
A Decision Procedure for Equational Reasoning

in Commutative Algebraic Structures

L. Cruz-Filipe∗
CLC, Lisbon, Portugal

F. Wiedijk
NIII, Radboud University Nijmegen, Netherlands

Abstract. We present a decision procedure for equational reasoning in abelian
groups, commutative rings and fields that checks whether a given equality can
be proven from the axioms of these structures. This has been implemented as a
tactic in Coq; here we give a mathematical description of the decision procedure
that abstracts from Coq specifics, making the work in principle adaptable to other
theorem provers.

Within Coq we prove that this decision procedure is correct. On the meta-level
we analyse its completeness, showing that it is complete for groups and rings in the
sense that the tactic succeeds in finding a proof of an equality if and only if that
equality is provable from the group/ring axioms without any hypotheses. Finally we
characterize in what way our method is incomplete for fields.

Keywords: Decision procedures, theorem proving, equational reasoning, abelian
groups, commutative rings, fields

1. Introduction

One of the main aims of the Foundations group at the Radboud Uni-
versity of Nijmegen is to help making formalization of mathematics
practical and attractive. For this reason a library of formal mathemat-
ics for the Coq system [6] – called the C-CoRN library [7] – has been
developed to exercise the technology of proof formalization. This library
started as a formalization of the Fundamental Theorem of Algebra in
the so-called FTA project, but then was extended with a formalization
of basic analysis up to the Fundamental Theorem of Calculus, and
currently other subjects are being added to it as well.

To support the formalization work for the C-CoRN library, a tactic
called rational was implemented. It automatically proves equations from
the field axioms. Later this tactic was generalized to prove equations
in rings and groups as well. The tactic uses the approach of reflection
from [1], in particular the variant of reflection called partial reflection
described in [14]. The generalization to rings and groups uses the ap-

∗ Work done during a stay at the Radboud University Nijmegen

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

hrefl-iii.tex; 23/09/2004; 15:32; p.1

2 L. Cruz-Filipe and F. Wiedijk

plication of partial reflection called hierarchical reflection in [9]. This
paper studies the behavior of rational from a theoretical point of view.

Most proof assistants have automation tools that provide the func-
tionality of rational for rings, and many also have them for fields (for
instance, Coq provides both of these with ring [6] and field [11]). This
automation is always implemented (like rational) by putting polynomi-
als into a normal form. However, there are three different ways that
this decision procedure can be realized in the proof assistant:

1. First of all the decision procedure might just take the equation,
normalize both sides, and then give a yes/no answer depending
on whether the normal forms are the same. In this approach there
is no reduction of this judgment to a proof on a lower level. (It
does not follow the “de Bruijn criterion”, the approach that each
proof needs to be reduced to elementary steps that are checked by
a small “kernel” of the program.)

As an example, this approach is taken by the Mizar proof assistant
[18]. If one puts the “requirement” ARITHM in the environment
of a formalization, this “ring equality” decision procedure will be
applied automatically, even without having to mention a tactic.

2. The second way is to have a decision procedure that generates a
proof of the equation that is checked afterwards. However, the im-
plementation of the decision procedure itself is not proved correct:
if there is a bug in the implementation, the procedure might return
“equal”, but then the proof happens not to be correct.

This approach is taken by the HOL system [15]. This system sup-
ports ordered rewriting (straightforward rewriting with the ring
axioms will not work, as the commutativity rules like x+y = y+x
will cause rewriting not to terminate; ordered rewriting is a gen-
eralization of AC-rewriting, rewriting modulo associativity and
commutativity). Using this feature, rewriting using a suitable form
of the ring axioms will provide a decision procedure like ours.

3. The third way (the one we do it) is to have the decision procedure
proved correct inside the system. Then it is not necessary to check
the proof for specific instances, it is sufficient to run the procedure
and see that it returns the correct result.

This approach, called “the two-level approach” by Barendregt and
others in [2], is also used by the versions of this decision procedure
(the tactics ring and field) implemented for Coq.

The main difference between our work and other implementations of
the same idea is that the normalization is very structured and system-

hrefl-iii.tex; 23/09/2004; 15:32; p.2

A Decision Procedure for Equational Reasoning 3

atic. We define addition and multiplication functions that are meant
to operate on monomials and polynomials that are already in normal
form. These functions are then the “building blocks” of our normal-
ization function. This enables us to easily prove the correctness of the
normalization function, which we need to use the reflection method.

The mathematics in this paper has not been formalized. Formalizing
takes an order of a magnitude more work than just doing the proofs in
the informal – old style – way, and it is not clear what the benefit of
formalization would be in this case. The exception regards the proofs
that are essential to the tactic. Proofs that have been checked within
Coq are always explicitly marked.

On the other hand, the description in this paper of the rational tactic
is kept as independent of Coq as possible. The algorithms and results
that we describe are not specific to Coq or even to type theory, they
can be used with any proof assistant. In particular, it is our opinion
that rational could be adapted to the systems mentioned above; or
(alternatively) that the behavior of the tactics those systems use could
be characterized by a similar method.

This paper is self-contained in the sense that everything that is
used is defined as well. However, it does not go into detail about par-
tial/hierarchical reflection or the details of the rational tactic. For this
we refer to two earlier papers, [14] and [9].

We begin by describing the mechanism of rational in more detail.
Then we discuss the several layers of expressions we need to study it.

Section 3 formally describes the ML part of the tactic and proves a
number of results about it, among which the correctness of the code. In
Section 4 we introduce the normalization function for rings and prove
its completeness. This proof generalizes almost directly to groups, as
explained in Section 5. Finally, Section 6 analyzes the more complex
case of fields, focusing on why the previous proof cannot be adapted to
this situation, and presents an alternative completeness result.

The tactic described here is a simplified version of that in [9], and
in Section 7 we explain how the same theorems can be generalized to
the implemented tactic. We conclude with an overview of what was
achieved in Section 8.

2. Background

In this section we lay the bricks for our work. We begin by describing
the way rational works in detail, after which we summarize the parts
of [13], [14] and [9] that are essential for the remainder of the paper.

hrefl-iii.tex; 23/09/2004; 15:32; p.3

4 L. Cruz-Filipe and F. Wiedijk

2.1. The mechanism of rational

The rational tactic proves equalities in an algebraic structure A through
the use of a type of syntactic expressions E together with an interpre-
tation relation.

][ρ ⊆ E ×A

In this, ρ is a valuation that maps the variables in the syntactic ex-
pressions to values in A. The relation e][ρ a means that the syntactic
expression e is interpreted under the valuation ρ by the object a.

The type E is inductive, and therefore it is possible to define a
normalization function N : E → E recursively. One then proves

e][ρ a ⇒ N (e)][ρ a

e][ρ a ∧ e][ρ b ⇒ a =A b

and together these give a method to prove equalities between terms
that denote elements of A.

To prove a =A b, one finds e, f and ρ with e][ρ a and f][ρ b, and one
checks whether N (e) = N (f). If this is the case then it follows that
a =A b: from the first lemma we find that N (e)][ρ a and N (f)][ρ b, and
then the second lemma gives this desired equality.

The tactic has two parts: the first part is an ML program that finds
the expressions e and f and the valuation ρ and constructs a proof
term for the equation a =A b; the second part is a Coq formalization of
normalization of polynomial expressions over a field. This means that
the tactic contains two – quite different – programs: the program that
calculates a proof term from an equation, which is written in ML, and
the program that computes the normal form of a polynomial expression,
which is written in the Coq type theory. Only the last one is proved
correct as part of the formalization.

The correctness of rational is guaranteed by the way it works: if it
finds a proof of an equation, then that proof has automatically been
checked by Coq and is correct. Failure, however, can arise from two
different situations:

(1) the ML program finds e, f and ρ but e][ρ a or f][ρ b does not hold;

(2) N (e) and N (f) do not coincide.

In this paper we formalize the ML program as a function p·q and prove
that situation (1) cannot occur (Theorem 3.9).

We then characterize under what conditions the tactic is complete.
Now completeness can mean two things here: either one can consider
the set of equations that hold in all fields, or one can consider the

hrefl-iii.tex; 23/09/2004; 15:32; p.4

A Decision Procedure for Equational Reasoning 5

equations that can be proved from the field axioms. It happens to be
the case that both sets of equations are the same [5]. In this paper
we establish completeness for groups and rings, meaning that in these
situation (2) means that a and b are not provably equal. Unfortunately
this result extends only partially to fields, but we can still give a simple
condition that, if fulfilled, yields the same conclusion.

As a consequence, when a call to rational fails no proof of the goal
exists that follows exclusively from the structure’s axioms. This is ex-
tremely useful in interactive proof development, since it enables the
user to detect wrong paths much earlier.

2.2. The semantic level

We now summarize the Algebraic Hierarchy of C-CoRN [13], on top of
which rational works.

Definition 2.1. A setoid structure over A is a relation =A: A → A →
Prop (denoted infix) satisfying:

Set1 : ∀x:A.x =A x

Set2 : ∀x,y:A.x =A y → y =A x

Set3 : ∀x,y,z:A.x =A y → y =A z → x =A z

Furthermore, we distinguish subtypes [A → A] and [A → A → A] of
A → A and A → A → A, respectively, satisfying

Set4 : ∀f :[A→A].∀x,x′:A.x =A x′ → f(x) =A f(x′)
Set5 : ∀f :[A→A→A].∀x,x′,y,y′ .x =A x′ ∧ y =A y′ → f(x, y) =A f(x′, y′)

We will speak of a setoid A to mean a type A with a setoid structure
over A.

Definition 2.2. A group structure over A is a setoid structure over A
together with a tuple 〈0A,+A,−A〉 where 0A : A, +A : [A → A → A]
and −A : [A → A] (we will write +A using the usual infix notation)
satisfying:

SG : ∀x,y,z:A.(x +A y) +A z =A x +A (y +A z)
M1 : ∀x:A.x +A 0 =A x

M2 : ∀x:A.0 +A x =A x

G1 : ∀x:A.x +A (−Ax) =A 0
G2 : ∀x:A.(−Ax) +A x =A 0
AG : ∀x,y:A.x +A y =A y +A x

hrefl-iii.tex; 23/09/2004; 15:32; p.5

6 L. Cruz-Filipe and F. Wiedijk

Notice that axiom M2 (respectively G2) can be proved from M1 (resp.
G1) and AG. But in the construction of the Algebraic Hierarchy AG
is introduced last.

By a group A we mean a type A with a group structure over it.

Definition 2.3. Let A be a group. We define −A : A → A → A by

x−A y := x +A (−Ay).

The following is trivial, and allows us to write −A : [A → A → A].

Proposition 2.4. −A satisfies Set5.

Definition 2.5. A ring structure over A is a group structure over A
together with a tuple 〈1A,×A〉 where 1A : A, ×A : [A → A → A] (we
will write ×A using the usual infix notation) satisfying the following.

R1 : ∀x,y,z:A.(x×A y)×A z =A x×A (y ×A z)
R2 : ∀x:A.x×A 1 =A x

R3 : ∀x:A.1×A x =A x

R4 : ∀x,y:A.x×A y =A y ×A x

R5 : ∀x,y,z:A.x×A (y +A z) =A (x×A y) +A (x×A z)

As before, axiom R3 can be proved from R2 and R4.
By a ring A we mean a type A with a ring structure over it.

Definition 2.6. Let A be a ring. We define two functions zringA : Z →
A and nexpA : A → N → A inductively as follows:

zringA(0) := 0A (1)
zringA(n + 1) := zringA(n) +A 1A, for n ≥ 0 (2)
zringA(n− 1) := zringA(n)−A 1A, for n ≤ 0 (3)

nexpA(x, 0) := 1A (4)
nexpA(x, n + 1) := x×A nexpA(x, n) (5)

We denote zringA(n) by nA and nexpA(x, n) by xn.

The following is again trivial to prove.

Proposition 2.7. For every n, the function ·n : A → A satisfies Set4.

Based on this result, we will often see xn as the application of ·n :
[A → A] to x.

hrefl-iii.tex; 23/09/2004; 15:32; p.6

A Decision Procedure for Equational Reasoning 7

Definition 2.8. A field structure over A is a ring structure over A
together with an operation ·−1 : A → A defined on elements different
from 0 (that is, we can only write x−1 if we know that x 6= 0) satisfying

F : x 6= 0 → x×A x−1 =A 1A.

By a field A we mean a type A with a field structure over it.

Definition 2.9. On a field A, we define /A : A → A → A by

x/Ay := x×A (y−1).

The following is trivial:

Proposition 2.10. /A satisfies Set′5:

Set′5 : ∀x,x′,y,y′:A.y 6= 0∧y′ 6= 0 → x =A x′∧y =A y′ → x/Ay =A x′/Ay′

We will sometimes abuse notation and refer to Set′5 as an instance of
Set5, and refer to /A as an operation of type [A → A → A].

Definition 2.11. A proof of t1 =A t2 from the field axioms in an
environment Γ is a sequence ϕ1, . . . , ϕn of equalities such that ϕn is
t1 =A t2 and, for i = 1, . . . , n, one of the following holds.

– ϕi is an instance of one of the axioms Set1, SG, M1, M2, G1, G2,
AG or R1–R5.

– ϕi is an instance of axiom F with hypothesis in Γ.

– ϕi is an instance of one of the axioms Set2–Set5 and the hypothe-
sis(es) of the axiom are included in {ϕ1, . . . , ϕi−1}.

We will often not mention Γ explicitly, but assume that all the proofs
are done in an environment containing all the necessary inequalities.
The reason for this (and for choosing the term “environment” rather
than “context”) is that rational only looks at the equality being proved
and assumes all needed inequalities hold anyway.

Definition 2.12. Let A be a type. We define the relation ≺A on the
terms of type A as the least relation satisfying:

1. t ≺A f(t) for f : [A → A] (in particular, in a group one has
t ≺A −At and in a ring t ≺A tn for n : N);

2. ti ≺A f(t1, t2) for f : [A → A → A] and i = 1, 2 (in particular, f
can be one of +A, −A or ×A in a group or ring);

hrefl-iii.tex; 23/09/2004; 15:32; p.7

8 L. Cruz-Filipe and F. Wiedijk

3. if A is a field, then ti ≺A t1/At2 for i = 1, 2.

(Notice the implicit requirement t2 6= 0 in the clause ti ≺A t1/At2.)

Proposition 2.13. ≺A is a well founded relation.

Proof. By definition, if t1 ≺A t2 then t1 is a subterm of t2; since
“being a subterm of” is a well founded relation, so is ≺A.

Notation. From now on, we will omit the subscript A in the symbols
denoting the algebraic operations, since no ambiguity is introduced.
However, we will write =A to emphasize the distinction between this
defined equality and the one induced by βδι-reduction on the set of
lambda terms of type A.

2.3. The syntactic level

We now introduce the syntactic counterpart to the type of fields, which
is the type of expressions that rational works with.

Definition 2.14. The syntactic type E of expressions is the inductive
type generated by the following grammar:

E ::= Z | V0 | V1(E) | E + E | E × E | E/E

where Vi = {vi
j |j ∈ N} for i = 0, 1.

Definition 2.15. We define the following abbreviations on expressions:

−e := e× (−1) (6)
e1 − e2 := e1 + (−e2) (7)

e0 := 1 (8)
en+1 := e× en (9)

These abbreviations are done only on the meta-level; when we write
e.g. e1 − e2 we are speaking about the expression e1 + (e2 × (−1)).

Definition 2.16. The order on E is defined as follows, where ? stands
for +, × or /.

(i) v0
i <E v0

j if i < j;

(ii) v0
i <E e whenever e is i : Z, e1 ? e2 or v1

i (e
′);

(iii) i <E j if i < j (i, j : Z);

hrefl-iii.tex; 23/09/2004; 15:32; p.8

A Decision Procedure for Equational Reasoning 9

(iv) i <E e whenever e is e1 ? e2 or v1
i (e

′);

(v) e1 ? e2 <E e′1 ? e′2 whenever e1 <E e′1 or e1 = e′1 and e2 <E e′2
(lexicographic ordering);

(vi) e1 + e2 <E e whenever e is e′1 × e′2, e′1/e′2 or v1
i (e

′);

(vii) e1 × e2 <E e whenever e is e′1/e′2 or v1
i (e

′);

(viii) e1/e2 <E e whenever e is v1
i (e

′);

(ix) v1
i (e1) <E v1

j (e2) whenever i < j or i = j and e1 <E e2.

In other words, expressions are recursively sorted by first looking at
their outermost operator

v0
i <E i <E e + f <E e× f <E e/f <E v1

i (e)

and then sorting expressions with the same operator using a lexico-
graphic ordering. For example:

v0
1 <E 4 <E v0

1/4 <E v1
0(v

0
1 + 3) <E v1

0(2× v0
3) <E v1

7(v
0
1 + 3).

2.4. Object level and meta-level

This section explains the difference between the several kinds of terms
in this paper.

We deal with algebraic structures (groups, rings and fields). And,
as we are working with formal systems, we also have terms that are
interpreted in these algebraic structures. To complicate things, we use
the method of reflection which means that the notion of “term” both
occurs on the meta-level as well as on the object level. We will iden-
tify various instances of “number zero” as an example to explain the
situation.

Let us start with the object level. We have three kinds of objects
that have a “zero”.

− The natural numbers and the integers. First of all, we have the
natural numbers N. In the natural numbers there is a unique object
which is the natural number zero.

The equality that one uses for the natural numbers is Leibniz
equality. This means that the zero of the natural numbers does
not have different representations: there is only one zero.

The integers are like the natural numbers: there is exactly one
integer zero, and one uses Leibniz equality to compare integers.

hrefl-iii.tex; 23/09/2004; 15:32; p.9

10 L. Cruz-Filipe and F. Wiedijk

− The elements of the algebraic structures. Each group, ring, or field
A has a zero as well. However, we use setoids for these algebraic
structures (so we model quotients in a type-theoretical way), mean-
ing that an algebraic structure can have more than one object that
represents the zero of that structure. In other words, for an alge-
braic structure we use a defined setoid equality instead of Leibniz
equality.

For instance, suppose we construct the real numbers as Cauchy
sequences of rational numbers. Then every Cauchy sequence that
converges to zero represents the zero of these “Cauchy reals”.
These sequences are then all “setoid equal” to each other, but
can be distinguished using Leibniz equality.

− Field expressions. Finally we have the inductively defined set E.
In this set there is a unique term for “zero”. For these “field
expressions” we also use Leibniz equality.

All these entities exist on the object level (as a set of mathematical
objects, like the natural numbers), but we also have the meta-level, the
formal language that we use to talk about all these objects. This means
there is still another kind of zero:

− Terms on the meta-level. For the integers there is a constant in the
language that denotes the integer zero. This symbol is a linguistic
construction that differs from the integer zero itself, in that it exists
on the meta-level instead of at the object level.

Similarly, there is a function in the language that maps each al-
gebraic structure A to a zero element 0A of that structure. Again,
the symbol for this function is different from those zero elements
itself, in that it exists on the meta-level. Note that this function
denotes one specific zero of the structure among all the elements
that are setoid equal to it.

Finally, in the case of the field expressions, the basic terms de-
noting them on the meta-level are very similar to the objects
themselves. Still one should distinguish the two.

On the terms of the language there are two notions of equality. There is
syntactic identity, and there is convertibility. (These equalities are used
to talk about the language, and cannot be expressed in the language
itself.)

Consider the function “zring” that maps the integers into a given
ring. Then if one applies this function to the integer zero, one gets a
term that is syntactically different from the term that denotes the zero

hrefl-iii.tex; 23/09/2004; 15:32; p.10

A Decision Procedure for Equational Reasoning 11

of the ring. However it is convertible to this term, by unfolding the
definition of zring and computing the resulting term.

We will almost everywhere use syntactic identity in this paper. The
only conversion that we will refer to is computation of a few basic
functions: subtraction, the zring function and exponentiation with a
constant natural number. Of all other functions the definition will never
be unfolded.

One should take care to distinguish between the field expressions on the
object level and the terms on the meta-level. The field expressions can
only involve variables and field operations, while the meta-level terms
can involve any type of sub-term, as long as the full term denotes an
element of the field. For instance in the field of real numbers

√
zring(2)

is an acceptable meta-level term, but there is nothing like a square root
in field expressions.

This distinction can be illustrated with two relations that are defined
above. The relation <E is defined on the field expressions in Definition
2.16. The relation ≺A is defined on meta-level terms denoting elements
of the field A in Definition 2.12. Note that this second relation does
not respect convertibility: 1A

0 (“one to the power zero”) is convertible
with 1A, but 1A ≺A 1A

0 while 1A 6≺A 1A.

2.5. The interpretation relation

The final ingredient for rational is an interpretation relation, described
in detail in [14] and [9]. It is this relation that allows us to speak of
correctness and completeness of rational, which is what we want to do.

The type E includes families of variables so that we can speak about
arbitrary expressions in a field, besides those that only mention the field
operations. Therefore, the interpretation of an expression is dependent
on a valuation – an assignment of values to the variables.

Definition 2.17. A valuation from a type of variables V to a type T
is a finite (partial) function from V to T .

Notation. The domain of a valuation ρ will be denoted dom(ρ). We
will use the notation [v := t] for the valuation that replaces v with t.

The following definitions and results are standard from the theory
of finite functions.

Definition 2.18. Let ρ, σ be valuations from V to T . If ρ and σ coin-
cide on the intersection of their domains (in particular, if their domains
are disjoint), we define the union ρ∪ σ to be the only valuation θ with

hrefl-iii.tex; 23/09/2004; 15:32; p.11

12 L. Cruz-Filipe and F. Wiedijk

domain dom(ρ) ∪ dom(σ) such that θ(v) = ρ(v), for v ∈ dom(ρ), and
θ(v) = σ(v) for v ∈ dom(σ).

Definition 2.19. Let ρ, σ be valuations from V to T . We say that σ
extends ρ, denoted by ρ ⊆ σ, if there is a valuation θ from V to T such
that σ = ρ ∪ θ.

Proposition 2.20. For all V and T , ⊆ is a partial order on the set of
valuations from V to T .

Proposition 2.21. Let ρ, σ be valuations from V to T such that ρ ⊆ σ.
Then σ(v) = ρ(v) for every v ∈ dom(ρ).

Definition 2.22. A valuation ρ is injective if, for distinct variables x
and y in V, the terms ρ(x) and ρ(y) are syntactically distinct.

From now on, we assume a fixed field A.

Definition 2.23. A valuation pair over A is a pair ρ = 〈ρ0, ρ1〉 where
ρ0 and ρ1 are injective valuations from, respectively, V0 to A and V1

to [A → A].

The results about valuations generalize in the obvious way to valu-
ation pairs.

Definition 2.24. Let ρ be a valuation pair over A. We say that σ
extends ρ, denoted by ρ ⊆ σ, if ρi ⊆ σi for i = 0, 1.

Proposition 2.25. ⊆ is a reflexive and transitive relation on the set of
valuation pairs over A.

Proposition 2.26. Let ρ, σ be valuation pairs over A such that ρ ⊆ σ.
Then σi(vi

k) = ρi(vi
k) for i = 0, 1 and vi

k ∈ dom(ρi).

Definition 2.27. Let ρ be a valuation pair over A. The interpretation
relation][ρ ⊆ E ×A is defined inductively by:

ρ0(v0
i) =A t → v0

i][ρ t (10)
k =A t → k][ρ t (11)

e1][ρ t1 ∧ e2][ρ t2 ∧ t1 + t2 =A t → e1 + e2][ρ t (12)
e1][ρ t1 ∧ e2][ρ t2 ∧ t1 × t2 =A t → e1 × e2][ρ t (13)

e1][ρ t1 ∧ e2][ρ t2 ∧ t2 6= 0 ∧ t1/t2 =A t → e1/e2][ρ t (14)
e][ρ t1 ∧ ρ1(v1

i)(t1) =A t → v1
i (e)][ρ t (15)

Notice that by omitting (14) we obtain an interpretation relation over
rings; omitting also (13) and (11) for k 6= 0 we obtain an interpretation
relation over groups.

hrefl-iii.tex; 23/09/2004; 15:32; p.12

A Decision Procedure for Equational Reasoning 13

Lemma 2.28. The abbreviated expressions (Definition 2.15) satisfy
the following relations.

e][ρ t1 ∧ −t1 =A t → −e][ρ t (16)
e1][ρ t1 ∧ e2][ρ t2 ∧ t1 − t2 =A t → e1 − e2][ρ t (17)

e][ρ t1 ∧ tn1 =A t → en][ρ t (18)

Proof. The three cases are similar; we show (16). Recall that −e =
e× (−1). By Set1, −1 =A −1; hence −1][ρ −1 by (11). By hypothesis
e][ρ t1. Finally, since −t1 =A t, one has t1 × (−1) =A t, whence e ×
(−1)][ρ t by (13). For (18) proceed by induction on n.

Lemma 2.29. Let e : E, t : A and ρ, σ be valuation pairs for A with
ρ ⊆ σ such that e][ρ t; then e][σ t.

Proof. By induction on the proof of e][ρ t.

1. e = v0
i and ρ0(v0

i) =A t: since ρ ⊆ σ, Proposition 2.26 implies that
σ0(v0

i) =A t, and by (10) also v0
i][σ t.

2. e = n and n =A t: then n][σ t follows by (11).

3. e = e1+e2, e1][ρt1, e2][ρt2 and t1+t2 =A t; by induction hypothesis
e1][σ t1 and e2][σ t2, whence e1 + e2][σ t follows from (12).

4. e = e1 × e2: analogous using (13).

5. e = e1/e2: similar from (14), since by hypothesis t2 6= 0.

6. e = v1
i (e

′), e′][ρ t′ and ρ1(v1
i)(t

′) =A t: since σ1(v1
i) = ρ1(v1

i) by
Proposition 2.26, also σ1(v1

i)(t
′) =A t. By induction hypothesis

e′][σ t′, whence v1
i (e

′)][σ t by (15).

Lemma 2.30. Let e : E, t, t′ : A and ρ be a valuation pair for A such
that e][ρ t and e][ρ t′. Then the following hold.

(i) t =A t′;

(ii) if e][ρt and e][ρt′ can be proved without using (14), and no divisions
occur in either t or t′, then t =A t′ can be proved without using
the axiom F.

Proof. By induction on][ρ (Coq checked).

hrefl-iii.tex; 23/09/2004; 15:32; p.13

14 L. Cruz-Filipe and F. Wiedijk

3. From terms to expressions

We now start looking at the actual implementation of rational, focusing
on the ML program inside it. This program computes a partial inverse
to the interpretation relation described above, that is, given a term
t : A, with A a field, it returns an expression e and a valuation pair ρ
such that e][ρ t. In this section we formally describe this program as a
function “quote”, p·q·, and prove its correctness.

3.1. Quoting terms to variables

The first step is to define what to do when we meet a term that is not
built from the field operations, e.g. a variable or an expression like

√
2.

Definition 3.1. Let t : A and ρ be a valuation pair over A. Then pptqqρ

is the pair 〈v, σ〉 with v ∈ V0 defined by:

− if there is an i such that ρ0(v0
i) = t, then v = v0

i and σ = ρ;

− else, let k be minimal such that ρ0(v0
k) is not defined and take

v = v0
k and σ0 = ρ0 ∪ [v0

k := t], σ1 = ρ1.

The behavior of pp·qq can be described as follows: given a term t and a
valuation ρ, it checks whether there is a variable v0

i such that ρ0(v0
i) = t.

In the affirmative case, it returns this variable and ρ; else it extends ρ0

with a fresh variable which is interpreted to t and returns this variable
and the resulting valuation. Notice that the result is deterministic, since
there is at most one variable i satisfying ρ0(v0

i) = t.

Lemma 3.2. Let t and ρ be as in Definition 3.1, and suppose that
pptqqρ = 〈v, σ〉. Then ρ ⊆ σ.

Proof. Straightforward by definition of pp·qq.

Lemma 3.3. Let t and ρ be as in Definition 3.1, and suppose that
pptqqρ = 〈v, σ〉. Then v][σ t.

Proof. By definition of pp·qq, there are two cases:

− There is an i such that ρ0(v0
i) = t, and then also ρ0(v0

i) =A t by
Set1, whence v0

i][ρ t by (10). Since in this case v = v0
i and σ = ρ,

the thesis follows.

− There is no such i; then v = v0
k where k 6∈ dom(ρ0), and σ0 =

ρ0 ∪ [v0
k := t]. Then, by definition of ∪, σ0(v0

k) = t and we can
conclude as above that v0

k][σ t using Set1 and (10).

hrefl-iii.tex; 23/09/2004; 15:32; p.14

A Decision Procedure for Equational Reasoning 15

Definition 3.4. Let f : [A → A] and ρ be a valuation pair over A.
Then ppfqqρ is the pair 〈v, σ〉 with v ∈ V1 defined by:

− if there is an i such that ρ1(v1
i) = f , then v = v1

i and σ = ρ;

− else, let k be minimal such that ρ1(v1
k) is not defined and take

v = v1
k and σ0 = ρ0, σ1 = ρ1 ∪ [v1

k := t].

Lemma 3.5. Let t and ρ be as in Definition 3.4, and suppose that
pptqqρ = 〈v, σ〉. Then ρ ⊆ σ.

Proof. Straightforward by definition of pp·qq.

Lemma 3.6. Let f : [A → A] and ρ be a valuation pair over A and
suppose that ppfqqρ = 〈v, σ〉. Suppose that t][ρ e; then v(t)][σ f(e).

Proof. By definition of pp·qq, there are again two cases:

− There is an i such that ρ1(v1
i) = f ; then ρ1(v1

i)(t) =A f(t) by
Set1, whence v1

i (e)][ρ f(t) by (15). Since in this case v = v1
i and

σ = ρ, the thesis follows.

− There is no such i; then v = v1
k where k 6∈ dom(ρ1), and σ1 =

ρ1 ∪ [v1
k := t]. Then, by definition of ∪, σ1(v1

k) = f and we can
conclude as above that v1

k(e)][σ f(t) using Set1 and (15).

3.2. Quoting arbitrary terms

We can now define the quote function.

Definition 3.7. Let t : A and ρ be a valuation pair over A. Then ptqρ

is recursively defined as follows.

pnqρ = 〈n, ρ〉 n : Z closed

pt1 ? t2qρ = 〈e1 ? e2, σ〉 where


? ∈ {+,−,×, /}
〈e1, θ〉 = pt1qρ

〈e2, σ〉 = pt2qθ

p−tqρ = 〈−e, σ〉 where 〈e, σ〉 = ptqρ

ptnqρ = 〈en, σ〉 where
{

n : N is closed
〈e, σ〉 = ptqρ

pf(t)qρ = 〈v1
i (e), θ〉 where

{
〈e, σ〉 = ptqρ

〈v1
i , θ〉 = ppfqqσ

ptqρ = pptqqρ otherwise

hrefl-iii.tex; 23/09/2004; 15:32; p.15

16 L. Cruz-Filipe and F. Wiedijk

The two last clauses also define pnqρ and ptnqρ when n is not a closed
term.

Notice that on every recursive call of p·q the argument decreases
w.r.t ≺A; since ≺A is well founded by Proposition 2.13, this is a valid
definition.

Lemma 3.8. Let ρ be a valuation pair for A. For all t : A and e : E,
if 〈e, σ〉 = ptqρ, then ρ ⊆ σ.

Proof. By induction on ≺A using Lemmas 3.2 and 3.5 and Proposi-
tion 2.25.

The following is the main result so far: it expresses the correctness
of the quote function. Given a term t and a valuation ρ, the program
computes an expression e and a new valuation σ such that e][σ t.

Theorem 3.9. Let t : A and ρ be a valuation pair over A, and take
〈e, σ〉 = ptqρ. Then e][σ t.

Proof. By induction on ≺A.

1. t is minimal for ≺A:

a) t = n with n : Z closed. Then, by definition of quote, e = n
and σ = ρ. By Set1, n =A n, and by (11) n][ρ n.

b) otherwise 〈e, σ〉 = pptqqρ. By Lemma 3.3, it follows that e][σ t.

2. t = f(t′) with f : [A → A].

a) f is −A: then 〈e, σ〉 = 〈−e′, σ〉 with 〈e′, σ〉 = pt′qρ. By induc-
tion hypothesis, e′][σ t′; since −t′ = −t′ by Set1, −e′][σ −t′

by (16).

b) f is ·n with n closed: then 〈e, σ〉 = 〈(e′)n, σ〉 with 〈e′, σ〉 =
pt′qρ. By induction hypothesis, e′][σ t′; since (t′)n = (t′)n by
Set1, (e′)n][σ (t′)n by (18).

c) otherwise e = v1
i (e

′) with 〈e′, θ〉 = pt′qρ and 〈v1
i , σ〉 = ppfqqθ.

By induction hypothesis e′][θ t′; Lemma 3.6 allows us to
conclude that f(e′)][σ v1

i (t
′).

3. t = t1 ? t2 with ? ∈ {+,−,×, /} (if ? − /, then also t2 6= 0): then
e = e1 ? e2 with 〈e1, θ〉 = pt1qρ and 〈e2, σ〉 = pt1qθ.

By induction hypothesis, e1][θ t1; by Lemma 3.8, θ ⊆ σ, whence
by Lemma 2.29 also e1][σ t1.

hrefl-iii.tex; 23/09/2004; 15:32; p.16

A Decision Procedure for Equational Reasoning 17

Also by induction hypothesis, e2][θ t2. Furthermore, Set1 implies
t1 ? t2 =A t1 ? t2, hence e1 ? e2][θ t1 ? t2 by either (12), (17), (13)
or (14), according to whether ? is respectively +, −, × or /; in the
last case, the extra condition t2 6= 0 also holds.

Notice that this result is still valid if A is a group or a ring, as can
be seen by removing the corresponding cases in this proof and checking
that it remains valid.

3.3. Properties of quoting

The remainder of this section is concerned with other properties of the
quote that are needed for the rest of the paper.

First, quote is idempotent on the second component: if the quote of
e with ρ is t and σ, and θ is any valuation extending σ (in particular,
σ itself), then ptqθ = 〈e, θ〉.

Lemma 3.10. Let t : A, e : E and ρ, σ, θ be valuation pairs over A
such that 〈e, σ〉 = ptqρ and σ ⊆ θ. Then ptqθ = 〈e, θ〉.

Proof. By induction on ≺A using Lemmas 2.29, 3.3, 3.6 and 3.8.

All variables in the expression output by a quote can be interpreted
by the corresponding valuation.

Lemma 3.11. Let t : A and ρ be a valuation pair over A. For all
variables vi

k occurring in e, if ptqρ = 〈e, σ〉, then vi
k ∈ dom(σk).

Proof. By induction on t according to ≺A. All cases follow directly
from the induction hypothesis except for the case when t = f(t′) with
f : [A → A] not −A or ·n with n closed. In this situation there exist a
natural number j, an expression e′ and a valuation pair θ such that
pt′qρ = 〈e′, θ〉, ppfqqθ = 〈v1

j , σ〉 and e = v1
j (e

′). If vi
k is a variable

occurring in e, then either vi
k = v1

j and the result holds by definition
of pp·qq or vi

k occurs in e′; in the latter case, by induction hypothesis
vi
k ∈ dom(θi), and since θ ⊆ σ also vi

k ∈ dom(σi).

3.4. Permutation of quotes

To prove the main properties of rational, we need to consider situations
when the same terms are quoted in different orders. This section proves
some results about the corresponding outputs: under quite general
hypotheses, they differ only in the names of the variables.

hrefl-iii.tex; 23/09/2004; 15:32; p.17

18 L. Cruz-Filipe and F. Wiedijk

Definition 3.12. Let ρ, σ be valuation pairs for A. We say that σ is
obtained from ρ by a renaming of variables if there is a pair ξ = 〈ξ0, ξ1〉
of permutations of N such that, for i = 0, 1, the following conditions
hold:

− ξi(k) 6= k → vi
k ∈ dom(ρi);

− for all k, σi

(
vi
ξi(k)

)
' ρi(vi

k) (that is, either they are both unde-
fined or they are both defined and coincide).

We denote this situation by σ = ρξ and say that ξ is a renaming of
variables for ρ (or simply ξ is a renaming of variables, if the ρ is not
relevant). Also, we will abuse notation and write dom(ξi) = {k|ξi(k) 6=
k} for i = 0, 1; it follows that ξi(j) = j if j 6∈ dom(ξi). The first
condition then becomes simply dom(ξi) ⊆ dom(ρi).

Notice that the second condition totally defines σ, since each ξi is a
permutation. For this reason, we will also use the notation σ = ρξ as a
definition of σ. Note also that, if σ = ρξ, then dom(σi) = dom(ρi) for
i = 0, 1.

The following is immediate.

Proposition 3.13. The relation R(ρ, σ) defined as “σ is obtained from
ρ by a renaming of variables” is an equivalence relation.

Definition 3.14. Let ξ be a renaming of variables and e, e′ : E. We
say that e′ is obtained from e by ξ, denoted (e′) = eξ, if e′ is obtained
from e by replacing each occurrence of vi

k by vi
ξi(k), i = 0, 1.

Lemma 3.15. Let ρ be a valuation pair for A and ξ be a renaming of
variables for ρ. For every t : A, if ptqρ = 〈e, σ〉 then ptqρξ = 〈eξ, σξ〉.

Proof. By induction on ≺A.

1. t is minimal for ≺A:

a) t = n: then e = n, σ = ρ, ptqρξ = 〈n, ρξ〉 and the conclusion
trivially holds.

b) otherwise, e = pptqqρ and we have to distinguish two cases.
Suppose there is an i such that ρ0(v0

i) = t. Then e = v0
i

and σ = ρ; but by Definition 3.12 ρξ
0

(
v0
ξ0(i)

)
= ρ0(v0

i), so

ptqρξ = 〈v0
ξ0(i), ρ

ξ〉, and by definition v0
ξ0(i) = (v0

i)
ξ.

Otherwise, pick k minimal such that v0
k 6∈ dom(ρ0). Then

e = v0
k and σ = 〈ρ0 ∪ [v0

k := t], ρ1〉. But then ptqρξ = 〈v0
k, σ

′〉

hrefl-iii.tex; 23/09/2004; 15:32; p.18

A Decision Procedure for Equational Reasoning 19

with σ′ = 〈ρξ
0 ∪ [v0

k := t], ρξ
1〉: since dom(ρ0) = dom(ρξ

0) (see
remark after Definition 3.12), k is also the minimal natural
number satisfying v0

k 6∈ dom(ρξ
0); furthermore, there can be

no i such that ρξ
0(v

0
i) = t because ρξ

0(v
0
i) = ρ0(v0

ξ−1
0 (i)

). But

k 6∈ dom(ξ0), so v0
k = v0

k
ξ and σ′ = σξ.

2. t = f(t′) with f : [A → A].

a) f is −A: then there is an expression e′ such that pt′qρ = 〈e′, σ〉
and e = −e′. By induction hypothesis, pt′qρξ = 〈(e′)ξ, σξ〉 and
hence ptqρξ = 〈eξ, σξ〉.

b) f is ·n with n closed: analogous.

c) otherwise there exist an expression e′, an index i and a val-
uation pair θ such that pt′qρ = 〈e′, θ〉, ppfqqθ = 〈v1

i , σ〉 and
e = v1

i (e
′). By induction hypothesis, pt′qρξ = 〈(e′)ξ, θξ〉.

Suppose there is an k such that θ1(v1
k) = f . Then i = k

and σ = θ; but by Definition 3.12 θξ
1

(
v1
ξ1(i)

)
= θ1(v1

i) = f ,

so ppfqqθξ = 〈v1
ξ1(i), θ

ξ〉. Trivially v1
ξ1(i) = (v1

i)
ξ; since θ = σ,

ptqρξ = 〈v1
i (e

′)ξ
, σξ〉, which establishes the result.

Otherwise, i is the minimal k such that v1
k 6∈ dom(θ1) and

σ = 〈θ0, θ1 ∪ [v1
i := f]〉. But then ppfqqθξ = 〈v1

i , σ
′〉 with

σ′ = 〈θξ
0, θ

ξ
1 ∪ [v1

i := f]〉: since dom(θ1) = dom(θξ
1) (sec-

ond condition in Definition 3.12), i is also the minimal k

satisfying v1
k 6∈ dom(θξ

1); furthermore, there can be no k

such that ρξ
1(v

1
k) = f , since θξ

1(v
1
k) = θ1(v1

ξ−1
1 (k)

). But then

σ′ = σξ; since i = ξ1(i), we also have in this situation that
ptqρξ = 〈v1

i (e
′)ξ

, σξ〉.

3. t = t1 ? t2 with ? ∈ {+,−,×, /}: then there are expressions e1, e2

and a valuation pair θ such that pt1qρ = 〈e1, θ〉, pt2qθ = 〈e2, σ〉
and e = e1 ? e2.

By induction hypothesis pt1qρξ = 〈e1
ξ, θξ〉. The induction hypoth-

esis applies again, and pt2qθξ = 〈e2
ξ, σξ〉. Hence, pt1 ? t2qρξ =

〈(e1
ξ) ? (e2

ξ), σξ〉 and trivially (e1
ξ) ? (e2

ξ) = eξ.

The next step is to prove the following result: if the order in which
two terms are quoted is reversed, the expressions and valuations ob-
tained will differ only by a renaming of variables.

hrefl-iii.tex; 23/09/2004; 15:32; p.19

20 L. Cruz-Filipe and F. Wiedijk

Lemma 3.16. Let t1, t2 : A, e1, e
′
1, e2, e

′
2 : E and ρ, σ, σ′, θ, θ′ be valu-

ation pairs for A satisfying the following relations.

pt1qρ = 〈e1, σ〉 pt2qρ = 〈e′2, σ′〉
pt2qσ = 〈e2, θ〉 pt1qσ′ = 〈e′1, θ′〉

Then there is a renaming of variables ξ for θ such that for i = 1, 2,
dom(ξi) ∩ dom(ρi) = ∅, θ′ = θξ and e′i = ei

ξ.

The proof of this (intuitive) result is by induction, but the multitude
of cases makes it somewhat long and not extremely interesting. It is
detailed in [8]; the following lemma is used in its proof, and will be
needed elsewhere.

Lemma 3.17. Let t : A, f : [A → A], e, e′ : E, i, i′ : N and ρ, σ, σ′, θ, θ′

be valuation pairs for A satisfying the following relations.

ppfqqρ = 〈v1
i , σ〉 ptqρ = 〈e′, σ′〉

ptqσ = 〈e, θ〉 ppfqqσ′ = 〈v1
i′ , θ

′〉

Then there is a renaming of variables ξ for θ such that ξ0 = (), dom(ξ1)∩
dom(ρ1) = ∅, θ′ = θξ, e′ = eξ and i′ = ξ1(i).

The following corollary will be essential in the proof of the Com-
pleteness Theorem.

Lemma 3.18. Let t1, t2, t3 : A, e1, e2, e
′
2, e3, e

′
3 : E and ρ, σ, σ′, θ, θ′ be

valuation pairs for A satisfying the following relations.

pt2q∅ = 〈e2, σ〉 pt1q∅ = 〈e1, ρ〉
pt3qσ = 〈e3, θ〉 pt2qρ = 〈e′2, σ′〉

pt3qσ′ = 〈e′3, θ′〉

Then there exist a valuation pair τ and a renaming of variables ξ for τ
such that θ ⊆ τ , θ′ = τ ξ and e′i = ei

ξ for i = 2, 3.

Proof. Consider pt1qσ = 〈e∗1, ρ∗〉, pt3qρ∗ = 〈e∗3, θ∗〉 and pt1qθ =
〈e′1, τ〉 and apply Lemmas 3.16 and 3.15.

4. Completeness of rational: rings

We now move to the Coq portion of the tactic. We identify a subset
of the set of expressions which we call normal forms. Then we define a

hrefl-iii.tex; 23/09/2004; 15:32; p.20

A Decision Procedure for Equational Reasoning 21

normalization function N that assigns to any expression e an expres-
sion N (e) in normal form. In this section we prove the fundamental
properties of this function.

In this first stage we will forget about division and work only with
the subset of expressions interpretable in a ring. Section 6 discusses
how these definitions can be generalized for fields and how the results
we show here can be transposed to the general case.

4.1. Normal forms

The intuition for the normal forms is as follows. A normal form is a
polynomial where all terms have been multiplied, so that it is written
as a sum of products of atomic terms (integers, variables of arity 0 or
variables of arity 1 applied to a normal form). To guarantee uniqueness
of the normal form we further require that these terms be ordered.

We begin by defining monomials and polynomials. These can be seen
in a precise way as lists of expressions; hence we can identify the subset
of monomials and polynomials whose lists are ordered. These will be
our normal forms.

Definition 4.1. The sets of monomials and polynomials are induc-
tively defined by the following grammar.

M ′ ::= Z | V0 ×M ′ | V1(P ′)×M ′

P ′ ::= Z | M ′ + P ′

Notice that M ′ ⊆ E and P ′ ⊆ E.

Definition 4.2. For every m : M ′ we define the list of variables of m,
|m|, and the coefficient of m, ‖m‖.

| · | : M ′ → list(E) ‖ · ‖ : M ′ → Z
i 7→ [] i 7→ i

v0
i ×m 7→ v0

i :: m v0
i ×m 7→ ‖m‖

v1
i (p

′)×m 7→ v1
i (p

′) :: m v1
i (p

′)×m 7→ ‖m‖

Definition 4.3. For every p : P ′ we define the list of monomials of p
as follows:

| · | : P ′ → list(list(E))
i 7→ []

m + p 7→ |m| :: |p|

Definition 4.4. We define the following mutually recursive predicates
over M ′ and P ′.

hrefl-iii.tex; 23/09/2004; 15:32; p.21

22 L. Cruz-Filipe and F. Wiedijk

(i) ordM ′(m) holds if |m| is an ordered list (with the ordering from
Definition 2.16).

(ii) ordP ′(p) holds if |p| is ordered (using the lexicographic ordering
for each element of |p|) and |p| does not contain repetitions.

(iii) wfM ′ is defined recursively as follows:

− wfM ′(i) holds for i 6= 0;

− wfM ′(v0
i ×m) ⇐⇒ wfM ′(m);

− wfM ′(v1
i (p)×m) ⇐⇒ (wfM ′(m) ∧ nfP ′(p)).

(iv) nfM ′(m) holds if either m = 0 or wfM ′(m) ∧ ordM ′(m) holds.

(v) wfP ′ is defined recursively as follows:

− wfP ′(i) holds for i ∈ Z;

− wfP ′(m + p) ⇐⇒ (wfP ′(p) ∧ nfM ′(m)).

(vi) nfP ′(p) holds iff wfP ′(p) ∧ ordP ′(p) holds.

Definition 4.5. The set of monomials in normal form is defined as

M = {m : M ′ | nfM ′(m)}.

The set of polynomials in normal form, or simply of normal forms, is
defined as

P = {p : P ′ | nfP ′(p)}.

We will use the definitions of ‖m‖, |m| and |p| above also for mono-
mials and polynomials in normal form.

Definition 4.6. Let m : M and p : P . The coefficient of m in p,
denoted by ‖p‖m, is recursively defined as follows.

‖ · ‖ : P ×M → Z
i, j 7→ i

i,m 7→ 0

m′ + p, m 7→
{
‖m′‖ if |m′| = |m|
‖p‖m else

The first clause in this definition may look somewhat strange; the idea
is that we only look at |m| to define ‖p‖m, and thus any integer should
correspond to the independent term of p.

hrefl-iii.tex; 23/09/2004; 15:32; p.22

A Decision Procedure for Equational Reasoning 23

The reason for introducing the operations | · | and ‖ · ‖ is that they
totally characterize normal forms.

Lemma 4.7. If m,m′ : M , then m = m′ iff ‖m‖ = ‖m′‖ ∧ |m| = |m′|.

Proof. Straightforward.

Lemma 4.8. If p, q : P , then p = q ⇐⇒ ∀m : M.‖m‖p = ‖m‖q.

Proof. The direct implication is immediate. For the converse, assume
that ‖m‖p = ‖m‖q for all m; then every monomial occurring in p also
occurs in q with the same coefficient, and reciprocally. But |p| and |q|
are both ordered, hence p = q.

4.2. The normalization function

The normalization function is not defined directly, but by means of a
number of auxiliary functions. This makes it easier to state and prove
results about it.

Definition 4.9. ·MZ is defined by:

·MZ : M × Z → M

m, 0 7→ 0
i, j 7→ i× j

x×m, j 7→ x× (m ·MZ j)

Proposition 4.10. ·MZ satisfies the following properties:

(i) ‖m ·MZ i‖ = ‖m‖ × i;

(ii) |m ·MZ 0| = [];

(iii) |m ·MZ i| = |m| for i 6= 0;

(iv) ·MZ is well defined, i.e. its output is in M ;

(v) if m][ρ t, then m ·MZ i][ρ t× i.

Proof. The first two properties follow directly from the definition;
for the third, just notice that, if i 6= 0, then ×MZ translates to the
identity on the list of variables of m. From these three properties, the
fourth then follows: if i = 0, then this is a consequence of 0 : M ; else
only the coefficient of m changes, hence nfM ′(m ·MZ i) still holds. The
last property is proved by straightforward induction (Coq checked).

hrefl-iii.tex; 23/09/2004; 15:32; p.23

24 L. Cruz-Filipe and F. Wiedijk

Definition 4.11. ·MV is defined by:

·MV : M × (V0 ∪ V1(P)) → M

i, y 7→ (y × 1) ·MZ i

x×m, y 7→
{

x× (m ·MV y) x <E y
y × x×m otherwise

Proposition 4.12. ·MV satisfies the following properties:

(i) ‖m ·MV x‖ = ‖m‖;

(ii) if m 6= 0, then |m ·MV x| is the sorted list obtained from m and x;

(iii) ·MV is well defined;

(iv) if m][ρ t and x][ρ t′, then m ·MV x][ρ t× t′.

Proof. If m = 0 these properties follow from Proposition 4.10, so
assume m 6= 0. The first property follows directly from the definition;
for the second, just notice that ·MV translates to the algorithm of
straight insertion on lists. From these two properties, the third then
follows: the elements of |m| are not changed by ·MV and x is either v0

i

or v1
i (p) with p : P , hence m ·MV x satisfies wfM ′ . Also the correctness

of straight insertion guarantees that |m ·MV x| is sorted if m is. The last
property is proved by induction using Proposition 4.10 (Coq checked).

Definition 4.13. ·MM is defined by:

·MM : M ×M → M

i, m 7→ m ·MZ i

x×m,m′ 7→ (m ·MM m′) ·MV x

Proposition 4.14. ·MM satisfies the following properties:

(i) ‖m ·MM m′‖ = ‖m‖ × ‖m′‖;

(ii) if m,m′ 6= 0, then |m·MMm′| is the sorted list obtained by merging
|m| with |m′|;

(iii) ·MM is well defined;

(iv) if m][ρ t and m′][ρ t′, then m ·MM m′][ρ t× t′.

hrefl-iii.tex; 23/09/2004; 15:32; p.24

A Decision Procedure for Equational Reasoning 25

Proof. The first property again follows directly from the definition of
·MM and Propositions 4.10 and 4.12. The second holds because ·MM sim-
ply implements straight insertion sort on the list obtained by appending
|m| to |m′|. From these two the third property follows, and the last one
is again proved by straightforward induction using Propositions 4.10
and 4.12 (Coq checked).

The next function is of a different nature: it takes two monomials
m and m′ that coincide as lists (that is, |m| = |m′|) and returns the
monomial obtained by adding them. Obviously this is only well defined
under the assumption that |m| = |m′|.

Definition 4.15. Let ∆M denote the subset of M ×M defined by

∆M = {〈m,m′〉 ∈ M ×M | |m| = |m′|}.

+MM is defined as follows.

+MM : ∆M → M

i, j 7→ i + j

x×m,x×m′ 7→ (m +MM m′) ·MV x

The structure of ∆M ensures that this definition covers all cases.

Proposition 4.16. +MM satisfies the following properties:

(i) ‖m +MM m′‖ = ‖m‖+ ‖m′‖;

(ii) m +MM m′ = 0 if ‖m‖+ ‖m′‖ = 0;

(iii) |m +MM m′| = |m| = |m′| otherwise;

(iv) +MM is well defined;

(v) if m][ρ t and m′][ρ t′, then m +MM m′][ρ t + t′.

Proof. The first condition is straightforward from the definition of
+MM. The second and third follow from this definition and Proposi-
tion 4.12; and from these the fourth is a direct consequence. The last
point is proved by induction using Proposition 4.12 (Coq checked).

In the sequence we will need the following notations. We will denote
by <M the lexicographic ordering on list(E) obtained from <E . Given
two lists l, w of expressions, we write l ⊆ w to mean that l is a sublist
of w, i.e. all elements of l occur in w and in the same order.

hrefl-iii.tex; 23/09/2004; 15:32; p.25

26 L. Cruz-Filipe and F. Wiedijk

Definition 4.17. +PM is defined as follows.

+PM : P ×M → P

i, j 7→ i + j

i,m 7→ m + i

m + p, j 7→ m + (p +PM j)

m + p, m′ 7→


m + (p +PM m′) |m| <M |m′|
p +PM (m +MM m′) |m| = |m′|
m′ + m + p else

Proposition 4.18. +PM satisfies the following properties:

(i) if |m| = |m′|, then ‖p +PM m‖m′ = ‖p‖m′ + ‖m‖;

(ii) if |m| 6= |m′|, then ‖p +PM m‖m′ = ‖p‖m′ ;

(iii) |p +PM m| ⊆ l, where l is the list obtained by appending |m| to
|p| and sorting the result;

(iv) +PM is well defined;

(v) if p][ρ t and m′][ρ t′, then p +PM m′][ρ t + t′.

Proof. The two first properties follow from the definition of +PM (in
the first case also appealing to Proposition 4.16).

The third property is proved by induction. The basis is trivial; for
the induction step we need to consider two cases. Let p = m′ + p′; if
|m| 6= |m′|, then the algorithm reduces again to straight insertion of an
element in a list (since the only difference is in the case |m| = |m′|).
If |m| = |m′|, then |m′ +MM m| = |m| by Proposition 4.16, so we can
use the induction hypothesis to conclude that this call returns a q such
that |q| is the straight insertion of |m′| in |p′|, which is |m′| :: |p′| (since
m′ + p : P), and this is a sublist of |m| :: |m| :: |p′|, which would be the
outcome of the straight insertion of |m| in |m′| :: |p′| (since |m| = |m′|).
Hence also in this case the thesis holds.

The fourth property is a consequence of the previous ones, since a
sublist of an ordered list is ordered. The last property is proved by
induction (Coq checked).

Definition 4.19. +PP is defined as follows.

+PP : P × P → P

i, q 7→ q +PM i

m + p, q 7→ (p +PP q) +PM m

hrefl-iii.tex; 23/09/2004; 15:32; p.26

A Decision Procedure for Equational Reasoning 27

Proposition 4.20. +PP satisfies the following properties:

(i) for all m, ‖p +PP q‖m = ‖p‖m + ‖q‖m;

(ii) |p +PP q| ⊆ l, where l is the list obtained by appending |q| to |p|
and sorting the result;

(iii) +PP is well defined;

(iv) if p][ρ t and q][ρ t′, then p +PP q][ρ t + t′.

Proof. The first property is proved by induction on p. If p = i,
then either m = j for some j ∈ Z and the thesis holds by the first
part of Proposition 4.18 or else |m| 6= |i| and the thesis holds by the
second part of Proposition 4.18. If p = m′ + p′, then by induction
hypothesis ‖p′ +PP q‖m = ‖p′‖m + ‖q‖m and there are two cases. If
|m′| = |m|, then ‖p‖m = ‖m′‖ and ‖p′‖m = 0 (since |p| does not have
repetitions), and by the first part of Proposition 4.18 ‖(p′ +PP q) +PM

m′‖m = ‖p′ +PP q‖m + ‖m′‖ = ‖p′‖m + ‖q‖m + ‖m′‖ = ‖q‖m + ‖m′‖ =
‖q‖m+‖p‖m. If |m′| 6= |m| then ‖p‖m = ‖p′‖m and by the second part of
Proposition 4.18 ‖(p′+PP q)+PM m′‖m = ‖p′‖m +‖q‖m = ‖p‖m +‖q‖m.

The second and third properties are proved from Proposition 4.18 by
straightforward induction. The last property is similar (Coq checked).

The last operations have no analogue in sorting algorithms. We will
use juxtaposition to denote the sorted merge of two lists.

Definition 4.21. ·PM is defined as follows.

·PM : P ×M → P

i,m′ 7→ 0 +PM (m′ ·MZ i)
m + p, m′ 7→ (p ·PM m′) +PM (m ·MM m′)

Proposition 4.22. ·PM satisfies the following properties:

(i) for all m, ‖p ·PM m′‖m = ‖p‖m∗ × ‖m′‖ if there is an m∗ such
that |m| = |m∗||m′| (there may exist at most one such m∗) and 0
otherwise;

(ii) p ·PM 0 = 0;

(iii) if m′ 6= 0, then |p ·PM m′| is the sorted list whose elements are
obtained by appending |m′| to each element of p and sorting the
result;

(iv) ·PM is well defined;

hrefl-iii.tex; 23/09/2004; 15:32; p.27

28 L. Cruz-Filipe and F. Wiedijk

(v) if p][ρ t and m′][ρ t′, then p ·PM m′][ρ t× t′.

Proof. The first property follows by induction on p using Proposi-
tions 4.18 and 4.14 (since ·MZ is a special case of ·MM). The second
property also follows by induction, since 0 ·MM 0 = 0 +PM 0 = 0.

The third property is also proved by induction on p. If p = i then
the result follows from Propositions 4.10 and 4.18. If p = m + p′, then
(m + p′) ·PM m′ = (p ·PM m′) +PM (m ·MM m′). Since |p′| does not have
any repeated elements, by induction hypothesis neither does |p ·PM m′|
(since its elements are the image of the elements of |p| via an injective
function). By Proposition 4.14, |m ·MM m′| is the sorted list whose
elements are either in |m| or in |m′|, and this does not occur in |p·PMm′|.
Hence the thesis follows from Proposition 4.18.

The fourth property is straightforward since ·MM and +PM are both
well defined. The last one is proved by induction on p (Coq checked).

Definition 4.23. ·PP is defined as follows.

·PP : P × P → P

i, q 7→ q ·PM i

m + p, q 7→ (q ·PM m) +PP (p ·PP q)

Proposition 4.24. ·PP satisfies the following properties:

(i) for all m ∈ M , ‖p ·PP q‖m =
∑
‖p‖m1‖q‖m2 , where the sum ranges

over all m1 ∈ |p|∪{1} and m2 ∈ |q|∪{1} for which |m| = |m1||m2|;

(ii) ·PP is well defined;

(iii) if p][ρ t and q][ρ t′, then p ·PP q][ρ t× t′.

Proof. We prove the first property by induction. If p = i then the
result follows from Proposition 4.22, since then m1 can only be 1 (|p|
is the empty list). If p = m′ + p′, then by Proposition 4.20 ‖(q ·PM

m′)+PP (p′ ·PP q)‖m = ‖q ·PM m′‖m +‖p′ ·PP q‖m; the result now follows
from induction hypothesis and Proposition 4.22. The second property
is trivial; the last is proved by induction (Coq checked).

Definition 4.25. The normalization function N is defined as follows,
where E∗ denotes the type of expressions that do not use division.

N : E∗ → P

i 7→ i

v0
i 7→ v0

i × 1 + 0

hrefl-iii.tex; 23/09/2004; 15:32; p.28

A Decision Procedure for Equational Reasoning 29

e + f 7→ N (e) +PP N (f)
e× f 7→ N (e) ·PP N (f)
v1
i (e) 7→ v1

i (N (e))× 1 + 0

Proposition 4.26. N satisfies the following properties:

(i) N is well defined;

(ii) if e][ρ t then N (e)][ρ t.

Proof. Both properties are proved by induction, the first one using
Propositions 4.20 and 4.24 (the second one is Coq checked).

Corollary 4.27. Let t, t′ : A and define 〈e, ρ〉 = ptq∅ and 〈e′, σ〉 =
pt′qρ. If N (e) = N (e′), then t =A t′ can be proved from the ring
axioms and unfolding of the definitions of −, zring and nexp.

Proof. Let e and e′ be as defined above and suppose that N (e) =
N (e′). By Lemma 3.9, both e][ρ t and e′][ρ t′. By Proposition 4.26 also
N (e)][ρ t and N (e′)][ρ t′. Since N (e) = N (e′), we have that N (e)][ρ t
and N (e)][ρ t′, whence t =A t′ by Lemma 2.30.

4.3. Properties of P and N

We now show that 〈P,+PP, 0, ·PP, 1〉 is a ring (w.r.t. syntactic equality).
This will be essential later on, where we will use the properties of these
operations without comment.

Lemma 4.28. For all m,m′ : M , m ·MM m′ = m′ ·MM m.

Proof. By Lemma 4.7, it is sufficient to show that ‖m ·MM m′‖ =
‖m′ ·MM m‖ and |m ·MM m′| = |m′ ·MM m|. But both of these are conse-
quences of Proposition 4.14, commutativity of addition and uniqueness
of sort.

Lemma 4.29. Let p, q, r : P . Then the following hold:

(i) p +PP 0 = p

(ii) p +PP (q +PP r) = (p +PP q) +PP r

(iii) p +PP q = q +PP p

(iv) p +PP (p ·PP (−1)) = 0

hrefl-iii.tex; 23/09/2004; 15:32; p.29

30 L. Cruz-Filipe and F. Wiedijk

Proof. Remembering that p = q ⇐⇒ ∀m : M.‖m‖p = ‖m‖q

(Proposition 4.8), the first three properties are immediate. For the
fourth, given m : M , ‖p+PP (p ·PP (−1))‖m = ‖p‖m +‖p ·PP (−1)‖m, so
it suffices to show that ‖p ·PP (−1)‖m = −‖p‖m. By Proposition 4.24,
‖p ·PP (−1)‖m =

∑
‖p‖m1‖ − 1‖m2 . Now in this sum m2 can only

assume value 1, whence m1 = m and the previous expression reduces
to ‖p‖m(−1) = −‖p‖m.

Lemma 4.30. Let p, q, r : P . Then the following hold:

(i) p ·PP 0 = 0

(ii) p ·PP 1 = p

(iii) p ·PP (q ·PP r) = (p ·PP q) ·PP r

(iv) p ·PP q = q ·PP p

(v) p ·PP (q +PP r) = (p ·PP q) +PP (p ·PP r)

Proof. Again we appeal to Proposition 4.8.
The first property is proved straightforwardly by induction using

Proposition 4.22.
To prove p·PP1 = 1·PPp = p·PM1 take any m : M ; then |m| = |m||1|,

hence by Proposition 4.22 ‖p ·PM 1‖m = ‖p‖m × ‖1‖ = ‖p‖m, hence
p ·PP 1 = p.

To prove commutativity, again take any m : M ; then ‖p ·PP q‖m =∑
‖p‖m1‖q‖m2 =

∑
‖q‖m2‖p‖m1 = ‖q ·PP p‖m where the sums range

over all m1 ∈ |p| ∪ {1} and m2 ∈ |q| ∪ {1} for which |m| = |m1||m2|;
the equalities hold by Proposition 4.24.

For associativity, we again take an arbitrary m : M and conclude
from Proposition 4.24 that ‖p ·PP (q ·PP r)‖m =

∑
‖p‖m1‖q ·PP r‖m2 =∑

‖p‖m1

(∑
‖q‖m1

2
‖r‖m2

2

)
=

∑
‖p‖m1‖q‖m1

2
‖r‖m2

2
. This last expression

is completely symmetric on p, q and r, since the last sum in fact ranges
over all m1, m1

2 and m2
2 such that |m| = |m1||m1

2||m2
2| with m1 ∈ |p| ∪

{1}, m1
2 ∈ |q|∪{1} and m2

2 ∈ |r|∪{1}. Therefore, from associativity and
commutativity of sums and products of integers, we immediately get
that ‖p ·PP (q ·PP r)‖m = ‖r ·PP (p ·PP q)‖m, and applying commutativity
of ·PP twice we get the desired result.

For the last property, again take m : M ; then ‖p ·PP (q +PP r)‖m =∑
‖p‖m1‖q +PP r‖m2 =

∑
‖p‖m1(‖q‖m2 + ‖r‖m2) =

∑
‖p‖m1‖q‖m2 +∑

‖p‖m1‖r‖m2 = ‖(p ·PP q) +PP (p ·PP r)‖m

Lemma 4.31. Let m : M \ Z and p : P . Then N (m) = m + 0 and
N (p) = p.

hrefl-iii.tex; 23/09/2004; 15:32; p.30

A Decision Procedure for Equational Reasoning 31

Proof. By simultaneous induction on m and p.
The case m = v0

i × i is proved by computation; also m = v1
i (p) × i

follows from computation and the induction hypothesis for p.
If m = v0

i ×m′, then notice first that m′ ·MM (v0
i × 1) = m: ‖m′ ·MM

(v0
i ×1)‖ = ‖m′‖×1 = ‖m′‖ by Proposition 4.14 and |m′ ·MM (v0

i ×1)| is
the list obtained by inserting v0

i at the right position in |m′|, which is by
definition |m| (since this list is sorted), hence by Lemma 4.7 the result
holds. Using this fact, the thesis can be seen to hold by computing
N (m), applying the induction hypothesis and Lemmas 4.30 and 4.29.
The case m = v1

i (p)×m′ is similar.
Now suppose that p is an integer; then N (p) = p by definition. Else

take p = m+ q; by induction hypothesis N (q) = q and N (m) = m+0,
hence N (m + q) = q +PM m by computation and Lemma 4.29; but by
definition of P , |m| cannot occur in |q| and must be smaller than |q|
(w.r.t. <M), hence the last expression reduces to m + q, or p.

Corollary 4.32. N is idempotent: for every e : E∗, N (N (e)) = N (e).

Proof. Since N (e) : P , the previous lemma yields the result.

4.4. The substitution lemma

In this subsection, we show that the following “substitution lemma”
holds: if, in two expressions that normalize to the same, some variables
get uniformly renamed, then the resulting expressions also normalize
to the same term. This is proven in two steps.

Lemma 4.33. Let e : E and ξ be a renaming of variables. Then
N (eξ) = N (N (e)ξ).

Proof. By induction on e.
Suppose e = i; then N (N (i)ξ) = N (iξ) = N (i) = N (iξ).
Now let e = v0

i . Then N (N (e)ξ) = N ((v0
i × 1 + 0)ξ) = N (v0

ξ0(i) ×
1 + 0) = N (v0

ξ0(i)) ·PP 1 +PP 0 = N (v0
ξ0(i))) = N ((v0

i)
ξ) by virtue of

Propositions 4.29 and 4.30.
If e = v1

i (e
′), then we use the induction hypothesis to show that

N (N (v1
i (e

′))ξ) = N ((v1
i (N (e′))× 1 + 0)ξ)

= N (v1
ξ1(i)(N (e′)ξ)× 1 + 0)

= N (v1
ξ1(i)(N (e′)ξ)) ·PP 1 +PP 0

= N (v1
ξ1(i)(N (e′)ξ))

hrefl-iii.tex; 23/09/2004; 15:32; p.31

32 L. Cruz-Filipe and F. Wiedijk

= v1
ξ1(i)(N (N (e′)ξ))× 1 + 0

IH= v1
ξ1(i)(N (e′ξ))× 1 + 0

= N (v1
ξ1(i)(e

′ξ))

= N ((v1
i (e

′))ξ)

For the case e = e1 ? e2, with ? = +,×, we also need the equality
N ((p ? q)ξ) = N ((p ?PP q)ξ) for all p, q : P . The proof is included in
the Appendix of [8]; its use is marked here by ∗.

N (N (e1 ? e2)
ξ) = N ((N (e1) ?PP N (e2))

ξ)
∗= N ((N (e1) ?N (e2))

ξ)

= N (N (e1)
ξ ?N (e2)

ξ)

= N (N (e1)
ξ) ?PP N (N (e2)

ξ)
IH= N (e1

ξ) ?PP N (e2
ξ)

= N (e1
ξ ? e2

ξ)

= N ((e1 ? e2)
ξ)

Theorem 4.34. Let e, e′ : E be expressions such that N (e) = N (e′)
and let ξ be a renaming of variables. Then N (eξ) = N (e′ξ).

Proof. By Lemma 4.33, N (eξ) = N (N(e)ξ) = N (N(e′)ξ) = N (e′ξ).

4.5. Completeness

We are now ready to state our main result.

Theorem 4.35. Let t, t′ : A be such that the equality t =A t′ can be
proved (in the sense of Definition 2.11) only from the ring axioms and
unfolding of the definitions of −, zring and nexp in t and t′. Define
〈e, ρ〉 = ptq∅ and 〈e′, σ〉 = pt′qρ. Then N (e) = N (e′).

For presentation, we split the proof of this in several stages.

Lemma 4.36. Let t, t′ : A be terms such that t′ is obtained from
t by unfolding the definitions of −, zring and ·n (n closed) in t. If
ptqρ = 〈e, σ〉 and pt′qρ = 〈e′, σ′〉, then σ = σ′ and N (e) = N (e′).

Proof. For − and ·n this is immediate, since terms using these
constructors are quoted to expressions using the corresponding abbre-
viations whose definition coincides with those of − and ·n.

hrefl-iii.tex; 23/09/2004; 15:32; p.32

A Decision Procedure for Equational Reasoning 33

For zring the proof is by induction1: 0 unfolds to 0, both of which
are quoted to 0; n + 1 is quoted to n +Z 1, which is in normal form,
whereas n + 1 is quoted to n + 1 which normalizes to N (n) +PP 1 =
n +Z 1; finally, n− 1 is quoted to n + 1 × (−1), which normalizes to
N (n) +PP 1 ·PP (−1) = n−Z 1.

Lemma 4.37. Let t, t′ : A be such that t =A t′ is an instance of one
of the axioms Set1, SG, M1, M2, G1, G2, AG or Ri with 1 ≤ i ≤ 5.
Define 〈e, τ〉 = ptq∅ and 〈e′, τ ′〉 = pt′qτ . Then N (e) = N (e′).

Proof. All these proofs are very similar, being a consequence of
Lemmas 4.29 and 4.30. We detail a few.

Set1 Then t = t′; by Lemma 3.10 e′ = e, and obviously N (e) = N (e).

SG Then t = (t1 + t2) + t3 and t′ = t1 + (t2 + t3). Let pt1q∅ = 〈e1, ρ〉,
pt2qρ = 〈e2, σ〉 and pt3qσ = 〈e3, θ〉. Then pt1 + t2q∅ = 〈e1 + e2, σ〉
and p(t1 + t2) + t3q∅ = 〈(e1 + e2) + e3, θ〉.
Furthermore, since ρ ⊆ σ ⊆ θ by Lemma 3.8, Lemma 3.10 yields
pt1qθ = 〈e1, θ〉, pt2qθ = 〈e2, θ〉 and pt3qσ = 〈e3, θ〉, and therefore
pt2 + t3qθ = 〈e2 + e3, θ〉 and pt1 + (t2 + t3)qθ = 〈e1 + (e2 + e3), θ〉.
Then N ((e1 + e2) + e3) = N (e1 + e2) +PP N (e3) = (N (e1) +PP

N (e2)) +PP N (e3) = N (e1) +PP (N (e2) +PP N (e3)) = N (e1) +PP

N (e2 + e3) = N (e1 + (e2 + e3)).

G1 Then t = t1 + (−t1) and t′ = 0. Let pt1q∅ = 〈e1, ρ〉; then by
Lemma 3.10 also pt1qρ = 〈e1, ρ〉, hence e = e1 + (e1 × (−1)); by
definition p0qρ = 〈0, ρ〉, so e′ = 0.

NowN (e1+(e1×(−1))) = N (e1)+PP(N (e1)·PP(−1)) = 0 = N (0),
according to Lemma 4.29.

R5 In this case t = t1×(t2 + t3) and t′ = (t1× t2)+(t1× t3). Reasoning
like in the case of SG above, we conclude that e = e1 × (e2 + e3)
and e′ = (e1× e2)+(e1× e3). By Lemma 4.30, N (e1× (e2 + e3)) =
N (e1) ·PP (N (e2) +PP N (e3)) = N (e1) ·PP N (e2) +PP N (e1) ·PP

N (e3) = N ((e1 × e2) + (e1 × e3)).

Lemma 4.38. Let t1, t2 : A be such that, if 〈e1, ρ〉 = pt1q∅ and
〈e2, σ〉 = pt2qρ, then N (e1) = N (e2). Define 〈e′2, σ′〉 = pt2q∅ and
〈e′1, ρ′〉 = pt1qσ′ . Then N (e′1) = N (e′2).

1 In this paragraph we write +Z to emphasize the distinction between addition
of integers and addition of expressions.

hrefl-iii.tex; 23/09/2004; 15:32; p.33

34 L. Cruz-Filipe and F. Wiedijk

Proof. Let e1, e
′
1, e2 and e′2 be as given. By Lemma 3.16 there is a

renaming of variables ξ such that e′i = ei
ξ for i = 1, 2; but then N (e′1) =

N
(
e1

ξ
)

= N
(
e2

ξ
)

= N (e′2) using the hypothesis N (e1) = N (e2) and
Theorem 4.34.

Lemma 4.39. Let t1, t2, t3 : A and define

〈e1, ρ〉 = pt1q∅ 〈e′2, σ′〉 = pt2q∅
〈e2, σ〉 = pt2qρ 〈e′3, θ′〉 = pt3qσ′

Assume that N (e1) = N (e2) and N (e′2) = N (e′3). Define 〈e3, θ〉 =
pt3qρ. Then N (e1) = N (e3).

Proof. Let e1, e2, e
′
2, e3 and e′3 be as given and define 〈e′′3, θ′′〉 = pt3qσ.

By Lemma 3.18, there exists a renaming of variables ξ such that e′′3 =
e′3

ξ and e2 = e′2
ξ. By Lemma 3.16 there is another renaming of variables

ξ′ such that e3 = e′′3
ξ′ and dom(ξ′i) ∩ dom(ρi) = ∅. Then N (e3) =

N
(
e′′3

ξ′
)

= N
(
e′3

ξ′◦ξ
)

= N
(
e′2

ξ′◦ξ
)

= N
(
e2

ξ′
)

= N
(
e1

ξ′
)

= N (e1)
using the hypotheses N (e1) = N (e2) and N (e′2) = N (e′3) together with
Theorem 4.34 and the equalities above stated. The last equality follows
from the fact that dom(ξ′i)∩dom(ρi) = ∅: by Lemma 3.11 every variable
vi
k occurring in e1 is in dom(ρi), so e1 = e1

ξ′ .

Lemma 4.40. Let t1, t2 : A be such that, if 〈e1, ρ〉 = pt1q∅ and
〈e2, σ〉 = pt2qρ, then N (e1) = N (e2). Let f : [A → A] be other than
·n with n closed and define 〈e′1, ρ′〉 = pf(t1)q∅ and 〈e′2, σ′〉 = pf(t2)q∅.
Then N (e′1) = N (e′2).

Proof. We have to consider two cases. If f is the unary inverse (−),
then immediately e′1 = −e1, ρ′ = ρ and hence e′2 = −e2; in this case,
N (e′1) = N (−e1) = N (e1×(−1)) = N (e1) ·PP (−1) = N (e2) ·PP (−1) =
N (e2 × (−1)) = N (−e2) = N (e′2).

Else, e′1 = v1
i (e1) with ppfqqρ = 〈v1

i , ρ
′〉 and e′2 = v1

i (e
′′
2), with pt2qρ′ =

〈e′′2, σ′〉 (since by Lemma 3.8 ρ′ ⊆ σ′, σ′1(v
1
i) = f and thus ppfqqσ′ =

〈v1
i , σ〉). By Lemma 3.17 there is a renaming of variables ξ such that

e′′2 = e2
ξ and dom(ξi) ∩ dom(ρi) = ∅. Hence N (e′2) = N (v1

i (e
′′
2)) =

v1
i (N (e′′2)) × 1 + 0 = v1

i (N (e2
ξ)) × 1 + 0 = v1

i (N (e1
ξ)) × 1 + 0 =

v1
i (N (e1))× 1 + 0 = N (v1

i (e1)) = N (e′1), using Theorem 4.34 together
with the assumption N (e1) = N (e2) and the fact that e1 = e1

ξ by
virtue of Lemma 3.11 and dom(ξi) ∩ dom(ρi) = ∅.

hrefl-iii.tex; 23/09/2004; 15:32; p.34

A Decision Procedure for Equational Reasoning 35

Lemma 4.41. Let t1, t2, t3, t4 : A and define

〈e1, ρ〉 = pt1q∅ 〈e3, θ〉 = pt3q∅
〈e2, σ〉 = pt2qρ 〈e4, τ〉 = pt4qθ

Assume that N (e1) = N (e2) and N (e3) = N (e4) and let

〈e, γ〉 = pt1 ? t3q∅ 〈e′, γ′〉 = pt2 ? t4qγ

where ? is + or ×. Then N (e) = N (e′).

Proof. By definition of quote, e = e1 ? e′3 with 〈e′3, γ〉 = pt3qρ. Also,
e′ = e′2 ? e′4, with 〈e′2, γ′′〉 = pt2qγ and 〈e′4, γ′〉 = pt4qγ′′ .

Take pt4qγ = 〈e′′4, γ′′′〉.
According to Lemma 3.18, there exists a renaming of variables ξ

such that e′3 = e3
ξ and e′′4 = e4

ξ. By Lemma 3.16, there is a renaming
of variables ξ′ such that e′2 = e2

ξ′ and dom(ξ′i)∩dom(ρi) = ∅ (and hence
e1 = e1

ξ′ due to Lemma 3.11). Again by Lemma 3.16, there exists a
renaming of variables ξ′′ such that e′4 = e′′4

ξ′′ and dom(ξ′′i)∩dom(γi) = ∅
(so that e′3 = e′3

ξ′′).
ThenN (e′) = N (e′2?e′4) = N (e′2)?PPN (e′4) = N (e2

ξ′)?PPN (e′′4
ξ′′) =

N (e2
ξ′)?PPN (e4

ξ′′◦ξ) = N (e1
ξ′)?PPN (e3

ξ′′◦ξ) = N (e1)?PPN (e′3
ξ′′) =

N (e1) ?PP N (e′3) = N (e1 ? e′3) = N (e) using the hypotheses and
Theorem 4.34.

Definition 4.42. A normal proof of t =A t′ is a proof of t =A t′ where
Set4 is not applied with ·n (n closed) and Set5 is not applied with −.

Lemma 4.43. Suppose that t =A t′ can be proved only from the ring
axioms and unfolding of the definitions of −, zring and nexp in t and
t′. Then there exists a normal proof of t =A t′.

Proof. By induction on the length of the proof of t =A t′. The only
non-trivial cases are those when the last axiom to be applied is Set4
with ·n (n closed) or Set5 with −.

Suppose we prove tn1 =A tn2 from t1 =A t2 using Set4. We proceed by
induction. If n = 0, then we can replace the whole proof by (Set1 1),
and folding produces t01 =A t02. If n = k + 1, we first find a normal
proof of tk1 =A tk2 using the induction hypothesis (for n) and a normal
proof of t1 =A t2 using the induction hypothesis for the lemma. Then
we apply Set5 to get t1× tk1 =A t2× tk2; folding ·k+1 on the last equality
produces the desired proof.

Finally, if we prove t1−t3 =A t2−t4 from t1 =A t2 and t3 =A t4 using
Set5, we first find normal proofs of t1 =A t2 and t3 =A t4 (induction

hrefl-iii.tex; 23/09/2004; 15:32; p.35

36 L. Cruz-Filipe and F. Wiedijk

hypothesis), apply Set4 to the latter to get −t3 =A −t4 and apply
Set5 to get t1 +(−t3) =A t2 +(−t4), which is the desired equality with
the definition of − unfolded.

Theorem 4.44. Let t, t′ : A and e, e′ : E be as in Theorem 4.35 and
assume that there is a normal proof of t =A t′. Then N (e) = N (e′).

Proof. By induction on the length of the normal proof of t =A t′.
If t =A t′ is an instance of one of the axioms Set1, SG, M1, M2,

G1, G2, AG or Ri with 1 ≤ i ≤ 5, then by Lemma 4.37 N (e) = N (e′).
If t =A t′ is proved by Set2 from t′ =A t, then the thesis holds by

Lemma 4.38 and the induction hypothesis.
If t =A t′ is proved by Set3 from t =A t1 and t1 =A t′, then the

thesis holds by Lemma 4.39 and the induction hypothesis.
If t =A t′ is proved by Set4 from t1 =A t2 and f is not ·n with n

closed, then the thesis holds by Lemma 4.40 and induction hypothesis.
If t =A t′ is proved by Set5 from t1 =A t2 and t3 =A t4 and f is not

−, then the thesis holds by Lemma 4.41 and the induction hypothesis.
If t1 and t2 can be obtained from t and t′ by unfolding the definitions

of −, ·n and zring, then by Lemma 4.36 pt1q∅ = ptq∅ = 〈e, ρ〉 and
pt2qρ = pt′qρ = 〈e′, σ〉. The induction hypothesis asserts the thesis.

We are now ready to prove Theorem 4.35.

Proof (Completeness Theorem 4.35). Assume there is a proof of
t =A t′. By Lemma 4.43 there is also a normal proof of t =A t′, so
by Theorem 4.44 N (e) = N (e′).

5. Completeness of rational: groups

We now prove a completeness theorem for groups similar to Theo-
rem 4.35. The theory developed above is not enough as is: if G is a
group, a : G and v0

0][ρa, then v0
0+v0

0][ρa+a, but N (v0
0+v0

0) = v0
0×2+0,

which cannot be interpreted in G, so part (ii) of Lemma 4.26 fails to
hold. Hence we first extend the interpretation relation conservatively.

Definition 5.1. Let G be a group, n : Z and a : G. Then n · a is
inductively defined as follows.

0 · a := 0 (19)
(n + 1) · a := n · a + a, for n ≥ 0 (20)
(n− 1) · a := n · a− a, for n ≤ 0 (21)

hrefl-iii.tex; 23/09/2004; 15:32; p.36

A Decision Procedure for Equational Reasoning 37

Proposition 5.2. Let R be a ring. Then, for all n : Z and a : R,
n · a =R n× a is provable.

Proof. Straightforward induction.

Lemma 5.3. Let ρ be a valuation pair for a ring A. The interpretation
relation satisfies the following rule, where n : Z.

e][ρ t1 ∧ n · t1 =A t → e× n][ρ t.

Proof. By the previous proposition n·t1 =A n×t1 is provable, whence
n × t1 =A t is provable by hypothesis, Set2 and Set3. Furthermore,
n][ρ n by Set1 and (11). By hypothesis e][ρ t1. Therefore, by (13),
e× n][ρ t.

Hence, this clause can be added to the inductive definition of the
interpretation relation without changing it when defined over a ring or
field but extending it in the case of groups. We also need the case k = 0
of (11). That is, we consider the interpretation relation as defined in
Definition 2.27 extended with the two following clauses.

0 =G t → 0][ρ t (22)
e][ρ t1 ∧ n · t1 =G t → e× n][ρ t (23)

Notice that conditions (16) and (17) in Lemma (2.28) can be proved
from these clauses, so that they also hold for groups with this extended
interpretation relation. The following results are then easily proved by
induction (Coq checked); they are analogues of Lemma 2.30 and the
lemmas of Subsection 4.2.

Lemma 5.4. Let e : E, t, t′ : G and ρ be a valuation pair for G such
that e][ρ t and e][ρ t′. Then t =G t′.

Lemma 5.5. Let G be a group and ρ be a valuation pair for G. The
auxiliary normalization functions satisfy the following properties.

(i) if m][ρ t then m ·MZ i][ρ i · t;

(ii) if x×m][ρ t then m ·MV x][ρ t;

(iii) if m×m′][ρ t or m′ ×m][ρ t then m ·MM m′][ρ t;

(iv) if m][ρ t and m′][ρ t′ then m +MM m′][ρ t + t′;

(v) if p][ρ t and m′][ρ t′ then p +PM m′][ρ t + t′;

hrefl-iii.tex; 23/09/2004; 15:32; p.37

38 L. Cruz-Filipe and F. Wiedijk

(vi) if p][ρ t and p′][ρ t′ then p +PP p′][ρ t + t′;

(vii) if p×m′][ρ t or m′ × p][ρ t then p ·PM m′][ρ t;

(viii) if p× p′][ρ t then p ·PP p′][ρ t.

Some of the hypotheses in the previous lemma may seem a bit
strange. The problem is, we cannot say as before that “if m][ρ t and
m′][ρ t′ then m ·MM m′][ρ t× t′” because in G there is no multiplication.
Hence, we replace this by the equivalent (in a ring) form “if m×m′][ρ t
then m ·MM m′][ρ t”. However, this is still not enough, since ·MM may
switch the order of its arguments; hence the disjunction in the actual
lemma, which in fact says that one of the arguments to ·MM is an
integer.

Similar remarks hold for ·PM. In the case of ·MV we already know
that the second argument is a variable, so one of the clauses of the
disjunction never holds and we can erase it. As for ·PP, it will only be
called by N when a product appears in the original expression, which
is clearly impossible if this is the result of quoting a term in G; it is
however needed in the proof of the following lemma.

Lemma 5.6. Let e : E and t : G. If e][ρ t then N (e)][ρ t.

Proof. By induction (Coq checked). Since products in expressions
can now only be interpreted by means of (23), the stronger hypotheses
in Lemma 5.5 are seen to be satisfied by analyzing the proof of e][ρ t.

Corollary 5.7. Let t, t′ : G and define 〈e, ρ〉 = ptq∅ and 〈e′, σ〉 = pt′qρ.
If N (e) = N (e′), then t =G t′ can be proved from the group axioms
and unfolding of the definition of −.

Proof. Let e and e′ be as defined above and suppose that N (e) =
N (e′). By Lemma 3.9, both e][ρ t and e′][ρ t′. By Proposition 5.6 also
N (e)][ρ t and N (e′)][ρ t′. Since N (e) = N (e′), we have that N (e)][ρ t
and N (e)][ρ t′, whence t =G t′ by Lemma 5.4.

Theorem 5.8. Let t, t′ : G be such that the equality t =G t′ can be
proved only from the group axioms and unfolding of the definition of
−. Define 〈e, ρ〉 = ptq∅ and 〈e′, σ〉 = pt′qρ. Then N (e) = N (e′).

Proof. Immediate from Theorem 4.35, since the group axioms are a
proper subset of the ring axioms.

hrefl-iii.tex; 23/09/2004; 15:32; p.38

A Decision Procedure for Equational Reasoning 39

6. Partial completeness of rational: fields

We now generalize the previous results to an arbitrary field structure A
by extending the type of normal forms and the normalization function.

Definition 6.1. The set F of field expressions in normal form is the
set {p/q|p, q ∈ P}.

Definition 6.2. +FF, ·FF and /FF : F ×F → F are defined as follows.

e1/e2 +FF f1/f2 := ((e1 ·PP f2) +PP (e2 ·PP f1)) /(e2 ·PP f2)
e1/e2 ·FF f1/f2 := (e1 ·PP f1)/(e2 ·PP f2)
e1/e2/FFf1/f2 := (e1 ·PP f2)/(e2 ·PP f1)

Proposition 6.3. These functions satisfy the following properties, where
? ∈ {+, ·, /}:

(i) ?FF is well defined;

(ii) if p][ρ t and q][ρ t′, then p ?FF q][ρ t ? t′.

Proof. Direct consequence of the definitions and Propositions 4.20
and 4.24. Parts (iv)–(vi) are Coq checked.

Definition 6.4. The normalization function NF is defined as follows.

NF : E → P

i 7→ i

v0
i 7→

(
v0
i × 1 + 0

)
/1

e + f 7→ NF (e) +FF NF (f)
e× f 7→ NF (e) ·FF NF (f)

e/f 7→ NF (e)/FFNF (f)

v1
i (e) 7→

(
v1
i (NF (e))× 1 + 0

)
/1

Proposition 6.5. NF satisfies the following properties:

(i) NF is well defined;

(ii) if e][ρ t then NF (e)][ρ t.

Proof. As before, the first part is an induction similar to Proposi-
tion 4.26. The second property is proved by induction (Coq checked);

hrefl-iii.tex; 23/09/2004; 15:32; p.39

40 L. Cruz-Filipe and F. Wiedijk

notice that the hypothesis e][ρ t is essential to guarantee that NF will
not introduce divisions by zero (compare with the situation for groups).

6.1. Correctness and completeness

Unfortunately, rational as described above does not work so well with
this normalization function as before, as the following example shows.

Example. Let x : A be a variable such that x 6= 0. Then x×1/x =A 1
is a special case of axiom F.

A simple calculation shows that

px× 1/xq∅ = 〈v0
0 × 1/v0

0, [v
0
0 := x]〉

p1q[v0
0 :=x] = 〈1, [v0

0 := x]〉

but NF (v0
0 × 1/v0

0) = (v0 × 1 + 0)/(v0 × 1 + 0), while NF (1) = 1.

The problem lies in the algebraic structure of F with the operations
above defined, and in trying to generalize the properties in Section 4.3.
Although 〈F,+FF, 0/1, ·FF, 1/1〉 is a ring, it is not an integral domain:
any expression of the form 0/e is an additive unit, and therefore F does
not become a field when we add /FF as a division operator.

The crux of the matter is that terms in F are not restricted to
irreducible fractions (with the intuitive meaning of what “irreducible”
should mean). Adding this restriction is also far from trivial: rewriting
quotients of polynomials to irreducible fractions is known to be an
extremely difficult problem, and implementing such an algorithm in
NF would make rational extremely slow.

Therefore, we will use a different approach. Going back to the ex-
ample, it is easy to check that NF (v0

0 × 1/v0
0 − 1) = 0/(v0

0 × 1 + 0).
Therefore, we will use the following modified version of rational for
fields: instead of comparing the normal form of the two expressions e
and f , we compute the normal form of e− f and check that it has the
form 0/e′. This is correct.

Corollary 6.6. Let t, t′ : A and define 〈e, ρ〉 = ptq∅ and 〈e′, σ〉 = pt′qρ.
If NF (e− e′) = 0/e′′, where e′′ is an arbitrary expression, then t =A t′

can be proved from the field axioms and unfolding of the definitions of
−, zring and nexp.

Proof. Let e and e′ be as defined above and suppose that N (e −
e′) = 0/e′′ for some e′′. By Lemma 3.9, both e][ρ t and e′][ρ t′. By
Proposition 4.26 also N (e)][ρ t and N (e′)][ρ t′. Since N (e − e′) =

hrefl-iii.tex; 23/09/2004; 15:32; p.40

A Decision Procedure for Equational Reasoning 41

N (e)+FFN (e′) ·FF (−1), Lemmas 6.3 and 6.3 together with (11) imply
that N (e− e′)][ρ t + t′ ×−1; but N (e− e′) = 0/e′′, hence 0/e′′ can be
interpreted, and therefore 0/e′′][ρ 0 by (14) and (11). By Lemma 2.30
it then follows that t + t′ ×−1 =A 0, from which the thesis follows.

The only drawback of this approach is that the completeness proof
does not go through. A proof analogous to that of Theorem 4.35,
obtained by replacing “N (e) = N (e′)” with “N (e− e′) = 0/e′′” every-
where, fails on the induction step for Set4, since the induction hypoth-
esis will not be strong enough to prove an equivalent of Lemma 4.40.
All other proofs can be adapted, though, thus yielding the following
(partial) completeness result (proved like Theorem 4.35).

Theorem 6.7. Let t, t′ : A be such that the equality t =A t′ can be
proved only from the field axioms and unfolding of the definitions of
−, zring and nexp in t and t′, without using Set4 except for − and ·n
(n closed). Define 〈e, ρ〉 = ptq∅ and 〈e′, σ〉 = pt′qρ. Then N (e− e′) has
the form 0/e′′ for some expression e′′.

Example. To see that the extra hypothesis is really needed, consider
the equality f(x/2 + x/2) =A f(x), which is clearly provable. Then

pf(x/2 + x/2)q∅ = 〈v1
0(v

0
0/2 + v0

0/2), ρ〉
pf(x)qρ = 〈v1

0(v
0
0), ρ〉

with ρ = [v0
0 := x], [v1

0 := f], but NF (v1
0(v

0
0/2 + v0

0/2)− v1
0(v

0
0)) is

(v1
0((v

0
0 × 1 + 0)/1)× (−1) + v1

0((v
0
0 × 4 + 0)/4)× 1 + 0)/1 6= 0.

In practice, though, the difference in strength between Theorem 4.35
and Theorem 6.7 is not very serious. In most situations axiom Set4 is
not needed, and in several where it is used rational still works (this will
be the case whenever the hypothesis of this axiom can be proved just
from the ring axioms). In particular, rational still works on goals like
f(x + x)/4 + f(2x)/4 = f(x + x + 0)/2, and this is usually enough.
Throughout C-CoRN, less than five situations were found where this
limitation of rational made an alternative proof necessary.

7. Remarks on the implementation

As mentioned in the Introduction, our theoretical treatment of rational
considers a simplified version of the tactic. The actual implementation
covers all the expressions considered in the type of setoids in C-CoRN,

hrefl-iii.tex; 23/09/2004; 15:32; p.41

42 L. Cruz-Filipe and F. Wiedijk

in particular binary functions and partial unary functions, the latter
being implemented as functions of a setoid element and a proof term.

These extra cases pose no new difficulties. There is one new axiom
Set′4, stating a variant of Set4 for partial functions. The type of ex-
pressions needs to be extended with two new constructors for variables
representing these functions, and the interpretation and quote must be
adapted accordingly. As a consequence several new cases need to be con-
sidered when proving results about the order in which terms are quoted,
but these can be treated in a similar way to the like cases for variables in
V1 (unlike variables in V0, which behave differently). The completeness
results for groups and rings still hold; as for fields, as would be expected,
the hypothesis of Theorem 6.7 has to be strengthened since Set′4 and
Set5 cannot be used either in the proof of t = t′.

8. Conclusions

In this paper we formally described rational and undertook a study
of its behavior as a decision procedure. It was shown to be correct
and complete for groups and rings, which is very useful information in
interactive proof development, and correct and partially complete for
fields, which is also very useful, as explained in Section 6.

Furthermore, we hope to use the completeness of rational to take
the tactic a step further. By the completeness of the theory of fields
we also know that for every equality t = t′ that cannot be proved from
the axioms there is a field where t 6= t′ holds. We hope to use the
information provided by rational upon failure (namely, an expression in
normal form that does not equal zero) to construct such a model within
Coq, thus reflecting completeness within the system.

Although rational is designed for Coq, we conducted this study at a
level of abstraction that should make it easy to develop similar (par-
tially) complete tactics for other proof assistants based on type theory.
It is also possible that rational can be adapted to other systems.

Acknowledgements

The authors wish to thank Henk Barendregt and Herman Geuvers for
their helpful suggestions and support.

This work was partially supported by the European Project IST-
2001-33562 MoWGLI and by FCT and FEDER under POCTI, namely
through the CLC project FibLog FEDER POCTI / 2001 / MAT /
37239 and the QuantLog initiative.

hrefl-iii.tex; 23/09/2004; 15:32; p.42

A Decision Procedure for Equational Reasoning 43

References

1. S.F. Allen, R.L. Constable, D.J. Howe, and W. Aitken. The Semantics of
Reflected Proof. In Proceedings of the 5th Symposium on Logic in Computer
Science, pages 95–197, Philadelphia, Pennsylvania, June 1990. IEEE, IEEE
Computer Society Press.

2. G. Barthe, M. Ruys, and H. Barendregt. A two-level approach towards lean
proof-checking. In S. Berardi and M. Coppo, editors, Types for proofs and
programs (Torino, 1995), volume 1158 of LNCS, pages 16–35. Springer Verlag,
1996.

3. G. Barthe and F. van Raamsdonk. Constructor subtyping in the Calculus of
Inductive Constructions. In J. Tiuryn, editor, Proceedings 3rd Int. Conf. on
Foundations of Software Science and Computation Structures, FoSSaCS’2000,
Berlin, Germany, 25 March – 2 Apr 2000, volume 1784, pages 17–34, Berlin,
2000. Springer-Verlag.

4. Constructive Coq Repository at Nijmegen. http://c-corn.cs.ru.nl/.
5. C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1990.
6. The Coq Development Team. The Coq Proof Assistant Reference Manual, April

2004. Version 8.0.
7. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN: the Constructive Coq

Repository at Nijmegen. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Mathematical Knowledge Management, Third International Conference, MKM
2004, volume 3119 of LNCS, pages 88–103. Springer Verlag, 2004.

8. L. Cruz-Filipe and F. Wiedijk. Equational reasoning in algebraic structures: a
complete tactic. Technical Report NIII-R0431, NIII, Nijmegen, July 2004.

9. L. Cruz-Filipe and F. Wiedijk. Hierarchical Reflection. In K. Slind, A. Bunker,
and G. Gopalakrishnan, editors, Theorem Proving in Higher Order Logics, 17th
International Conference, TPHOLs 2004, volume 3223 of LNCS, pages 66–81.
Springer Verlag, 2004.

10. D. Delahaye. A Tactic Language for the System Coq. In M. Parigot and
A. Voronkov, editors, Proceedings of Logic for Programming and Automated
Reasoning (LPAR), Reunion Island, volume 1955 of LNCS, pages 85–95.
Springer-Verlag, 2000.

11. D. Delahaye and M. Mayero. Field: une procédure de décision pour les nombres
réels en Coq. Journées Francophones des Langages Applicatifs, January 2001.

12. P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals of
Pure and Applied Logic, 124:1–47, 2003.

13. H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The Algebraic Hier-
archy of the FTA Project. Journal of Symbolic Computation, Special Issue on
the Integration of Automated Reasoning and Computer Algebra Systems, pages
271–286, 2002.

14. H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational Reasoning via Partial
Reflection. In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher
Order Logics, 13th International Conference, TPHOLs 2000, volume 1869 of
LNCS, pages 162–178, Berlin, Heidelberg, New York, 2000. Springer Verlag.

15. J.R. Harrison. The HOL Light manual (1.1), 2000.
16. J. Hickey, et al. MetaPRL — A Modular Logical Environment. In D. Basin and

B. Wolff, editors, Proceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2003), volume 2758 of LNCS, pages
287–303. Springer-Verlag, 2003.

hrefl-iii.tex; 23/09/2004; 15:32; p.43

44 L. Cruz-Filipe and F. Wiedijk

17. M. Hoffman and T. Streicher. The Groupoid Interpretation of Type Theory.
In G. Sambin and J. Smith, editors, Proceedings of the meeting of Twenty-five
years of constructive type theory, Venice. Oxford University Press, 1996.

18. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey,
Brussels, 1993.

19. T. Streicher. Semantical Investigations into Intensional Type Theory. LMU
München, 1993. Habilitationsschrift.

20. X. Yu, A. Nogin, A. Kopylov, and J. Hickey. Formalizing Abstract Algebra in
Type Theory with Dependent Records. In D. Basin and B. Wolff, editors,
16th International Conference on Theorem Proving in Higher Order Log-
ics (TPHOLs 2003). Emerging Trends Proceedings, pages 13–27. Universität
Freiburg, 2003.

hrefl-iii.tex; 23/09/2004; 15:32; p.44

