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1 Introduction

The result that the theorem of cut-elimination for pure
predicative logic is formalizable in the theory Aly +
superexp seems to be folklore. The proof of Takeuti
in [?] is not readily formalizable in this theory because
of an extra nested induction. The problem hinges on the
fact that a (predicative) instantiation of a second-order
quantification can arise through first-order formulas of
arbitrary complexity.

In this note, we outline a proof strategy for cut-
elimination in pure predicative logic with super-
exponential increase in the length of the derivation. This
proof has two steps: first, we eliminate all cuts whose
cut-formula is second-order; then we invoke the usual
cut-elimination result for first-order logic. Since the
main ideas are the same as for the usual theorem of cut-
elimination for first-order logic, we shall only empha-
size the differences.

2 Cut-elimination for second-

order logic

The syntax of second-order formulas is as usual. A
formula with no second-order quantifiers (but possibly
with free second-order variables) is a first-order ab-
stract. A sequent is a pair (I',A) of sets of formulas,
written I' - A, with intended semantics “if every for-
mula in I' is true, then at least one formula in A is true”.

The derivation rules for the second-order logic se-
quent calculus are summarized in Table 1. The follow-
ing restrictions hold.

e Inrules (VR) and (3L), x is not among the free vari-
ables in [UA.

e In rules (V?R) and (3%L), R is not among the free
second-order variables in I"'UA.

e In rules (V2L) and (3?R), v is a predicative first-
order abstract with only one free variable.

In all rules but (Cut), the explicit formula in the con-
clusion is the rule’s principal formula, whereas the ex-
plicit formula(s) in the premise(s) is (are) the minor for-
mula(s). In (Cut), @ is the cut formula. The remaining
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Table 1: Derivation rules for the second-order sequent
calculus. See the text for the side conditions on the rules
involving quantifiers.



formulas in the rules are side formulas. The variable
x in rules (V R) and (34 L) and the variable R in rules
(V2 R) and (3% L) are said to be the eigenvariables of
those rules.

Definition 1. A derivation d is a labeled tree where
each node is labeled by either:

e an instance of (Ax) with no descendants;

e an instance of the conclusion of a unary rule with
a single descendent labeled by the premise of that
same rule;

e an instance of the conclusion of a binary rule with
two descendants labeled by the premises of that
same rule.

Following tradition, we will write derivations upside-
down (so that the root is at the bottom and the descen-
dants of a node are above that node). We say that d
is a derivation of '+ A, written d I- (T A), if d is a
derivation and d’s root is labeled with I" - A.

A sequent is said to be normal if all of its bound vari-
ables are distinct from all of its free variables. A deriva-
tion is said to be normal if (1) all of its sequents are
normal and furthermore (2a) all second-order eigenvari-
ables are distinct and (2b) every eigenvariable is used
only above the node where it is an eigenvariable. With-
out loss of generality, we will assume that all derivations
are normal, since it is trivial to change a derivation into
a normal derivation.

The usual cut-elimination proof for first-order logic
proceeds by induction on the cut-rank of derivations, re-
placing cuts of the highest rank with cuts on structurally
smaller formulas. When we introduce second-order
quantification, however, this no longer works in such a
direct way, since eliminating a second-order quantifier
typically produces structurally more complex formulas.
For this reason, we split the cut-elimination proof in two
steps. Both steps are similar, but they use different mea-
sures of complexity.

Definition 2. The size of a first-order abstract ¢, de-
noted |Q|,, is defined inductively as usual.

e |A|; =0 ifA is atomic.
o |-l = |vxol, = [3xo[; = [¢)1 +1

eloVuyl = oAy =
max (|@]1,|y|1) +1

Note that we do not include clauses for the second-order
quantifiers, since these do not occur in first-order ab-
stracts. We will often write |@|| simply as |@|.

The second-order size of a formula @, denoted |@
is defined inductively as follows.

o — yhi =

25

o |w|, =0 if yis afirst-order abstract

* [0l = [Vxol, = [x@l, = [@l2+ 1 if ¢ is not a
first-order abstract (i.e. if |@[2 > 0)

o [*Ro|, = [FRo|, = ol +1

clopVuyh = loAvyh = |o = yh =

max (|@2, [y|2) +1

The following result, which will have a key role in
the proof of the Reduction Lemma below, is obtained
by induction.

Lemma 1. If y is a first-order abstract, then
9lY/R]l> = |9l for every formula ¢.

The length of a derivation is defined as usual.
Definition 3. The length of a derivation d, |d|, is de-

fined inductively.
o Ifd consists of just an axiom, then |d| = 0.

o [f d ends with an application of a unary rule with
subderivation d', then |d| = |d'| + 1.

o If d ends with an application of a binary
rule with subderivations d; and dy, then |d| =
max (| | |d2)).

Definition 4. The second-order cut-rank of a derivation
d, p2(d) is defined inductively.

e [fd consists of just an axiom, then py(d) = 0.

o [If d ends with an application of a unary rule with
subderivation d', then p>(d) = p (d').

o [fd ends with an application of a binary rule other
than (Cut) with subderivations d, and d,, then

p2(d) = max (p2 (d1),p2 (d2))-

o If d ends with an application of (Cut) with sub-
derivations dy and dy and cut-formula @, then

p2(d) = max (py (d1) ,p2 (d2),|@l2).

If p2(d) = 0, then the first-order cut-rank of d, p;(d), is
also defined inductively.

o [fd consists of just an axiom, then p;(d) = 0.

o If d ends with an application of a unary rule with
subderivation d', then p(d) = p; (d').

o Ifd ends with an application of a binary rule other
than (Cut) with subderivations dy and d, then

p1(d) = max (p1 (d1),p1(d2))-

e [f d ends with an application of (Cut) with sub-
derivations dy and dy and cut-formula @, then

p1(d) = max (pi (d1),pi1 (d2),[@[1 +1).



Note the important difference in the last clause of both
definitions: a derivation with first-order cut-rank 0 has
no cuts, whereas a derivation with second-order cut-
rank 0 may have cuts with first-order abstracts as cut-
formulas. Also note that the first-order cut-rank is only
defined fot derivations with no second-order quantifiers
in cut-formulas.

The following results are directly proved by induc-
tion on d. In all of them, it is understood that the condi-
tion on p; (d) only applies if p>(d) = 0.

Lemma 2 (Weakening Lemma). Suppose that d I+ (T -
A), T CTI' and A C N, and that T"UA’ is a normal
sequent. Let dg’AA/ be obtained from d by adding T"\
I" to the lefthandside of each sequent and A\ A to the
righthandside of each sequent. Then:

o di ¥ IF (I A);

A
dr \

o (a2 =

Lemma 3 (First-order Substitution Lemma). Suppose
that d I (T A) and that x is not the eigenvariable of
any application of (Y R) or (A L) in d. Let d[s/x] be
obtained by replacing every occurrence of x by a term s
ind. Then:

’

pi(d) fori=1,2.

o d[s/x|IF (T[s/x] - Als/x]);
o |d[s/x]| =

e pi(d[s/x]) = pi(d) fori=1,2.

Lemma 4 (Second-order Substitution Lemma). Sup-
pose that d |- (I'F A) and that R is not the eigenvariable
of any application of (V> R) or (3% L) in d. Let d[y/R]
be obtained by replacing every occurrence of R by the
first-order abstract y. Then:

o d{y/R]I- (Cly/RI = Aly/R]);
e |dly/R]| = |d|;

e pi(dly/R]) < pi(d) + @l and p2(d[y/R]) =
p2(d).

Proof. Tt is straightforward to check that d[w/R] Ik
(T[w/R]+ Aly/R]). The bound on p,(d[y/R]) follows
from Lemma 1, whereas the bound on p;(d[y/R]) is
proved by induction. [

Lemma 5 (Inversion Lemma).
1. Ifd1- (I',—@ = A), then there is dy I- (I'F A, @).

2. IfdIF (T'FA@AVY), then there are dy |- (I' -
A, @) and dy - (TF A, ).

3. IfdI- (T,@V yt A), then there are dy I+ (T', @ -
A) and dy |- (T, y = A).

4. Ifd - (T, — y = A), then there are dy |- (I' -
A,@) and dy I+ (T, y - A).
5. Ifd - (T A,Vx@), then there is dy IF (T'F A, ).
6. Ifd - (T',3x@ = A), then there is dg I (I', ¢ - A).
7. IfdIF (' A,VRQ), then there is dy I- (I'F A, @).
8. Ifd - (I',3R@ F A), then there is dy I+ (T', @ = A).
Furthermore, in all cases |dg| < |d|+ 1 and p;(dg) <
pi(d) fori=1,2and 6 = ¢, y.

Proof. The proof of all the results is similar, so we de-
tail only (2). We proceed by structural induction on d;
there are four different cases depending on the last rule
applied in d.

e d consists on an application of (Ax): if ['MA con-
tains a formula other than ¢ A y, then both

— (A — (A
Trae Y and Tray MY
are valid derivations satisfying the required prop-
erties.
Else,
A — (A
Corae () e Twray
TFA, ! TFA Y 2

are valid derivations again satisfying the required
properties.

e The last rule applied in d is (A R) with principal
formula ¢ A y: without loss of generality assume
that @ A y is a side-formula of this rule, if neces-
sary applying the Weakening Lemma 2. Then d is

of the form
dy dy
A QA Ay, @ CEA Ay, Y
F'FA oAy (AR)

and applying the induction hypothesis to d; and d»
yields the desired derivations.

e The last rule applied in d is (A R) with principal
formula other than ¢ A y, or a different binary rule:
then d is of the form

di dy
I'iEALeAY ANy .
I'FA oAy

and by induction hypothesis there exist derivations
dl(p I+ (Fl F Ah(p) and dzq) I+ (1"2 F Az,(p), from
which one can build d,, as
dig drp
Ii-ALe IoFAe |
A




and since |d¢| < |dip|+1and p; (dig) < p; (dig)
fori= 1,2, and likewise for dy¢, it follows that dy,
fulfills the required conditions (in particular, this
also holds if r is (Cut)). The reasoning for building
dy is similar.

e The last rule applied in d is a unary rule: then d is
of the form
d/
I'=AN oAy
'EFA oAy
and again by induction hypothesis there exists a
derivation d;, I (I" = A', @) from which one can
build dy as
!
_ %
I'EA @
—r
I'HA@
and sian: |dy| < |d'|+1 and p; (dq,) < pi (d') for
i = 1,2, it follows that d, fulfills the required con-
ditions. The reasoning for building d;, is simi-
lar.

We now prove that any derivable sequent can be
proved by means of a derivation of second-order rank 0.

Lemma 6 (Second-order reduction lemma). Suppose
that dy and dy are derivations with dy IFT'1 = @,Aq,
d> I+ FQ, (0] FA,, P2 (d[) < |(p|2 andpz (dz) < |(P|2 Then

there exists a derivation d such that:

[ ] d“‘ (F],FQ I—Al,Az);

o |d| <2(|d1| +|da));

e p(d) <ol

Proof. Observe that |@|, > 0, so ¢ is not a first-order
abstract. The proof is by induction on |d; | + |d3|.
(1) If |d1| + |d2| = O: then both d; and d, are instances
of (Ax). There are two possibilities.
(la) IfT'1NA; # 0 or T N A, # 0, then d can be

T FALA Y
which is a valid derivation trivially satisfying the thesis.
(1b) Otherwise, @ € I'1 and ¢ € Ay, and the same
derivation d is valid.
(2) If |d1|+ |d2| > 0, then there are three cases to con-
sider.
(2a) ¢ is not a principal formula in the last step of d.
Then d; has the following form.

dy;
AL
I'EALe '
(If ris unary, then i = 1, else i can be 1 or 2.)

By induction hypothesis applied to d}; and d>, there
exist derivations d; such that

o df IFT, ok AL A
o |df| <2(|d};| +|dal);

o p2(df) <ol
Then we can take d to be
di
F"l,l"g H A’i,Az .
I, EALA
if necessary changing the variables in d; — in case r is
(Y R), 3 L), (v R) or (3> L) with an eigenvariable oc-
curing free in I'; UA;. Then
|d| = max (|d;|) +1
<2 (max (|d}]) +|da|) + 1
<2(|d1|+|da])

and, if r is not (Cut),

p2(d) = max{pa (d;)} <|o|2

or, if r is (Cut),

p2(d) = max ({p2 (d;')} U{|612})

where |02 < |@|2, so again p2(d) < |@|a.

(2b) @ is not a principal formula in the last step of d»:
similar.

(2c) ¢ is the principal formula in the last step of both d
and d>. We have to look at the possible combinations of
rules applied in the last step of d; and d>. There are ten
possible cases.

(2c.i) d; ends with (— R) and d» with (— L): then ¢ is
—y. Without loss of generality, assume that ¢ is a side
formula in the last step of d;, eventually applying the
Weakening Lemma 2. Then d; has the form

.
I,yEAL@
T FALe

Applying the induction hypothesis to d| and d,, we find
a derivation d’ I+ (T'1, T2, W F Ap, A) such that

|d'| <2(|di[ +|da])
p2(d') <ol

Applying the Inversion Lemma 5 to d», we find a deriva-
tion dy IF (I'2 F A2, y) such that

p2 (dv/) <p2(d2)
Take d to be the following derivation.

dy d
1—‘2|_A271I/ Flur27lI/|_A17A2
I, EALA

(Cut)



Then:
|d| = max (|dy|,|d'|) +1
<2(|di|+|da|)

p2(d) = max (p2 (dy ) ,p2 (d') ,|w]2)
<lol2

(2c.ii) d; ends with (A R) and d, with (A L{): then @ is
Y1 A Y. Without loss of generality, assume that ¢ is a
side formula in the last step of d5, eventually applying
the Weakening Lemma 2. Then d, has the form
d
o,y H Ay

I,oF A ALt

Applying the induction hypothesis to d; and d), we find
a derivation d’ I+ (T, T2, w; = Ay, Ap) such that

|d'| <2(ldi|+|d3))
p2(d') <ol

Applying the Inversion Lemma 5 to dy, we find a deriva-
tion dy, IF (I'y = Ay, y1) such that

|dll'1‘ < ‘dl|‘|'1
P2 (dy,) < p2(dy)

Take d to be the following derivation.

dy, d
' EAL I, o,y EAL A
TI.oF AL (Cut)
Then:

|d| = max (|dy, |, |d'|) +1

<2(|d1] + |da|)
p2(d) = max (p2 (dy, ) ,p2 (d') , |wi]2)

<|ol2

(2c.iii) d; ends with (A R) and d, with (A Ly): similar.
(2c.iv) d; ends with (V Ry) and d, with (V L): then ¢ is
Y1 V Y. Without loss of generality, assume that ¢ is a
side formula in the last step of d;, eventually applying
the Weakening Lemma 2. Then d; has the form

I
' EALO, v

R
I'EALe VR

Applying the induction hypothesis to d{ and d», we find
a derivation &' I (['1,T; = Ay, Az, W) such that

|d'| <2(|di|+]da])
p2(d') <ol

Applying the Inversion Lemma 5 to d», we find a deriva-
tion dy, IF (I'>, w1 F A2) such that

P2 (dll/1) <p2 (dz)
Take d to be the following derivation.

d dllfl
', FALA, W I,y -Ay
I, FALA

(Cut)

Then:

|d| = max (|d'|,|dy,|) + 1
<2(ld1|+|d2])
p2(d) =max (p2 (d') .p2 (dy,) . [wil2)
<ol
(2c.v) dy ends with (V Ry) and d with (V L): similar.
(2c.vi) d; ends with (— R) and d> with (— L): then ¢ is
Y1 — Y. Without loss of generality, assume that @ is a
side formula in the last step of d;, eventually applying
the Weakening Lemma 2. Then d; has the form
&
I'ibyibALQw
IiEALe

(= R)
Applying the induction hypothesis to d| and d,, we find
aderivation d’ I (T'1, T2,y F A1, Az, y2) such that
' <2(|di] +dal)
p2(d') <ol

Applying the Inversion Lemma 5 to d», we find deriva-
tions dy, |- (I'2 = Az, y1) and dy, |- (I'2, 2 = Az) such
that

|dy,| < |da] +1
p2 (dy;) < p2(da)

Take d to be the following derivation.

d sz
dy, U, T, w1 - AL A, v Do, yn b A
I = A,y I, o, p1 AL A
(Cut)
I, FALA
Then:

|d| :max(‘d” +2,|dy, ‘ +1, dlllz‘ +2)
< max (2 (|di| + |da]) +2,1da] +3)
<2(|di|+|da|)

noting that both d; and d; have length at least 1, and

p2(d) = max (pa2 (d') ,p2 (dy,) , Wi l2. |v2l2)
<lol



(2c.vii) d; ends with (V R) and d, with (V L): then ¢ is
Vxy. Without loss of generality, assume that ¢ is a side
formula in the last step of d», eventually applying the
Weakening Lemma 2. Then d> has the form

d/
2
r27 o, II/[S/X] E Ay
0 A

VL

Applying the induction hypothesis to d; and d}, we find
a derivation &' I- (', T, w(s/x] F Ay, A;) such that

|d'| <2(|di|+ |dy])
p2(d') <ol

Applying the Inversion Lemma 5 to dy, we find a deriva-
tion dy I (I't = A, y) such that

|dy| < ldi] +1
P2 (dy) < p2(dy)

By the First-order Substitution Lemma 3, the derivation
dy[s/x] has the same length and second-order cut-rank
as dy, and furthermore dy/[s/x] I ('t F Ay, yls/x]).
Then take d to be the following derivation.

dyl[s/x] d
F] FA],I[/[S/X} F],Fz,l[/[s/x] FAl,Az (Cut)
[, FALA
Then:

|d| = max (|dy[s/x]|,|d'|) +1

<2(|d1| + |d2])
p2(d) = max (p2 (dyls/x]) .p2 (d') ,|W[s/x]|2)

<lol2

noting that |y[s/x||2 = |y/».

(2c.viii) d; ends with (3 R) and d, with (3 L): then ¢
is dxy. Without loss of generality, assume that ¢ is a
side formula in the last step of d;, eventually applying
the Weakening Lemma 2. Then d; has the form

d
[ EAL @, ys/x]
I,k A

IR
Applying the induction hypothesis to d| and d», we find
a derivation d’ I (T'y, T2 - Ay, Ap, wls/x]) such that
jd'| <2(|d}| +]da)
p2(d') <ol

Applying the Inversion Lemma 5 to d», we find a deriva-
tion dy IF (I'2, y = A2) such that

p2 (dv/) < p2(da)

By the First-order Substitution Lemma 3, the derivation
dy[s/x] has the same length and second-order cut-rank
as dy, and furthermore dy[s/x] IF (T2, y[s/x] = As).
Then take d to be the following derivation.

d dyls/x]
Fl,FQI—AhALl]/[S/x] Fz,l]/[s/x]l—Az (Cut)
I, FALA
Then:
|d| = max (‘d’ |dyls/x]|) +1
<2(|di| +|dal)
pa(d) = max (pa ('), p2 (dyls/x]) [ wls/x]2)

<lol

again noting that |y[s/x]|> = |y/|».

(2c.ix) dy ends with (v?> R) and d» with (V? L): then ¢
is V2Ry. Without loss of generality, assume that ¢ is a
side formula in the last step of d5, eventually applying
the Weakening Lemma 2. Then d; has the form

d/

2

2,0, y[0/R] - A
IN,okA;

Applying the induction hypothesis to d; and d}, we find
a derivation d’ I (T'1, 2, w[0/R] F Ay, A;) such that

@' < 2(ldi] +|da)

p2(d') <ol
Applying the Inversion Lemma 5 to dy, we find a deriva-
tion dy IF (I't F A, y) such that
|dy| < ldi|+1

P2 (dy) < pa(dr)
By the Second-order Substitution Lemma 4, the
derivation dy[6/R] has the same length and second-
order cut-rank as dy, and furthermore dy[6/R] I-

(T'y - Ay, yw[0/R]). Then take d to be the following
derivation.

dy[0/R] d
Iy |—A1,W[9/R} F],FLW[Q/R] |—A1,A2 (C 0
I, EALA .
Then:
|d| = max (|dy[6/R]|,|d'|) + 1
<2(|di|+|d2])
pa(d) = max (py (dy[8/R]) .p2 (d') | W[6/R]],)
<lol2

using Lemma 1.



(2c.x) d; ends with (3> R) and d, with (3% L): then ¢
is 3’Ry. Without loss of generality, assume that ¢ is a
side formula in the last step of d;, eventually applying
the Weakening Lemma 2. Then d; has the form

d/
1
l—‘1 F Ah o, W[B/R]
AL,

2R

Applying the induction hypothesis to d{ and d», we find
a derivation d I+ (', = Ay, Az, w[0/R]) such that

@' <2(|di| + )

p2(d') <ol
Applying the Inversion Lemma 5 to d», we find a deriva-
tion dy IF (I'2, y F A2) such that
|dy| < |do| +1

p2 (dy) < p2(da)
By the Second-order Substitution Lemma 4, the
derivation dy[6/R] has the same length and second-
order cut-rank as dy, and furthermore dy[6/R] I

(T2, y[6/R]F Ay). Then take d to be the following
derivation.

d' dy[6/R]
[, T - Ay, Ay, w[6/R] o, W[6/R| F Ay (Cut)
I EALA
Then:
|d| = max (|d’'|,|dy[0/R]|) +1
<2(|di]+]da|)
pa(d) = max (p2 (') o2 (dy[6/R]) , | WI8/RIL2)

<ol

again invoking Lemma 1. O

From this result it is now straightforward to prove that
second-order formulas can be eliminated from cuts.

Lemma 7 (Second-order cut-elimination 1). Suppose
that d |- (' A). If pa(d) > 0, then there exists a
derivation d' I+ (T F A) such that p; (d') < p2(d) and
|d'| < 4ldl.

Proof. By induction on |d|. If |d| = 0 then there is noth-
ing to prove; otherwise, we proceed by case analysis on
the last rule applied in d.

e If d ends with the application of a unary rule, then
d is of the form

dl
I'=A

TFA &

with po(d') = p2(d). By induction hypothesis
there is a derivation d* - (I'" - A) with |d*| < 4ld'|
and ps (d*) < p2(d). Then

d*
N

TFA &

is the required derivation.

If d ends with the application of a binary rule other
than (Cut), then d is of the form

d d>
' FA IDEA
I'A

with p; (d;) = pa2(d) for at least one of i = 1,2.
By induction hypothesis there are derivations d/ -
(T F A;) with |d/| < 4141 and p, (d) < pa(d) (if
P2 (d;) < p2(d), simply take d/ = d;). Then

d dy

-4 A
kA

is the required derivation.

If d ends with the application of (Cut) with cut-
formula ¢ such that |@|» < pa(d), then d is of the
form
di da
F]"A],(p FQ,(pI—AQ .
kA

with ps (d;) = p2(d) for at least one of i = 1,2.
By induction hypothesis there are derivations d; -
(T F A;) with |d/| < 414l and p, (d) < pa(d) (if
P2 (di) < p2(d), simply take d! = d;). Then

d; dy
I'iEALe oA ;
I'A

is the required derivation.

If d ends with the application of (Cut) with cut-
formula @ and |@|, = p2(d), then d is of the form

dy d>
AL 2,0 A ;
I'A

where possibly p» (d;) = p2(d) for at least one of
i = 1,2. If this is the case, then by induction hy-
pothesis there are derivations d/ - (I'; - A;) with
|d!| < 4141 and p, (d!) < pa(d); otherwise, simply
take d! = d;.



By the Reduction Lemma 6 there is a derivation
d |- (1"1,1“2 = Al,Az) such that

o <2(\d1\+|d§|)
(4|d1\ +4\d2|)

<2 (41 4 4l T) < 4t

and p>(d') <|[@[2 = p2(d). O

Theorem 1 (Second-order cut-elimination). Assume
that d I+ (U= A). Then there exists a derivation d’ of

the same sequent such that p, (d') =0 and |d'| < 41;12‘@1)’
where 44 = 4% and 4¢ | = 4%,

Proof. By induction on p,(d). O

In order to obtain a cut-free proof, one simply repeats
the process above, using p; instead of p, and restrict-
ing the three last results to derivations without second-
order quantifiers in cut-formulas. This means that cases
(2c.ix) and (2c.x) in the Reduction Lemma cannot oc-
cur; also, because of how first-order cut-rank is defined,
the inequality p2(d) < |@|2 is replaced by p;(d) < |@|;
(so |@|; may be 0, unlike in the previous case).

We thus obtain the following result.

Theorem 2 (First-order cut-elimination). Assume that
dIF (TF A) and pa(d) = 0. Then there exists a deriva-
tion d' of the same sequent such that py (d') = 0 and

' |d]
' < 4P1 (d)

Coupling Theorems 1 and 2 we achieve our goal.

Theorem 3 (Cut-elimination). Assume that d I+ (T
A). Then there exists a derivation d' of the same sequent
such that py (d")=0and |d'| <4 pz((d*); | where d* is the
derivation constructed from d by applying Theorem 1.

Explicit bounds for p; (d*) in terms of d can be ob-
tained: since the cut-formulas of d* are obtained from
the cut-formulas of d by replacing second-order eigen-
variables by their instances in applications of (v> L) or
(F? R), their complexity is at most k x n¢, where k is the
(regular) size of the most complex cut-formula in d, n
is the (first-order) size of the most complex first-order
abstract in an instantiation of an eigenvariable of d, and
n is the maximum number of applications of (v¥> R) or
(32 L) in a branch of d.

3 Final considerations

Formalizing these proofs in Aly 4 superexp requires
some care regarding the quantifiers in statements of the
several lemmas. Interestingly, some of these raise issues
even in the classical cut-elimination proof for first-order

logic, which to the authors’ knowledge have never been
discussed.

First observe that, given a derivation d, one can recur-
sively compute the (only) sequent it derives; so all hy-
potheses of the form “d I I" - A” can be written down as
recursive functions of d. Lemmas 2, 3 and 4 all pose no
problem, since they directly define new derivations by a
straightforward recursion and state recursive properties
of this derivations. Similarly, Lemma 5 defines a new
derivation by recursion using only decidable predicates
for case analysis.

The only non-trivial case is that of Lemma 6, whose
statement seemingly includes several nested quantifiers.
In order to formulate and prove this statement in Aly +
superexp, we need to bound the quantifiers over d;, d»
and d. Assuming some encoding on derivations, we can
assume a fixed bound k for the Godel numbers of d;
and d, (which also bounds n); then derivation d has a
maximum length (stated in the lemma), and furthermore
all of its formulas have a maximum complexity (as dis-
cussed above), so the existential quantifier ranging over
d can be replaced by a bounded quantifier. Finally, one
would perform an extra induction on k to obtain the full
result. The two cut-elimination lemmas can be treated
similarly.

This analysis of the Reduction Lemma is completely
independent of the second-order setting, and would al-
ready be required to argue that cut-elimination for first-
order logic can be formalized in Al + superexp.

Notice that the above results also hold if we allow for
value-range terms in the syntax of the language (pred-
icative or impredicative, it does not matter), as long
as the calculus remains pure (without Law V), because
the above proofs are independent of the structure of the
terms.



