Discrete Mathematics and Theoretical Computer Sciehd®99, 1

Partially Persistent Search Trees with
Transcript Operations |

Kim S. Larserf

Department of Mathematics and Computer Science, Uniyes$iSouthern Denmark, Main Campus: Odense Uni-
versity, Campusvej 55, DK—5230 Odense M, Denntksk,ar sen@i nada. sdu. dk

received ?revised ?accepted ?

When dictionaries are persistent, it is natural to intr@dadranscript operation which reports the status changes fo
a given key over time. We discuss when and how a time and sfiiaciers implementation of this operation can be
provided.

Keywords: data structures, search trees, persistence, complexity

1 Introduction

When balanced binary search trees are made partially persistent using the pyithgrotethod [5], the
possibility of searching efficiently for information in the past is addo the system. The operations
of updating the present version and searching in the present as well aspasth@e asymptotically as
efficient as in the corresponding normal (non-persistent) binary seaeh tr

In database applications, it is sometimes desirable to produce tragsafripformation change over
time. If we wish to obtain a transcript of information related to somgktrom version numbev; to vo,
this can be obtained by independent search operations in all versions imtémaal in timeO(ph), where
h is the maximum height of the search tree in that interval, @edv, — v1 + 1 is the number of versions
betweenv; andv,. We discuss when and how this can be reduced(to+ p) by maintaining one extra
pointer with a version number in each node, without changing the asyimptonplexity of any of the
existing operations.

In database applications, search trees are usually leaf-oriented, which meaailt kgt reside in
the leaves, and internal nodes contain routers guiding the search to teetdeaf. Leaves are often of
another type than the internal nodes, and contain extra pointers or spac@tng values associated with

T A preliminary version of this paper appeared in the proaegsiof the 15th Symposium on Theoretical Aspects of Computer
Science 1998 (STACS'98), Lecture Notes in Computer Scievie 1373, pages 309-319, Springer-Verlag, 1998.

* This work was carried out while the author was visiting thep@#ment of Computer Sciences, University of Wisconsin at
Madison. Supported in part by SNF (Denmark), in part by NSFS(Jgrant CCR-9510244, and in part by thePRITLONg Term
Research Programme of the EU under project number 20942om-1T).

1365-80500) 1999 Maison de I'lnformatique et des Mathématiques Ri&s (MIMD), Paris, France

2 Kim S. Larsen

their keys. We remain faithful to this model, and the extra pointeickvis introduced only appears in
internal nodes. Leaves will contain no extra information compared tsitigge version scenario.

The complexity of the transcript operation turns out to depend ondftam leaves can get new parents
during rebalancing. We introduce the concept of search treedimitied leaf actionas a necessary and
sufficient condition for a balanced search tree scheme to be equipped with anéffizhscript operation
using the method outlined in this paper.

The most interesting case to consider is the case wb@ph) is large, i.e., there are a large number of
versions. For the case where we change to a new version whenever a fixeahtonsnber of updates
has been carried out (or earlier), we show that the transcript operation campated in timeO(h+ p),
whereh is the height of the tree in version. If updates in the given tree take tin@¥h), they remain
O(h). As in [5], space consumption is linear in the number of changes made strticture.

Among the balanced search tree schemes which turn out to have limited leaf atioed-black
trees [7] and treaps [3], for instance. So, here updating bec@ftlegn) (for treaps, expected time)
and transcript®©(logn+ p) (for treaps, the log part is expected time).

In the next section, we first define leaf-oriented search trees, then we élxeendo become partially
persistent, and finally, we include the transcript additions. Indfiewiing sections, we discuss correct-
ness, complexity, and future work.

2 Transcript Trees

When search trees are used in database applications, the trees areleattallignted This means that
only the leaves contain keys. The internal nodes contain routers, wiaaf #re same type as the keys
and which direct the searches to the correct location as usual in a search tree eHoweers need not
be present as keys in the tree. This means that we do not have to update vdhenever a deletion takes
place. For an internal node, the keys in its left subtree are smaller thanalrtedts router, and the keys
in its right subtree are larger. A leaf-oriented tree is alwajisllaree, i.e., every internal node has two
children. This simplifies the deletion operation.

Searching and Updating

To inserta keyk in the tree, search fdras usual. An unsuccessful search ends up in a leaf, Fapew
internal nodeu is created in place df andl and a new leal’ containing the kek are made the children
nodes ofu. The one containing the smaller key will be the left child. The roofeu is a copy of the
key contained in its left child. Thus, there are new pointers in themashe, but only one pointer in the
existing structure is changed. See Figure 1.

To deletea keyk from the tree, first search féras usual in a search tree. If the key is found in the leaf
I, its parent is replaced by the sibling nodd ofAgain, a node and its pointers are deleted, but only one
pointer is changed. See Figure 2.

The insertion and deletion operations are callpdateoperations. Itis easy to prove that while a router
r is present in the tree, no new node with the same router can be created ilfpsrtant since otherwise
rotations could violate the search tree invariant.

We assume that some scheme for maintaining balanced search trees will behusedh&@ nodes con-
tain additional fields for registering heights, colors, or other balamfcemation. The update operations
may manipulate these fields, and there will be a collection of rebalancingtapes, which after each

Partially Persistent Search Trees with Transcript Operations 3

PN

Fig. 1: Insertion of 33 into a leaf-oriented tree.
K
A

Fig. 2: Deletion of 42 in a leaf-oriented tree.

update, by manipulating the fields and applying rotations, will make that the balance constraints, if
violated by the update, are again fulfilled. We discuss this in greater tettail

However, we require that any rebalancing operation can be expressed as ataunsiaer of single
rotations carried out as described now (see Figure 3).

The single rotation can be eitheght (in the direction of the arrow) deft (in the opposite direction of
the arrow). We give the requirements for a right rotation; the datheimilar. Assume that the parent of
v is a nodew, and assume without loss of generality that it points Wa its left pointer. Then carry out
v.left:=u.right; u.right:=v; w.left:=u.

This could be done differently. However, the whole point is thatesomust keep their identity since
we introduce new pointers which should aim at the correct nodes, eventhdsmnare moved around by
rebalancing operations. Balance information can be updated by the rebalapenagians in any way
desired.

Note that this requirement is no (real) restriction. This is exactlythg single rotations are always
performed, and double rotations are always expressed such that thefemdtequals the result of two
consecutive single rotations. In fact, any binary search tree can be coedtftmt any other binary
search tree with the same keys by applying a sequence of single rotatlers® not know of any scheme
which does not conform to this requirement, except the ones which apply fym of global rebuilding
asin [2, 6].

4 Kim S. Larsen

O
— N M

A AR

Fig. 3: Single rotation (to the right).

Partial Persistence

We now make the search tree partially persistent usingdke-copying methdé]. A partially persistent
structure is a structure which supports multiple versions, suahall versions can be accessed, but only
the newest version can be modified. We assume that versions are numhegedonsecutive integers.
All nodes have a field stating under which version they were created. fitwse has a number ehtry
pointers (pointers to roots of different versions) which also harsien numbers.

For balanced search trees, the node-copying method can be used in a simpiifig8]folVe use an
extended version of that simplified form. We retain what is referred toeasapy pointey equip it with
a version number, and update it as in the original method. For complsteares because we build on
top of this basic method, we describe it here, but emphasize that a vélarslescription has been given
in [5].

There are three types of information in a balanced search tree: keys, paamigtsalance information.
As information considered, we are only interested in the keys. Sinceaweonly update the newest
version, balance information is not needed for older versions. We alvedngdance after an update, so
when we switch to a new version, the older versions will remain balanagestdo So, only keys and
pointers from old versions must be kept, and it is safe to overwidtbalance information.

When we insert a new key, we create an entirely new node to put it in.c8eyninformation is being
changed. Instead, it is one pointer in one node that is being changedudertble new node. Similarly,
when we delete a key, this is done by changing one pointer to cut oabtles in which the key resides.
So, we only need to discuss pointer updates; not key updates.

To avoid copying too many nodes every time a pointer must be changdds iave one extra field
for a pointer update. So, nodes in the tree have fidddg:left, right, vn, extra, andcopy, where “vn” is
short for “version number”. The fieldxtrais composite, and has the following fieldstr, dir, andvn
for recording the new pointer, which pointer it replaces (s Left or Righ{, and in which version it was
done (“ptr” is short for “pointer” and “dir” is short for “direction”)The fieldcopyis also composite with
fieldsptr andvn.

An update in the newest versiois handled as described now. We explain the action which must be
taken foronepointer change. If an update (or a rebalancing operation) involves sevar@mthanges,
the procedure is repeated.

If the nodeu in which the update is made has version nunibéhe update overwrites the existing
pointer. Otherwise, if the extra field has version nunilzard its direction field indicates the pointer to be

Partially Persistent Search Trees with Transcript Operations 5

updated, the pointer in the extra field is overwritten.

If neither case applies, there are two possibilities depending on whethetthe extra field has already
been used. If it has not, the update is made there, also setting the diréeliiband setting the version
number tai.

Otherwise, a new nodemust be made. This is the only case, where the procedure does not terminate
immediately. The key and theewesteft and right pointers fronu are copied intw, i.e., the pointer in
the extra field ofu and the pointer fronu which wasnot overwritten in the extra field. Thewvis version
number is set td and its extra and copy fields to nil. Finally, the copy fieldiirs set to point tos, and
its version number is set 0 Thus, copy pointers link together sequences of nodes which are basically
the “same” node at different times. Now, the parentighust be updated to point winstead. This is
donerecursivelyusing the method just outlined, i.e., the effects of an update contipirethe tree along
the update path for as long as there are nodes where the extra field has beadysed by an earlier
version, or has been used in the opposite direction of the update p#tle lbyrrent version. If the root
is copied, then a new entry pointer to the new root with version nuimbereated. For an example, see
Figure 4. Nodes, extra pointers (in the middle), and copy pointlrshed) have version numbers. Thick
lines indicate parts of the tree which were present before the operatiercurrent version number is 3.

Fig. 4: Inserting 21.

Searching becomes slightly more complicated after these changes. Searchinbystatiowing an
entry pointer. There will not necessarily be an entry pointer for each versistead, when accessing
versionj, the entry pointer with the largest version numher< j, should be used.

At each node, a decision to continue the search to the left or the rightbaustde. As usual, this
decision is made by comparing the key to be found with the route) (Rehie node. However, when the
decision has been made to proceed to the left, for instance, theretesteft pointer no newer tham
must be followed, i.e., if the left pointer has been updated in the >chand the version number of the
extra field is at most, then the pointer in the extra field should be followed. Otherwlse original left
pointer is taken.

The following result, or more general ones, are proven in [5].

Theorem 1 When the node-copying method is applied to a pointer structure fahwthere is an upper
boundp on the number of pointers that can point to any one node, then if nodes petsistent version
are equipped with at leagtextra pointers, the following holds.

6 Kim S. Larsen

e The asymptotic complexity of searching in any version in the perdistencture is equal to the
asymptotic complexity of searching in the standard structure comelépgto that version.

e The persistence actions carried out after one pointer change are performedrtizagnconstant
time.

e When searching in the newest version, only the last node in a copy sequamnie accessed.

a

Note that in connection with the trees we use here, only the parent ofeacamdpoint to that node, so
one extra field suffices. Also, since we use only a constant amounivsece in each step, space usage
per pointer update is also amortized constant.

With the definitions in this section, the structure is no longeea,tbut a directed acyclic graph. How-
ever, we will keep referring to it as a tree.

Transcript Facilitating Additions

In this section, we extend the updating and rebalancing procedures ethar.fuve first describe our goal
informally and then we give the exact description of the proceduregrtperties of which will be used
in the correctness proof later.

The general idea is that if we want to keep track of some Kethen we position ourselves at the
internal node under whickis found (or would be inserted). When changing version, fiaro v, say,
the internal node with that property may be deleted, or an insertiortation may have the effect that it
is now another node which has the given property.

Therefore, whenever we make an update or a rotation, we also build a pathttfe node with the
given property in versiom; to the one with that property in version, such that later, during a transcript
operation, it will be fast to get to that new node. We make sure the patfotected in the sense that no
later pointer updates can alter it.

The result is a tree as in [5] with extra pointers and copies of nodesmggatitected paths which run
through the tree (over time) at the levels just above the leaves.

We now turn to the concrete additions. Note first that when an interrd# rodeleted, no pointer
updates can ever be applied to it again. This means that its copy pointeevélipe used. In other words,
we are free to use it for other purposes (this is safe since the copyep@ never used in searching).
Additionally, when an insertion or a rotation is carried out, we rré&yger a copying of a node which
would not have been made at that time in the original method. This mieahistcontrast to [5], we can
have several copies of a node with the same version number. These ardytbhanges we are making.
Whenever the copy pointer is set, its version number is also set, andedit is the newest (that is, the
current) version. From now on, we will not mention the version nemighen discussing the setting of
the copy pointer.

For deletion, there are two cases. First assume that both of the chiltitea ioternal nodei to be
deleted are leaves. The deletion is performed, and the copy poiniés gét to point to the newest copy
of the parent ofl.

Now assume that the internal node to be deleted has only one leaf among ithitdren. After the
deletion has been performed, the copy pointeuds set as follows. If the leaf is its left child, then
its copy pointer is set to point to iie-order internal successafthe left-most internal node in its right

Partially Persistent Search Trees with Transcript Operations 7

subtree). This case is illustrated in Figure 5. Note that persistenamsatill continue above the node
with key 7, but this is not shown. Similarly, if the leaf is its igchild, then its copy pointer is set to

Fig. 5: Deleting the key 8 from a transcript tree.

point to itsin-order internal predecessdthe right-most internal node in its left subtree). The successor
(or predecessor) is found by a search in the newest version of the stratdtting at the internal node to
be deleted.

For insertion, we do the following. As described earlier, we first sefockhe correct leaf, and the
only pointer in the existing structure which is changed is the otledrinternal node which points to the
leaf in question. We make the insertion as usual for leaf-oriented tredgirapiine necessary persistence
actions, i.e.y may be copied. When this is completed, we trigger a new copy @f of the copy of, if
v has already been copied during the insertion. This last case is illustnaffgglire 6. Note that since the
node with key 27 is copied, other actions will take place further upértride, but this is not shown.

Fig. 6: Insertion of key 33 into a transcript tree.

8 Kim S. Larsen

The actions taken for a rotation are similar to those for insertionist, Ehe rotation is carried out,
and all the necessary persistence actions are taken. Then if the right chi{deédr to Figure 3) before
the rotation was a leaf, we trigger a new copy of the newest versionds uoln general, to make a
description which covers left as well as right rotations, if the middletiee is a leaf, we trigger a new
copy. An example of this is given in Figure 7. In that example, noaeptiinters were in use before the
rotation. Note that persistence actions due to the copying will coatip in the part of the tree aboue
(not shown).

Fig. 7: Right rotation in a transcript tree.

The Transcript Operation

The transcript operation can now be defined. It takes akkayd two version numberg andv, (with

vi < V) as parameters and prints the histonkdfetween these two versions. More precisely, a line is
printed for every version, stating whether or kds in the tree. In a practical application, there would
most likely be values associated with each key, and those could be printedl &hase might not be the
same every tim& appears in the tree).

The implementation is given in Figure 8. We explain the ingredieeltsvia

We have mostly used standard notation in the algorithms, but we eotnom a few points. We have
used an enumeration type with the two values Left and Right. Boolean sigmesre evaluated C-style,
i.e., they are evaluated from left to right and as soon as the final valdeeafiole expression can be
deduced, evaluation is aborted. When we use the expredsie; (e), the boolean expressidnis
evaluated first. If it evaluates to true, then the result of the wholeessfon is the result of evaluatieg.
Otherwise, it is the result of evaluatirg. In order to avoid too many details, we assume that the tree is
always non-empty.

We assume that we have a function Leaf which decides if a node is a leaf, andteh Entry which
given a version number, returns the entry pointer to be used.

The functionFind finds the parent of a given key in a given version. This is simply a seaxckept that
we return the parent of the key. The leaf in the direction we would seartihd k (or rather, to check
whether or nok is in the tree at the time) is referred to as teef possibly containing.kFind calls Go
which takes one step down in the tree by going left or right as apprepAasuming that we are located
at the parent of the leaf possibly containikgStatusreturns the information as to whether or tois

Partially Persistent Search Trees with Transcript Operations 9

present.

Transcriptworks by repeatedly callingdvance The functionAdvanceis called with a key, a node
u, and a version number Except for the first call, the assumption is that the informatiornrnetd by the
previous call tcAdvancewas fromu in versioni — 1, i.e.,u was the internal node which could have a leaf
child containingk. Advancdinds the next similar node in versionand returns information on the status
of k at that time, as well as the node.

3 Correctness

The only non-trivial operation is the functigkdvance We must argue that it always advances (so termi-
nation is guaranteed) and not too much (such that information is ovexdyok

When searching through versioby starting at the entry pointer, one will see versi@s it appeared
when we switched to the next version. However, the current version canckesging right until we
switch. This complicates the searchAgvancesven after we have switched to a new version because we
do not enter via the entry pointer. Thus, we may see parts of versibich were temporary, and which
would never be found when entering “correctly”. This is the reason fontiike loop in functionAdvance
Whenever we usEind, we are searching in versiaras it appeared at some point; not necessarily in its
final appearance. For instance, several deletions could be made in the sanreseeitsioay be necessary
to follow the copy pointer several times.

The reason for triggering a node copying in connection with insestaond rotations is that the parent
of the leaf possibly containing changes. By triggering a copying of the node which used to be the
parent, we ensure that no later operations can prevent us from accessing thereet. Thus, we build a
protected path from the parent of the leaf possibly contaikingone version to the (possibly new) parent
in the next.

Theorem 1 If we are at the node equal toFind(Entry(i — 1),k,i — 1), i > 1, thenAdvancék, u,i) will
bring us tov equal toFind(Entry(i), k,i).

Proof Assuming thatAdvancebrings us fromu to v, it follows a path in the tree; this is not necessarily
a direct path from one node to a descendant since copy pointers can alstowedolWe call this the
advance pathThe proof is by induction. However, we strengthen the inductigrothesis by adding that
no pointer changes can be made to nodes on the advance path except the last.

We prove by induction in the number of modifications in the tree bgieeri or greater thaf\dvance
will find the nodev. Actually, since nodes are never physically deleted, and pointers are\erhyritten
if created by the version performing the update, updates in versions giteatéicannot affect the path,
so it is sufficient to consider updates by version

The base case is when no modifications have taken place. In that case, theddarand end node
v are identical, scAdvancewill certainly find v (immediately after switching to versidn searching in
versioni is identical to searching in versian- 1). Additionally, the advance path consists of a single
node (which is then last), so the second part of the hypothesis fotivially.

Assume that some operation changes the advance path. By induction, tige ¢harade by altering
or adding a pointer in the last node on the path. We consider the apesatiturn.

Assume that an insertion changed the advance path, and assume withofigileserality that the leaf
possibly containing (before the insertion) is to the left. If the insertion is also maa¢he left, the
advance path will continue first by either following the left pointéti{e node in question is from version

10 Kim S. Larsen

i), the extra pointer, or, if that was already used, by following theyqampnter and then the left pointer.
This brings us to the new internal node which, by the insertionbeaeme the new parent of the leaf
possibly containing.

Since a new copy is triggered as the last action taken during an insertsirexe updates are always
performed in the newest nodes, none of the pointers described in the edroever be altered. Thus, it is
still the case that no pointer changes can be made to nodes on the advance@gattthexast.

If the insertion is made to the right, then only the copy pointerbeélfollowed (possibly twice) and we
are again at the correct location.

Now, we assume that a deletion makes a change to the lastimodée advance path. Ufis the internal
node which is deleted, the copy pointer is set to point to the correctioeation (since the location is
actually found by a search in the newest version), and since a deleted nodeveaib@® accessed by an
updating operation again, no changes can be made to nodes on the advance pathestastplfu is the
parent of the internal node to be deleted, the advance path is either not clifitige@xtra pointer was
used for the update), or the copy pointer frarto the newest version af becomes part of the advance
path.

Finally, we must consider rebalancing operations. As required, theystofig number of single rota-
tion. Thus, we only need to consider one single rotation. Assuatetkingle rotation (Figures 3 and 7)
makes a change to the last node on the advance patim Figure 3 is the last node, since it keeps it leaf
(©), the path is either not changed or it is extended with one copy pointerthE nodeu, the situation
is similar if A is the leaf possibly containinky So, assume th& is the leaf in question. This is exactly
the case where a copy ofis triggered after the rotation as shown in Figure 7. Thus, the néutgyon u
leading to the new parent of the leaf possibly contairkrmgnnot be altered again. Thus, except for the
new last node\), nodes on the advance path cannot be changed. |

4 Complexity

The most interesting case to consider is the one where there are maiygessice that is when search-
ing from an entry pointer through each version would be very time comgunWe assume that after a
fixed constant number of updates (or earlier) and the rebalancing operatioed tguhe updates, we

change to a new version. We consider the behaviéwyancainder that restriction.

Complexity of Transcript

Since a copy pointer which is set up during a deletion points to a nditthwvas in the tree at the time
(though it may be from an older version), any additional copy pointera there must be at least as new.
This is also the case for copy pointers created by insertions. Since tieeoalgira constant number of
updates, the functioAdvancecan follow such pointers at most a constant number of times to get from
one version to the next.

Rebalancing does not necessarily behave that well. In the following, wadsgrrestrictions on the
behavior of rebalancing which lead to the best possible complexities.

A rotation as described earlier which triggers a copying of a node, becausedtiie subtree is a leaf
I, is referred to as aexpensiveotation, and the rotation is said to be expensiue tothe leafl.

Definition 1 A balanced binary search tree scheme is said to hianted leaf actionif there exists a
constant such that for any ledf and any update, the number of expensive rotations dieihbich are
carried out in response to the update, is bounded by a

Partially Persistent Search Trees with Transcript Operations 11

If a balanced search tree scheme has limited leaf action,Aldgancewill find the correct node in
constant time, since, referring to the proof of Theorem 1, the advancespetiteinded with only a con-
stant number of edges for each insertion, deletion, and expensive rotate change version after a
bounded number of updates. Thus, the complexity of the transcrigpaitipn isO(logn + p), wheren is
the number of elements in the start version for the reporting.

Itis now interesting to determine which schemes have limited leaf actied-HRack trees [7] do, since,
as itis pointed out in [5], rebalancing after an update consists of at hrest totations (single or double).
The remaining rebalancing operations are recolorings.

Also treaps [3] have limited leaf action. Only single rotations are usdceaps, and in a sequence
of rotations following an insertion, it is always the same node wisdhe bottom-most node of the two
internal nodes in the rotation. It is easy to show that after it has losbat two leaf children, its children
are going to be internal nodes from that point on. Deletions can be viasvegl/erse insertions.

AVL-trees [1] and BBp]-trees [9, 4, 8] also have limited leaf action. As soon as one gets just so
fixed constant distance up towards the root from the place of an updateththeelationship between
heights and sizes, respectively, of subtrees implies that none of tHegdwsbtrees can be leaves.

Other Complexity Considerations

Searching in a transcript tree is clearly of the same asymptotic compéeih [5].

For updates, the additions only increase the complexity by a constetor,f since the work carried
out in connection with pointer updating and triggering of copies, bgdfam 1, is amortized constant
per pointer change. Though setting the copy pointer in connection widhetieh requires a search, this
action is taken in connection with an update, so the total complexity adtepdemains bounded by the
height of the tree.

If the transcript operation is implemented using binary search treeswithadance constraints, the
complexity of the transcript operation becon@@ + p), whereh is the height of the first version from
which we report, and updates beco®h), whereh is the height of the tree at the time of the update.

From the discussion above, it also follows that search trees where theenafpointer changes in
response to an update is amortized constant will use space only linear mumhber of updates. This
applies to red-black trees and RBftrees, for instance. The expected number of rotations carried out in
response to an update in a treap is two, so space consumption for treapedsed linear.

5 Concluding Remarks

The status of a key is not necessarily changed in every version. Thus,falleeving a copy pointer,
we may skip over a large number of versions. This can be exploited éoagiunning time which can
sometimes be significantly better. The algorithm would then onlyt prilme whenever the status of the
key had changed. It would be interesting to investigate this behadog olosely; both theoretically, but
also empirically under some average use of search trees.

A chronological transcript involving more than one key could be poedl by merging separate tran-
scripts. HoweverJranscripthas been expressed vAalvancewhich reports one change at a time. Thus,
the total chronological transcript can be produced directly by maintaaimgpority queue with an entry
for each key and the version number as the priority. This is more feaisli.e., it would start printing out
the transcript earlier.

12 Kim S. Larsen

If the number of pointers is not a concern, then there is an easier solamide that the standard
search tree should have all the parents of leaves connected in a doublylisikeBly [5], we obtain
the optimal asymptotic amortized complexities. However, more pmsrdare needed. The doubly linked
list uses additional pointers, but since nodes can now have more tegiretecessor (there are now 3),
nodes must be equipped with predecessor pointers (see [5]) such thadesl rederring to an updated
node can themselves be updated. Additionally, there must be morefiektie corresponding to the
number of predecessors (the amortized constant results from [5] depehid)orThough the amortized
time complexity would be the same, the worst case complexity of aatapdould beQ(n) instead of
O(logn) obtained by a balanced transcript tree. This happens when all the extrarfieltithie nodes in
the doubly linked list have been used. In that case, every node in tineus be copied.

References

[1] G. M. Adel'son-Vel'skil and E. M. Landis. An Algorithm for gnOrganisation of Informatiomok-
lady Akadamii Nauk SSSR46:263-266, 1962. In Russian. English translaticBamiet Math. Dok-
lady, 3:1259-1263, 1962.

[2] A. Andersson. Improving Partial Rebuilding by Using Simplal&ce Criteria. In Frank Dehne,
Jorg-Rudiger Sack, and Nicola Santoro, edithes;ture Notes in Computer Science, Vol. 382: 1st
Wokshop on Algorithms and Data Structyrpages 393-402. Springer-Verlag, 1989.

[3] C. R. Aragon and R. G. Seidel. Randomized Search Tred2dceedings of the 30th Annual IEEE
Symposium on the Foundations of Computer Scigreges 540-545, 1989.

[4] N. Blum and K. Mehlhorn. On the Average Number of Rebalancing Operaifio\Weight-Balanced
Trees.Theoretical Computer Scienckl:303-320, 1980.

[5] J. R. Driscaoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making [Ztactures Persisterdliournal
of Computer and System Scien@@&86—-124, 1989.

[6] I. Galperinand R. L. Rivest. Scapegoat TreesitmnACM-SIAM Symposium on Discrete Algorithms
pages 165-174, 1993.

[7] L. J. Guibas and R. Sedgewick. A Dichromatic Framework for BalanceeslrinProceedings of
the 19th Annual IEEE Symposium on the Foundations of Compcitem; pages 8-21, 1978.

[8] K. Mehlhorn.Sorting and Searchingolume 1 ofData Structures and AlgorithmSpringer-Verlag,
1986.

[9] J. Nievergelt and M. Reingold. Binary Search Trees of Bounded Bal&iéd&1 Journal on Com-
puting 2(1):33-43, 1973.

Partially Persistent Search Trees with Transcript Operations

13

func Go(u: Node, dir: Dir, i: Version): Node
if u.extraZ nil and u.extra.dir= dir and u.extra.vn< i then
return u.extra.ptr
else
return (dir = Left ? u.left: u.right)

func Find(u: Node, k: Key, i: Version): Node
v := (k <u.key ? Go(u, Left, i) : Go(u, Right, i))
return (Leaf(v) ? u: Find(v, k, i))

func Status(u: Node, k: Key, i: Version): Bool
dir := (k < u.key ? Left: Right)
if u.extraZ nil and u.extra.dir= dir and u.extra.vn< i then
return u.extra.ptr.key= k
else
return (dir = Left ? u.left.key : u.right.key} k

func Advance(k: Key, u: Node, i: VersionjBool, Nodg
u := Find(u, k, i)
while u.copy# nil and u.copy.vn< i do
u := Find(u.copy.ptr, k, i)
return (Status(u, k, i), ¥

proc Transcript(k: Node, v1, v2: Version)
u = Entry(vl)
fori:=vltov2do
(s, U := Advance(k, u, i)
print i, k, s

Fig. 8: The transcript operation.

