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1 Introduction
The result that the theorem of cut-elimination for pure
predicative logic is formalizable in the theory ∆I0 +
superexp seems to be folklore. The proof of Takeuti
in [?] is not readily formalizable in this theory because
of an extra nested induction. The problem hinges on the
fact that a (predicative) instantiation of a second-order
quantification can arise through first-order formulas of
arbitrary complexity.

In this note, we outline a proof strategy for cut-
elimination in pure predicative logic with super-
exponential increase in the length of the derivation. This
proof has two steps: first, we eliminate all cuts whose
cut-formula is second-order; then we invoke the usual
cut-elimination result for first-order logic. Since the
main ideas are the same as for the usual theorem of cut-
elimination for first-order logic, we shall only empha-
size the differences.

2 Cut-elimination for second-
order logic

The syntax of second-order formulas is as usual. A
formula with no second-order quantifiers (but possibly
with free second-order variables) is a first-order ab-
stract. A sequent is a pair 〈Γ,∆〉 of sets of formulas,
written Γ ` ∆, with intended semantics “if every for-
mula in Γ is true, then at least one formula in ∆ is true”.

The derivation rules for the second-order logic se-
quent calculus are summarized in Table 1. The follow-
ing restrictions hold.

• In rules (∀R) and (∃L), x is not among the free vari-
ables in Γ∪∆.

• In rules (∀2R) and (∃2L), R is not among the free
second-order variables in Γ∪∆.

• In rules (∀2L) and (∃2R), ψ is a predicative first-
order abstract with only one free variable.

In all rules but (Cut), the explicit formula in the con-
clusion is the rule’s principal formula, whereas the ex-
plicit formula(s) in the premise(s) is (are) the minor for-
mula(s). In (Cut), ϕ is the cut formula. The remaining

Γ∩∆ 6= /0
(Ax)

Γ ` ∆

Γ ` ∆,ϕ
(¬ L)

Γ,¬ϕ ` ∆

Γ,ϕ ` ∆
(¬ R)

Γ ` ∆,¬ϕ

Γ,ϕ ` ∆
(∧ L1)

Γ,ϕ ∧ψ ` ∆

Γ,ψ ` ∆
(∧ L2)

Γ,ϕ ∧ψ ` ∆

Γ ` ∆,ϕ Γ ` ∆,ψ
(∧ R)

Γ ` ∆,ϕ ∧ψ

Γ,ϕ ` ∆ Γ,ψ ` ∆
(∨ L)

Γ,ϕ ∨ψ ` ∆

Γ ` ∆,ϕ
(∨ R1)

Γ ` ∆,ϕ ∨ψ

Γ ` ∆,ψ
(∨ R2)

Γ ` ∆,ϕ ∨ψ

Γ ` ∆,ϕ Γ,ψ ` ∆
(→ L)

Γ,ϕ → ψ ` ∆

Γ,ϕ ` ∆,ψ
(→ R)

Γ ` ∆,ϕ → ψ

Γ,ϕ[t/x] ` ∆
(∀ L)

Γ,∀xϕ ` ∆

Γ ` ∆,ϕ
(∀ R)

Γ ` ∆,∀xϕ

Γ,ϕ ` ∆
(∃ L)

Γ,∃xϕ ` ∆

Γ ` ∆,ϕ[t/x]
(∃ R)

Γ ` ∆,∃xϕ

Γ,ϕ[ψ/R] ` ∆
(∀2 L)

Γ,∀Rϕ ` ∆

Γ ` ∆,ϕ
(∀2 R)

Γ ` ∆,∀Rϕ

Γ,ϕ ` ∆
(∃2 L)

Γ,∃Rϕ ` ∆

Γ ` ∆,ϕ[ψ/R]
(∃2 R)

Γ ` ∆,∃Rϕ

Γ1 ` ∆1,ϕ Γ2,ϕ ` ∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Table 1: Derivation rules for the second-order sequent
calculus. See the text for the side conditions on the rules
involving quantifiers.
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formulas in the rules are side formulas. The variable
x in rules (∀ R) and (∃ L) and the variable R in rules
(∀2 R) and (∃2 L) are said to be the eigenvariables of
those rules.

Definition 1. A derivation d is a labeled tree where
each node is labeled by either:

• an instance of (Ax) with no descendants;

• an instance of the conclusion of a unary rule with
a single descendent labeled by the premise of that
same rule;

• an instance of the conclusion of a binary rule with
two descendants labeled by the premises of that
same rule.

Following tradition, we will write derivations upside-
down (so that the root is at the bottom and the descen-
dants of a node are above that node). We say that d
is a derivation of Γ ` ∆, written d 
 (Γ ` ∆), if d is a
derivation and d’s root is labeled with Γ ` ∆.

A sequent is said to be normal if all of its bound vari-
ables are distinct from all of its free variables. A deriva-
tion is said to be normal if (1) all of its sequents are
normal and furthermore (2a) all second-order eigenvari-
ables are distinct and (2b) every eigenvariable is used
only above the node where it is an eigenvariable. With-
out loss of generality, we will assume that all derivations
are normal, since it is trivial to change a derivation into
a normal derivation.

The usual cut-elimination proof for first-order logic
proceeds by induction on the cut-rank of derivations, re-
placing cuts of the highest rank with cuts on structurally
smaller formulas. When we introduce second-order
quantification, however, this no longer works in such a
direct way, since eliminating a second-order quantifier
typically produces structurally more complex formulas.
For this reason, we split the cut-elimination proof in two
steps. Both steps are similar, but they use different mea-
sures of complexity.

Definition 2. The size of a first-order abstract ϕ , de-
noted |ϕ|1, is defined inductively as usual.

• |A|1 = 0 if A is atomic.

• |¬ϕ|1 = |∀xϕ|1 = |∃xϕ|1 = |ϕ|1 +1

• |ϕ ∨ ψ|1 = |ϕ ∧ ψ|1 = |ϕ → ψ|1 =
max(|ϕ|1, |ψ|1)+1

Note that we do not include clauses for the second-order
quantifiers, since these do not occur in first-order ab-
stracts. We will often write |ϕ|1 simply as |ϕ|.

The second-order size of a formula ϕ , denoted |ϕ|2,
is defined inductively as follows.

• |ψ|2 = 0 if ψ is a first-order abstract

• |¬ϕ|2 = |∀xϕ|2 = |∃xϕ|2 = |ϕ|2 + 1 if ϕ is not a
first-order abstract (i.e. if |ϕ|2 > 0)

•
∣∣∀2Rϕ

∣∣
2 =

∣∣∃2Rϕ
∣∣
2 = |ϕ|2 +1

• |ϕ ∨ ψ|2 = |ϕ ∧ ψ|2 = |ϕ → ψ|2 =
max(|ϕ|2, |ψ|2)+1

The following result, which will have a key role in
the proof of the Reduction Lemma below, is obtained
by induction.

Lemma 1. If ψ is a first-order abstract, then
|ϕ[ψ/R]|2 = |ϕ|2 for every formula ϕ .

The length of a derivation is defined as usual.

Definition 3. The length of a derivation d, |d|, is de-
fined inductively.

• If d consists of just an axiom, then |d|= 0.

• If d ends with an application of a unary rule with
subderivation d′, then |d|= |d′|+1.

• If d ends with an application of a binary
rule with subderivations d1 and d2, then |d| =
max(|d1| , |d2|).

Definition 4. The second-order cut-rank of a derivation
d, ρ2(d) is defined inductively.

• If d consists of just an axiom, then ρ2(d) = 0.

• If d ends with an application of a unary rule with
subderivation d′, then ρ2(d) = ρ2 (d′).

• If d ends with an application of a binary rule other
than (Cut) with subderivations d1 and d2, then
ρ2(d) = max(ρ2 (d1) ,ρ2 (d2)).

• If d ends with an application of (Cut) with sub-
derivations d1 and d2 and cut-formula ϕ , then
ρ2(d) = max(ρ2 (d1) ,ρ2 (d2) , |ϕ|2).

If ρ2(d) = 0, then the first-order cut-rank of d, ρ1(d), is
also defined inductively.

• If d consists of just an axiom, then ρ1(d) = 0.

• If d ends with an application of a unary rule with
subderivation d′, then ρ1(d) = ρ1 (d′).

• If d ends with an application of a binary rule other
than (Cut) with subderivations d1 and d2, then
ρ1(d) = max(ρ1 (d1) ,ρ1 (d2)).

• If d ends with an application of (Cut) with sub-
derivations d1 and d2 and cut-formula ϕ , then
ρ1(d) = max(ρ1 (d1) ,ρ1 (d2) , |ϕ|1 +1).
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Note the important difference in the last clause of both
definitions: a derivation with first-order cut-rank 0 has
no cuts, whereas a derivation with second-order cut-
rank 0 may have cuts with first-order abstracts as cut-
formulas. Also note that the first-order cut-rank is only
defined fot derivations with no second-order quantifiers
in cut-formulas.

The following results are directly proved by induc-
tion on d. In all of them, it is understood that the condi-
tion on ρ1(d) only applies if ρ2(d) = 0.

Lemma 2 (Weakening Lemma). Suppose that d 
 (Γ `
∆), Γ ⊆ Γ′ and ∆ ⊆ ∆′, and that Γ′ ∪ ∆′ is a normal
sequent. Let dΓ′,∆′

Γ,∆ be obtained from d by adding Γ′ \
Γ to the lefthandside of each sequent and ∆′ \∆ to the
righthandside of each sequent. Then:

• dΓ′,∆′

Γ,∆ 
 (Γ′ ` ∆′);

•
∣∣∣dΓ′,∆′

Γ,∆

∣∣∣= |d|;
• ρi

(
dΓ′,∆′

Γ,∆

)
= ρi(d) for i = 1,2.

Lemma 3 (First-order Substitution Lemma). Suppose
that d 
 (Γ ` ∆) and that x is not the eigenvariable of
any application of (∀ R) or (∃ L) in d. Let d[s/x] be
obtained by replacing every occurrence of x by a term s
in d. Then:

• d[s/x] 
 (Γ[s/x] ` ∆[s/x]);

• |d[s/x]|= |d|;

• ρi(d[s/x]) = ρi(d) for i = 1,2.

Lemma 4 (Second-order Substitution Lemma). Sup-
pose that d 
 (Γ`∆) and that R is not the eigenvariable
of any application of (∀2 R) or (∃2 L) in d. Let d[ψ/R]
be obtained by replacing every occurrence of R by the
first-order abstract ψ . Then:

• d[ψ/R] 
 (Γ[ψ/R] ` ∆[ψ/R]);

• |d[ψ/R]|= |d|;

• ρ1(d[ψ/R]) ≤ ρ1(d) + |ϕ|1 and ρ2(d[ψ/R]) =
ρ2(d).

Proof. It is straightforward to check that d[ψ/R] 

(Γ[ψ/R] ` ∆[ψ/R]). The bound on ρ2(d[ψ/R]) follows
from Lemma 1, whereas the bound on ρ1(d[ψ/R]) is
proved by induction.

Lemma 5 (Inversion Lemma).

1. If d 
 (Γ,¬ϕ ` ∆), then there is dϕ 
 (Γ ` ∆,ϕ).

2. If d 
 (Γ ` ∆,ϕ ∧ψ), then there are dϕ 
 (Γ `
∆,ϕ) and dψ 
 (Γ ` ∆,ψ).

3. If d 
 (Γ,ϕ ∨ψ ` ∆), then there are dϕ 
 (Γ,ϕ `
∆) and dψ 
 (Γ,ψ ` ∆).

4. If d 
 (Γ,ϕ → ψ ` ∆), then there are dϕ 
 (Γ `
∆,ϕ) and dψ 
 (Γ,ψ ` ∆).

5. If d 
 (Γ ` ∆,∀xϕ), then there is dϕ 
 (Γ ` ∆,ϕ).

6. If d 
 (Γ,∃xϕ ` ∆), then there is dϕ 
 (Γ,ϕ ` ∆).

7. If d 
 (Γ ` ∆,∀Rϕ), then there is dϕ 
 (Γ ` ∆,ϕ).

8. If d 
 (Γ,∃Rϕ ` ∆), then there is dϕ 
 (Γ,ϕ ` ∆).

Furthermore, in all cases |dθ | ≤ |d|+ 1 and ρi (dθ ) ≤
ρi(d) for i = 1,2 and θ = ϕ,ψ .

Proof. The proof of all the results is similar, so we de-
tail only (2). We proceed by structural induction on d;
there are four different cases depending on the last rule
applied in d.

• d consists on an application of (Ax): if Γ∩∆ con-
tains a formula other than ϕ ∧ψ , then both

(Ax)
Γ ` ∆,ϕ and (Ax)

Γ ` ∆,ψ

are valid derivations satisfying the required prop-
erties.

Else,
(Ax)

Γ,ϕ ` ∆,ϕ
(∧ L1)

Γ ` ∆,ϕ
and

(Ax)
Γ,ψ ` ∆,ψ

(∧ L2)
Γ ` ∆,ψ

are valid derivations again satisfying the required
properties.

• The last rule applied in d is (∧ R) with principal
formula ϕ ∧ψ: without loss of generality assume
that ϕ ∧ψ is a side-formula of this rule, if neces-
sary applying the Weakening Lemma 2. Then d is
of the form

d1

Γ ` ∆,ϕ ∧ψ,ϕ

d2

Γ ` ∆,ϕ ∧ψ,ψ
(∧ R)

Γ ` ∆,ϕ ∧ψ

and applying the induction hypothesis to d1 and d2
yields the desired derivations.

• The last rule applied in d is (∧ R) with principal
formula other than ϕ∧ψ , or a different binary rule:
then d is of the form

d1

Γ1 ` ∆1,ϕ ∧ψ

d2

Γ2 ` ∆2,ϕ ∧ψ
r

Γ ` ∆,ϕ ∧ψ

and by induction hypothesis there exist derivations
d1ϕ 
 (Γ1 ` ∆1,ϕ) and d2ϕ 
 (Γ2 ` ∆2,ϕ), from
which one can build dϕ as

d1ϕ

Γ1 ` ∆1,ϕ

d2ϕ

Γ2 ` ∆2,ϕ r
Γ ` ∆,ϕ
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and since
∣∣d1ϕ

∣∣≤ ∣∣d1ϕ

∣∣+1 and ρi
(
d1ϕ

)
≤ ρi

(
d1ϕ

)
for i = 1,2, and likewise for d2ϕ , it follows that dϕ

fulfills the required conditions (in particular, this
also holds if r is (Cut)). The reasoning for building
dψ is similar.

• The last rule applied in d is a unary rule: then d is
of the form

d′

Γ′ ` ∆′,ϕ ∧ψ
r

Γ ` ∆,ϕ ∧ψ

and again by induction hypothesis there exists a
derivation d′ϕ 
 (Γ′ ` ∆′,ϕ) from which one can
build dϕ as

d′ϕ
Γ′ ` ∆′,ϕ

r
Γ ` ∆,ϕ

and since
∣∣d′ϕ ∣∣ ≤ |d′|+ 1 and ρi

(
d′ϕ

)
≤ ρi (d′) for

i = 1,2, it follows that dϕ fulfills the required con-
ditions. The reasoning for building d′ψ is simi-
lar.

We now prove that any derivable sequent can be
proved by means of a derivation of second-order rank 0.

Lemma 6 (Second-order reduction lemma). Suppose
that d1 and d2 are derivations with d1 
 Γ1 ` ϕ,∆1,
d2 
Γ2,ϕ `∆2, ρ2 (d1)< |ϕ|2 and ρ2 (d2)< |ϕ|2. Then
there exists a derivation d such that:

• d 
 (Γ1,Γ2 ` ∆1,∆2);

• |d| ≤ 2(|d1|+ |d2|);

• ρ2(d)< |ϕ|2.

Proof. Observe that |ϕ|2 > 0, so ϕ is not a first-order
abstract. The proof is by induction on |d1|+ |d2|.
(1) If |d1|+ |d2| = 0: then both d1 and d2 are instances
of (Ax). There are two possibilities.
(1a) If Γ1∩∆1 6= /0 or Γ2∩∆2 6= /0, then d can be

(Ax)
Γ1,Γ2 ` ∆1,∆2

which is a valid derivation trivially satisfying the thesis.
(1b) Otherwise, ϕ ∈ Γ1 and ϕ ∈ ∆2, and the same
derivation d is valid.
(2) If |d1|+ |d2| > 0, then there are three cases to con-
sider.
(2a) ϕ is not a principal formula in the last step of d1.
Then d1 has the following form.

d′1i

Γi
1 ` ∆i

1,ϕ r
Γ1 ` ∆1,ϕ

(If r is unary, then i = 1, else i can be 1 or 2.)
By induction hypothesis applied to d′1i and d2, there

exist derivations d∗i such that

• d∗i 
 Γi
1,Γ2 ` ∆i

1,∆2;

• |d∗i | ≤ 2(|d′1i|+ |d2|);

• ρ2 (d∗i )< |ϕ|2.

Then we can take d to be

d∗i
Γi

1,Γ2 ` ∆i
1,∆2 r

Γ1,Γ2 ` ∆1,∆2

if necessary changing the variables in d∗i – in case r is
(∀ R), (∃ L), (∀2 R) or (∃2 L) with an eigenvariable oc-
curing free in Γ2∪∆2. Then

|d|= max(|d∗i |)+1

≤ 2
(
max

(∣∣d′1i
∣∣)+ |d2|

)
+1

< 2(|d1|+ |d2|)

and, if r is not (Cut),

ρ2(d) = max{ρ2 (d∗i )}< |ϕ|2

or, if r is (Cut),

ρ2(d) = max({ρ2 (d∗i )}∪{|θ |2})

where |θ |2 < |ϕ|2, so again ρ2(d)< |ϕ|2.
(2b) ϕ is not a principal formula in the last step of d2:
similar.
(2c) ϕ is the principal formula in the last step of both d1
and d2. We have to look at the possible combinations of
rules applied in the last step of d1 and d2. There are ten
possible cases.
(2c.i) d1 ends with (¬ R) and d2 with (¬ L): then ϕ is
¬ψ . Without loss of generality, assume that ϕ is a side
formula in the last step of d1, eventually applying the
Weakening Lemma 2. Then d1 has the form

d′1
Γ1,ψ ` ∆1,ϕ ¬ R

Γ1 ` ∆1,ϕ

Applying the induction hypothesis to d′1 and d2, we find
a derivation d′ 
 (Γ1,Γ2,ψ ` ∆1,∆2) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ |d2|
)

ρ2
(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d2, we find a deriva-
tion dψ 
 (Γ2 ` ∆2,ψ) such that∣∣dψ

∣∣≤ |d2|+1

ρ2
(
dψ

)
≤ ρ2 (d2)

Take d to be the following derivation.

dψ

Γ2 ` ∆2,ψ
d′

Γ1,Γ2,ψ ` ∆1,∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2
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Then:

|d|= max
(∣∣dψ

∣∣ , ∣∣d′∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
dψ

)
,ρ2

(
d′
)
, |ψ|2

)
< |ϕ|2

(2c.ii) d1 ends with (∧ R) and d2 with (∧ L1): then ϕ is
ψ1 ∧ψ2. Without loss of generality, assume that ϕ is a
side formula in the last step of d2, eventually applying
the Weakening Lemma 2. Then d2 has the form

d′2
Γ2,ϕ,ψ1 ` ∆2 ∧ L1

Γ2,ϕ ` ∆2

Applying the induction hypothesis to d1 and d′2, we find
a derivation d′ 
 (Γ1,Γ2,ψ1 ` ∆1,∆2) such that∣∣d′∣∣≤ 2

(
|d1|+

∣∣d′2∣∣)
ρ2

(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d1, we find a deriva-
tion dψ1 
 (Γ1 ` ∆1,ψ1) such that∣∣dψ1

∣∣≤ |d1|+1

ρ2
(
dψ1

)
≤ ρ2 (d1)

Take d to be the following derivation.

dψ1

Γ1 ` ∆1,ψ1

d′

Γ1,Γ2,ψ1 ` ∆1,∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣dψ1

∣∣ , ∣∣d′∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
dψ1

)
,ρ2

(
d′
)
, |ψ1|2

)
< |ϕ|2

(2c.iii) d1 ends with (∧ R) and d2 with (∧ L2): similar.
(2c.iv) d1 ends with (∨ R1) and d2 with (∨ L): then ϕ is
ψ1 ∨ψ2. Without loss of generality, assume that ϕ is a
side formula in the last step of d1, eventually applying
the Weakening Lemma 2. Then d1 has the form

d′1
Γ1 ` ∆1,ϕ,ψ1 ∨ R1

Γ1 ` ∆1,ϕ

Applying the induction hypothesis to d′1 and d2, we find
a derivation d′ 
 (Γ1,Γ2 ` ∆1,∆2,ψ1) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ |d2|
)

ρ2
(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d2, we find a deriva-
tion dψ1 
 (Γ2,ψ1 ` ∆2) such that∣∣dψ1

∣∣≤ |d2|+1

ρ2
(
dψ1

)
≤ ρ2 (d2)

Take d to be the following derivation.

d′

Γ1,Γ2 ` ∆1,∆2,ψ1

dψ1

Γ2,ψ1 ` ∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣d′∣∣ , ∣∣dψ1

∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
d′
)
,ρ2

(
dψ1

)
, |ψ1|2

)
< |ϕ|2

(2c.v) d1 ends with (∨ R2) and d2 with (∨ L): similar.
(2c.vi) d1 ends with (→ R) and d2 with (→ L): then ϕ is
ψ1→ ψ2. Without loss of generality, assume that ϕ is a
side formula in the last step of d1, eventually applying
the Weakening Lemma 2. Then d1 has the form

d′1
Γ1,ψ1 ` ∆1,ϕ,ψ2 (→ R)

Γ1 ` ∆1,ϕ

Applying the induction hypothesis to d′1 and d2, we find
a derivation d′ 
 (Γ1,Γ2,ψ1 ` ∆1,∆2,ψ2) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ |d2|
)

ρ2
(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d2, we find deriva-
tions dψ1 
 (Γ2 ` ∆2,ψ1) and dψ2 
 (Γ2,ψ2 ` ∆2) such
that ∣∣dψi

∣∣≤ |d2|+1

ρ2
(
dψi

)
≤ ρ2 (d2)

Take d to be the following derivation.

dψ1

Γ2 ` ∆2,ψ1

d′

Γ1,Γ2,ψ1 ` ∆1,∆2,ψ2

dψ2

Γ2,ψ2 ` ∆2 (Cut)
Γ1,Γ2,ψ1 ` ∆1,∆2 (Cut)

Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣d′∣∣+2,

∣∣dψ1

∣∣+1,
∣∣dψ2

∣∣+2
)

≤max
(
2
(∣∣d′1∣∣+ |d2|

)
+2, |d2|+3

)
≤ 2(|d1|+ |d2|)

noting that both d1 and d2 have length at least 1, and

ρ2(d) = max
(
ρ2

(
d′
)
,ρ2

(
dψi

)
, |ψ1|2, |ψ2|2

)
< |ϕ|2
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(2c.vii) d1 ends with (∀ R) and d2 with (∀ L): then ϕ is
∀xψ . Without loss of generality, assume that ϕ is a side
formula in the last step of d2, eventually applying the
Weakening Lemma 2. Then d2 has the form

d′2
Γ2,ϕ,ψ[s/x] ` ∆2 ∀ L

Γ2,ϕ ` ∆2

Applying the induction hypothesis to d1 and d′2, we find
a derivation d′ 
 (Γ1,Γ2,ψ[s/x] ` ∆1,∆2) such that∣∣d′∣∣≤ 2

(
|d1|+

∣∣d′2∣∣)
ρ2

(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d1, we find a deriva-
tion dψ 
 (Γ1 ` ∆1,ψ) such that∣∣dψ

∣∣≤ |d1|+1

ρ2
(
dψ

)
≤ ρ2 (d1)

By the First-order Substitution Lemma 3, the derivation
dψ [s/x] has the same length and second-order cut-rank
as dψ , and furthermore dψ [s/x] 
 (Γ1 ` ∆1,ψ[s/x]).
Then take d to be the following derivation.

dψ [s/x]

Γ1 ` ∆1,ψ[s/x]
d′

Γ1,Γ2,ψ[s/x] ` ∆1,∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣dψ [s/x]

∣∣ , ∣∣d′∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
dψ [s/x]

)
,ρ2

(
d′
)
, |ψ[s/x]|2

)
< |ϕ|2

noting that |ψ[s/x]|2 = |ψ|2.
(2c.viii) d1 ends with (∃ R) and d2 with (∃ L): then ϕ

is ∃xψ . Without loss of generality, assume that ϕ is a
side formula in the last step of d1, eventually applying
the Weakening Lemma 2. Then d1 has the form

d′1
Γ1 ` ∆1,ϕ,ψ[s/x]

∃ R
Γ1,ϕ ` ∆1

Applying the induction hypothesis to d′1 and d2, we find
a derivation d′ 
 (Γ1,Γ2 ` ∆1,∆2,ψ[s/x]) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ |d2|
)

ρ2
(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d2, we find a deriva-
tion dψ 
 (Γ2,ψ ` ∆2) such that∣∣dψ

∣∣≤ |d2|+1

ρ2
(
dψ

)
≤ ρ2 (d2)

By the First-order Substitution Lemma 3, the derivation
dψ [s/x] has the same length and second-order cut-rank
as dψ , and furthermore dψ [s/x] 
 (Γ2,ψ[s/x] ` ∆2).
Then take d to be the following derivation.

d′

Γ1,Γ2 ` ∆1,∆2,ψ[s/x]

dψ [s/x]

Γ2,ψ[s/x] ` ∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣d′∣∣ , ∣∣dψ [s/x]

∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
d′
)
,ρ2

(
dψ [s/x]

)
, |ψ[s/x]|2

)
< |ϕ|2

again noting that |ψ[s/x]|2 = |ψ|2.
(2c.ix) d1 ends with (∀2 R) and d2 with (∀2 L): then ϕ

is ∀2Rψ . Without loss of generality, assume that ϕ is a
side formula in the last step of d2, eventually applying
the Weakening Lemma 2. Then d2 has the form

d′2
Γ2,ϕ,ψ[θ/R] ` ∆2

∀2 L
Γ2,ϕ ` ∆2

Applying the induction hypothesis to d1 and d′2, we find
a derivation d′ 
 (Γ1,Γ2,ψ[θ/R] ` ∆1,∆2) such that∣∣d′∣∣≤ 2

(
|d1|+

∣∣d′2∣∣)
ρ2

(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d1, we find a deriva-
tion dψ 
 (Γ1 ` ∆1,ψ) such that∣∣dψ

∣∣≤ |d1|+1

ρ2
(
dψ

)
≤ ρ2 (d1)

By the Second-order Substitution Lemma 4, the
derivation dψ [θ/R] has the same length and second-
order cut-rank as dψ , and furthermore dψ [θ/R] 

(Γ1 ` ∆1,ψ[θ/R]). Then take d to be the following
derivation.

dψ [θ/R]

Γ1 ` ∆1,ψ[θ/R]
d′

Γ1,Γ2,ψ[θ/R] ` ∆1,∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣dψ [θ/R]

∣∣ , ∣∣d′∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
dψ [θ/R]

)
,ρ2

(
d′
)
, |ψ[θ/R]|2

)
< |ϕ|2

using Lemma 1.
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(2c.x) d1 ends with (∃2 R) and d2 with (∃2 L): then ϕ

is ∃2Rψ . Without loss of generality, assume that ϕ is a
side formula in the last step of d1, eventually applying
the Weakening Lemma 2. Then d1 has the form

d′1
Γ1 ` ∆1,ϕ,ψ[θ/R]

∃2 R
Γ1 ` ∆1,ϕ

Applying the induction hypothesis to d′1 and d2, we find
a derivation d′ 
 (Γ1,Γ2 ` ∆1,∆2,ψ[θ/R]) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ |d2|
)

ρ2
(
d′
)
< |ϕ|2

Applying the Inversion Lemma 5 to d2, we find a deriva-
tion dψ 
 (Γ2,ψ ` ∆2) such that∣∣dψ

∣∣≤ |d2|+1

ρ2
(
dψ

)
≤ ρ2 (d2)

By the Second-order Substitution Lemma 4, the
derivation dψ [θ/R] has the same length and second-
order cut-rank as dψ , and furthermore dψ [θ/R] 

(Γ2,ψ[θ/R] ` ∆2). Then take d to be the following
derivation.

d′

Γ1,Γ2 ` ∆1,∆2,ψ[θ/R]

dψ [θ/R]

Γ2,ψ[θ/R] ` ∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Then:

|d|= max
(∣∣d′∣∣ , ∣∣dψ [θ/R]

∣∣)+1
≤ 2(|d1|+ |d2|)

ρ2(d) = max
(
ρ2

(
d′
)
,ρ2

(
dψ [θ/R]

)
, |ψ[θ/R]|2

)
< |ϕ|2

again invoking Lemma 1.

From this result it is now straightforward to prove that
second-order formulas can be eliminated from cuts.

Lemma 7 (Second-order cut-elimination 1). Suppose
that d 
 (Γ ` ∆). If ρ2(d) > 0, then there exists a
derivation d′ 
 (Γ ` ∆) such that ρ2 (d′) < ρ2(d) and
|d′| ≤ 4|d|.

Proof. By induction on |d|. If |d|= 0 then there is noth-
ing to prove; otherwise, we proceed by case analysis on
the last rule applied in d.

• If d ends with the application of a unary rule, then
d is of the form

d′

Γ′ ` ∆′ r
Γ ` ∆

with ρ2(d′) = ρ2(d). By induction hypothesis
there is a derivation d∗ ` (Γ′ ` ∆′) with |d∗| ≤ 4|d

′|

and ρ2 (d∗)< ρ2(d). Then

d∗

Γ′ ` ∆′ r
Γ ` ∆

is the required derivation.

• If d ends with the application of a binary rule other
than (Cut), then d is of the form

d1

Γ1 ` ∆1

d2

Γ2 ` ∆2 r
Γ ` ∆

with ρ2 (di) = ρ2(d) for at least one of i = 1,2.
By induction hypothesis there are derivations d′i `
(Γi ` ∆i) with |d′i | ≤ 4|di| and ρ2 (d′i) < ρ2(d) (if
ρ2 (di)< ρ2(d), simply take d′i = di). Then

d′1
Γ1 ` ∆1

d′2
Γ2 ` ∆2 r

Γ ` ∆

is the required derivation.

• If d ends with the application of (Cut) with cut-
formula ϕ such that |ϕ|2 < ρ2(d), then d is of the
form

d1

Γ1 ` ∆1,ϕ

d2

Γ2,ϕ ` ∆2 r
Γ ` ∆

with ρ2 (di) = ρ2(d) for at least one of i = 1,2.
By induction hypothesis there are derivations d′i `
(Γi ` ∆i) with |d′i | ≤ 4|di| and ρ2 (d′i) < ρ2(d) (if
ρ2 (di)< ρ2(d), simply take d′i = di). Then

d′1
Γ1 ` ∆1,ϕ

d′2
Γ2,ϕ ` ∆2 r

Γ ` ∆

is the required derivation.

• If d ends with the application of (Cut) with cut-
formula ϕ and |ϕ|2 = ρ2(d), then d is of the form

d1

Γ1 ` ∆1,ϕ

d2

Γ2,ϕ ` ∆2 r
Γ ` ∆

where possibly ρ2 (di) = ρ2(d) for at least one of
i = 1,2. If this is the case, then by induction hy-
pothesis there are derivations d′i ` (Γi ` ∆i) with
|d′i | ≤ 4|di| and ρ2 (d′i) < ρ2(d); otherwise, simply
take d′i = di.
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By the Reduction Lemma 6 there is a derivation
d′ 
 (Γ1,Γ2 ` ∆1,∆2) such that∣∣d′∣∣≤ 2

(∣∣d′1∣∣+ ∣∣d′2∣∣)
≤ 2

(
4|d1|+4|d2|

)
≤ 2

(
4|d|−1 +4|d|−1

)
≤ 4|d|

and ρ2(d′)< |ϕ|2 = ρ2(d).

Theorem 1 (Second-order cut-elimination). Assume
that d 
 (Γ ` ∆). Then there exists a derivation d′ of
the same sequent such that ρ2 (d′) = 0 and |d′| ≤ 4|d|

ρ2(d)
,

where 4a
0 = 4a and 4a

k+1 = 44a
k .

Proof. By induction on ρ2(d).

In order to obtain a cut-free proof, one simply repeats
the process above, using ρ1 instead of ρ2 and restrict-
ing the three last results to derivations without second-
order quantifiers in cut-formulas. This means that cases
(2c.ix) and (2c.x) in the Reduction Lemma cannot oc-
cur; also, because of how first-order cut-rank is defined,
the inequality ρ2(d)< |ϕ|2 is replaced by ρ1(d)≤ |ϕ|1
(so |ϕ|1 may be 0, unlike in the previous case).

We thus obtain the following result.

Theorem 2 (First-order cut-elimination). Assume that
d 
 (Γ ` ∆) and ρ2(d) = 0. Then there exists a deriva-
tion d′ of the same sequent such that ρ1 (d′) = 0 and
|d′| ≤ 4|d|

ρ1(d)
.

Coupling Theorems 1 and 2 we achieve our goal.

Theorem 3 (Cut-elimination). Assume that d 
 (Γ `
∆). Then there exists a derivation d′ of the same sequent

such that ρ1 (d′) = 0 and |d′| ≤ 4
4

ρ2(d)
|d|

ρ1(d∗)
, where d∗ is the

derivation constructed from d by applying Theorem 1.

Explicit bounds for ρ1 (d∗) in terms of d can be ob-
tained: since the cut-formulas of d∗ are obtained from
the cut-formulas of d by replacing second-order eigen-
variables by their instances in applications of (∀2 L) or
(∃2 R), their complexity is at most k×nc, where k is the
(regular) size of the most complex cut-formula in d, n
is the (first-order) size of the most complex first-order
abstract in an instantiation of an eigenvariable of d, and
n is the maximum number of applications of (∀2 R) or
(∃2 L) in a branch of d.

3 Final considerations
Formalizing these proofs in ∆I0 + superexp requires
some care regarding the quantifiers in statements of the
several lemmas. Interestingly, some of these raise issues
even in the classical cut-elimination proof for first-order

logic, which to the authors’ knowledge have never been
discussed.

First observe that, given a derivation d, one can recur-
sively compute the (only) sequent it derives; so all hy-
potheses of the form “d 
Γ`∆” can be written down as
recursive functions of d. Lemmas 2, 3 and 4 all pose no
problem, since they directly define new derivations by a
straightforward recursion and state recursive properties
of this derivations. Similarly, Lemma 5 defines a new
derivation by recursion using only decidable predicates
for case analysis.

The only non-trivial case is that of Lemma 6, whose
statement seemingly includes several nested quantifiers.
In order to formulate and prove this statement in ∆I0 +
superexp, we need to bound the quantifiers over d1, d2
and d. Assuming some encoding on derivations, we can
assume a fixed bound k for the Gödel numbers of d1
and d2 (which also bounds n); then derivation d has a
maximum length (stated in the lemma), and furthermore
all of its formulas have a maximum complexity (as dis-
cussed above), so the existential quantifier ranging over
d can be replaced by a bounded quantifier. Finally, one
would perform an extra induction on k to obtain the full
result. The two cut-elimination lemmas can be treated
similarly.

This analysis of the Reduction Lemma is completely
independent of the second-order setting, and would al-
ready be required to argue that cut-elimination for first-
order logic can be formalized in ∆I0 + superexp.

Notice that the above results also hold if we allow for
value-range terms in the syntax of the language (pred-
icative or impredicative, it does not matter), as long
as the calculus remains pure (without Law V), because
the above proofs are independent of the structure of the
terms.
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