Relaxed Balance using Standard Rotations*

Kim S. Larsen! Eljas Soisalon-Soininen* Peter Widmayer®

Abstract

In search trees with relaxed balance, rebalancing transformations
need not be connected with updates, but may be delayed. For stan-
dard AVL tree rebalancing, we prove that even though the rebalancing
operations are uncoupled from updates, their total number is bounded
by O(M log(M + N)), where M is the number of updates to an AVL
tree of initial size N. Hence, relaxed balancing of AVL trees comes
at no extra cost asymptotically. Furthermore, our scheme differs from
most other relaxed balancing schemes in an important aspect: No re-
balancing transformation can be done in the wrong direction, i.e., no
performed rotation can make the tree less balanced. Moreover, each
performed rotation indeed corresponds to a real imbalance situation
in the tree. Finally, and perhaps most importantly, our structure is
capable of forgetting registered imbalance if later updates happen to
improve the situation. Our results are of theoretical interest and have
possible sequential and parallel applications.

*A preliminary version of this paper appeared in the proceedings of the Fifth Interna-
tional Workshop on Algorithms and Data Structures, 1997.

fCorresponding author. Department of Mathematics and Computer Science, Univer-
sity of Southern Denmark, Main campus: Odense University, Campusvej 55, DK-5230
Odense M, Denmark. Phone: +45 6550 2328. Fax: -+45 6593 2691. Email:
kslarsen@imada.sdu.dk. The work of this author was supported in part by SNF (Den-
mark), in part by NSF (U.S.) grant CCR-9510244, and in part by the ESPRIT Long Term
Research Programme of the EU under project number 20244 (ALCOM-IT).

iDepartment of Computer Science and Engineering, Helsinki University of Technology,
P.O.Box 540, FIN-02015 HUT, Finland. E-mail: ess@cs.hut.fi.

$Institut fiir Theoretische Informatik, ETH Zentrum, CH-8092 Ziirich, Switzerland.
E-mail: widmayer@inf.ethz.ch.

1 Introduction

When using search trees, rebalancing is normally carried out in connection
with and immediately following the updates. As early as in [5], it was sug-
gested that the two processes could be separated such that no rebalancing
is required immediately following the update. However, only in recent years
has this possibility been studied extensively. Structures with these features
are now generally referred to as search trees with relaxed balance. In these
structures, rebalancing is taken care of at some later time in small steps
which may be interleaved (or carried out concurrently) with new updates.

A main motivation for this work is theoretical insight regarding these impor-
tant data structures, the search trees. Clearly, if rebalancing is not carried
out completely immediately after an update, some control over the data
structures is lost. In particular, the structure could become unbalanced. It
is therefore very interesting to determine whether or not it is still possible to
rebalance efficiently; preferably as efficiently as in the standard search trees.

Apart from the theoretical interest, there could be important applications.
For instance, if updates come in bursts from some external source at a speed
which temporarily exceeds the volume which can be handled by a standard
search tree, then rebalancing could be “turned off” until the burst is over,
relying on the updating being close enough to a uniform distribution during
this small time period that search times do not increase significantly. After
the burst, but while updating still continues at a slower pace, the delayed as
well as the new rebalancing could be carried out.

In a parallel environment on a shared-memory multi-processor, relaxed struc-
tures offer a possible solution to some concurrency control problems, by al-
lowing a high degree of concurrency. This is important in applications where
dictionaries must be accessed fast and with no down periods (where the tree
could be rebuilt). Examples of such applications are flight reservation sys-
tems and cellular phone switching systems. There are other options than
using a search tree for these kind of problems. Various hashing schemes
exist, some of which can be used in a concurrent environment. However,
search trees can support more operations efficiently, such as nearest neighbor
searches and batch updates.

A detailed account for why rebalancing immediately after insertions or dele-

tions counteracts attempts to increase parallelism can be found in many
papers on data structures for shared-memory architectures. In [3, 10], in
particular, this is discussed in the context of relaxed balancing. The problem
is that the path from the highest “unsafe” node (which might be the root)
to the update must be locked, since otherwise a process might loose the path
during the rebalancing phase on its way back up the tree.

The alternative option of using top-down rebalancing is not attractive either
because of all the unnecessary structural changes that top-down methods
incur. With bottom-up rebalancing, only the changes necessitated by the
update are carried out. With top-down rebalancing on the other hand, one
must, on the way down the search path, prepare for the worst-case scenario
further down in the tree. In order to prevent problems from propagating back
up the search path, the top-down process must ensure that configurations on
the search path are not left in the extremes. For example, when making
an insertion into an AVL tree, whenever the top-down process advances to
the left (right) from a node with balance factor +1 (—1), a rotation must be
performed. This implies that several costly rotations that block all concurrent
operations must be performed, in contrast to the bottom-up strategy that
requires at most one rotation.

Several proposals for solving the problem of relaxed balancing in search tree
structures have been presented [3, 4, 6, 7, 8, 9, 10, 11]. However, a draw-
back in the previous solutions for the problem of relaxed balancing is that
a single balancing transformation need not make the tree more balanced. It
is natural to require that each structure changing operation is locally ben-
eficial because in a concurrent environment urgent searches are present all
the time. Moreover, it can be expected that the total number of necessary
balancing transformations will be decreased, at least on the average, when
none of them makes the tree less balanced.

Our solution has the distinctive property that it maintains the actual heights
of the nodes and will thus base all decisions of whether or not to perform a
rotation on the heights of the nodes in the tree. This property is important
because then delayed rebalancing tasks will be forgotten when the ongoing
insert and delete operations themselves make the tree balanced. Observe
that all previous solutions to relaxed balancing work in such a way that
balance conflicts from the history are remembered and gradually resolved.
For example, a chromatic tree [4, 11] or a stratified tree [12] may be full of

3

conflicts that must be resolved even though the tree is perfectly balanced.
This ability to forget problems of imbalance when they are taken care of
automatically by later updates could be very important; in particular, if
updates come from a uniform distribution. However, this property cannot
be captured in a proof of worst-case complexity.

In the present paper, we propose a solution in which the balancing transfor-
mations are the standard ones used in a sequential solution. This means in
particular that they are small compared to rebalancing operations in some
of the previous proposals. Also this is important in a parallel environment,
because fewer locks are necessary at any given time, and they would also
be held less long, since less work has to be done in order to carry out the
operation. The results of the present paper may also be considered to be of
general interest as regards the theory of search tree structures. The question
we address is the following: Is it possible to balance a binary search tree
globally in such a way that only those portions of the tree which are indeed
out of balance are modified? Moreover, changes in the tree should be allowed
in the meantime, and the efficiency of balancing from the standard structures
should be retained. We have obtained positive answers to these questions in
the case of AVL trees.

In [13], a preliminary sketch of our relaxed balancing scheme was presented.
In this present paper, that scheme is presented in full. Additionally, this
paper contains a proof that each update gives rise to at most a logarithmic
number of rebalancing operations.

2 Height-Valued Binary Search Trees

We consider binary search trees as implementing a totally ordered finite set
S of keys chosen from a given domain. We allow the standard operations
search(k), insert(k), and delete(k), that is, search for key k, insert key k into
set S, and delete key k from set S.

We assume that the trees are leaf-oriented binary search trees, which are full
binary trees (each node has either two or no children) with the keys stored in
the leaves. The internal nodes contain routers, which guide the search from
the root to a leaf. The router stored in a node v must be greater than or

equal to any key stored in the leaves of v’s left subtree and smaller than any
key in the leaves of v’s right subtree. The routers need not be keys stored in
the leaves of the tree.

The height of a node u in a tree, denoted as height(u), is defined as the length
of a longest path from u to a leaf in the subtree rooted at u. The height of a
tree is the height of its root. We will consider search trees where the balance
condition is the AVL balance condition, that is, for each internal node the
difference of the heights of its two subtrees is at most one.

With each node u of a binary search tree we associate an integer, called a
height value, denoted hv(u), which is either —1 or height(u). If hv(u) # —1,
that is, hv(u) = height(u), then we require that for the child nodes v; and
vg of w both (i) and (ii) hold:

(i) hv(vy) = height(vy), hv(vy) = height(vs), and

(ii) the difference of the heights of v; and vy, is at most one, i.e., |height (vy)—
height(vs)| < 1.

A binary search tree with the associated height values stored in the nodes is
called a height-valued tree.

We say that node u exhibits a balance conflict if hv(u) = —1; otherwise, u
is said to be in balance. A height-valued tree T is said to be completely in
balance, if all its nodes are in balance. In this case, T is clearly an AVL tree.

The idea in the use of height-valued trees is that insertions and deletions cause
non-negative height values in the search paths to be set to —1. These values
of —1 are gradually changed to real heights by balancing transformations.

The insert and delete operations are defined below.

Insert(k): The tree is searched with key k. Whenever along this search path
there is an internal node u with hv(u) # —1, hv(u) is set to —1. If the key
is found, the process terminates.

An unsuccessful search ends up in a leaf, say [. A new internal node u is
created in place of [, and [and a new leaf I’ containing the key k& are made
child nodes of u. The children are ordered such that the one containing the
smaller key will be the left child of u. The router of u is a copy of the key
contained in its left child.

The height value of I’ is set to 0, and the height value of u is set to 1.

Delete(k): The tree is searched with key k. Whenever along this search
path there is an internal node u such that hv(u) # —1, hv(u) is set to —1.
If the key is not found, the process terminates. Otherwise the leaf, denoted

[, containing the key k is removed. Its parent is replaced by the sibling node
of [.

The following observation is immediate.

Observation 1 When applied to a height-valued tree, the insert and delete
operations preserve the height-valued property of the tree. O

Some of the definitions given above are motivated by the choice to prepare
the structure for possible concurrent use. For instance, height value fields are
set to —1 on the way to an update before it is known what the outcome of
the update is. In that way there is no need to return later, which is difficult
in a concurrent setting. Likewise, a leaf-oriented version is used to ensure
that deletions can be carried out locally. In the standard setting, deleting a
key in a binary node involves another node (containing the key’s successor
or predecessor) which may be more than a constant distance away.

3 Rebalancing a Height-Valued Tree

The task of rebalancing a height-valued tree is to remove all balance con-
flicts from the tree. Moreover, this should be possible by using small local
transformations that allow—besides the concurrent searches—new insertions
or deletions to occur.

Our strategy in resolving a balance conflict in a height-valued tree is to
advance bottom-up so that a conflict in a node u will be resolved only if
both subtrees of u contain no conflicts. This can be checked by looking at
the child nodes of u only, because the subtrees of u are free from conflicts
exactly when the height values of the child nodes of u are their true heights.

Let u be a node that exhibits a conflict, and let v; and vy be the children of
u, such that both v; and vy have height values different from —1. Call u the
root of the operation before rebalancing. We have two cases to consider.

6

ORI C
H B A G
AN/ /N @

Figure 1: Single rotation.

Case 1: Finishing rebalancing; |height(v,) — height(vy)| < 1. In this case,
the AVL balance condition is retained at u, and we simply set

hv(u) = max{hv(vy), hv(vy)} + 1.

Case 2: Rotations; |height(vy) — height(ve)| > 1. In this case, a single
or a double rotation is performed exactly in the same way as is done in the
standard AVL tree balancing algorithm [1]. We assume here that v; is the left
child and that height(v1) > height(vy). The left subtree of node v, is denoted
by A and the right subtree by B. There are two sub cases depending on the
heights of A and B.

Case 2a: Single rotation; height(A) > height(B). In this case, a single
rotation to the right at u will be performed, see Fig. 1. After the rotation,
the nodes u, vy, v9, and the subtrees A and B are denoted by ’, v}, vj, A',
and B’, respectively. The height values of v} and v’ are set to —1. Node v}
is called the root of the operation after rebalancing.

Case 2b: Double rotation; height(A) < height(B). The root of B is
denoted by w and its subtrees by B; and B,. In this case, a double rotation
will be performed, see Fig. 2. The height values of w’ and v are set to —1.
Node w' is called the root of the operation after rebalancing.

We prove the following invariant for height-valued trees.

Proposition 2 If a node has height value different from —1, then no conflicts
can exist below this node. Additionally, there is always a conflicting node
with both child nodes without conflicts, if the tree contains conflicts at all.

7

Figure 2: Double rotation.

Proof We prove the first claim first. The proof is by induction on the
number of operations which are carried out.

For the base case, when no operations have been carried out on a given
height-balanced tree, all height values are different from —1, so the claim
follows trivially.

For the induction step, we assume that the invariant has held up until a given
point and consider all possible next operations.

If the next operation is an update, any node u with hv(u) # —1 after the
update must lie off the search path. Therefore, no nodes in its subtree are
altered. So by the induction hypothesis, the property still holds.

Assume that the next operation is a rebalancing operation. Since hv(vy) #
—1 and hv(vy) # —1, it follows from the induction hypothesis that every node
w in the subtrees of v; and vy has hv(w) # —1. Thus, v in Case 2a and v}
and v} in Case 2b can safely be made different from —1. Furthermore, since
hv(u) = —1 before the operation, we can set the height value of all nodes in
any connected component which includes the top node after the operation
to —1. This cannot violate the invariant.

The second claim of the proposition follows from the fact that height values
of leaves are different from —1. O

Note that due to Proposition 2, a tree that is not completely in balance

8

must contain a node to which one of the two cases from the definition of the
rebalancing applies. In the next section, we will analyze the progress towards
a balanced tree that such a step is guaranteed to make.

4 The Efficiency of Relaxed Balancing

We assume that at some point we have a height-valued tree which is com-
pletely in balance. In this section, we show that rebalancing is logarithmic.
More precisely, if M updates are carried out on the tree, then the number
of rebalancing operations which can be applied before the tree is again in
balance is O(M log(N + M)), where N is the size of the tree when it was
last in balance. This result is proven to hold no matter how updates and
rebalancing operations are interleaved. The proof technique is amortized
analysis [14]. The case where all updates are carried out before rebalancing
is initiated was treated in [13].

For the purpose of the analysis, we divide the nodes up into three categories:
passive, active, and hyperactive. Initially, all nodes are passive. After that,
nodes that are traversed during an update, or that are involved in a rebal-
ancing operation change status as described below.

Leaves are always categorized as passive. For an update, all nodes on the
update path become active no matter what their status was before the up-
date. A finishing rebalancing operation changes the status of the root of the
operation to passive. Any other rebalancing operation leaves the root of the
operation (after it is carried out) as active, and the node u’ as hyperactive.
Because rebalancing advances from bottom to top, we get the following:

Observation 3

e A passive node can only have passive children.

e The children of a hyperactive node are passive.

|

Proposition 4 On a path from the root to a leaf, there is at most one
hyperactive node.

Proof Only rotations introduce hyperactive nodes. Consider a path from
the root through a hyperactive node, newly created by a rotation. The only
node on that path which could be hyperactive before the rotation was carried
out is the top node of the operation before the rotation is carried out, since,
by Observation 3, nodes higher up in the tree do not have passive children.

a

The maximal height difference between two subtrees of a node u, both of
which are balanced AVL trees, is denoted mhd(n), where n is the number
of nodes in the subtree rooted at u. We will abuse notation and frequently
write mhd(u) instead of mhd(n). Since the smallest possible subtree is a leaf,
mhd(n) must equal the height of the highest AVL tree with n — 2 nodes. It
is well known that the minimum number of nodes in an AVL tree of height
his Fjy3 — 1 [2], where the Fibonacci numbers F; are defined recursively by
Fy=F,=1and F; = F;_1+F;,_5,1 > 3. From the inequality Fj, 3—1 < n—2,
it is easy to show that h < Llog¢(\/5n)J — 3 = mhd(n), where ¢ is the golden

1+5

ratio 3

, approximately equal to 1.618.

Proposition 5 A rebalancing operation op can increase the height difference
for at most one node not involved in the operation. If this happens, the
increase is one.

Proof Clearly, only nodes between the location for the rebalancing operation
and the root of the tree can be affected. Let wuq,us, ..., u; be these nodes,
where uy, is the root of the tree, and wu; is the root of the operation before
rebalancing. Note that the rebalancing operation cannot increase the height
of the subtree with root w;. This height can remain unchanged or decrease
by one. This is true for both single and double rotations. Since height is
defined recursively, whenever the height of some node u; remains unchanged,
no nodes above wu; will change height. So, assume that the height of u;
decreases. Let t be the smallest index of a node on the path, the height
of which remains unchanged. For any index j < t, since the height of u;
decreases, its subtree containing u; was the highest before the operation.
Thus, the height difference at u; decreases. This means that only at u; can
the height difference possibly increase; and at most by one. m|

10

Definition 6 We refer to the rebalancing operation op and the node wy
defined in Proposition 5 and the proof of that proposition. We call op a
height difference increasing operation targeted at ;. |

Let us now define a potential function that measures the degree of imbalance
in a tree, relative to the AVL tree requirements. Intuitively, in the course
of events, a node u will become active at some point in time, and then stay
active and stay the root of its subtree for a while. During that time, updates
may pass through v down into u’s subtree, and rotations targeted at u may
be carried out in u’s subtree. Both intuitively contribute to the imbalance
at u. In addition, u starts with an initial imbalance that may be high if
its state went from hyperactive to active, and that is zero or one if u was
passive before becoming hyperactive. On the other hand, the imbalance at u
intuitively cannot exceed the worst imbalance in an AVL tree, mhd(n). The
potential function takes these three effects into account, in the following way.
For an active node u, let upd(u) be the number of updates passing through
u since u was last non-active (hyperactive or passive). Let hio(u) be the
number of height difference increasing operations targeted at u since u was
last non-active. Let ina(u) be the height difference between the two subtrees
of u when u was last non-active.

Definition 7 The potential of a height-valued tree T is defined as the sum
of the potentials of its nodes. The potential of a node u with children v and
w is defined as follows, depending on the state of the node:

’ State ‘ Potential ‘
passive 0
active 2[min(upd(u) + hio(u) + Ina(u), mhd(n)) — 1] + 1
hyperactive | 2[|height(v) — height(w)| — 1] + 1

where

2] = x, ifx>0
~ | 0, otherwise

11

In the following, for a node u, we refer to 2[mhd(u) — 1] + 1 as u’s mazimal
potential.

More intuition concerning the potential function: The —1 reflects that AVL
trees allow heights to differ with one. The +1 reflects that even if height
difference is zero, if the node is still active (because rebalancing is currently
taking place beneath it), we must be able to provide a decrease in the poten-
tial function when we return to perform a finishing rebalancing operation.
The multiplication with 2 ensures that when a rebalancing operation de-
creases a height difference with one, two units are “released”. One of these
will give us the potential decrease, whereas the other will become the 41 on
a node which becomes active due to the rebalancing operation.

Our strategy for obtaining the complexity result is to prove that an update
increases the potential with at most O(logn), where n is the current size of
the tree, and that a rebalancing operation decreases the potential with at
least one.

Lemma 8 Fix any path from a leaf to the root, let uy, us, ..., ux be those
nodes on this path for which the potential of u;, ¢ = 1,...,k, is non-zero
and less than maximal. Let n; be the size of the subtree rooted at u;, and
assume that the nodes are listed in the order they are encountered. Then

k< Uquﬁ(\/gnk)J — 3+ logy(2(ny, + 1))

Proof Consider the node uy. Since its potential is not maximal, fewer
than mhd(ny) — 1 updates have gone through wu; since it was last passive or
hyperactive. Since, by Observation 3, a node which is passive or hyperactive
has balanced subtrees, u; had a balanced subtree at the time it was last
non-active, and the height of that subtree was at least h = k — 1 — upd(uy,) >
k — mhd(ny). Such a tree contains at least Fj, .3 — 1 nodes. So, ny > Fj.3 —
1 — upd(uy) > Fyi3 — 1 — mhd(ny) — 1. This gives an upper bound on k:

Since F; > ¢' 2,

¢k7mhd(nk) =2 < Fo i mhdmy+s — 2 < e + mhd(ny).

So,
qbk < ¢mhd(nk)(nk + mhd(ny) + 2).

From the value of mhd(n;) and the (trivial) fact that mhd(ny) < ny,

12

ke < [log,(VBnk)] — 3+ log,(2(ny, + 1)).

O

Lemma 9 For any path from a leaf to the root, let uy, us, ..., ux be those
nodes on the path with maximum potential, listed in the order they are
encountered. Let n; denote the size of the subtree rooted at u;. The poten-
tial increase for these k nodes due to an insertion below u; is bounded by
2(mhd(ny + 1) — mhd(n,)).

Proof First note that since w; is in the subtree of u;q, i € {1,...,k — 1},
we have that n; < n;y1, son; +1 < n;q and mhd(n; + 1) < mhd(n;;1), since
this function is nondecreasing.

Now, the potential increase, I, is
I = YF . 2(mhd(n; +1) = 1) +1) = % (2(mhd(n;) — 1) + 1)
= 2%F (mhd(n; + 1) — mhd(n;))
< 2(mhd(ng + 1) — mhd(n,)), by the observation above
O

Lemma 10 For any path from a leaf to the root, let uy, us, ..., ug be all
those nodes on the path with zero potential, listed in the order they are
encountered. Then k < [log,(V5(ny, + 1) + 1)) — 2.

Proof Since the nodes have zero potential, they are all passive. By Ob-
servation 3, wuy is the root of a subtree where all nodes are passive, i.e., the
subtree is a standard AVL tree. Thus, Fj_1,3—1 < ny from which the result
follows. O

Lemma 11 An update increases the potential by at most O(log(N + M)).

Proof By Proposition 4, there is at most one hyperactive node on an update
path from the root to a leaf. This node becomes active instead. The potential

13

increase for this node is certainly bounded by O(mhd(N)). The rest of the
nodes are either active or passive. Active nodes remain active, but since the
number of nodes in their subtrees may change due to the update, the poten-
tial may increase. The active nodes may either have reached their maximal
potential or not. By Lemma 8, the total potential increase for the active
nodes with less than maximal potential is logarithmically bounded, and by
Lemma 9, the total potential increase for the nodes of maximal potential
is logarithmically bounded. Finally, passive nodes become active and their
potential increases from 0 to a constant (at most 3). Due to Lemma 10, the
total increase for these nodes is also logarithmically bounded. We conclude
that an update gives rise to a potential increase of at most O(log(N + M)).

a

Lemma 12 A rebalancing operation decreases the potential by at least 1.

Proof There are three types of rebalancing operations: finishing, single
rotation, and double rotation. We treat them separately.

Finishing: Only the top node of the operation changes status from active
or hyperactive to passive. By definition, active and hyperactive nodes have
potential at least 1 and passive nodes have potential 0.

Rotations: For both types of rotations, the root u of the operation before
the operation is carried out has its status changed from active to hyperactive
(if it is not already hyperactive). We analyze this first.

When u was last hyperactive or passive, it had a potential of 2[x — 1] + 1,
where x was the height difference of its subtrees. Since then, the height
difference of u’s subtrees can only increase if there is an update, and in
that case clearly by at most 1, or if a height difference increasing operation
targeted at u is carried out, and in that case, by Proposition 5, by at most
one. So, upd(u) + hio(u) + Ina(u) is at least the current height difference of
its subtrees. On the other hand, u’s children are roots of balanced subtrees,
so the height difference cannot exceed mhd(n), where n is the size of the
subtree rooted at w. In summary, changing the status of u from active to
hyperactive cannot increase the potential. In the rest of this proof, we can
therefore safely assume that u is hyperactive.

Single rotation: Referring to Fig. 1, the assumption is that height(A) >

14

height(B). Since the subtree rooted at v is balanced, height(A) = height(B)
or height(A) = height(B) + 1. We treat these two cases separately.

If height(A) = height(B)+1, then the height difference between the subtrees
of u' is two less than the height difference between the subtrees of u. This
gives a potential decrease of 4. The node v] becomes active, but the height
difference between its subtrees is zero, so it only needs a potential of 1. Even
if there is a potential increase of 2 due to this operation increasing the height
difference between two subtrees elsewhere in the tree (by Proposition 5, this
can happen to at most one node), the total potential change is still negative.

If height(A) = height(B), then the height of the root of the operation before
it is carried out is equal to the height of the root after the operation is carried
out. Thus, the operation will not increase the height difference between the
subtrees of any other nodes in the tree. The height difference at u’ is one
less than it was at u, decreasing the potential by 2, allowing the potential at
v} to be set to 1, while still getting a total potential decrease.

Double rotation: Referring to Fig. 2, note that v; remains passive. The
height difference at u' is two less than it was at u, and the height of the
subtree decreases by one, so the argument is the same as for the “height(A) =
height(B) + 17 case above. O

Theorem 13 Rebalancing is amortized logarithmic.

Proof We assume that we have an AVL tree T' with N nodes. The potential
of such a tree is zero. In Lemma 11 it is shown that an update increases the
potential by at most O(log(N + M)), and in Lemma 12 it is shown that
a rebalancing operation decreases the potential by at least one. Since the
potential cannot be negative, the result follows from these two parts. O

5 Concluding Remarks

We summarize the important aspects of the results in this paper.

The fact that a relaxed scheme with a complexity comparable to the standard
case can be designed was already known. From a theoretical point of view, the
news is that it can be done using only standard single and double rotations,

15

and it can be done in such a way that every rebalancing operation which is
carried out is applied to a genuine problem of imbalance, and thus, makes
the tree more balanced. In the other proposals for relaxed balance, trees can
be full of conflicts which rebalancing operations must work on, despite of
actually being in balance. We explain this in greater detail for the proposals
for relaxed red-black trees (chromatic trees) [3, 4, 10]. In those proposals,
conflicts are sequences of red nodes in a row, or overweighted nodes, i.e.,
nodes that are not red or black, but double black, triple black, etc. It is
possible to have conflicts in a tree despite of the fact that the nodes of
the tree could be colored red and black in such a way that there would be
no conflicts at all. Thus, in such a proposal, conflicts do not necessarily
correspond to a real problem of imbalance, and conflicts are not forgotten
when later updates automatically balances the tree.

With regards to an implementation on a shared-memory system, we have the
following additional comments.

The rebalancing operations are small. Our scheme uses standard rotations
as known from the sequential case instead of the larger operations proposed
in some papers. This means that the number of exclusive locks that has
to be held at the same time is smaller. Since fewer locks must be obtained
and fewer pointers moved, the locks that we have to hold are also released
earlier than in other proposals. This is important because other processors
are prevented from entering the whole subtree of a node which is exclusively

locked.

In comparison with several other schemes for relaxed balancing, ours is more
restricted since operations can only be applied to bottom-most problems.
However, the issues of registering problems of imbalance and deciding when
and where to rebalance must still be considered in a concrete application. So-
lutions will vary depending on the concrete balance schemes and on whether
sequential or concurrent implementations are considered. We leave it as an
open problem to find the optimal algorithms for the different scenarios.

Finally, in a concrete application, it is important that the number of rebal-
ancing operations which has to be carried out in response to an update is
fairly small. We have proven that it is logarithmic, but the constant in front
of the logarithmic term is also quite small. From the potential function, it is
clear that the constant is at most two, possibly smaller.

16

References

1]

2]

[10]

[11]

G. M. Adel’son-Vels’kii and E. M. Landis, An algorithm for the organi-
sation of information, Soviet Math. Dokl. 3 (1962) 1259-1262.

A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data structures and algo-
rithms, Addison-Wesley, 1983.

J. Boyar, R. Fagerberg, and K. S. Larsen, Amortization results for chro-
matic search trees, with an application to priority queues, Journal of
Computer and System Sciences 55 (1997) 504-521.

J. Boyar and K. S. Larsen, Efficient rebalancing of chromatic search
trees. Journal of Computer and System Sciences 49 (1994) 667-682.

L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced
trees. Proceedings of the 19th Annual IEEE Symposium on the Foun-
dations of Computer Science (1978) 8-21.

S. Hanke, T. Ottmann, and E. Soisalon-Soininen, Relaxed balanced red-
black trees, Third Italian Conference on Algorithms and Complexity,
Lecture Notes in Computer Science 1203 (1997) 193-204.

J. L. W. Kessels, On-the-fly optimization of data structures, Comm.
ACM 26 (1983) 895-901.

K. S. Larsen, AVL trees with relaxed balance, Proc. 8th International
Parallel Processing Symposium, IEEE Computer Society Press, 1994,
pp. 888-893.

K. S. Larsen and R. Fagerberg, Efficient rebalancing of B-trees with
relaxed balance, International Journal of Foundations of Computer Sci-
ence 7 (1996) 196-202.

O. Nurmi and E. Soisalon-Soininen, Uncoupling updating and rebalanc-
ing in chromatic binary search trees, Proc. 10th ACM Symposium on
Principles of Database Systems, 1991, pp. 192-198.

O. Nurmi, E. Soisalon-Soininen and D. Wood, Concurrency control in
database structures with relaxed balance, Proc. 6th ACM Symposium
on Principles of Database Systems, 1987, pp. 170-176.

17

[12] T. Ottmann and E. Soisalon-Soininen, Relaxed balancing made simple,
Technical Report 71, Institut fiir Informatik, Universitat Freiburg, Ger-
many, 1995.

[13] E. Soisalon-Soininen and P. Widmayer, Relaxed balancing in search
trees, Advances in Algorithms, Languages, and Complexity (D.-Z. Du
and K.-I. Ko, eds.), Kluwer Academic Publishers, 1997, pp. 267-283.

[14] R. E. Tarjan, Amortized computational complexity. SIAM J. Alg. Disc.
Meth. 6 (1985) 306-318.

18

