
Compilers: Scil Code Generation Invariants

a topic in

DM565 – Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

October, 2023

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 1 / 8



Compiler Phases

Scanner

Parser

Symbol Collection

Type Checking

Code Generation

Emit

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 2 / 8



Invariants

Without formulating this very formally, invariants are conditions one can rely
one throughout the compiler.
We establish/maintain invariants by following protocols in various situations.
Work has to be done to ensure that all constructs adhere to the protocols.
The benefit is that it is much easier to implement constructions when we
know some invariants we can rely on.

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 3 / 8



Concrete Invariants in Scil

The stack organization in the form of stack frames.
Constructions “consuming” a number of operands pop them from the stack;
the stack top is the last argument.
Constructions “producing” a result push this onto the stack.
For constructions with multiple operands, the operands are processed
left-to-right.
Function calls use the stack for all parameters.
A function’s return value is stored in %rax.
We use 64 bits (8 bytes) for all types of values.

Some of these invariants were chosen for simplicity at some (fairly limited) cost in
efficiency.

One conclusion is that no registers contain values that will be used again after a
function call.

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 4 / 8



The Stack Frame (Activation Record)

... next frame

... temporary saves

... callee-save registers

... local variables
caller’s %rbp ←− callee’s %rbp
return address
static link −→ parent’s %rbp position
first parameter
·
·
last parameter
... caller-save registers
... previous frame

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 5 / 8



Stack Frame Protocols: Caller

1 (push caller-save registers)
2 push parameters in reverse order
3 compute and push static link
4 call function [return value in %rax]
5 pop/deallocate static link and parameters
6 (pop/deallocate caller-save registers)

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 6 / 8



Stack Frame Protocols: Callee

1 push %rbp
2 movq %rsp, %rbp
3 allocate stack space for local variables
4 (push callee-save registers)
5 perform computation:

parameter 1 in 24(%rbp)
return value in %rax

6 (pop callee-save registers)
7 deallocate local variables
8 pop %rbp
9 ret

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 7 / 8



Understanding Scil Generated Code

./compiler < scil_program.src > file.s writes assembler code to
file.s (unless the program was bugged), so you can look at it. Attempts
have been made to produce also well-commented assembler code to the
extent possible for generated code.
If you want to see how other constructions are handled, you can write small
C-programs: gcc -S program.c produces a file program.s you can inspect
(but simplicity has been traded for efficiency). You sometimes get a few
comments with gcc -S -fverbose-asm program.c.
When writing/understanding assembler code, draw the stack and register
content (or use a debugger for the same purpose).

Kim Skak Larsen (IMADA) DM565 topic: Compilers October, 2023 8 / 8


