
Scil Version 1.1.1 Documentation

Kim Skak Larsen

June 26, 2020

Abstract
This documents the Scil compiler implementation meant for teach-

ing purposes, and the name is an acronym for “A simple compiler in
a learning environment”. The goal of the implementation is to illus-
trate important compiler techniques in a simple setting and to enable
the students to make minor adjustments and extensions. The source
language is a simple imperative language, with integers being the only
type, but including expressions, assignments, control structures, and
function definitions and calls, including recursion and static nested
scope. The target language is 64 bit X86 Assembly/GAS Syntax. The
discussions here detail the language and the use of this software in a
linux environment. Note that focus is on clarity in the compiler code
as well as in the generated assembler code and not on efficiency or
optimizations.

Introduction

This documentation is very brief and will likely be extended. It can only
be understood fully with some knowledge of standard programming lan-
guages and the workings of a compiler, corresponding to an introductory
undergraduate course on the topic.
Everything is developed so it will run in IMADA’s Computer Lab. However,
if you want to use your own laptop, possibly on another platform than Linux,
there is further information last in this document.

Development

The Scil compiler is written in Python, developed using Python 3.6.7, and
the ply package version 3.11.

1

Attempts were made to follow the PEP 8 style guide for python code and
verify this via flake8, using the command

python3 -m flake8 --exclude parsetab .py *.py

parsetab.py is generated by the ply package and does not conform to
PEP 8. Due to conditions in the same package, a few lines in the file
lexer_parser.py are longer than recommended.

Use

On command line, the compiler can be run as

./ compiler .py < test_file .src

Or prefixed with python (python3) if the file compiler.py does not have
execution permissions.
Output is sent to stdout. Thus, to run the compiled programs, one possible
command sequence is:

./ compiler < test_file .src > assembler_file .s
gcc assembler_file .s
./a.out

If the input program is bugged, the first detected error is reported and
compilation is terminated.
A small collection of test programs are available in the test directory.
See the test and platform sections for trouble-shooting of various kinds.

Language

Scil is a very simple imperative programming language designed for teach-
ing. It has only one native type, integer, so all variables are of that type.
Comparison operators are included, so Boolean expressions in a limited form
are available in if-then-else-statements (else cannot be omitted) and while-
statements. Additionally, the language includes basic arithmetic, assign-
ment, a print statement (no input), and, most importantly, function defini-
tions and calls. It supports static nested scope. Compound statements are

2

surrounded by curly brackets (C-style), but these do not introduce a new
scope.
The language is partially defined by the grammar of Fig. 1.
In the grammar, ident and integer are written as terminal symbols, but
they represent usual identifiers and non-negative integers. bin_op can be
any of the standard four arithmetic operations (division is integer division)
or any of the six comparison operators (C-style). There is no unary minus.
A type checking phase ensures that programs are statically type correct
before target code is generated.
It is a requirement that a return statement is the last statement executed
in any scope (〈body〉); this includes the main scope, which should normally
return zero.

Phases

The phases of the compiler are listed in Fig. 2.
The scanner and parser phases implement lexical and syntax analysis and
are tightly coupled due to the use of the ply package. The phase returns an
abstract syntax tree (AST).
The symbol collection phase collects all identifiers from the AST, adding
them to a symbol table, organized in units corresponding to the scopes of
the user program. The phase registers the placement of variables and formal
parameters in sequences for later use in connection with offsets in the code
generation phase.
Using the AST and the symbol table, the type checking phase checks that
the program is statically correct.
The code generation phase generates the assembler code from the AST,
using a few meta-instructions that indicate caller/callee code blocks, etc.
The emit phase outputs the finished assembler.

Tests

In the test directory, a number of test programs and corresponding expected
outputs are available. This can be useful as a starting point to see what
programs look like and to have access to some that are guaranteed to be

3

〈program〉 : 〈body〉
〈body〉 : 〈optional_variables_declaration_list〉

〈optional_functions_declaration_list〉
〈statement_list〉

〈optional_variables_declaration_list〉 : ε
| 〈variables_declaration_list〉

〈variables_declaration_list〉 : var 〈variables_list〉
| var 〈variables_list〉 〈variables_declaration_list〉

〈variables_list〉 : ident
| ident , 〈variables_list〉

〈optional_functions_declaration_list〉 : ε
| 〈functions_declaration_list〉

〈functions_declaration_list〉 : 〈function〉
| 〈function〉 〈functions_declaration_list〉

〈function〉 : function ident (〈optional_parameter_list〉) { 〈body〉 }
〈optional_parameter_list〉 : ε

| 〈parameter_list〉
〈parameter_list〉 : ident

| ident , 〈parameter_list〉
〈statement〉 : return 〈expression〉 ;

| print 〈expression〉 ;
| ident = 〈expression〉 ;
| if 〈expression〉 then 〈statement〉 else 〈statement〉
| while 〈expression〉 do 〈statement〉
| { 〈statement_list〉 }

〈statement_list〉 : 〈statement〉
| 〈statement〉 〈statement_list〉

〈expression〉 : integer
| ident
| ident (〈optional_expression_list〉)
| 〈expression〉 bin_op 〈expression〉
| (〈expression〉)

〈optional_expression_list〉 : ε
| 〈expression_list〉

〈expression_list〉 : 〈expression〉
| 〈expression〉 , 〈expression_list〉

Figure 1: The grammar defining Scil.

4

Scanner

Parser

Symbol Collection

Type Checking

Code Generation

Emit

Figure 2: The phases of Scil.

correct. Note, however, that there are also programs that are intentionally
incorrect, with the aim of testing error messages etc. from the compiler.
A number of programs for testing can be found in the verification directory,
including Python programs and (bash) scripts. The scripts should have
execution permission. If these permissions get lost during the transfer to
your own directory, you can fix this with chmod +x file for the relevant
files. Alternatively, you can just see what the files contain and execute the
commands in the files.
To get started and gradually verify your set-up, go to the verification direc-
tory and start with
./ runc ../ Test/ factorial .src

Then see if you can also run the generated code with
./ run ../ Test/ factorial .src

And, finally, try to run all tests with
./ runAllTests

In all cases, if you have difficulties, look at the files and try to run the
commands one at a time (with the obvious modifications – for instance, $1
should be replaced by the first argument to the script).

5

Platforms

All of the above should work smoothly on Ubuntu and we only guarantee
that things work in IMADA’s Computer Lab. That said, we would of course
prefer that you can work with these things at home and on your own laptop
as well.
If you have Windows, try to install WSL (Windows Subsystem for Linux).
Running in there, should be very similar. Only WSL 2 is completely safe;
WSL 1 could have glitches. Use the interpreter if there are problems (see
below).
Under macOS, it may be difficult to get the right version of gcc (instead
of getting clang). It may or may not work; in particular, you may not
be able to run the generated assembly code. For that purpose, we provide
an interpreter. The interpreter is a Python program that interprets the
generated assembly and prints the same result as you would get by first
using gcc and then executing a.out. To use the interpreter, you just follow
the descriptions above, but append “IV” (for Interpreter Version) to all the
commands, e.g., try
./ runIV ../ Test/ factorial .src

Disclaimer : The interpreter is not a general interpreter for X86
Assembly. Rather, it can interpret exactly the subset of the
instructions generated by this compiler and only in the restricted
manner that the instructions are used.

Contact

Reports of errors or suggestions for improvements are received with grat-
itude. Please contact the author in person or by sending an email to
kslarsen@imada.sdu.dk.

6

