with larger relaxed height. Additionally, if

some other operation decreases the relaxed height of a node by decreasing

the tag value, then it decreases the tag value by at least the same amount.

Proof Consider operation (p) and assume that the positive unit does not

disappear. As t

u

� 0, clearly rh(u) before the operation is larger than

rh(v). By Corollary 1, the positive unit is moved to a node with larger

relaxed height. It might be necessary to apply one of the operations (p0)

through (p4) afterwards, but again by Corollary 1, they preserve the relaxed

height of interest here.

For the remaining operations, an insertion may remove a positive unit, while

a deletion might move the positive units t

v

to a node with larger relaxed

height.
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The remaining operations may involve a positive unit associated with the

top node, but this unit will also be associated with the top node after the

operation, which, by Corollary 1, is safe. Finally, the operations (n2), (p0),

and (p2) move a positive unit to a node with larger relaxed height.

Operation (p0) is the only operation which decreases the relaxed height of

a node with positive tag value. However, the tag value of that node is

decreased by the same amount.

2

At this point, we have all the partial results that will enable us to prove the

�rst main theorem.

Theorem 1 Assume that an AVL tree T initially has jT j nodes. Further-

more, assume that k insertions, m deletions, and a number of rebalancing

operations are performed. If N = jT j+ 2k, then the number of rebalancing

operations is at most

(k +m)blog

�

(N + 2) + log

�

(

p

5

2

)� 2c �m:

Proof If an insertion creates a negative unit, then this unit is associated

with a node which has relaxed height zero. From Lemma 3, we know that

unless the negative unit disappears, it is associated with a node of larger

relaxed height every time operation (n) has been applied involving this unit.

From Corollary 2, it therefore follows that a particular negative unit can be

moved by operation (n) at most blog

�

(N + 2) + log

�

(

p

5

2

) � 2c times. As

operation (n) can only be applied if a negative unit is involved, it follows

from Proposition 2 that operation (n) can be applied at most kblog

�

(N +

2) + log

�

(

p

5

2

)� 2c times.

The proof for deletion is similar, except that Lemma 4 is used. However,

when a positive unit is created, it is associated with a node of relaxed height

at least one, so the bound becomes m(blog

�

(N + 2) + log

�

(

p

5

2

)� 3c).

The theorem follows from adding up the bounds for the operations (n)

and (p).

2

4 Amortized Constant Insertion Rebalancing

We prove that in the semi-dynamic case, where only searches and insertions

are allowed, rebalancing after the insertion of p keys into a relaxed AVL tree

can be performed in linear time, O(p). In other words, rebalancing after an

insertion is amortized constant.

12



Theorem 2 In the semi-dynamic case, starting with an empty tree, rebal-

ancing after an insertion is amortized constant time.

Proof We use a potential function to compute the time complexity [29]. If

T is a relaxed AVL tree, we de�ne its potential to be the number of nodes

in T with relaxed balance factor zero.

Tag values of �1 are created by insertions only, as shown in Proposition 2.

When a tag value of �1 is created, the potential can increase by at most

a constant, since only a constant number of nodes are involved. Similarly,

when a tag value of �1 is removed, the potential can only increase by at

most a constant. Thus, due to these operations, p insertions will give rise

to an increase in the potential by at most O(p).

The remaining operations are the ones which just move a tag value of �1.

Below we show that any such operation will decrease the potential by at

least one. Since the potential is always non-negative, only O(p) of these

operations can be carried out, and the result will follow.

Considering operation (n), the tag value of �1 disappears unless t

u

= 0 and

r(u) = 0. If r(u) = 0, then b

u

2 f0; 1g. If b

u

= 0, then the top node after the

operation has relaxed balance factor 1. Thus, none of the operations (n1)

through (n4) will be applied, and we get the desired drop in potential.

We can now assume that t

u

= 0, r(u) = 0, and b

u

= 1. So we examine a spe-

cial case of operation (n), immediately followed by one of the operations (n1)

through (n4). This special case of operation (n) is the following.

1 u 0

k

b

v

v �1

k

�

�

=)

2 u �1

k

b

v

v 0

k

�

�

If operation (n1) is applied immediately after, then the �1 disappears if

l(v) = 1, so assume that l(v) = 0. Since operation (n1) requires that b

v

� 0,

this implies that b

v

= 0. Thus, b

v

� 1 and 1 � l(v) are di�erent from zero,

and we obtain a decrease in potential.

In the operations (n2) and (n3) the tag value of �1 disappears, and if oper-

ation (n4) is applied, the tag value of �1 on node w disappears.

2

13



5 Conclusion

The contribution of this paper is to provide a proof of complexity for the

relaxed AVL tree which was introduced in [25, 26]. A proof of complexity is

important for several reasons. First of all, before one implements a compli-

cated data structure, it is desirable to know in advance that it is e�cient,

and there are many examples of data structures with a reasonable design

which turn out to be ine�cient, i.e., to have super logarithmic rebalancing.

Another reason for wanting a proof of complexity comes from the desire

to design rebalancing operations with the aim of obtaining a high degree

of parallelism in a distributed implementation. With many restrictions on

when operations can be applied, it is easier to ensure a good complexity.

However, in order to obtain a high degree of parallelism, restrictions should

be as few as possible. Without a proof of complexity, whenever there is

a choice in the design, one simply has to guess, running the risk of either

ruining the complexity or limiting the degree of parallelism unnecessarily.

Finally, in an actual implementation, one might want to make minor changes

throughout the operations. Once a proof has been set up, it is fairly easy to

go through the details of the proofs to check that such changes do not e�ect

the overall complexity.

With the proofs in this paper, these concerns have been addressed for AVL

trees with relaxed balance.
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A Operations Used in the Proofs

Relaxed balance factors are shown to the left of nodes and tag values to the

right. We use \rbf" as short for \relaxed balance factor".

v t

v

=)

0 u t

v

� 1

k

v 0

�

� \

\

w 0

(i) Insertion of w to the right of v.

u t

u

k

v t

v

k

%

% e

e

w

=)

v t

u

+ t

v

+ 1 + r(u)

k

(d) Deletion of w.

b

u

u t

u

k

v �1

k

�

�

=)

b

u

+ 1 u t

u

� 1 + r(u)

k

v 0

k

�

�

(n) Moving up negative tags. Requirement: t

u

� 0.

b

u

u t

u

k

v t

v

k

�

�

=)

b

u

� 1 u t

u

+ l(u)

k

v t

v

� 1

k

#

#

(p) Moving up positive tags. Requirement: t

u

� 0, t

v

> 0.
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2 u t

u

k

b

v

v 0

k

�

�

=)

b

v

� 1 v t

u

+ l(v)

k

Q

Q

Q

1� l(v) u 0

k

(n1) Too large rbf: single rotation. Requirement: b

v

� 0.

2 u t

u

k

�1 v 0

k

A

A

w t

w

k

�

�

=)

1 u t

u

+ 1

k

0 v 0

k

A

A

w t

w

� 1

k

�

�

(n2) Too large rbf: moving tags. Requirement: t

w

> 0.

2 u t

u

k

�1 v 0

k

@

@

b

w

w 0

k

�

�

=)

0 w t

u

+ 1

k

r(w) v 0

k

�

�

� Q

Q

Q

�l(w) u 0

k

(n3) Too large rbf: double rotation (t

w

= 0).

2 u t

u

k

�1 v 0

k

@

@

b

w

w �1

k

�

�

=)

b

w

w t

u

k

r(w)� 1 v 0

k

�

�

�

� H

H

H

H

1� l(w) u 0

k

(n4) Too large rbf: double rotation (t

w

= �1).
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�2 u t

u

k

A

A

w t

w

k

=)

�1 u t

u

+ 1

k

A

A

w t

w

� 1

k

(p0) Too small rbf: moving tags. Requirement: t

w

> 0.

�2 u t

u

k

@

@

b

w

w 0

k

=)

b

w

+ 1 w t

u

+ r(w)

k

r(w)� 1 u 0

k

�

�

(p1) Too small rbf: single rotation. Requirement: b

w

� 0.

�2 u t

u

k

S

S

1 w 0

k

x t

x

k

�

�

=)

�1 u t

u

+ 1

k

S

S

0 w 0

k

x t

x

� 1

k

#

#

(p2) Too small rbf: moving tags. Requirement: t

x

> 0.

�2 u t

u

k

S

S

1 w 0

k

b

x

x 0

k

�

�

=)

0 x t

u

+ 1

k

r(x) u 0

k

�

�

� Q

Q

Q

�l(x) w 0

k

(p3) Too small rbf: double rotation (t

x

= 0).

�2 u t

u

k

S

S

1 w 0

k

b

x

x �1

k

�

�

=)

b

x

x t

u

k

r(x)� 1 u 0

k

"

"

" b

b

b

1� l(x) w 0

k

(p4) Too small rbf: double rotation (t

x

= �1).
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B Additional Operations to Complete the Set

v t

v

=)

0 u t

v

� 1

k

w 0

�

� \

\

v 0

(i') Insertion of w to the left of v.
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u

k

w

�

� T

T

v t

v

k
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v t

u

+ t

v

+ 1 + l(u)

k

(d') Deletion of w.

b

u
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k

A

A
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b

u

� 1 u t
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k

A

A

v 0

k

(n') Moving up negative tags. Requirement: t

u

� 0.

b

u

u t

u

k

A

A

v t

v

k
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b

u

+ 1 u t

u

+ r(u)

k

A

A

v t

v

� 1

k

(p') Moving up positive tags. Requirement: t

u

� 0, t

v

> 0.

2 u t

u

k

v t

v

k

�

�

=)

1 u t

u

+ 1

k

v t

v

� 1

k

#

#

(n0) Too large rbf: moving tags. Requirement: t

v

> 0.
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