
LATEX TikZposter

Encoding Asynchrony in Choreographies

Lúıs Cruz-Filipe and Fabrizio Montesi
Department of Mathematics and Computer Science, University of Southern Denmark

Encoding Asynchrony in Choreographies

Lúıs Cruz-Filipe and Fabrizio Montesi
Department of Mathematics and Computer Science, University of Southern Denmark

Choreographic
Programming

is a paradigm for developing concurrent pro-
grams that are deadlock-free by construction,
by first programming communications declar-
atively, and then synthesising process imple-
mentations automatically.




Choreographies
(abstract, easy to read, deadlock free)

Implementations
(concrete, hard to parse, undecidable properties)

Communications

Communications in choreographies are typically syn-
chronous. Yet choreographies are widely used both for
the specification and the programming of concurrent
and distributed software architectures, which use asyn-
chronous communications.

In order to model asynchrony in choreographies, several
authors have proposed relying on additional technical
machinery, such as ad-hoc syntactic terms, alternative
semantics, or sophisticated behavioural equivalences.
We show that such extensions are not needed for chore-

ography languages that support primitives for process
spawning and name mobility.
Instead, we can encode asynchronous communications
in choreographies themselves, yielding a simpler ap-
proach.

The main idea

(synchronous) p m
// q

(asynchronous) pq 〈m,pq′〉
// q

p

〈m,pq
′ 〉 66

creates
(νpq′)

Initially, p and q agree on an initial communication process pq. Before sending a
message, p creates a new process pq′ that will store the next message. Then p
sends the message and the name pq′ to pq, which stores this information until q is
ready to receive it. In the meantime, p can continue executing – and even send the
next message to q through the new auxiliary process.

An example

We define a choreography where a buyer, Alice (a), purchases a product from a
seller (s) through her bank (b).

Two-buyer
protocol

1. a.title -> s;

2. s.price -> a;

3. s.price -> b;

4. if b.ok then s.book -> a; else 0

Asynchronous
version

setup. a start as0; s start sa0; s start sb0;

a : as0 <-> s; s : sa0 <-> a; s : sb0 <-> b;

1. a.title -> as0; a start as1; a : as1 <-> as0;

as0.as1 -> s; as0.s -> as1; as0.title -> s;

2. s.price -> sa0; s start sa1; s : sa1 <-> sa0;

sa0.sa1 -> a; sa0.a -> sa1; sa0.price -> a;

3. s.price -> sb0; s start sb1; s : sb1 <-> sb0;

sb0.sb1 -> b; sb0.b -> sb1; sb0.price -> b;

4. if b.ok then s.book -> a; else 0

We applied our construction to make communications 1–3 asynchronous.

The formal definition

Let C be a choreography over a set of processes P . The encoding uses a parameter
M : P×P → N, which is a function keeping track of the auxiliary communication
channels.
We start with M0 such that M0(p, q) = 0 for all p and q, and setup all initial
auxiliary channels.

{{C}} =
{
p start pq0; p : q <->pq0

}
p 6=q ; {{C}}M0

The term p start pq0 creates a fresh process pq0, only known to its creator (in this
case p). In p : q <->pq0, p communicates the name of q to pq0 and conversely, so
that these processes are now able to communicate directly.
The rest of the encoding is structural, changing only communication actions as
suggested in the picture on the left. For simplicity, we write pqM for pqM(p,q) and
pqM+ for pqM(p,q)+1.

{{p.e -> q;C}}M = p start pqM+; p.e -> pqM ; p : pqM <-> pqM+;

pqM .q->pqM+; pqM .pqM+->q; pqM .e -> q;

{{C}}M [(p,q) 7→M(p,q)+1]

Due to the out-of-order execution allowed by the choreography semantics, p can
proceed after the actions in the first line are completed.

Semantics

We use a transition semantics over triples G,C, σ, where C is a choreography,
G is the graph of connections, describing which pairs of processes are allowed to
communicate, and σ is a state, describing which values are stored at each process.

Theorem

Choreographies in this model are deadlock-free.

Theorem

Let p ∈ pn(C) and pq ∈ pn({{C}}) \ pn(C). If G, {{C}}, σ →∗ G′, C1, σ1 →
G′, C2, σ2 where in the last transition a value v is sent from p to pq, then there
exist G′′, C3, σ3, C4 and σ4 such that G′, C2, σ2 →∗ G′′, C3, σ3 → G′′, C4, σ4 and
in the last transition the same value v is sent from pq to some process q ∈ pn(C).

Theorem

If G, {{C}}M , σ →∗ G1, C1, σ1, then there exist C ′, σ′ and σ′′ such that G,C, σ →∗
G,C ′, σ′, and G1, C1, σ1→∗ G′, {{C ′}}M , σ′′, and σ′ and σ′′ coincide on the values
stored at pn(C).

C execution
//

pr
oj

ec
ti

on

��

C ′

projection

��

P
execution

// P ′


