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ABSTRACT

A relation of degree k can be sorted lexicographically in k! different ways, i.e.,

according to any one of the possible permutations of the schema of the relation. Such
permutations are referred to as sort orders. When evaluating unary and binary relational

algebra operators using sort-merge algorithms, sort orders fulfilling the constraints en-
forced by the operators are chosen for the operand relations. The relations are then
sorted according to their assigned sort orders, and the result is obtained by merging.

Should the operands already be sorted according to one of the permissible sort orders,
then only a merging is required. The sort order of the result will depend on the sort

orders of the operands.
When evaluating whole relational algebra expressions, the result of one operation will

be used as an operand to the next. It is desirable to choose sort orders in such a way
that the result of one operation will automatically fulfill the requirements of the next.

In general, one would like to find a minimal number of operators in the expression for
which this cannot be obtained, bearing in mind the overall goal of minimizing the total

work.
We show that this problem is NP-hard, and that the corresponding decision problem is

NP-complete. However, most simplifications of the original problem give rise to efficient
algorithms. In fact, most frequently occurring queries can be analyzed in linear time in
the size of the query. This is due to the fact that only a very limited number of subsets

of all permutations of schemas can be encountered in the algorithms, which means that
compact representations for these subsets can be found.

Keywords: Databases, relational algebra, query optimization, sort orders.

1. Introduction

We consider the problem of determining an optimal sort ordera assignment for

a relational algebra expression such that it can be evaluated fast using sort-merge

techniques. If the operands of an expression have been assigned incomparable sort

orders, or if the sort order produced by the operator given the sort orders of the

aThe name “sort order” is somewhat unsatisfactory, since it is merely a sequence of attribute
names, and, thus, not an order (such as a partial order). However, this is the term used in the
literature.
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argument(s) cannot be used by the next operator, we consider this to be a violation,

since it will be necessary to resort or make a new index. We define an optimal sort

order assignment to be one with a minimal number of violations.

This problem was first considered by Smith and Chang10. They present a simple

linear-time algorithm with the purpose of approximating the exact solution. View-

ing the relational algebra expression as a parse tree, their algorithm makes one pass

up the tree and one down. The possibilities in their algorithm are limited since

they only pass on one candidate sort order to the surrounding expression. Similar

heuristics have been used in commercial query optimizers, though this has not been

documented very well in the form of scientific papers (see Selinger et. al.7, though).

In contrast to the heuristics-based techniques used up until now, we present

algorithms for finding exact solutions. In greater detail, our results are the following:

First of all, we characterize the problem, i.e., we prove exactly when the problem

becomes NP-hard.b Next, we have designed algorithms for different variations of the

original problem. It turns out that we can analyze queries where no relation name

appears more than once in linear time. To be precise, the analysis can be performed

in time O(k log(k)n), where n is the size of the query and k is the maximal degree of

any relation in the query (the number of attributes in the largest schema). Clearly,

this is a class of very frequently occurring queries.

For the class of queries where a relation name can appear more than once the

problem is NP-hard. However, if there exists a sort order with no violations, it

is possible to find such a sort order in time O(k2 log2(k)n2). When the minimal

number of violations increases, the problem becomes computationally harder. Using

reduction techniques, it is possible to solve the problem in time O(
(
n
p

)
k2 log2(k)n2),

if there is a solution with at most p violations. This becomes quite unacceptable

as p grows (up to n
2 ). However, if there are many violations, sort-merge techniques

will not be efficient anyway, so alternative methods should be sought.

The problem we solve here is a clean version of a problem which will vary with

the query language under consideration. For example, the sort order assignments

we have chosen to call “optimal” may not under all circumstances in a specific query

language be the best ones to use. This work should be seen as a theoretical basis for

concrete implementations. In a later section, we discuss possible variations of the

problem and modifications of the solutions, and we discuss the technique’s place in

the large selection of other optimization techniques. The techniques presented here

are not intended to necessarily replace existing techniques, but rather supplement

them. This is possible, since our proposal does not conflict with standard optimiza-

tion techniques, though there may be some specialized techniques which cannot be

used simultaneously.

In the next section, we discuss sort-merge algorithms for evaluating relational

algebra expressions, and we define the sort order problem formally. In section 3,

we prove that the problem is NP-hard. In section 4, we develop a novel compact

bThe corresponding decision problem is NP-complete. In the rest of the paper, whenever we
say that a problem is NP-hard, it is also the case that the corresponding decision problem is
NP-complete.
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representation for permutations of attribute names. Simple relational algebra ex-

pressions are treated in section 5. In section 6, we discuss techniques for solving

systems of inequalities. This will be used in the algorithms for the computationally

harder cases presented in section 7. Finally, in section 8, we discuss the relationship

between our techniques and general query optimizers, and discuss possibilities for

future work.

2. Sort-Merge Algorithms and Sort Order Problems

We briefly describe one of several standard definitions of relational algebra3.

More details can be found in the database textbooks12.

Let Att be a set of elements, here called attribute names, and let Dom be a

set of values. A relation r is a pair consisting of a schema Sch(r), which is a finite

subset of Att, and a finite set of tuples, which are total functions from Sch(r) to

Dom. We will often use R to denote the schema of r. A tuple with domain R will

often be called a tuple over R.

The set of all relational algebra expressions is defined by the following grammar:

e ::= r | e ∪ e | e− e | e 1 e | σAopB(e) | πX(e) | δA←B(e)

where r can be any relation name, A and B are attribute names, X is a sequence

of attribute names, and op is one of =, 6=, <, ≤, >, and ≥. In the order listed,

the constructors in the grammar above are referred to as relation name, union,

difference, natural join, selection, projection, and renaming.

It is standard practice to abuse notation by letting a sequence of attribute names

X denote the corresponding set of attribute names {X} whenever convenient. We

also use r to refer to the component of the pair which is the set of tuples, so we can

write t ∈ r, for example, where t is a tuple of r.

A tuple t over R restricted to some set X ⊆ R is denoted t[X], i.e., its domain of

definition is limited to {X}. Renaming an attribute A to B in a tuple t is denoted

tA←B . Formally, tA←B [B] = t[A] and tA←B [C] = t[C], for all C 6= B. The semantics

of the relational algebra operators is given in Table 1. Often different attributes are

allowed to have different domains (types). However, the results in this paper are

independent of whether or not a typed algebra is used, so for presentation purposes,

we have chosen the simpler option of only one domain.

Schemas of expressions can be determined statically, so we can extend Sch to

expressions. We let E denote the schema of a relation expression e.

The sort-merge technique for evaluating relational algebra expressions is a part of

many database implementations. In general, it is one of the best ways to evaluate

expressions, when relations are to be kept as setsc and one of the most efficient

ways of evaluating a join of large relations. Some evaluation methods based on

hashing can be more efficient in some cases, but the sort-merge technique also

has the advantage of being quite general and simple to implement. Special cases

cBy definition, a relation in relational algebra is a set of tuples, but sometimes duplicate tuples
are allowed in query language implementations.
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expression requirement schema of result tuples in result

r1 ∪ r2 R1 = R2 R1 {t | t ∈ r1 ∨ t ∈ r2}
r1 − r2 R1 = R2 R1 {t | t ∈ r1 ∧ t 6∈ r2}
r1 1 r2 R1 ∪R2 {t | t[R1] ∈ r1 ∧ t[R2] ∈ r2}
σAopB(r1) A,B ∈ R1 R1 {t | t ∈ r1 ∧ t(A) op t(B)}
πX(r1) {X} ⊆ R1 {X} {t[X] | t ∈ r1}
δA←B(r1) A ∈ R1, B 6∈ R1 R1\{A} ∪ {B} {tA←B | t ∈ r1}

Table 1: Semantics of the relational algebra operators.

of evaluating joins when one relation is small or has an index,d are often treated

differently (see Merrett6 and Desai4 for more details).

The sort-merge idea is quite simple. Let r1 and r2 be two relations with R1 =

R2 = {A,B}. To compute r1− r2, for example, first choose a sort order; either AB

or BA, sorte both r1 and r2 lexicographically with respect to the same sort order,

and merge to obtain the result. Notice that the result will automatically be sorted

according to this sort order as well.

The merge is a little more complicated when a natural join is to be computed.

For example, assume that we wish to compute r1 1 r2, where R1 = {A,B} and

R2 = {B,C}. In this case, we sort r1 on BA and r2 on BC (common attributes

first). Again, the result is obtained by merging. If the B column of the relations

has only one occurrence of each integer, then the merge is as simple as before.

However, if for example [A : 0, B : 0] and [A : 1, B : 0] are in r1 and [B : 0, C : 2]

and [B : 0, C : 3] in r2, then the Cartesian product of these tuples has to be output,

so a small loop might be required in each merging step. However, the important

conclusion is that merging is still an efficient evaluation method for large relations6,

and certain sort orders can be used, whereas others cannot. Note also that due

to new developments in external sorting1, sort-merge techniques have become even

more attractive when the domains of attributes are strings.

When considering whole expressions, instead of simply an operator applied to

two relations, new possibilities arise. Consider the expression (r1 − r2) 1 r3, where

R1 = R2 = {A,B} and R3 = {B,C}. If r1 − r2 is evaluated first without any

information about the context in which it appears, then we might choose to sort

both relations according to the sort order AB and then merge to obtain the partial

result. Proceeding to the natural join, we observe that the schema of the difference

intersected with R3 equals {B}, so for the purpose of merging, r3 should be sorted

according to BC, and the result of the difference according to BA. This means

that the result of the difference has to be resorted. Of course, this could have been

avoided by initially choosing the sort order BA for the relations r1 and r2.

dIn the context of databases, an index is some efficient way of obtaining random access to tuples
in a relation or just some way of efficiently accessing all of the tuples in a fixed order. Often some
variant of a B-tree2 is used with the values from one of the attributes as keys.

eMore likely, we would create an index (or use an existing one). In the rest of the paper, we
will interchangeably say that a relation is sorted according to some sequence of attributes or that
it has an index for that sequence.
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expression requirement output

r indexes
r1 ∪ r2 s1 = s2 s1

r1 − r2 s1 = s2 s1

r1 1 r2 s1 = t · s′1, s2 = t · s′2, where {t} = {s1} ∩ {s2} s1 · s′2 or s2 · s′1
σA=B(r1) s1

πX(r1) s1 = t · s′1, where {t} = {X} t
δA←B(r1) s1A←B

Table 2: Sort-merge operator requirements and possible outputs.

In Table 2, we list the merge requirements for each of the operators. Given that

the arguments of some operator fulfill those criteria, we also list the possible output

sortings. Assume that r1 and r2 are sorted according to the sort orders s1 and s2,

respectively. We use a dot to denote the concatenation of two sequences, and for

renaming of A to B in a sequence s, we use sA←B .

The requirement for projection, for example, simply says that the argument must

have a sort order which starts with a sequence consisting of the attribute names

in X in any order (otherwise sorting is required in order to remove duplicates).

Similarly, the sort orders of the arguments of a join must start with the attribute

names they have in common.

Before we state the sort order problem formally, we reduce the problem as much

as possible:

When considering the requirements from Table 2, we notice that there are no

requirements for the selection operator. Since it also preserves the sort order of its

operand, it can simply be deleted from the expression before the analysis. This will,

of course, result in a quite different expression, but the constraints on sort orders

are exactly the same.

From the definition of requirements and output, it is obvious that all occurrences

of difference can be replaced by union.

Also, when the two arguments of a join have the same schema, then the natural

join requirements become identical to the union requirements. In other words, union

is a special case of join with respect to the sort order problem.f

In summary, we are down to only having to consider the operators natural

join, projection, and renaming. Actually, there exists a transformation of queries

such that projections can also be removed, though this is slightly more complicated.

However, the transformation introduces a new relation name, which will then appear

several places in the query. As it will be demonstrated later, this makes the problem

computationally harder, so we avoid this transformation.

The sort order problem can now be stated:

Definition 1 Let q be a relational algebra expression, and let f be a function from

fThis is not very surprising, since intersection is a special case of join, when the schemas of
the operands are identical, and surely, intersection would have sort order requirements identical
to union and difference.

5



− BAC

BAC 1

{A,B}

BA

�� TT
{B,C}

BC

,, ll
1 BAC

{A,B}

BA

�� TT
πBC BC

{B,C,D}

BCD

− AB

AB 1

{A}

A

�� TT
{A,B}

AB

,, ll
1 AB

{A,B}

BA

�� AA
πB B

{A,B}

BA

Figure 1: Expressions with annotated sort order assignments.

the set of all subexpressions of q to sequences of attribute names. For each subex-

pression e, f(e) must be a permutation of the schema of e. Such a function, f , is

called a sort order assignment for e.

A violation with respect to f is a subexpression e of q with e = e′ 1 e′′, e =

πX(e′), or e = δA←B(e′), such that either f(e′) (or f(e′′) in the case of join) do

not fulfill the requirements from Table 2, or f(e) is not a possible output according

to Table 2. If e = r (a relation name), then it is also a violation if r is not sorted

according to f(e) or if r does not have an index for f(e). If there is more than one

occurrence of the relation name r, and several of these are assigned the same sort

order for which r does not have an index, this is only one violation.g

The sort order problem is the problem of finding a sort order assignment with a

minimal number of violations.

A sort order assignment with no violations is called perfect.

In Figure 1, we have listed two trees illustrating relational algebra expressions

(sometimes called parse trees, query trees, or syntax trees) and sort order assign-

ments. The relations involved are assumed to occur only once, so we have omitted

the names of these and just listed their schemas (as sets of attribute names). A sort

order assignment has been illustrated by assigning a sequence of attribute names

to each node in the parse trees.

Both expressions may have violations at the leaves depending on whether or

not the relations are already sorted according to the sort order assigned to that

node. Other than that, the first expression does not have any additional violations,

whereas the second has one, since the only allowed output from the right-most join,

in this case, is BA.

3. NP-Hardness and -Completeness

In this section, we show that the problem of finding a sort order assignment such

that the number of violations is minimal is NP-hard. We do this by reducing from

vertex cover. The vertex cover problem is described as follows5:

gSince the sorting of the relation or the creation of one index solves the problem for all occur-
rences assigned the same sort order.
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INSTANCE: Graph G = (V,E), positive integer K ≤ |V |.
QUESTION: Is there a vertex cover of size K or less for G, i.e., a subset V ′ ⊆ V

with |V ′| ≤ K such that for each edge {u, v} ∈ E at least one of u and v belongs

to V ′?

Theorem 1 The sort order problem is NP-hard.

Proof. Assume that we have a relation rb with schema {B} and a relation rab
with schema {A,B}.

Furthermore, let the elements of V be numbered from one through p, i.e., V is

the set {v1, . . . , vp}. We take p relations r1, . . . , rp, all with schema {A,B} and with

an index for BA. Assume that for each i ∈ {1, . . . , p}, we have unique attribute

names Ai and Bi. We now encode each vertex vi as followsh:

c(vi) = δAB←AiBi((rab 1 rb) 1 ri)

Let the elements of E be numbered from one through m, i.e., E = {e1, . . . , em}.
Assume that for each i ∈ {1, . . . ,m}, we have unique attribute names Ci and Di.

Each edge ei = {vj , vk} is encoded as followsi:

c(ei) = δAB←CiDi(rj 1 δA↔B(rk))

The whole vertex cover problem is now encoded by the following expression:

L = (c(v1) 1 (c(v2) 1 · · · 1 c(vp) · · ·)) 1 (c(e1) 1 (c(e2) 1 · · · 1 c(em) · · ·))

We claim that a sort order assignment with at most K violations can be found for

L if and only if there is a vertex cover of size at most K for G. The proof follows

here:

Assume that V ′ with |V ′| ≤ K is a vertex cover for G. Consider the expressions

c(vi). Since ri has a BA index, sort orders can be assigned to each node without

creating any violations. The problem is the expressions rj 1 δA↔B(rk). However,

either vj or vk must be in V ′. If vj is in V ′, we assign rj the sort order AB; otherwise,

rk is assigned AB. Since V ′ is a vertex cover, this creates at most K violations.

Finally, L is defined by joining all these p + m expressions. However, there is no

overlap of attribute names, so the requirements of these joins are vacuously fulfilled.

For the other implication, assume that there exists a sort order assignment for

L with at most K violations. Clearly, an expression rj 1 δA↔B(rk) will contain a

violation. In case it is the join requirements which are violated, we can change this

to a violation at a relation name by switching the sort orders of rk and δA↔B(rk).

This can only decrease the total number of violations (since assignment of the same

sort order to several occurrences of the same relation name counts as at most one

violation—depending on whether or not the relation has an index for that sort

order). We now define a vertex cover V ′ of size at most K by: vi ∈ V ′ if and only

if somewhere ri is assigned AB. 2

hThe notation δAB←CD(r) is the straight-forward generalization of renaming involving several
attributes, denoting the simultaneous renaming of A to C and B to D.

iThe notation δA↔B(r) means switching the attribute names A and B. This could equivalently
be written δAB←BA(r).
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Notice that no projections were used in the proof. This means that the problem

is just as hard if queries contain no projections, or if some other method of evaluating

projections is chosen.

The class NP is a class of decision problems (yes/no answers). The sort order

decision problem is the following: given a relational algebra expression and a positive

integer K, does there exist a sort order assignment f with at most K violations?

Corollary 1 The sort order decision problem is NP-complete.

Proof. The proof of Theorem 1 is also a proof of the fact that the sort order

decision problem is NP-hard. An NP-hard problem is NP-complete if and only if it

is in the class NP, and this is easy to establish for this particular problem: define a

sort order assignment by nondeterministically guessing a sequence for each node in

the parse tree, and check to see if the number of violations is at most K. 2

4. Representing Sets of Permutations

When considering how to sort a relation over a schema with k attributes, there

are k! possibilities. This means that if efficient algorithms are to be found, the

representation of sets of permutations is a matter that has to be handled with

some care. It turns out that the possible subsets of the set of all permutations of

attributes from a given schema, which can be encountered in the algorithms, can

be represented by the following grammar:

p ::= Nil | 〈A1, . . . , Ak〉 | C(p, . . . , p) | R(p, . . . , p)

where A1, . . . , Ak is a sequence of attribute names. An expression produced by

this grammar, fulfilling that no attribute name appears more than once, is called a

permutation expression.

The expression Nil represents the empty set of permutations, the expression

〈A1, . . . , Ak〉 represents all permutations of the set {A1, . . . , Ak}, the expression

C(p1, . . . , pk) represents all concatenations of one permutation from each pi, and the

expressionR(p1, . . . , pk) represents the union of what C(p1, . . . , pk) and C(pk, . . . , p1)

represent (R stands for reversed). For convenience, an expression 〈A〉 with only one

attribute name is simply written A. As an example, q = R(〈A,B〉, C(C,D)) repre-

sents {ABCD,BACD,CDAB,CDBA}.
More formally, the set of permutations represented by a permutation expression

is defined as follows:

Definition 2 If p is a permutation expression, then its denotation [[p]] is defined

recursively by Table 3.

Some notation: In the following, we use P as short for a comma separated list of

permutation expressions, p1, . . . , pkp . When no confusion can arise, we shall often

simply use k instead of kp. We let PR stand for the reversed list pkp , . . . , p1. We use

Q, U , V , and T similarly. Finally, we let A(P ) denote the set of attribute names

in P , where P is a comma separated list of permutation expressions.

Using compact representations of sets of permutations is crucial for the efficiency

of the algorithms to be presented later. To avoid unnecessary redundancy in the
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p [[p]]

Nil ∅
〈A1, . . . , Ak〉 all permutations of {A1, . . . , Ak}
C(p1, . . . , pk) {t1 · · · tk | t1 ∈ [[p1]], . . . , tk ∈ [[pk]]}
R(p1, . . . , pk) [[C(p1, . . . , pk)]] ∪ [[C(pk, . . . , p1)]]

Table 3: Semantics of permutation expressions.

expressions, such as in R(C(〈A,B〉)), for instance, which obviously represents the

same set as 〈A,B〉, we define a normal form.

Definition 3 A permutation expression p is in normal form if and only if:

• each C- and R-construct has at least two arguments.

• no immediate argument of a C-construct is again a C-construct.

• if Nil is contained in p, then p = Nil.

It is easy to put a permutation expression in normal form. Empty constructs,

〈〉, C(), and R() can be removed. For C- and R-constructs with only one argument,

the C or R can simply be removed, i.e., C(p) and R(p) can both be changed to

p. Furthermore, an expression C(p1, . . . , C(q1, . . . , qkq), . . . , pkp) can be replaced

by C(p1, . . . , q1, . . . , qkq , . . . , pkp). Clearly, permutation expressions can be put in

normal form using a bottom-up strategy in linear time in the size of the expression.

From now on, we assume that expressions are always in normal form.

We need three operations on permutation expressions corresponding to the op-

erators we need in the reduced relational algebra expressions: projection, join,

and renaming. Renaming is denoted pbA ← Bc and simply changes all occur-

rences of As in p to Bs. Projection is denoted p|X , where X is a set of attribute

names. The set of sequences is projected down onto the set X. For example,

R(〈A,B〉, C(C,D))|CD = C(C,D) and R(〈A,B〉, C(C,D))|AC = R(A,C).

The join operation on permutation expressions is the most complicated. Its

purpose is to compute the possible output permutations from a relational algebra

join operation (see section 2) given that the possible inputs are represented by two

permutation expressions. The result should be the sequences agreeing on common

attributes followed by the rest of each of the expressions in any order. We continue

the example above. First, notice that 〈C,E〉 represents the sequences CE and

EC. Joining with R(〈A,B〉, C(C,D)) should then give us the sequences CDABE,

CDBAE, CEDAB, and CEDBA. Phrased using permutation expressions:

R(〈A,B〉, C(C,D))⊗〈C,E〉 = C(C,R(E, C(D, 〈A,B〉)))

4.1. Implementing operations on permutation expressions

As described above, three operations on permutation expressions will be needed

in the algorithms, and it is important that these operations can be implemented

efficiently.
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It is easy to implement renaming and projection of permutation expressions

efficiently, so we will only give an informal description of this.

Renaming a permutation expression by pbA ← Bc is simply a matter of going

through and copying the expression p, changing the occurrence of A to a B, i.e.,

the operation is linear in the size of the expression.

A projection p|X can be carried out by first going through and copying the

expression p, except that attribute names not in X are not copied. After this

operation, the expression is put in normal form. Since X is a part of p, |X| is

smaller than n, where n is the size of p, so this can be done in time O(n logn).

Continuing the example, in carrying out the operation R(〈A,B〉, C(C,D))|CD,

the first pass results in R(〈, 〉, C(C,D)). Bottom-up, first 〈, 〉 is removed because it is

empty, and then the R-construct is removed, since it is down to one argument and

therefore redundant. This leaves C(C,D), which is now in normal form. As another

example, the first pass in carrying out the operation R(〈A,B〉, C(C,D))|AC results

in R(〈A, 〉, C(C, )). Again, the expression is brought in normal form bottom-up

resulting in R(A,C).

The join of two permutation expressions is somewhat harder to implement. How-

ever, as we demonstrate below, it can be implemented such that it runs in time

O(n logn), where n is the size of the permutation expression. The remaining part

of this section is devoted to establishing this.

We proceed as follows: First, a prefix operations is defined, which from a set of

sequences selects the ones that start with a given set of attribute names. Next, we

want to define an intersection operator. As a necessary step in obtaining this, we

define an algorithm which changes two expressions C(P ) and C(Q) to two expressions

C(U) and C(V ) with the same intersection, i.e., [[C(P )]]∩ [[C(Q)]] = [[C(U)]]∩ [[C(V )]],

but with the additional property that they have the same number of immediate

arguments. Finally, using all these definitions, the join can be defined.

We will take some care in defining all of these operations to make it clear that

the definitions can be turned into efficient algorithms.

Definition 4 A list of permutation expressions p1, . . . , pk is X-initial for some

nonempty set of attribute names X if

∃i : 1 ≤ i ≤ k, A(p1, . . . , pi−1) ⊆ X, A(pi) ∩X 6= ∅, A(pi+1 · · · pk) ∩X = ∅

If a list is X-initial, then this unique i is called the extent of X.

Now we can define the prefix operator PF recursively in the structure of per-

mutation expressions.

Definition 5 PF is defined recursively in Table 4. The first case that applies is

chosen. In the table, X ′ = X \A(p1, . . . , pi−1).

Proposition 1 PF is well-defined and [[PFX(p)]] is exactly the set of sequences

from [[p]] which start with the attribute names in X.

Proof. As there is always the “otherwise” option, PF defines some action for all p.

Furthermore, recursive use of PF is always carried out on strictly smaller arguments,

in the sense that the semantic set that an expression denotes (the function [[·]])
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p Condition PFX(p)

X = ∅ p
A(p) = X p

〈Y 〉 X ⊂ Y C(〈X〉, 〈Y \X〉)
C(P ) P is X-initial with extent i C(p1, . . . , pi−1,PFX′(pi), pi+1, . . . , pk)
R(P ) P is X-initial PFX(C(P ))

R(P ) PR is X-initial PFX(C(PR))
otherwise Nil

Table 4: Prefix of permutation expressions.

becomes smaller. Finally, we observe from Definition 4 that if p1, . . . , pk is X-

initial, then pk, . . . , p1 is not, unless A(p1, . . . , pk) = A(pk, . . . , p1) = X. We have

argued that PF is well-defined.

It is fairly obvious that PF works correctly. The crucial observation is that if P

is not X-initial, then [[C(P )]] does not contain any sequences starting with all the

attributes from X. 2

Now we turn our attention to the intersection which will be defined using PF

and the following property of PF:

Proposition 2 If ∅ 6= X ⊂ A(p) and PFX(p) 6= Nil, then PFX(p) is of the form

C(p1, . . . , pk) and ∃i : 1 ≤ i < k, X = A(p1, . . . , pi).

Proof. Easy proof by induction in the structure of p following the definition of

PF. 2

Now we define the concept of comma equalization:

Definition 6 Two permutation expressions C(P ) and C(Q) are comma equalized

if they have the same number of arguments k and ∀i ∈ {1, . . . , k} : A(pi) = A(qi).

Proposition 3 Let C(P ) and C(Q) be permutation expressions and assume that

they contain the same attribute names, i.e., A(P ) = A(Q). Assume that there

exists a k such that k < kp, k < kq, and ∀i ∈ {1, . . . , k} : A(pi) = A(qi). The

following holds:

1) if A(pk+1)\A(qk+1) 6= ∅ and A(qk+1)\A(pk+1) 6= ∅, then [[C(P )]]∩ [[C(Q)]] = ∅.

2) if A(pk+1) ⊂ A(qk+1), then either PFA(pk+1)(qk+1) equals Nil, in which case

[[C(P )]] ∩ [[C(Q)]] = ∅, or PFA(pk+1)(qk+1) is of the form C(U), in which case

[[C(P )]] ∩ [[C(Q)]] = [[C(P )]] ∩ [[C(q1, . . . , qk, u1, . . . , uku , qk+2, . . . , qkq )]]

3) if A(qk+1) ⊂ A(pk+1), then the symmetric to 2) holds.

Proof. Let s1 · · · skp and t1 · · · tkq be two sequences such that ∀i : si ∈ [[pi]] and

∀i : ti ∈ [[qi]]. We prove the three statements separately.

1) For s1 · · · skp and t1 · · · tkq to be identical, the sequences s1 · · · sk and t1 · · · tk
would have to be identical and one of the sequences sk+1 and tk+1 would have

to be a prefix of the other. This is not possible because then one of the sets

A(pk+1) and A(qk+1) would be contained in the other.

11



Algorithm: Comma equalize
Input: C(P ) and C(Q) in normal form with A(P ) = A(Q)
Output: comma equalized C(U) and C(V ), if they exist, such that

[[C(P )]] ∩ [[C(Q)]] = [[C(U)]] ∩ [[C(V )]].
Method:

let expp, expq, k be C(P ), C(Q), 0
while k < kq do

if A(pk+1) = A(qk+1) then
k := k + 1

else
if (A(pk+1)\A(qk+1) 6= ∅) ∧ (A(qk+1)\A(pk+1) 6= ∅) then

abort “Empty intersection”
else

rename if necessary such that A(pk+1) ⊂ A(qk+1)
let exp be PFA(pk+1)(qk+1)
if exp is Nil then

abort “Empty intersection”
else

comment exp is of the form C(T ), and expq is C(Q)
let expq be C(q1, . . . , qk, T, qk+2, . . . , qkq)

endif
endif

endif
endwhile
output expp, expq

Figure 2: Algorithm “Comma equalize”.

2) The form of PFA(pk+1)(qk+1) was stated in Proposition 2. Here, sk+1 has

to be a prefix of tk+1 in order for s1 · · · skp and t1 · · · tkq to be identical,

so if PFA(pk+1)(qk+1) = Nil, no sequences from [[C(P )]] and [[C(Q)]] can be

identical.

From the above it follows that from the sequences in [[qk+1]], only the sequences

in the set [[PFA(pk+1)(qk+1)]] can match sequences in [[C(P )]]. The result follows

from Proposition 2.

3) Symmetric to 2).

2

An algorithm based on the cases listed in Proposition 3 is now given in Figure 2.

Proposition 4 Algorithm Comma equalize solves the problem stated in its specifi-

cation.

Proof. Since the expressions are in normal form, each qi must contain at least one

attribute name, and for i 6= j, we have A(qi) ∩ A(qj) = ∅. So, even though kq can

increase every time expq is changed, |A(Q)| is an upper bound.

12



p q Condition p4q
p 〈X〉 p
C(P ) R(Q) C(P )4PFA(p1)(R(Q))
R(P ) R(Q) ∃T : C(P )4R(Q) = C(T ) R(T )
C(P ) C(Q) ∃ C(U), C(V ) : comma equalized C(u14v1, . . . , uku4vkv )

otherwise Nil

Table 5: Intersection of permutation expressions, leaving out symmetric cases.

The last “else” case cannot be chosen more than |A(Q)| times, since the number

of attribute names available are divided up into more qi’s each time this case is

chosen. So, after a bounded number of visits to this “else” case, we must choose

another case and either abort or increase k. We have proven that the algorithm

terminates.

With respect to correctness, an invariant for the loop is that for all 1 ≤ i ≤
k : A(pi) = A(qi), where C(P ) and C(Q) are the current values of expp and expq,

respectively. Clearly, when k = kq the algorithm terminates and we have obtained

the desired result. Of course, the algorithm might terminate earlier with an “Empty

intersection”, if justified according to Proposition 3.

The invariant holds since k is increased only when A(pk+1) = A(qk+1), and in

the last “else” case, the k first arguments of C(Q) are left unchanged. 2

Because of the reverse operator, R, on permutation sequences, it will later be

necessary to know that comma equalization is symmetric, i.e., we could start at the

other end of the two expressions C(P ) and C(Q) and obtain the same result.

Proposition 5 If algorithm Comma equalize applied to C(P ) and C(Q) gives C(U1)

and C(U2), and applied to C(PR) and C(QR) gives C(V1) and C(V2), then U1 = V1
R

and U2 = V2
R.

Proof. By structural induction in P , based on the observation that if for some

i and j we have that A(p1, . . . , pi) = A(q1, . . . , qj), then the comma equalization

is found for the expressions C(p1, . . . , pi) and C(q1, . . . , qj) and for the expressions

C(pi+1, . . . , pkp) and C(qj+1, . . . , qkq), independently. 2

With the help of comma equalization, we can now define intersection:

Definition 7 Let p and q be permutation expressions such that A(p) = A(q). The

intersection of p and q, denoted p4q, is defined recursively by Table 5. The oper-

ation is symmetric in its two arguments, so we only list one of each of these sym-

metric cases. In the table, C(U) and C(V ) are the outputs from algorithm Comma

equalize, i.e., [[C(P )]] ∩ [[C(Q)]] = [[C(U)]] ∩ [[C(V )]].

Proposition 6 The intersection of permutation expressions is well-defined and im-

plements ∩ correctly, i.e., ∀p, q : [[p4q]] = [[p]] ∩ [[q]].

Proof. We argue that the process eventually terminates. In the first and last

case, we terminate immediately. Let us consider an expression p4q and the value

|[[p]]|+ |[[q]]|. Clearly, |[[PFA(p1)(R(Q))]]| < |[[R(Q)]]|, since ∅ ⊂ A(p1) ⊂ A(Q), so in

the second and third case, this semantic size of the two arguments decrease. For the

13



Case Result

X = A(p), X = A(q) p4q
X = A(p), X ⊂ A(q) C(p4C(q1, .., qj), C(qj+1, .., qkq))
X ⊂ A(p), X = A(q) C(C(p1, .., pi)4q, C(pi+1, .., pkp))
X ⊂ A(p), X ⊂ A(q) C(C(p1, .., pi)4C(q1, .., qj),R(C(pi+1, .., pkp), C(qj+1, .., qkq)))

Table 6: Join of permutation expressions.

fourth case, C(P )4C(Q), this value may remain constant, but then the number of

attribute names in the expressions decrease. We have argued that 4 is well-defined.

Now, we prove that 4 implements ∩ correctly. It is obvious that p4〈X〉 should

equal p, since 〈X〉 represents all possible permutations of A(p) (recall that A(p) =

{X}).
The proof of correctness is by induction in the number of iterations. As already

discussed, we can use induction in the lexicographical order of first the semantic

size of the arguments, and second, the size of the set of attribute names in the

expressions. It is obvious in the light of Proposition 4 that the fourth case gives

rise to correct transformations.

The correctness of C(P )4C(Q) = C(P )4PFA(p1)(R(Q)) is obvious since all

sequences from [[C(P )]] must start with a sequence from [[p1]].

For R(P )4R(Q), observe that semantically this is

([[C(P )]]∩ [[C(Q)]])∪ ([[C(P )]]∩ [[C(QR)]])∪ ([[C(PR)]]∩ [[C(Q)]])∪ ([[C(PR)]]∩ [[C(QR)]])

To justify the transformation, we need to observe that

• if [[C(P )]] ∩ [[C(Q)]] 6= ∅, then [[C(P )]] ∩ [[C(QR)]] = ∅, and vice versa.

• if C(P )4C(Q) = C(T ), then C(PR)4C(QR) = C(TR).

The first observation follows easily from the definitions, and the second from Propo-

sition 5 and the definition of 4 on arguments of the form C(P ) and C(Q). 2

Finally, the most complicated operation on permutation expressions can be de-

fined from prefix and intersection.

Definition 8 Let p and q be permutation expressions and let X = A(p) ∩ A(q).

If X ⊂ A(p), then PFX(p) = C(P ), for some P , and there exists an i such that

X = A(p1, . . . , pi). If X ⊂ A(q), then PFX(q) = C(Q), for some Q, and there

exists a j such that X = A(q1, . . . , qj). The join of the permutation expressions p

and q, denoted p⊗q, is defined recursively in Table 6.

Proposition 7 The operation ⊗ correctly computes the join of permutation expres-

sions.

Proof. We only treat the fourth and most difficult case. The remaining proofs are

special cases of the proof to follow.

If there exists a t ∈ [[〈X〉]] such that we have sp ∈ [[p]] and sq ∈ [[q]] with sp = t ·s′p
and sq = t · s′q for some s′p and s′q, then t · s′p · s′q and t · s′q · s′p should belong to
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[[p⊗q]]. By Proposition 1, [[PFX(p)]] and [[PFX(q)]] are exactly the subsets of [[p]]

and [[q]], respectively, for which such t’s exist. Finally, from Proposition 6, it follows

that [[C(p1, . . . , pi)4C(q1, . . . , qj)]] is exactly the set of sequences which are prefixes

of sequences in both sets. 2

The join of two permutation expressions p and q can be performed in time

O(n logn), where n is the size of the input, i.e., the number of symbols in the

expressions p and q together. It is clear that all the involved operations (prefix,

comma equalization, and intersection) on permutation expressions are basically

linear in the structure of the arguments, except for some tests of set inclusion.

However, initially sorting all the attributes in subexpressions of the form 〈X〉 will

make these tests linear as well. The time it takes to perform this initial sorting is

bounded by O(n logn).

5. Solving the Problem for Simple Queries

In section 2, we have showed that it is sufficient to solve the problem for expres-

sions built from relation names combined with joins, projections, and renamings.

However, in section 3, we proved that even this was NP-hard. That result was

established even without considering schema sizes; only the size of the relational

algebra expression was used as the measure of the problem size.

The important issue, to be considered next, is to identify the subproblems,

which can be solved efficiently, and for this more practical problem, schema sizes

become relevant. Though, it is relatively unusual that a relation has a schema of

size more than 10, say, if it has even that modest a degree, there are more than

10! permutations to consider. So, in practice, it is crucial that the representations

of sets of permutations can be reasonably compact. If any subset of the set of all

permutations of a schema could be relevant in the algorithms, then we would not be

able to find a compact representation. Fortunately, permutation expressions from

section 4 can be used. This means that any subset of the set of permutations of a

set of size k that we consider in the algorithms can be represented in space O(k),

and operations on it can be carried out in time O(k log k), as demonstrated in the

previous section.

The large class of expressions without multiple occurrences of the same relation

name has an efficient algorithm to determine optimal sort order assignments. In

the following we refer to such expressions or queries as simple. This algorithm has

the same flavor as the one by Smith and Chang10, the significant difference being

that while they consider only a few possible sequences, we consider all k!, where k

is the schema size. Also with multiple occurrences of the same relation names, it

is sometimes possible to find sort order assignments efficiently, but the algorithms

become significantly more complicated. We return to those issues in section 7.

For the class of simple expressions, i.e., expressions without multiple occurrences

of the same relation name, a greedy algorithm is optimal. There are two stages in

the algorithm. In the first, we find possible solutions; in the second, we select a sort

order assignment from these. It is easiest to express this as one pass up and one

pass down the parse tree. The algorithm is given in Figure 3.
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Algorithm: Find sort order assignment for simple expressions.
Input: a simple relational algebra expression q.
Output: a sort order assignment for q with a minimal number of violations.
Method:

forall relation names r let Sr be the permutation expression for r’s indexes
repeat

assume that e1 and e2 have been assigned Se1 and Se2 , respectively
case e is of the form
e1 1 e2: Se = Se1⊗Se2
πX(e1): Se = Se1 |X
δA←B(e1): Se = Se1bA← Bc

endcase
if Se = Nil then Se = 〈E〉; mark e endif (∗ E is the schema of e ∗)

until all nodes have an assigned permutation expression

choose a sort order from Sq and assign it to q
repeat

assume that e has been assigned the sort order se
case e is of the form
e1 1 e2:

if e is not marked then
se1 (se2) is se with every attribute name not in E1 (E2) deleted

else
choose se1 (se2) from Se1 (Se2)

endif
πX(e1):

if e is not marked then
choose se1 from Se1 such that se1 has prefix se

else
choose se1 from Se1

endif
δA←B(e1):
se1 is se with B changed to A

endcase
until all node have an assigned sort order

Figure 3: Algorithm “Find sort order assignment for simple expressions”.
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A few notes on the algorithm: Choosing a sort order from a permutation ex-

pression can clearly be done in linear time. In section 8, we discuss the possibilities

when choosing between several sort orders is an option. A full discussion of how to

create a permutation expression for the indexes of a base relation is delayed until

section 8. For the simple cases, if a base relation is unsorted and does not have any

indexes, we can use 〈E〉, so that any permutation can be chosen. For consistency,

we would also mark the node, since a mark at a node represents the fact that a

sorting or the creation of an index is required. If the base relation is sorted or has

one index, the permutation expression is of the form C(A1, . . . , Ak).

Theorem 2 Algorithm “Find sort order assignment for simple expressions” works

correctly according to its specification, and its time complexity is O(k log(k)n), where

n is the size of the query and k is the maximum degree of any relation in the query.

Proof. As long as non-Nil permutation expressions can be found, this is done. Not

until a permutation expression becomes Nil (representing the empty set), do we

take other actions. When this happens, the node in question is marked (meaning

that an index or a sorting will be necessary here), and we consider all possible

permutations for this. The only other option, we would have, would be to make the

decision of marking a node earlier. However, this can only result in fewer choices

at the node actually marked in the algorithm.

For the time complexity, if the expression has sizeO(n), thenO(n) operations are

carried out. Since any operation on permutation expressions is at most O(k log k),

the total complexity is then O(k log(k)n), which for all practical purposes is O(n).

2

To show how the algorithm works, we continue the second example from Fig-

ure 1. A word of caution: do not fall for the temptation to think that since join

is associative and commutative, the expression can be rearranged more efficiently.

Recall that a number of reductions have taken place as outlined in section 2. So,

some of the joins are really unions or differences, say. In the analysis, we can treat

them as joins, but the structure of the query must be preserved. Also, selections

appearing in between have been deleted.

In Figure 4, the parse tree to the left has been annotated with permutation

expressions, and the parse tree to the right has been annotated with sort orders

chosen from the permutation expressions.

The root was first assigned Nil and then the set of all permutations. This

was remembered for the second pass by marking it. If the expression was a part

of a larger expression, this marked node would be treated as a leaf in the larger

expression.

6. Solving Systems of Inequalities

In this section, we briefly discuss how to find maximal solutions to systems of

inequalities. This is necessary in order to solve the constraints that multiple occur-

rences of relation names can impose on our problem. Basically, we adapt Tarski’s

work on fixed points for functions defined on complete lattices to our concrete prob-

lem. Parts of this exposition is from Schwartzbach8,9.
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Figure 4: An expression with annotated permutation expressions and sort orders.

The reason for including this material here is two-fold. First, it makes the paper

self-contained and it introduces the notation. Second, stronger versions of some of

the standard theorems are necessary in order to obtain efficient algorithms. We need

to be able to change the system of inequalities gradually without having to compute

fixed points from scratch every time; instead, we need to be able to continue the

fixed point derivation from the old fixed point. The ability to do this is absolutely

crucial for the complexity of the algorithm.

The connection between the results in this section can be described as follows.

Our goal is to find the largest solution to an inequational system. This is done

by finding the fixed point for some particular function defined from an equational

system similar to the inequational system. We then show that the largest solu-

tions to the equational and inequational systems correspond. Only the corollary of

Theorem 3 is used in this section, but Theorem 3 will be necessary later.

This first definition is adapted from Tarski11:

Definition 9 A system (U,v) is a complete lattice if U is a nonempty finite set,

v is a partial order on U , and any subset A ⊆ U has a least upper bound tA and

a greatest lower bound uA.

A complete lattice has, in particular, two elements, top and bottom, defined by

> = tU and ⊥ = uU , respectively.

Theorem 3 Let (U,v) be a complete lattice and f : U → U a monotone function.

Let v ∈ U and assume that f(v) v v. Then the largest fixed point for f less than or

equal to v can be found as fk(v), for some k ∈ IN .

Proof. Let u = u{f i(v) | i ∈ IN}. From f(v) v v we can prove by simple

induction that for all i, f i+1(v) v f i(v), using the monotonicity of f . So, we have

for all i that u{v, f(v), . . . , f i(v)} = f i(v). Since U is finite, there exists a k such

that u = fk(v).

First, we prove that u is indeed a fixed point. By monotonicity of f , we obtain

that

f(u) = f(fk(v)) v fk(v) = u

and since u is a lower bound that

u v fk+1(v) = f(fk(v)) = f(u)
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from which it follows that f(u) = u.

Now assume that u′ is a fixed point less than or equal to v. We obtain that

u′ = f(u′) v f(v), since f is monotonic. By induction, we see that u′ v fk(v). This

means that u′ v u, so u is the largest fixed point less than or equal to v. 2

Corollary 2 If (U,v) is a complete lattice with top element > = tU and f : U →
U is a monotone function, then the largest fixed point can be found as f k(>), for

some k ∈ IN .

Proof. f(>) v >. Of course, the largest fixed point is less than or equal to >, so

the result follows. 2

Definition 10 Let (U,v) be a complete lattice. We define an inequality system on

(U,v) to be a finite set of inequalities of the form

M0 v f(M1, . . . ,Mk)

where the Mi’s are variables and f : Uk → U is monotonic. A solution L assigns

to each variable M some value L(M) ∈ U such that all the inequalities hold. The

system is satisfiable if a solution exists.

Definition 11 Let S be an inequality system. We define Eq(S) to be the set of

equalities, where, for each variable M in the system S, we include

M = H1 uH2 u . . . uHk

The Hi’s are all the right-hand sides of inequalities in S with M on the left-hand

side. A solution L assigns to each variable M some value L(M) ∈ U such that all

the equalities hold. The system is satisfiable if a solution exists.

Definition 12 Assume that F is a set of monotone functions, each of which are

from Uh → U , for some h (monotone in each argument). If for i = 1, . . . , n we

have equations

Mi = fji(Mi1 , . . . ,Mik)

where fji ∈ F , we can choose to consider the fj’s as functions of all the variables,

i.e.,

Mi = fji(M1, . . . ,Mn)

and then define an iteration function by

(x1, . . . , xn) 7→ (fj1(x1, . . . , xn), . . . , fjn(x1, . . . , xn))

Given an equality system, we call this the corresponding iteration function.

Proposition 8 The function L is a solution to an equality system if and only if it

is a fixed point for the corresponding iteration function.

Proof. Easy observation. 2

Proposition 9 The iteration function defined above is monotone on Un.

Proof. Trivial. 2

The following observation is from Tarski11.
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Proposition 10 If n ≥ 2 is an integer and (U,v) is a complete lattice, then

(Un,vn) is also a complete lattice.

Proof. Easy. 2

Lemma 1 If S is an inequality system, then Eq(S) is satisfiable and has a unique

largest solution.

Proof. By Proposition 9, the corresponding iteration function from Definition 12

is monotonic. Since, by Proposition 10, (Un,vn) is a complete lattice, Corollary 2

applies, and the iteration function has a fixed point, which by Proposition 8 gives

us the result. 2

By Lemma 1, it is now well-defined to talk about the largest solution to Eq(S).

Lemma 2 Let S be an inequality system. Then the largest solution to Eq(S) is

also a solution to S; and it is the largest solution to S.

Proof. First note that S has at least one solution, namely the trivial solution,

where all variables are set to the bottom element of the lattice. Let L be a so-

lution to S. Assume that for some Mq, L(Mq) < uiL(Hi), where L(Hi) means

f(L(M ′1), . . . ,L(M ′p)), if Hi = f(M ′1, . . . ,M
′
p). Define L′ by

L′(M) =

{
L(M), if M 6= Mq

uiL(Hi), if M = Mq

Clearly L′ is larger than L. It is also a solution (to S) as for all Hi′ ,

L′(Mq) = uiL(Hi), by assumption
v uiL′(Hi), as L′ is larger than L and u is monotonic
v L′(Hi′), property of u

and if Mj 6= Mq, then for all Hi′ ,

L′(Mj) = L(Mj), by definition
v uiL(Hi), as L is a solution
v uiL′(Hi), as L′ is larger than L and u is monotonic
v L′(Hi′), property of u

By repetition of the above, the largest solution to S must have L(Mj) = uiL(Hi)

for all Mj ’s and corresponding right-hand sides. Thus, the largest solution to S is

to be found among the solutions to Eq(S). The result now follows from the trivial

observation that any solution to Eq(S) is also a solution to S. 2

7. Solving the General Problem

Solving the problem for relational algebra expressions with multiple occurrences

of the same relation name is more difficult. However, also some of these problem

instances have efficient solutions, though a corner of NP-hard problems remains out

of reach.

First, we consider the case where there is a perfect solution, i.e., a solution where

no resorting is necessary. It turns out that if such a solution exists, then it can be

found in polynomial time. The algorithm for this can also be used as the basis for
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M1 ⊆ M |E1

1
↓

M2 ⊆ M |E2

↑ M ⊆ M1⊗M2

↓ M1 ⊆ C(M, 〈E1\X〉)πX ↑ M ⊆ M1|X
↓ M1 ⊆ MbB ← Ac

δA←B ↑ M ⊆ M1bA← Bc

Table 7: Generating inequalities.

an algorithm which performs exhaustive search for a minimal number of places to

resort.

7.1. When a perfect solution exists

The real problem in the complex case of dealing with multiple occurrences is

circularity. It is not possible in a simple bottom-up manner to define the possible

sequences, since choices made for a subexpression containing one occurrence of a

certain relation name r will affect the possible choices near other occurrences.

The first step is to set up a number of constraints ruling out sort order sequences

which can definitely not be used:

Definition 13 Let e be a relational algebra expression with operators join, projec-

tion, and renaming. We define an inequational system InEq(e) over the variables

M1,M2, . . . ,Mn, where n is the number of subexpressions of e. One variable is

associated with each subexpression.

For a given subexpression with associated variable M , and with variables M1

(and for 1 also M2) associated with the immediate arguments of the top operator

of the subexpression, Table 7 lists the inequalities generated by that subexpression.j

Additionally, if two subexpressions e1 and e2 are identical relation names, we include

M1 ⊆M2 and M2 ⊆M1.

The idea is that if, for example, we know that only sequences in M can be used

for e1 1 e2, then no sequences outside M |E1
can be used for e1. This is expressed

by the inclusion M1 ⊆M |E1
.

Of course, the last two inequalities in the definition simply express that M1 =

M2. This is in order to capture that sorting or creating an index for one occurrence

of a relation name also benefits the other occurrences of that same relation name.

We now give the algorithm (Figure 5). The starting point is the set of inequal-

ities that we discussed above, and we find the largest solution to these, i.e., the

solution that rules out fewest sort order assignments. Then we gradually make this

solution smaller until all variables are assigned singleton sets. If that can be done,

then that solution describes a perfect sort order assignment. The difficulty lies in

gradually refining the solution. Great care must be taken to assure that not all

jThe symbols ↓ and ↑ are only included to improve readability. They refer to the parse tree,
and indicate whether the sequences in M limits the ones that can be in M1 (and possible M2), or
the other way around.
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Algorithm: Find sort order assignment
Input: an expression e
Output: a sort order assignment if one exists
Method:

let S be the system InEq(e)
let L be the largest solution to Eq(S)
while (∀Mi : |[[L(Mi)]]| ≥ 1) ∧ (∃Mi : |[[L(Mi)]]| > 1) do

choose Mi such that |[[L(Mi)]]| > 1
comment L(Mi) contains an 〈X〉 or an R-construct
if L(Mi) contains an 〈X〉 then

let p be L(Mi) with 〈X〉 replaced by any other
permutation expression over the set X

else
choose an inner-most R(P ) in L(Mi)
let p be L(Mi) with R(P ) replaced by C(P ) or C(PR)

endif
let S be S with the addition of the inequality Mi ⊆ p
let L be the largest solution to Eq(S)

endwhile
if ∃Mi : |[[L(Mi)]]| = 0 then

output “No solution exists.”
else

comment We now have ∀Mi : |[[L(Mi)]]| = 1
let f(i) = s if and only if [[L(Mi)]] = {s}
output “f”

endif

Figure 5: Algorithm “Find sort order assignment”.
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perfect sort orders are suddenly removed. Fortunately, there are parts of permuta-

tion expressions which can be identified syntactically and which can be modified in

such a way that the set of candidates for a perfect sort order assignment becomes

smaller, but also such that if a perfect sort order exists, there will, in each step, be

at least one perfect sort order which is not ruled out.

We now give a few examples illustrating how the algorithm works. Consider

the query (πA(r1) × r2) − r1, where R1 = {A,B} and R2 = {B}, and recall that

difference and Cartesian product are just treated as joins by the algorithm. First

we fix an enumeration of the subexpressions involved:

1. r1 (left-most) 2. πA(r1) 3. r2

4. πA(r1)× r2 5. r1 (right-most) 6. (πA(r1)× r2)− r1

Then we generate inequalities based on Table 7. The projection gives rise to the

following inequalities:

M1 ⊆ C(M2, B) M2 ⊆M1|A
From the Cartesian product (the join rules), we get the following:

M2 ⊆M4|A M3 ⊆M4|B M4 ⊆M2⊗M3

From the difference (the join rules), we get the following:

M4 ⊆M6|AB M5 ⊆M6|AB M6 ⊆M4⊗M5

These can actually be simplified. Since M6 is over {A,B}, the projection down to

that domain is unnecessary, and the join of permutation expressions is simply an

intersection in this case. Finally, since r1 appears twice, we get the following:

M1 ⊆M5 M5 ⊆M1

We assume that neither r1 nor r2 have indixes, so there are no further inequalities.

Applying the simplifications described above and combining right-hand sides,

we get the following system:

M1 ⊆ C(M2, B)4M5 M4 ⊆ M2⊗M34M6

M2 ⊆ M1|A4M4|A M5 ⊆ M14M6

M3 ⊆ M4|B M6 ⊆ M44M5

We solve this system by iterating the corresponding iteration function from the

top element of the product lattice until we reach a fixed point:

M1 M2 M3 M4 M5 M6

top 〈A,B〉 A B 〈A,B〉 〈A,B〉 〈A,B〉
1. iteration C(A,B) A B 〈A,B〉 〈A,B〉 〈A,B〉
2. iteration C(A,B) A B 〈A,B〉 C(A,B) 〈A,B〉
3. iteration C(A,B) A B 〈A,B〉 C(A,B) C(A,B)
4. iteration C(A,B) A B C(A,B) C(A,B) C(A,B)

This simple example illustrates how information moves around in the system. In

this case, we found a solution immediately, but often, the first fixed point will not

immediately be a solution. For instance, if we consider the very small expression

r1 1 r2, where R1 = {A,B,C} and R2 = {A,D}, the first fixed point will assign

C(A,R(〈B,C〉, D)) to the top node, so as it is done in the algorithm, the system

has to be restricted further and another iteration is necessary.
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That it is necessary to treat renaming can be seen from examples such as

πC(δA←C(r1)) × r1 with R1 = {A,B}, where only the sort order AB for r1 is

reasonable.

The rest of the section is devoted to the proof of correctness of the manipulations

just described informally, and to the proof of complexity.

We assume that all the nodes in the parse tree of the expression e to be analyzed

by the algorithm are numbered from 1 through n. In the inequational system, we use

variables M1 through Mn, and we assume that variable Mi is associated with node

i. A sort order assignment is thus a function from {1, . . . , n} to sets of sequences of

attribute names.

Definition 14 Let e be a relational algebra expression. A sort order assignment f

is contained in a solution L if and only if ∀i ∈ {1, . . . , n} : f(i) ∈ [[L(Mi)]].

In the algorithm, we repeatedly add inequalities to the initial inequality system.

In the following, we prove that only perfect sort orders which are explicitly ruled

out by these inequalities will actually disappear from the maximal solution.

Lemma 3 Let S be the system InEq(e) with the addition of the following h in-

equalities:

Mq1 ⊆ S1, Mq2 ⊆ S2, . . . , Mqp ⊆ Sh
where the Sj’s are permutation expressions and the Mqj ’s are variables (not neces-

sarily distinct) from InEq(e). Let LS be the largest solution to Eq(S). Then for

all perfect sort order assignments f , the following holds:

(∀j ∈ {1, . . . , h} : f(qj) ∈ [[Sj ]]) ⇒ f is contained in LS

Proof. Define L(Mi) = {C(f(i))} for all i ∈ {1, . . . , n}. Then L is a solution to

S. This is an easy observation: compare Definition 13 with the properties of a sort

order assignment as defined in Definition 1.

From Lemma 2, we know that L(Mi) ⊆ LS(Mi). Since L(Mi) = {f(i)}, it

follows that f(i) ∈ LS(Mi). 2

Corollary 3 Let f be a perfect sort order assignment for e and let L be the largest

solution to Eq(InEq(e)). Then ∀i : f(i) ∈ L(Mi).

Proof. From h = 0, i.e., no extra inequalities, so S is simply InEq(e). 2

It becomes important to be able to talk about two attribute names in different

subexpressions being semantically identical. However, when there are renamings

in an expression or multiple occurrences of the same relation name, it is not clear

which attribute names carry the same meaning, so we give a definition:

Definition 15 Let e be a relational algebra expression. First, we define the relation

immediately visible. Assume that the nodes i and j, i 6= j, correspond to the

subexpressions ei and ej, respectively.

If ei and ej are two identical relation names and the attribute A ∈ Ei (= Ej),

then
A at i is immediately visible from A at j, and
A at j is immediately visible from A at i.

If ei = πX(ej) and A ∈ X, then
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A at i is immediately visible from A at j, and
A at j is immediately visible from A at i.

If ei = ej 1 eh or ei = eh 1 ej for some eh and A ∈ Ej, then
A at i is immediately visible from A at j, and
A at j is immediately visible from A at i.

If ei = δA←B(ej), then
B at i is immediately visible from A at j, and
A at j is immediately visible from B at i,

and if C ∈ Ej\{A}, then
C at i is immediately visible from C at j, and
C at j is immediately visible from C at i.

The relation visible is now defined as the reflexive and transitive closure of the

relation immediately visible, i.e.,
A at i is visible from A at i, and

if C at k is visible from A at i
and B at j is immediately visible from C at k

then B at j is visible from A at i.
Obviously, attribute names are visible through paths in the syntax tree. We shall

refer to these paths as visibility paths.

The definition extends in the natural way to sets and sequences of attribute

names.

From knowledge about the structure of a permutation expression L(Mi), we

can infer knowledge about the structure of other permutation expressions L(Mj),

if attribute names from i are visible at j.

Lemma 4 Let e be a relational algebra expression and let L be the maximal solution

to Eq(S), where S contains at least all the inequalities in InEq(e).

1) Assume that L(Mi) contains 〈X〉 as a subexpression. If Y at j is visible from

X at i, then 〈Y 〉 is a subexpression of L(Mj).

2) Assume that L(Mi) contains R(U) as a subexpression. Let X = A(U). If

Y at j is visible from X at i, then R(V ), for some V with A(V ) = Y and

kv = ku, is a subexpression of L(Mj).

Proof. We only give the proof of the first statement; the proof of the second is

very similar.

In this proof, if X has cardinality 2, i.e., it is of the form {A,B}, 〈X〉 can

equivalently be written R(A,B). In that case, whenever we say 〈X〉, it could just

as well be R(A,B). Alternatively, the normal form could be changed to disallow

the 〈X〉 construction for X having cardinality 2.

The proof is by induction in the length of the visibility path through which Y

is visible from X. For the base case, the length being zero, there is nothing to

show as the premise reduces to X at i being visible from X at i. For the induction

step, assume that 〈Y 〉 is a subexpression of L(Mj′), where ej′ = πZ(ej). We want

to argue that 〈Y 〉 is a subexpression of L(Mj). According to the inequalities from

Definition 13, Mj′ ⊆Mj |Z and Mj ⊆ C(Mj′ , 〈Ej\Ej′〉). Since the latter implies that
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Mj |Z ⊆ Mj′ , we have that Mj′ = Mj |Z . As Y ⊆ Z, by definition of permutation

projection, 〈Y 〉 is a subexpression of L(Mj). The above also proves the reverse,

namely that if 〈Y 〉 is a subexpression of L(Mj) and Y is visible at j ′, then 〈Y 〉 is

also a subexpression of L(Mj′). The argument for join is very similar, and the fact

that the induction step also goes through for renaming is trivial. 2

The crucial part of the correctness proof is the following lemma. One could

fear that even if the expression e had a perfect sort order assignment and it was

contained in L, then maybe adding an extra inequality to the system by replacing a

〈X〉 construction or a R(P ) construction by another permutation expression would

have the effect of ruling out all remaining perfect sort orders assignments, in the

sense that no perfect sort order assignment would be contained in the new maximal

solution. We prove that this does not happen. We use the notation x[y/z] to denote

x with z replaced by y.

Lemma 5 Let e be a relational algebra expression and let L be the maximal solution

to S, where S contains at least all the inequalities in InEq(e). Assume that there

exists a perfect sort order assignment, f , which is contained in L.

1) Assume that for some i, 〈X〉 is a subexpression of L(Mi). Let S ′ be the set

of inequalities S with the addition of Mi ⊆ L(Mi)[p/〈X〉], where p is any

permutation expression over X. If L′ is the maximal solution to S ′, then

there exists at least one perfect sort order assignment contained in L′.

2) Assume that for some i, R(Q) is a subexpression of L(Mi) such that Q does

not contain any R-constructs. Let S ′ be the set of inequalities S with the

addition of Mi ⊆ L(Mi)[C(Q)/R(Q)] and let S ′′ be S with the addition of

Mi ⊆ L(Mi)[C(QR)/R(Q)]. If L′ and L′′ are the maximal solutions to S ′ and

S ′′, respectively, then at least one perfect sort order assignment is contained

in each of L′ and L′′.

Proof. We prove each statement separately.

1) Let s be the subsequence of f(i) which belongs to [[〈X〉]], and let t be any

sequence from [[p]], i.e., t is over X. We now define a sort order assignment

g. Let j be some node, we define the value of g on j. Let s1, . . . , sk be all

the strings at j which are visible from s at i. For each sh, let th be the

string at j which is visible from t at i through the same visibility path as

sh was visible from s through. The value of g on j should now be g(j) =

f(j)[t1/s1, . . . , tk/sk]. We prove that g is a perfect sort order assignment

contained in L′.
From Lemma 4, it follows that Y1, . . . , Yk exist such that for all h, sh and th
are strings over Yh, and 〈Yh〉 is a subexpression of L(Mj). Therefore, each

two sets have to be identical or disjoint. This means that g is well-defined,

since g(j) is a permutation of Ej .

We will argue that g is a perfect sort order assignment. If ej and ej′ are

identical relation names, then exactly the same sequences are visible at the
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two nodes, so g(j) = g(j ′). Now, assume that ej = πZ(ej′). If some sequences

s′h and t′h are visible at j′, then 〈Yh〉 is a subexpression of L(Mj′), by Lemma 4.

From Definition 1, it is obvious that only sequences which are Z-prefixed can

belong to [[L(Mj′)]]. Thus, either Yh ⊆ Z or Yh ⊆ Ej′ \Z. It now follows

from the definition of visibility that g(j) and g(j ′) agree on the Z-part. We

have proven that g is perfect. The fact that g is contained in L′ follows from

Lemma 3 and from the fact that all substrings in g(j) which are different from

the ones in f(j) are over Yh for some subexpression 〈Yh〉 of L(Mj).

The argument for join is very similar. Renaming is trivial.

2) Since [[R(Q)]] = [[C(Q)]] ∪ [[C(QR)]] and since f is contained in L, the subse-

quence of f(i), s, which belongs to [[R(Q)]], must belong to either [[C(Q)]] or

[[C(QR)]]. The sequence s is of the form s1 ·s2 · · · skq , where sh belongs to [[qh]]

for all h. Let t be the sequence skq · · · s2 · s1 (which belongs to [[C(QR)]]).

We can now proceed using s and t as we did in 1). The sort order assignment

g is defined in exactly the same way and the proof of g being well-defined is

practically the same. Now we consider the proof of g being perfect. Join is the

more difficult case, so assume that ej = ej1 1 ej2 . If R(U) is a subexpression

of L(Mj), where A(U) at j is visible from A(Q) at i, then there are the

following cases: A(U) ⊆ Ej1 \Ej2 , A(U) ⊆ Ej2 \Ej1 , or A(U) ⊆ Ej1 ∩ Ej2 .

These cases are similar to the ones from 1).

The only additional possible case is A(U) = (Ej1 ∪ Ej2)\(Ej1 ∩ Ej2). In any

other case, the permutation expression would necessarily contain sequences

not in [[Ej1⊗Ej2 ]], which is impossible; see Definition 13. So, we can now

assume that R(U) is of the form R(u1, . . . , up, . . . , uk), where A(u1, . . . , up) =

Ej1 \Ej2 and A(up+1, . . . , uk) = Ej2 \Ej1 . The u1, . . . , up in L(Mj) are not

immediately surrounded by an R-construct because then L(Mj) would also

contain that R-construct and the one we are currently looking at would not

be an inner-most one. This follows from Lemma 4. Furthermore, in this case,

we must have k = 2. Otherwise at least two of the uh’s would also appear

in L(Mj1) or L(Mj2). Since they are not surrounded by an R-construct, the

order of the two uh’s would be fixed. However, then the ordering of these

two permutation expressions would also be fixed in L(Mj1)⊗L(Mj2). Since

L(Mj) ⊆ L(Mj1)⊗L(Mj2), we get a contradiction, so k = 2. This means that

the substring of f(j) that we are changing when defining g from f is of the

form s1 · s2 and it is replaced by s2 · s1. Thus, there are no violations.

2

Theorem 4 Algorithm Find Sort Order Assignment solves the problem stated in

its specification.

Proof. If we find a solution L to the system S in the algorithm such that ∀Mi :

|[[L(Mi)]]| = 1, then the sequences in L clearly form a perfect sort order assignment.

From Corollary 3, it follows that L, the largest solution to Eq(InEq(e)), contains

every perfect sort order assignment for e. Furthermore, Lemma 5 proves that if the
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largest solution to S contains a perfect sort order assignment for e, then so does

the largest solution to S with the inequality Mi ⊆ p added. Thus, either no perfect

sort order assignment exists for e or the algorithm will find one. 2

We now prove an upper bound on the time complexity. If a permutation ex-

pression contains k attribute names, then it has size at most O(k · log(k)). This is

an obvious consequence of insisting that permutation expressions be kept in normal

form. When we perform operations on permutation expressions, we also operate

on the sets, i.e., the X’s in 〈X〉. To do that efficiently, they need to be sorted,

but this can be done in O(k · log(k)). Going through the structure of permutation

expressions, as we do when we perform operations on them, takes linear time in

their sizes, i.e., again O(k · log(k)). The total time to compute the next iteration

is then O(n · k · log(k)), where we now let k be the maximum number of attribute

names in any permutation expression.

To check for having reached the fixed point, we can simply compare the ith and

the (i− 1)th iteration before continuing. Again, this will take time O(k · log(k)) for

each entry. In total, we obtain O(n · k · log(k)) once again.

Finally, it is easy to check that whenever we perform one of our operations on

a permutation expression, the semantic size of the result will be at most half the

semantic size of the argument. The height of each (component) lattice is bounded

by k! (the number of different permutations of a set of size k), so the number of

iterations is bounded by O(n · log(k!)). As k! ∈ O(kk), we have that log(k!) ∈
O(k · log(k)). We get a total of O(n · k · log(k)) iterations.

In summary, we iterate at most O(n ·k · log(k)) times performing at most O(n ·k ·
log(k)) work each time around. This gives a total complexity of O(n2 · k2 · log2(k))

to find one fixed point.

In the algorithm, we find a new fixed point for each iteration of the while-

loop. However, if we calculate the new fixed point from the old one, we can obtain

O(n2 · k2 · log2(k)) as the total complexity of our algorithm.

When we find a fixed point 〈x1, . . . , xn〉, which does not yet consist of singleton

sets, we choose a variable Mi and include an extra inequality Mi ⊆ x, where x ⊆ xi
(actually [[x]] ⊆ [[xi]], as we represent our sets using permutation expressions).

We now perform an analysis to find out what happens when we continue iterating

from χ = 〈x1, . . . , xi−1, x, xi+1, . . . , xn〉. Let 〈y1, . . . , yn〉 be the next value. As

〈x1, . . . , xn〉 is a fixed point, the yj ’s which do not depend on Mi will not have

changed. Because of monotonicity, the yj ’s which depend on Mi can only become

smaller than the corresponding xj ’s. Finally, as we have included Mi ⊆ x in our

system, yi ⊆ x ⊆ xi. We have shown that 〈y1, . . . , yn〉 v χ. From Theorem 3, it

follows that the largest fixed point less than or equal to χ can be found by iterating

from χ.

As the semantic size of x is at most half the semantic size of xi, we can apply

exactly the same argument again, and we obtain that the total number of iterations

in the while-loop as a whole is bounded by O(n · k · log(k)), and we get a total

complexity of O(n2 · k2 · log2(k)).
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Algorithm: Minimal resort
Input: an expression e
Output: a minimal number of places to resort
Method:

for k := 1 to n do
forall k-tuples (i1, . . . , ik) do

let S be free InEq(e) on Mi1 , . . . ,Mik

let L be the maximal solution to S
if L is nontrivial then

use the technique from algorithm Find Sort Order to find
a sort order assignment f contained in L
output “f” and i1, . . . , ik
halt

endif
endforall

endfor

Figure 6: Algorithm “Minimal resort”.

7.2. Exhaustive search

We will briefly discuss what to do when no solution exists, i.e., when no perfect

sort order assignment exists for an expression. In that case, we have to resort

somewhere in the expression during the evaluation, and, obviously, we want to find

the (a) minimal number of places to do this.

By systematically checking all possibilities, we can use the algorithm Find Sort

Order Assignment to find a minimal number of places to resort. Of course, this

process will have exponential time complexity. However, for any fixed constant p, if

we know that the minimal number of places to resort is less than p, or if we are only

interested in solutions, where the number of places to resort is less than p, then the

algorithm runs in polynomial time.

First, we need to be able to register in the inequality system that we resort at

a certain node.

Definition 16 Let e be a relational algebra expression. We modify InEq(e) to

obtain a slightly different inequality system. Define free S on Mi by the following:

• substitute Mi with a new variable name in the single up-inequality in which

Mi appears.

• if ei is a relation name, then delete all of the inequalities which relates Mi to

other expressions, ej, where ei and ej are identical relation names.

The algorithm can now be defined (Figure 6).

8. Integration into Query Optimizers

Previous (heuristics-based) work on this problem has mixed other optimization

issues into the algorithms. This means that applying these kinds of techniques have
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had implications for a variety of other optimization design decisions. In contrast, we

have singled out the problem and given algorithms for exact solutions to queries.

This means that our technique can be useful in any query optimizer. Since, if

nothing else, it can be used last to obtain more information before choosing the

final access plan. In the following, we briefly discuss some of the most common

optimization issues in relation to our work.

Algebraic manipulations (like pushing selections etc.) which practically always

pay off should be performed before our algorithm is applied.

The next problem is the order in which to evaluate joins, and which algorithms

to use. If one relation in a join is small, the best method is to keep the small

relation in random access memory and to perform the join by repeatedly joining

small chunks of the larger relation with all of the smaller. This means that only

the sort order of the larger relation followed by the smaller can be output. In the

algorithms, this can be modeled by replacing this join with a unary version and

taking the expression giving rise to the smaller relation out for separate analysis.

If more than two relations are to be joined, join orders can be determined first,

and the algebraic structure of the query can be changed to reflect this. Some

systems use k-way merges, i.e., k (sorted) relations are merged at the same time.

This cannot be modeled with the operators we have, but a join of any arity can

be defined along the same lines as the binary one, and results carry over. It is

also possible to just analyze parts of a query. If hashing is preferred for removing

duplicates after a projection, our algorithm could be used only on the remaining

parts.

If the query optimizer is capable of finding identical subexpressions, this can

also be exploited here. The subexpression can be taken out and analyzed sepa-

rately. Then the whole query, with a new (non-existing) relation name put in for

the identical subexpressions, can be analyzed pretending that the permutation ex-

pression associated with the root of the subexpression is the set of indexes for this

new relation.

In the algorithms, for generality, we have used the whole schema as a key. In

practice, a key is often just one attribute. This will speed-up the analysis, since

only the keys are of interest in deciding on sort orders. So, instead of using the

schema, it is sufficient to use the part of the schema containing the keys.

Sometimes, our algorithms may find several solutions, i.e., there may be different

sets of nodes which form a set of minimal violations to some sort order assignment.

In those cases, heuristics on the sizes of temporary relations can be applied after

our analysis to choose the best of the ones offered.

The proofs and algorithms presented here can be adapted to many different mod-

els as discussed above, but, as usual, it will require some work and experimentation

to obtain the best possible solution for a concrete query language.
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