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Abstract. Fibring is a meta-logical constructor that combines two given
logics and produces a new one. In particular, the fibring of two sequent
calculi is obtained by combining the languages of both calculi and taking
all rules allowed in either calculus. By their own nature, proofs in the
fibring have no relationship to proofs in the components, so that these are
essentially different objects. In this paper, we propose a novel definition
of fibring of two sequent calculi that takes the notion of derivation as
primitive. Using this construction, we show that a proof in the fibring
is essentially a finite set of proofs in the components structured in a
meaningful way. We also use this novel definition to show that fibring
preserves cut elimination and decidability.

1 Introduction

Combining logics in an important topic in applied logics [4, 10, 1] that raises in-
teresting theoretical problems related to transference results. The objective to
produce a new logic from two (or more) given logics by using a meta opera-
tor which is the combination mechanism. Specially of interest is to investigate
whether the mechanism preserves the logical properties of the original logics. In
general, sufficient conditions can be given for preservation.

Fibring, proposed by Gabbay in [8], is one of the most challenging ones.
Fibring can be and has been investigated from a deductive point of view (mainly
using Hilbert calculus [18], labelled deductive systems [13] and tableau systems
[6, 2]) and also from a model-theoretic perspective (using either an algebraic
approach or a modal-like semantics [9]). Assume that a signature is a family
C of sets Ck of connectives of arity k for each natural number k. Given two
families C ′ and C ′′, the signatures of the component logics, the fibring of the
signatures is the family C ′∪C ′′ where (C ′∪C ′′)k = C ′

k∪C ′′
k for each k. Hence, a

formula in the fibring can have a mixture of the connectives of each component
logic. The fibring of two Hilbert calculi (tableau systems) whose rules are given
in a schematic way is an Hilbert calculus (tableau system) whose set of rules is
the union of the rules of the component logics. Semantic-wise, a model of the
fibring is such that its reduct to the signature of each component should be a
model for that component. Several transference results were obtained, namely
for soundness and completeness [18], several guises of interpolation and semi-
decidability.



A particular case of fibring is fusion of modal logics [11, 17]. The fusion of two
uni-modal logics is a bi-modal logic. In this context, more transference results
were obtained namely preservation of the finite model property and preservation
of decidability via the finite model property.

It is evident that the work both on fibring and on fusion was more directed
towards semantic issues or at least where semantics plays an important role. A
confirmation is that, for instance, fibring of sequent calculi has not been consid-
ered. As a consequence, there are no preservation results related e.g. with the
preservation of cut elimination.

The objective of the paper is to present a novel definition of fibring of sequent
calculi in such a way that we can display the role of derivations in the components
with the derivations on the fibring. That means that we present sequent calculi
via a relation relating sequences of sequents with sequents. We compare our
approach with the usual one where the sequent calculus is presented by rules
(structural and specific). The approach of fibring sequent calculus via derivations
can also be used for heterogeneous fibring, that is when we want to define the
fibring of two calculi presented in a different way [5], say for instance a sequent
calculus and a tableau system.

In Section 2, we define signatures, formulas and substitution. In Section 3,
we present fibring of sequent calculi presented by rules. In Section 4, we present
fibring of sequent calculi given by derivations using the concept of translation
of formulas from the fibring to formulas of the component logics and show the
equivalence if the two presentations of fibring. Examples are given for fusion
of modal logics. Section 5 deals with properties that are preserved by fibring,
namely cut elimination and decidability. Some concluding remarks are made in
Section 6.

2 Background

We only consider propositional-based sequent calculi. The formulas of such cal-
culi are generated from a family of connectives.

Definition 1. A signature C is a family of sets indexed by the natural numbers.
The elements of each Ck are called constructors or connectives of arity k. We
say that C ⊆ C ′ if Ck ⊆ C ′

k for every k ∈ IN.

Definition 2. Let C be a signature and Ξ = {ξn : n ∈ IN} be a countable set
of meta-variables. The language L(C,Ξ) is the free algebra over C generated by
Ξ. The elements of L(C,Ξ) are called formulas.

The elements of Ξ are schema variables that will allow the definition of schematic
derivations. A derivation can be obtained from a schematic derivation by using
a substitution.

Throughout this paper, Ξ will be a fixed set; for this reason, we will usually
abbreviate L(C,Ξ) to L(C).



Definition 3. A substitution is a map σ : Ξ → L(C). Substitutions can be
inductively extended to formulas and to sets of formulas: σ(γ) is the formula
where each ξ ∈ Ξ is replaced by σ(ξ); σ(Γ ) = {σ(γ) : γ ∈ Γ}.

In particular, when σ(ξn) ∈ Ξ for every n, we say that σ is a renaming of
variables.

3 Fibring of sequent calculi via rules

Sequent calculi are traditionally specified by a set of rules that fall into one of
two categories: structural rules and rules for the connectives. In this section, we
look at sequent calculi in this way and define fibring of sequent calculi given by
rules.

3.1 Sequent calculi given by rules

Definition 4. A sequent over a signature C is a pair 〈∆1,∆2〉, denoted by
∆1 −→ ∆2, where ∆1 (the antecedent) and ∆2 (the consequent) are multi-sets
of formulas in L(C).

We denote by SeqC the set of sequents over C.

Definition 5. A rule is a pair 〈{θ1, . . . , θn}, γ〉, indicated by

θ1 . . . θn

γ
,

where θ1, . . . , θn (the premises) and γ (the conclusion) are sequents.

Definition 6. A sequent calculus (given by rules) is a pair R = 〈C,R〉, where
C is a signature and R is a set of rules including structural rules and specific
rules (for the connectives).

– Structural rules: chosen among

ξ1,∆1 −→ ∆2 ∆1 −→ ∆2, ξ1

∆1 −→ ∆2
Cut

∆1 −→ ∆2

ξ1,∆1 −→ ∆2
LW

∆1 −→ ∆2

∆1 −→ ∆2, ξ1
RW

∆1, ξ1, ξ1 −→ ∆2

∆1, ξ1 −→ ∆2
LC

∆1 −→ ξ1, ξ1,∆2

∆1 −→ ξ1,∆2
RC

– Left rules: the antecedent of the conclusion includes a formula c(ϕ1, . . . , ϕn)
for some n-ary connective c.

– Right rules: the consequent of the conclusion includes a formula c(ϕ1, . . . , ϕn)
for some n-ary connective c.



The fundamental notion is the notion of derivation: when do we say that a
sequent s is (sequent-)derivable from ∆?

Definition 7. A (rule-)derivation of a sequent s from a set of sequents ∆ in se-
quent calculus R is a finite sequence ∆1,1 −→ ∆2,1 . . .∆1,n −→ ∆2,n of sequents
such that the following conditions hold.

– ∆1,1 −→ ∆2,1 is s;
– for each i = 1, . . . , n, one of the following holds:

• ∆1,i −→ ∆2,i is an axiom (justified by Ax), that is, ∆1,i ∩∆2,i 6= ∅;
• ∆1,i −→ ∆2,i ∈ ∆ (justified by Hyp);
• there exist a rule r = 〈{θ1, . . . , θk}, γ〉 and a substitution σ such that

∆1,i −→ ∆2,i = σ(γ) and, for each j = 1, . . . , k, there is i < ij ≤ n with
σ(θj) = ∆1,ij

−→ ∆2,ij
(justified by r, i1, . . . , ik).

If such a derivation exists, we say that s is derivable from ∆, denoted by ∆ `R s.
When ∆ is empty, we write simply `R s.

The following examples illustrate this definition.

Example 1. The sequent calculus for minimal logic M has as only connective
the implication →, with arity two, and as rules the five structural rules together
with the following two rules for implication.

Γ −→ ∆, ξ1 ξ2, Γ −→ ∆

(ξ1 → ξ2), Γ −→ ∆
L → ξ1, Γ −→ ∆, ξ2

Γ −→ ∆, (ξ1 → ξ2)
R →

The following derivation ωM shows that `M−→ (ξ1 → (ξ2 → ξ1)).

1. −→ (ξ1 → (ξ2 → ξ1)) R →, 2
2. ξ1 −→ (ξ2 → ξ1) R →, 3
3. ξ2, ξ1 −→ ξ1 Ax

Example 2. The sequent calculus for minimal logic with an S4 modality (char-
acterized by Kripke structures with a transitive accessibility relation), which
we will denote by S4, has two unary connectives � and ♦, a binary connective
→ and as rules those of M together with the following four rules for the two
modalities.

Γ, ξ1, (�ξ1) −→ ∆

Γ, (�ξ1) −→ ∆
L�

�Γ1 −→ ξ1,∆1

Γ2,�(Γ1) −→ (�ξ1),♦(∆1),∆2
R�

ξ1, Γ1 −→ ♦(∆1)
(♦ξ1),�(Γ1), Γ2 −→ ∆2,♦(∆1)

L♦
Γ −→ ∆, ξ1, (♦ξ1)
Γ −→ ∆, (♦ξ1)

R♦

In these rules, �(Γ ) = {(�ϕ) : ϕ ∈ Γ} (and similarly for ♦(Γ )).
The following derivation ωN shows that {−→ ξ1} `S4−→ (�ξ1).

1. −→ (�ξ1) R�, 2
2. −→ ξ1 Hyp



It is worth stressing that 6`S4 ξ1 −→ (�ξ1), so allowing hypotheses in the deriva-
tions is an essential feature of our definition – as is quite well-known by people
working in modal logic.

Another interesting example of a derivation in this system is the following
proof ωS4 of `S4−→ (♦(ξ1 → (�ξ1))).

1. −→ (♦(ξ1 → (�ξ1))) R♦, 2
2. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)) R →, 3
3. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1) R�, 4
4. −→ (♦(ξ1 → (�ξ1))), ξ1 R♦, 5
5. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)), ξ1 R →, 6
6. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1), ξ1 Ax

Example 3. Finally we introduce a sequent calculus D for propositional logic
with connectives ¬ and → together with a D modality (characterized by Kripke
structures where every world can access another one). This calculus, see for
instance [14], has as rules the five structural rules, the two rules L → and R →
present in S4, left and right rules for ¬ and right rules for the modalities.

Γ −→ ∆, ξ1

Γ, (¬ξ1) −→ ∆
L¬ Γ, ξ1 −→ ∆

Γ −→ (¬ξ1),∆
R¬

Γ −→ ξ1

�(Γ ) −→ (�ξ1)
R�

Γ −→ ξ1

�(Γ ) −→ (♦ξ1)
R♦

The following derivation ωD shows that −→ ξ2 `D−→ (♦(ξ1 → ξ2)).

1. −→ (♦(ξ1 → ξ2)) Cut, 2, 5
2. (�ξ2) −→ (♦(ξ1 → ξ2)) R♦, 3
3. ξ2 −→ (ξ1 → ξ2) R →, 4
4. ξ2, ξ1 −→ ξ2 Ax
5. −→ (♦(ξ1 → ξ2)), (�ξ2) RW, 6
6. −→ (�ξ2) R�, 7
7. −→ ξ2 Hyp

We conclude this section with a small result on derivations.

Proposition 1. Let R = 〈C,R〉 be a sequent calculus given by rules, ∆ ⊆ SeqC

and s ∈ SeqC such that ∆ `R s with derivation ω, and σ : Ξ → L(C) be a
substitution. Then σ(∆) `R σ(s) with derivation σ(ω).

Proof. Straightforward from the definition of derivation.

3.2 Fibring

Definition 8. Let R′ = 〈C ′, R′〉 and R′′ = 〈C ′′, R′′〉 be sequent calculi. The
fibring R′ ]R′′ of R′ and R′′ is the sequent calculus 〈C ′ ∪ C ′′, R′ ∪R′′〉.



As an example of this definition, we show how we can construct from the
examples above a logic with a propositional negation ¬ and implication →, an
S4 modality �′ and a D modality �′′.

Example 4. Consider the sequent calculi S4 and D presented above, where the
modalities are renamed �′ and ♦′ (from S4) and �′′ and ♦′′ (from D). Their
fibring is the calculus S4]D whose rules are all the rules presented in Examples 2
and 3.

In this system we can derive −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))) as follows.

1. −→ ♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))) Cut, 2, 5
2. (�′′(♦′(ξ1 → (�′ξ1)))) −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))) R♦′′, 3
3. (♦′(ξ1 → (�′ξ1))) −→ (ξ2 → (♦′(ξ1 → (�′ξ1)))) R →, 4
4. ξ2, (♦′(ξ1 → (�′ξ1))) −→ (♦′(ξ1 → (�′ξ1))) Ax
5. −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))), (�′′(♦′(ξ1 → (�′ξ1)))) RW, 6
6. −→ (�′′(♦′(ξ1 → (�′ξ1)))) R�′′, 7
7. −→ (♦′(ξ1 → (�′ξ1))) R♦′, 8
8. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)) R →, 9
9. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1) R�′, 10

10. −→ (♦′(ξ1 → (�′ξ1))), ξ1 R♦′, 11
11. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)), ξ1 R →, 12
12. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1), ξ1 Ax

Notice, however, that we profit little from the ability to make derivations in
S4 and D. A close look at the derivation above shows that ωD and ωS4 (see
Examples 2 and 3) appear at steps 1–7 and 7–12, respectively; but there is no
way to identify them from the derivation given here. The fact that ξ1 from ωD

has been replaced by (♦′(ξ1 → (�′ξ1))) only complicates matters further. So,
morally, this derivation is a new derivation, independent of ωD and ωS4.

4 Fibring of sequent calculi via derivations

With the notion of fibring presented above, a derivation in the fibring does
not keep track of the derivations in the components it possibly originates from.
Therefore, we now propose a generalization of the notion of sequent calculus
where the notion of derivation (rather than that of rule) is central. This will
allow us to define fibring in such a way that derivations in the fibring are built
from derivations in the components, and from a derivation in the fibring we can
immediately extract the original derivations.

4.1 Sequent calculi given by derivations

Definition 9. A sequent calculus given by derivations is a pair D = 〈C,P 〉
where C is a signature and P = {P∆ : ∆ ∈ ℘finSeqC} is a family of predicates
P∆ ⊆ Seq∗C × SeqC such that the following conditions hold.



– Conclusion: if P∆(ω, s) holds, then s is the first element in ω.
– Monotonicity: if ∆1 ⊆ ∆2, then P∆1 ⊆ P∆2 .
– Closure under substitution: if P∆(ω, s) holds and σ is a substitution, then

Pσ(∆)(σ(ω), σ(s)) also holds.

Definition 10. Let ∆ ⊆ SeqC and s ∈ SeqC . We say that s is derivable from ∆
in sequent calculus D, denoted ∆ `D s, if there exist a sequence ω of sequents
and a finite set ∆′ ⊆ ∆ such that P∆′(ω, s) holds.

The next result shows that this notion generalizes the previous notion of
sequent calculus.

Proposition 2. Let R = 〈C,R〉 be a sequent calculus given by rules and define
D(R) = 〈C,P 〉 where P∆(ω, s) holds iff ω is a rule-derivation of s from ∆.
Then D(R) is a sequent calculus given by derivations. Furthermore, ∆ `R s iff
∆ `D(R) s.

Proof. By definition a sequence can only be a derivation of its first sequent; the
monotonicity of P∆ is immediate from the definition of derivation in R, while
the closure for substitution follows from Proposition 1, so D(R) is a sequent
calculus given by derivations.

If ∆ is finite the last equivalence is straightforward. Otherwise, let ω be a
derivation of s from ∆ and consider the set ∆′ ⊆ ∆ of hypotheses occurring in
ω; ∆′ is finite and P∆′(ω, s) holds, so ∆ `D(R) s. Conversely, if ∆ `D(R) s then
P∆′(ω, s) holds for some ω and finite ∆′ ⊆ ∆; but then ∆′ `R s, from which
immediately follows that ∆ `R s.

The advantage of this definition is that it allows derivations that are not
justifiable by the application of rules. This will be essential for the definition of
fibring.

Formally, in the passage from R to D(R), one forgets the justifications (since
derivations in D(R) are simply sequences of sequents). However, since the only
way to generate derivations in D(R) is by producing them in R, we will assume
that the justifications are kept available. This will be clear in the examples below;
it will also be used in the proof of Proposition 7.

4.2 Translations

The fibring of two signatures is simply the union of the two signatures. Therefore,
formulas in the original calculi can be seen as formulas in the fibring. In order
to derive formulas that contain connectives from both systems (i.e., “mixed”
formulas) we need to be able to represent these in the components. This is done
by a general mechanism of translation that takes advantage of the fact that the
set of variables is infinite.

Definition 11. Let C and C ′ be signatures with C ⊆ C ′ and g : L(C ′) → IN
be an injection. The translation τg : L(C ′) → L(C) is a map defined inductively
as follows:



– τg(ξi) = ξ2i+1 for ξi ∈ Ξ;
– τg(c) = c for c ∈ C0;
– τg(c(γ′1, . . . , γ

′
k)) = c(τg(γ′1), . . . , τg(γ′k)) for c ∈ Ck and γ′1, . . . , γ

′
k ∈ L(C ′);

– τg(c′(γ′1, . . . , γ
′
k)) = ξ2g(c′(γ′

1,...,γ′
k)) for c′ ∈ C ′

k \ Ck and γ′1, . . . , γ
′
k ∈ L(C ′).

Notice that the index of a variable in τ(L(C ′)) indicates whether that variable
is the image of a variable or of a formula starting with a connective in C ′ \ C.

The translation of a set of a formulas, a sequent or a sequent of sequents is
defined in the natural way.

Definition 12. With C, C ′ and g as above, τ−1
g : Ξ → L(C ′) is the following

substitution:

– τ−1
g (ξ2i+1) = ξi;

– τ−1
g (ξ2i) = g−1(i).

From this point on, we assume g is fixed and write simply τ and τ−1. The
following lemma justifies the notation τ−1.

Lemma 1. If C ⊆ C ′, then τ−1 ◦ τ = id and τ ◦ τ−1 = id.

Proof. Straightforward by induction.

4.3 Fibring

Definition 13. Let D′ = 〈C ′, P ′〉 and D′′ = 〈C ′′, P ′′〉 be sequent calculi given
by derivations. The fibring D′ ] D′′ is the sequent calculus 〈C,P 〉, where C =
C ′ ∪ C ′′ and each P∆ is inductively defined as follows.

– if P ′
τ ′(∆)(τ

′(ω), τ ′(s)) holds, then P∆(ω, s) also holds;
– if P ′′

τ ′′(∆)(τ
′′(ω), τ ′′(s)) holds, then P∆(ω, s) also holds;

– for finite Σ = {s1, . . . , sk} ⊆ SeqC , if P∆(ωi, si) holds for i = 1, . . . , k and
PΣ(ωs, s) holds, then P∆(ω, s) holds, where ω is the sequence of sequents

ωs · ω1 · . . . · ωk.

In this definition, τ ′ and τ ′′ denote the translations of L(C) to L(C ′) and L(C ′′).

Proposition 3. With the definitions above, D′ ]D′′ defined above is a sequent
calculus given by derivations.

The intuition is as follows: a derivation in the fibring is either a derivation in
one of the components (modulo translation) or recursively built from derivations
using these derivations as justifications for the hypotheses used. In particular, in
the case where D′ and D′′ are induced from sequent calculi presented by rules,
each justification Hyp occurring in ωs should be interpreted as “postponing” the
proof of si until the point where ωi begins.

This definition preserves the derivations in the components, which are joined
at a higher level by concatenation. This captures the essence of a proof in the
fibring in a much clearer way than the previous definition: it consists of proofs in
the components that are joined together by a cut-like mechanism. The following
examples illustrate this situation.



Example 5. Consider the systems D(M) and D(S4) induced by the sequent cal-
culi presented in Examples 1 and 2, as well as their fibring D(M)]D(S4) where
the implications are kept distinct. Writing →′ for the M -implication and →′′

and �′′ for the S4 connectives, we can show in this system that `D(M)]D(S4)−→
�′′(ξ1 →′ (ξ2 →′ ξ1)). The derivation σ(ωN ) · ωM proofs this fact, where ωM

was defined in Example 1, ωN in Example 2 and σ(ξ1) = (ξ1 →′ (ξ2 →′ ξ1)):

– As shown above, ωM proves that `M−→ (ξ1 →′ (ξ2 →′ ξ1)). By Proposi-
tion 1, τ ′(ωM ) shows that `M−→ τ ′(ξ1 →′ (ξ2 →′ ξ1)), which means that
P ′
∅(τ

′(ωM ), τ ′(ξ1 →′ (ξ2 →′ ξ1))) by definition of D(M). This implies that
P∅(ωM , ξ1 →′ (ξ2 →′ ξ1)).

– Similarly, ωN proves −→ ξ1 `S4−→ �′′(ξ1); since τ ′′ ◦ σ is a substitution in
L(C ′′), also τ ′′ ◦ σ(ωN ) proves −→ τ ′′ ◦ σ(ξ1) `S4−→ τ ′′ ◦ σ(�′′(ξ1)), and
therefore P ′′

{−→τ ′′◦σ(ξ1)}(τ
′′ ◦ σ(ωN ),−→ τ ′′ ◦ σ(�′′(ξ1))) holds, from which

we conclude that P{−→σ(ξ1)}(σ(ωN ),−→ σ(�′′(ξ1))) holds. By definition of
σ, the latter is simply P{−→(ξ1→′(ξ2→′ξ1))}(σ(ωN ),−→ �′′(ξ1 →′ (ξ2 →′ ξ1)))

– Finally, from the definition of P we conclude from the two previous points
that P∅(σ(ωN ) · ωM ,−→ �′′(ξ1 →′ (ξ2 →′ ξ1))) holds.

The following is the derivation σ(ωN ) · ωM . The boxes are shown for clarity.

1. −→ (�′′(ξ1 →′ (ξ2 →′ ξ1))) R�′, 2
2. −→ (ξ1 →′ (ξ2 →′ ξ1)) Hyp
1. −→ (ξ1 →′ (ξ2 →′ ξ1)) R →′, 2
2. ξ1 −→ (ξ2 →′ ξ1) R →′, 3
3. ξ2, ξ1 −→ ξ1 Ax

Example 6. Consider now systems S4 and D from Examples 2 and 3, with the
modalities renamed �′ and �′′, respectively. Considering the induced systems
D(S4) and D(D), we see that `D(S4)]D(D)−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))
with derivation σ(ωD) · ωS4, where σ(ξ1) = ξ1 and σ(ξ2) = (♦′(ξ1 → (�′ξ1))).

1. −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))) Cut, 2, 5
2. (�′′(♦′(ξ1 → (�′ξ1)))) −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))) R♦′′, 3
3. (♦′(ξ1 → (�′ξ1))) −→ (ξ1 → (♦′(ξ1 → (�′ξ1)))) R →, 4
4. (♦′(ξ1 → (�′ξ1))), ξ1 −→ (♦′(ξ1 → (�′ξ1))) Ax
5. −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))), (�′′(♦′(ξ1 → (�′ξ1)))) RW, 6
6. −→ (�′′(♦′(ξ1 → (�′ξ1)))) R�′′, 7
7. −→ (♦′(ξ1 → (�′ξ1))) Hyp
1. −→ (♦′(ξ1 → (�′ξ1))) R♦′, 2
2. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)) R →, 3
3. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1) R�′, 4
4. −→ (♦′(ξ1 → (�′ξ1))), ξ1 R♦′, 5
5. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)), ξ1 R →, 6
6. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1), ξ1 Ax

A first look at this example does not show much difference with Example 4.
However, this last derivation differs from the previous one significantly when one



takes a closer look at its structure. Because we now take derivations as primitive,
in order to build a derivation in the fibring we need to produce derivations in
the components, and these can be recovered from the result. It is also very clear
that part of the derivation is being done in system D(S4) while the other part is
done in system D(D). This captures the intuition behind the fibring in a much
better way than simply joining the rules of the two systems.

This definition of fibring is apparently more restrictive than the previous one,
since it seems that we cannot apply rules of D′ to formulas of D′′. However, we
will show that we can still do this by seeing the formulas of D′′ as formulas of
the fibring and translating these into D′ via τ ′. Although the resulting proof is
slightly more complicated, the advantadge is that this translation step is clearly
indicated in the derivation one obtains.

4.4 Equivalence

This section is devoted to proving the following equivalence result: both defini-
tions of fibring presented are equivalent when one considers the set of derivable
sequents.

Throughout this section, we assume fixed two sequent calculi R′ = 〈C ′, R′〉
and R′′ = 〈C ′′, R′′〉 given by rules, such that Cut, LW and RW are in R′ ∪ R′′,
and define:

– D′ = D(R′) and D′′ = D(R′′) are the sequent calculi given by derivations
induced by R′ and R′′;

– R = R′ ]R′′ is the fibring of R′ and R′′;
– D = D′ ] D′′ is the fibring of D′ and D′′;
– C = C ′ ∪ C ′′ is the common signature of R and D.

The goal is to show that D and R are equivalent systems, in the sense that
∆ `R s iff ∆ `D s, for any ∆ ⊆ SeqC and s ∈ SeqC . We begin by proving the
converse implication, which is quite simple.

Proposition 4. If ∆ `D s, then ∆ `R s.

Proof. If ∆ `R s, then P∆(ω, s) holds for some sequence of sequents ω. The
result is proved by induction on the proof of P∆(ω, s). Base: suppose that
P ′

τ ′(∆)(τ
′(ω), τ ′(s)) holds; then τ ′(∆) `D′ τ ′(s). From Proposition 2 it follows

that τ ′(∆) `R′ τ ′(s) and, since sequent calculi are closed for renaming of vari-
ables, τ ′−1(τ ′(∆)) `R′ τ ′−1(τ ′(s)), which, by Lemma 1 means precisely that
∆ `R′ s. Since rules of R′ are included in those of R, it follows that ∆ `R s.
The other base case is analogous. Step: suppose that ω is built from ω1, . . . , ωk

and ωs as in Definition 13, that P∆(ωi, si) holds for i = 1, . . . , k and PΣ(ωs, s)
holds. By induction hypothesis, ∆ `R si for each i and Σ `R s, that is, there
are derivations ω′i of si from ∆ and ω′s of s from Σ. Replacing each occurrence
of a hypothesis si in ω′s by the corresponding derivation ω′i one obtains a valid
rule derivation of s from ∆, hence ∆ `R s.

For the direct implication, we need an auxiliary result.



Lemma 2. If ω = ∆1,1 −→ ∆2,1 . . .∆1,n −→ ∆2,n proves that ∆ `R s, then
∆ `R ∆1,i −→ ∆2,i for i = 2, . . . , n with a derivation of length smaller than n.

Proof. ∆1,i −→ ∆2,i . . .∆1,n −→ ∆2,n is a derivation of ∆1,i −→ ∆2,i from ∆.

Of course there are even shorter proofs in general, which can be obtained from
the one given above by removing irrelevant steps, but for our purposes this
optimization is unnecessary.

Proposition 5. If ∆ `R s, then ∆ `D s.

Proof. By induction on the length n of the derivation of s from ∆. Recall that
rules in R are either rules of R′ or of R′′. Base: n = 1. Then s is either an
axiom or an element of ∆, in which case τ ′(s) is either an axiom or an element
of τ ′(∆) and in either case it follows that τ ′(∆) `D′ τ ′(s), from which ∆ `D s.
Step: suppose n > 1 and consider the justification of ∆1,1 −→ ∆2,1. If this is
Ax or Hyp then the reasoning above still applies, so without loss of generality
assume the justification is a rule r = 〈{θ1, . . . , θk}, γ〉 ∈ R′. Then there exist
a substitution σ such that s = σ(γ) and σ(θj) = ∆1,ij

−→ ∆2,ij
, with each

ij ∈ {2, . . . , n}. By Lemma 2, ∆ `R σ(θj) with a derivation of length smaller
than n, so the induction hypothesis applies and we can conclude that ∆ `D σ(θj);
that is, for each j there is a sequence ωj ∈ Seq∗C such that P∆′

j
(ωj , σ(θj)) holds

for some finite ∆′
j ⊆ ∆. Define ∆′ =

⋃
{∆j : j = 1, . . . , k}; then ∆′ is still a

finite set with ∆′ ⊆ ∆ and such that P∆′(ωj , σ(θj)) holds. On the other hand,
the sequence ωs defined as

1. τ ′(s) r 2, . . . , k + 1
2. τ ′(σ(θ1)) Hyp

...
k + 1. τ ′(σ(θk)) Hyp

is a derivation of τ ′(s) from τ ′(σ(Θ)) = {τ ′(σ(θ1)), . . . , τ ′(σ(θk))} in R′, hence
P ′

τ ′(σ(Θ))(ωs, τ
′(s)) holds, and thus Pσ(Θ)(τ ′−1(ωs), s) holds. Therefore P ′

∆′(ω, s)
holds with ω built from τ ′−1(ωs) and the ωj as in Definition 13. Since ∆′ ⊆ ∆,
we conclude that ∆ `D s.

5 Preservation results

In this section, we study two properties of sequent calculi that are preserved by
fibring: cut elimination (Section 5.1) and decidability (Section 5.2).

5.1 Cut elimination

Cut elimination is a property that can be expressed most naturally in terms of
a sequent calculus given by rules. However, in order to show that this property
is preserved by fibring (i.e. that the fibring of two systems with cut elimination
also has cut elimination) we will need to consider the systems seen as calculi
given by derivation using the equivalence proved above.



Definition 14. A sequent calculus given by rules R = 〈C,R〉 has cut elimina-
tion iff, for any ∆ ⊆ SeqC and s ∈ SeqC , whenever ∆ `R s there is a derivation
ω for ∆ `R s that does not use the cut rule.

Proposition 6. Let R′ and R′′ be sequent calculi given by rules with cut elim-
ination. Then, their fibring R also has cut elimination.

Proof. Define D′ = D(R′), D′′ = D(R′′) and D = D′ ] D′′ and suppose that
∆ `R s. By Proposition 5, ∆ `D s, that is, P∆(ω, s) holds for some deriva-
tion ω. We establish the thesis by induction on ω. Base: P ′

τ ′(∆)(τ
′(ω′), τ ′(s))

holds; then τ ′(ω) proves τ ′(∆) `R′ τ ′(s) and, since R′ is closed under substi-
tution (Proposition 1), ∆ `R′ s. Since cut elimination holds in R′, there is a
cut-free derivation ω′ of ∆ `R′ s, which also establishes ∆ `R s. The case
where P ′′

τ ′′(∆)(τ
′′(ω′′), τ ′′(s)) holds is similar. Step: suppose that ω is ω∗ω1 . . . ωn

with P∆(ωi, si) and P{s1,...,sn}(ω
∗, s). By induction hypothesis, there are cut-free

derivations ω′
∗ and ω′1, . . . , ω

′
n in R such that ω′

∗ proves {s1, . . . , sn} `R s and
ω′i proves ∆ `R si for i = 1, . . . , n. Replacing each justification Hyp in ω′

∗ (see
Proposition 4) we obtain a cut-free derivation proving ∆ `R s.

5.2 Decidability

A useful property of a sequent calculus is the ability to decide whether a given
derivation does indeed prove a sequent from a set of hypotheses. In this section
we discuss under which conditions it is reasonable to expect this to hold and
how this property behaves under fibring.

We will assume that the reader is familiar with the basics of recursion theory;
also, we will assume the Church–Turing postulate throughout and work with the
following definition of recursive set.

Definition 15. An n-ary relation S (on sequents, sequences of sequents) is re-
cursive iff there is an algorithm that, given n arguments x1, . . . , xn of the ap-
propriate type, returns 1 if S(x1, . . . , xn) holds and 0 otherwise.

A set S is recursive iff the relation ‘λx.x ∈ S’ is recursive.

By “algorithm” we mean a deterministic sequence of instructions that terminates
on any given input.

It is not reasonable to expect that P∆ be decidable for every given ∆. In
fact, if D(R) is a sequent calculus induced by a calculus given by rules, then

ω ≡ 1. s Hyp

is a valid derivation of s from ∆ iff s ∈ ∆; therefore, P∆(ω, s) holds iff s ∈ ∆,
and hence ∆ must be a recursive set. This motivates the following definition.

Definition 16. A sequent calculus given by derivations D = 〈C,P 〉 is decidable
iff, for every recursive set ∆ ⊆ SeqC , the relation P∆ is recursive.

A sequent calculus given by rules R is decidable iff D(R) is decidable.



Proposition 7. Let R be a sequent calculus given by rules. Then R is decidable
iff for every rule r the relation Sr is recursive, where Sr is the relation such that
Sr(s1, . . . , sn, s) holds iff 〈{s1, . . . , sn}, s〉 is an instance of r.

Proof. First suppose that R is decidable and let r = 〈{θ1, . . . , θn}, γ〉 be a rule
with n premisses. Given s1, . . . , s and s, define a derivation ω by

1. s r 2, . . . , n + 1
2. s1 Hyp

...
n + 1. sn Hyp

Then P{s1,...,sn}(ω, s) holds iff ({s1, . . . , sn}, s) is an instance of r; since the set
{s1, . . . , sn} is finite, it is recursive, therefore P{s1,...,sn} is recursive and therefore
so is Sr.

Conversely, suppose that all Sr are recursive and let ∆ be a recursive set of
sequents. In order to show that P∆ is recursive, consider given ω of length n and
s. The following algorithm then allows one to decide whether P∆(ω, s) holds or
not, where (ω)k denotes the kth element of the sequence ω.

1. If (ω)1 is not s, output 0.
2. For k = 1, . . . , n do

(a) If (ω)k is justified with Ax and no formula in the antecedent of (ω)k

occurs in its consequent, output 0.
(b) If (ω)k is justified with Hyp and does not occur in ∆, output 0.
(c) If (ω)k is justified with r, i1, . . . , im and Sr({(ω)i1 , . . . , (ω)im

}, (ω)k) does
not hold, output 0.

3. If all the checks above succeed, output 1.

Notice that termination is guaranteed because ∆ is recursive (case Hyp) and
because Sr is recursive (case r).

This proposition immediately yields the following result.

Corollary 1. Let R′ and R′′ be decidable sequent calculi given by rules. Then
their fibring R = R′ ]R′′ is decidable.

Proof. By the previous proposition, if R′ and R′′ are decidable then the relations
Rr′ and Rr′′ are decidable for each rule r′ of R′ and r′′ of R′′; but these are
precisely the rules of R, so R is decidable.

The following result, however, is quite more general.

Proposition 8. Let D′ and D′′ be decidable sequent calculi given by deriva-
tions. Then their fibring D = D′ ] D′′ is decidable.



Proof. Let ∆, ω and s be given and assume that ω has length n. We need to
decide whether P∆(ω, s) holds.

The only difficult part is deciding how to split ω in case it is made up of
smaller derivations. Since we are only interested in decidability, we will simply
consider all possible partitions of ω (since these are in finite number); in most
concrete cases, however, the correct partition can easily be determined (see the
examples above) and the algorithm will be much more efficient.

The algorithm is as follows.

– For each partition of ω do
1. If the partition is singular, check whether P ′

τ ′(∆)(τ
′(ω), τ ′(s)) holds or

P ′′
τ ′′(∆)(τ

′′(ω), τ ′′(s)) holds. If either is the case, output 1; otherwise move
to the next partition.

2. Otherwise, let ω∗ be the first sequence in the partition and ω1, . . . , ωn

the remaining ones. Let si denote (ωi)1.
3. For each i = 1, . . . , n check whether P∆(ωi, si) holds. If this is not the

case, go on to the next partition.
4. If the test above succeeded for all i, check whether P{s1,...,sn}(ω, s) holds.

If this is the case, output 1.
– When no partitions of ω are left, output 0.

The algorithm above always terminates, since the recursive calls are always on
shorter derivations. Correctness is guaranteed, in the case of compound deriva-
tions, because the only hypotheses that can be used in the first subderivation
must be the conclusions of the other subderivations.

6 Concluding remarks

In order to capture the relationship between derivations in the fibring with the
derivations in the component logics, we introduce a new notion of fibring se-
quent calculi. The notion involves a translation technique that allow us to map
a formula of the fibring into a formula of each component. This new notion of
fibring sequent calculi is compared with a more usual one in which the sequent
calculi are presented by rules.

Using this new notion, we prove that fibring of sequent calculi preserves
cut elimination. This notion also provides a more adequate framework to study
decidability, and we define decidable sequent calculus and prove that the fibring
of decidable sequent calculi is still decidable.

Natural extensions of the work are to consider fibring sequent calculi for
display logics [3, 16, 7] and fibring of labelled sequent calculi (for instance, fibring
sequents for labelled modal logic where the labels are either worlds [15] or truth-
values [12]. Also of interest would be to extend the work to the context of logics
with quantifiers.



Acknowledgments

This work was partially supported by FCT and FEDER through POCTI, namely
via CLC and the QuantLog POCTI/MAT/55796/2004 Project. The first author
was also supported by FCT grant SFRH/BPD/16372/2004.

References

1. A. Armando, editor. Frontiers of Combining Systems, volume 2309 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

2. B. Beckert and D. Gabbay. Fibring semantic tableaux. In Automated reasoning with
analytic tableaux and related methods, volume 1397 of Lecture Notes in Computer
Science, pages 77–92. Springer, 1998.

3. N.D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11(4):375–417,
1982.

4. P. Blackburn and M. de Rijke. Why combine logics? Studia Logica, 59(1):5–27,
1997.

5. L. Cruz-Filipe, A. Sernadas, and C. Sernadas. Heterogeneous fibring of deductive
systems via abstract proof systems. Preprint, CLC, Department of Mathemat-
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