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—— Abstract

Choreographic Programming and Exogenous Coordination are two powerful programming para-
digms for developing correct concurrent software. Choreographic Programming enables a correct-
by-construction synthesis procedure of concurrent process implementations that guarantees dead-
lock-freedom. Exogenous Coordination enables an elegant compositional approach to the devel-
opment of inter-process connectors, where complex connectors can be built by assembling simpler
ones (like synchronous barriers and asynchronous multi-casts).

We present Cho-Reo-graphies (CR), a new choreography calculus where these two research
lines are combined for the first time, merging their benefits. In CR, choreographies are parametric
in the connectors through which processes communicate. CR is the first choreography calculus
where different communication semantics (determined by the connectors) can be freely mixed in
the same program. Since connectors are user-defined, CR also supports many communication
semantics that could not be achieved before for choreographies. We develop a decidable static
analysis that guarantees that a choreography in CR and its user-defined connectors are compat-
ible, and prove that this compatibility guarantees deadlock-freedom in process implementations
synthesised from choreographies.
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1 Introduction

Background

Programming concurrent software is hard, because it is difficult to reason about how inde-
pendent processes interact at runtime (e.g., by exchanging messages). Empirical studies reveal
that two major reasons for this difficulty are: (i) while programmers have clear intentions
about the order in which interactions should take place, existing tools do not adequately
support the translation of such intentions to code [36]; (ii) it is easy to cause unintended
side-effects when composing multiple interaction protocols together [34].

The challenge of concurrent programming has driven decades of research on new program-
ming models. A particularly fruitful idea was that of providing a native language abstraction
for interaction, rather than modelling it as a side-effect. Two research lines in particular
were built upon this idea, but following very different directions.

The first research line is that on Choreographic Programming [37]. Central to Choreo-
graphic Programming is the choreography, a programming artefact that specifies a concurrent
system in terms of the admissible interactions among its constituent processes, by using
an “Alice and Bob” notation that disallows writing mismatched I/O actions (e.g., a send
without a corresponding receive). Through EndPoint Projection (EPP), implementations
in process languages can subsequently be synthesised from a choreography, which faithfully
realise the interactions given in the choreography and are guaranteed to be deadlock-free by
construction, even in the presence of arbitrary compositions [17, 38].

Previous work studied models for choreographies in settings with different interaction
semantics (e.g., synchronous, asynchronous, multi-cast). Regardless of the specifics, common
to all existing models of Choreographic Programming is the fact that the nature of interactions
is “hardcoded”: each model proposes new syntax and semantics, so results have to be proven
from scratch every time and cannot be combined. None of the existing models supports, for
instance, mixing synchronous with asynchronous interactions within the same choreography.
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This is a serious limitation, which raises the challenge of finding a unifying framework.
Furthermore, there is still no indication of how other interesting interaction semantics (e.g.,
barriers) can be introduced to choreographies.

The second research line is that on Ezogenous Coordination [2, 3, 33], where interaction
protocols are developed separately from the code of the processes that will enact them.
Process programs can then be modularly composed with protocols, given as connectors,
which dictate which interactions take place by accepting/offering messages from/to processes.
Connectors offer an elegant way of programming different semantics for interactions, starting
from basic instances (e.g., synchronous and asynchronous point-to-point channels) and then
composing them to create more sophisticated protocols.

Exogenous Coordination is strong where Choreographic Programming is weak: connectors
offer an elegant model for defining different communication semantics, given in terms of
arbitrary protocols. However, the opposite also holds: Choreographic Programming is strong
where Exogenous Coordination is weak. When we compose processes with connectors, we do
not have a global view of the system as in choreographies. Therefore, the programmer has
no way to define the global flow of information in the system when multiple connectors are
used separately by different parts of the system. Since we cannot know if the entire system
is comnsistent, by considering both processes and their connectors, we may have deadlocks
(which are prevented in Choreographic Programming).

Contribution

Choreographic Programming and Exogenous Coordination have complementary good prop-
erties. Can we then hope to combine them and obtain the best of the two worlds? In this
paper, we answer this question in the affirmative, developing the first investigation of how
connectors and choreographies can be integrated. We believe that our results represent the
beginning of an interesting research line on concurrent programming. In the rest of this
section, we summarise the achievements reported in this article; we state what we believe
this work may lead to in the future in § 6.

We combine the best aspects of Choreographic Programming and Exogenous Coordination
by presenting a new calculus of choreographies, called Cho-Reo-graphies (CR), in which
the interactions among processes specified in a choreography are animated by arbitrary,
user-defined, Reo connectors. CR allows for mixing different Reo connectors in the same
choreography, making it for the first time possible to write choreographies where different
interactions can have different communication semantics. Furthermore, by tapping into
the expressivity of Reo connectors, we can endow choreographies with hitherto unexplored
communication semantics, such as alternators or barriers. This makes CR more expressive
and a generalisation of existing models of Choreographic Programming. Through EPP,
choreographies can be compiled into concurrent implementations in a process language. In
these implementations, the same Reo connectors as in the original choreography animate
interactions among processes. We show that these processes are deadlock-free, provided that
the original choreography is compatible with the Reo connectors.

By allowing, for the first time, different communication semantics (i.e., Reo connectors)
to be freely mixed in the same choreography, new technical challenges of formalisation and
decidability arise. On the formalisation front, the main challenge is to balance expressiveness
and comprehensibility (the formal semantics of the calculus should be easy enough to explain
and understand). On the decidability front, the main challenges are proving that (1) deadlock-
freedom is generally undecidable in our calculus, but (2) we can establish deadlock-freedom
for a large subset of the language.
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By leveraging existing work, distributed implementations of Reo connectors (e.g., in
Scala [39, 40] or in Java [31]) can be automatically generated and deployed on different
machines (e.g., for distributed objects and components); our approach is compatible with this
existing work. As such, a practical tool based on the work in this paper can in principle be
built on top of existing code generators for distributed implementations of Reo connectors.

Structure

In § 2, we motivate our work by means of an example. In § 3 we give the background on
Reo connectors necessary for our development. In § 4 we develop our language integrating
choreographies and Reo connectors, and prove the usual results on deadlock-freedom. In
§ 5 we introduce the target language for EndPoint Projection, show how to compile our
choreographies, and prove the operational correspondence between a choreography and its
projection. We conclude in § 6 with a discussion on the directions in which this work can be
extended. Proofs are given in the Appendix.

Related work

We already covered the main references to previous work and how it falls short of serving
our aim. We briefly recap related work.

In Choreographic Programming, developers write high-level programs that describe the
intended communications from a global viewpoint, assuming a fixed communication semantics.
(e.g., asynchronous point to point). This enables a correct-by-construction synthesis proced-
ure of concurrent process implementations that guarantees deadlock-freedom. Choreographies
have been studied in settings with different communication semantics, including synchron-
ous [15, 22, 32], asynchronous [17, 24, 27, 38], one-to-many [18, 20], and many-to-one [16, 35].
In our model, these communication semantics are simply instances of what we can do. But
since we tap into the generality of Reo connectors, we can also do more (for example, we
illustrate how to use barriers). Our development also extends the line of work on out-of-
order execution for choreographies, originally from [17], where non-interfering interactions
may proceed concurrently. This style allows for more safe behaviours in the semantics of
choreographies (by swapping non-interfering communications), which the programmer gets
for free (concurrency is inferred). Having out-of-order execution also simplifies our syntax:
as in many other works, we do not need to provide for a parallel operator in choreographies,
since most parallel behaviour is already captured by out-of-order execution (cf. [17] for
details). As in previous work, our model captures asynchronous behaviour without requiring
the programmer to reason about it in choreographies: communications are still specified
as atomic interactions, which may be asynchronously reduced at runtime in a safe way
(cf. [17, 26, 38]).

In Exogenous Coordination, developers program interaction protocols for communicating
processes, called connectors, separately from the internal code of each process. This enables an
elegant compositional approach to the development of protocols, where complex protocols can
be built by assembling simpler ones (like synchronous barriers and asynchronous multi-casts).
Exogenous Coordination has been studied extensively over the last two decades [2, 3, 33].
Examples of models of Exogenous Coordination are the algebras of connectors [11, 12], the
algebra of stateless connectors [13], and constraint automata [8]; examples of languages are
(interactions in) BIP [9, 10], Ptolemy [14, 41], and Reo [4, 5].
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2 Motivating Example & Approach

We now present an example to introduce the concept of choreographies and the problem we
are interested in studying. This example will be used as running example throughout the
whole article to illustrate the different concepts we introduce at each stage.

» Example 1 (Book sale). Consider a scenario where buyer Alice (a) wants to buy a book
from seller Carol (c), facilitated by a bank (b) and a shipper (s). First, Alice sends the title
of the book to Carol. Carol then replies to Alice with the price of the book. If Alice is happy
with the price, she notifies Carol, the bank, and the shipper that the purchase proceeds.
Alice subsequently sends the money to the bank (who transfers it to Carol’s account), and
Carol sends the book to the shipper (who dispatches it to Alice). The choreography for this
scenario looks as follows:

1. a(title) > c; c(price) -> a;
2. if a.happy then (a -> c[ok]; a > b[ok]; a > s[ok];
a{money) =>b; c(book) -> s )
else (a—> c[ko|; a => blko]; a => s[ko] )
<
In previous choreography models, the nature of the interactions is fixed: depending on

the model, these interactions are either all synchronous or all asynchronous. This is not
flexible enough, because requirements may be different for each interaction.

» Example 2 (Book sale). The book sale scenario has the following requirements:

Because there are no strict timing constraints, it is reasonable for Alice and Carol to
communicate asynchronously in line 1.

Because the same label (ok or ko) is sent from Alice to Carol, the bank, and the shipper,
it makes sense to combine these communications in a multi-cast.

It is better for Alice to send her money to the bank as late as possible (e.g., because she
receives interest on her money). Therefore, Alice does not want to send her money until
she knows the others have received her ok-label. Thus, the multi-cast of this label should
be synchronous (i.e., handshake between Alice, Carol, the bank, and the shipper).
Alice and Carol may not trust each other: Alice does not want to send her money before
Carol has sent her book, and vice versa. To resolve this impasse, Alice and Carol should
synchronously (barrier-like) send money and book, so they are sure each of them holds
her end of the bargain. |

As we show in the next sections, our choreography model equipped with connectors is powerful
enough to express all these interactions (and more). The idea is to tag every interaction
between a sender p and a receiver q with the name of the particular connector through
which the interaction transpires. For instance, a value communication from p to q through a
synchronous channel sync is expressed as p > q thrusync, while the same communication
through an asynchronous channel async is expressed as p => q thruasync. If all interactions in
a choreography transpire through the same (type of) connector, as in all existing choreography
approaches, tags become redundant and can be omitted.

3 Constraint Automata and Reo

We view processes in a concurrent system as black boxes with interfaces consisting of ports.
For a process to send (receive) a message to (from) another process, it performs an output
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action (input action) on one of its own output ports (input ports), but without specifying
a receiver (sender). Instead, a separate connector, connected to the ports of the processes,
decides how messages flow from senders’ output ports to receivers’ input ports.

We model connectors using a general existing model of Exogenous Coordination, namely
constraint automata [8]. The transitions of a constraint automaton model possible synchronous
message flows (i.e., interactions) through a connector in a particular state. Constraint
automata are parametrised over a language of constraints ® to specify transition labels. In
this work, we consider ®p 5s to be a language of constraints over two sets P and M, of ports
and memory cells (storage space local to a connector). Constraints are finite sets of formulas
of the form p; — py (port p; passes a message to port pa), mi —ma (cell my passes a message
to cell may), p — m (port p passes a message to cell m), and m — p (cell m passes a message
to port p).! Furthermore, we require that all terms on the right-hand side of formulas in the
same constraint in a transition label be distinct, to ensure that every port/cell is assigned a
unique message (e.g., p1 — m A ps — m is forbidden, but p — my A p — mq is allowed).

Formally, a constraint automaton is a tuple (S, P, M, —, s, it0), where S is a finite set
of states, P is a finite set of ports, M is a finite set of memory cells, — C S x ®p s x §
is a transition relation, sg € S is an initial state, and po is an initial memory snapshot.
The initial memory snapshot is a function that maps the memory cells in M to their initial
content. We denote (s,¢,s’) € — as s 2, s’, for short. A transition s 24 ¢ means that,
from state s, a subset of the ports in P can interact according to ¢. Constraints in ®p »s also
control the evolution of memory snapshots as transitions are made. Instead of formalizing
this separately (e.g., in terms of runs and languages [29]), we combine it directly in the
semantics of our choreographies, in § 4.

In this work, we restrict ourselves to a subset of constraint automata that satisfy two
additional assumptions on their transitions. First, the occurrences of each port in transition
labels are either all as sender (it occurs only on the left-hand side of constraints) or all as
receiver (it occurs only on the right-hand side of constraints); this constraint is imposed on
the whole automaton. For instance, a constraint automaton cannot have two transitions
where one is labelled by p; — p2 and the other by ps — p3. Secondly, the transition relation
of each automaton is deterministic on the ports used, i.e., for any given state s, if there
are two distinct transitions s ¢—1> s1 and s & S2, then the sets of ports used in ¢; and ¢o
must be distinet (but they can overlap, or one be a strict subset of the other). The first
assumption simplifies defining the semantics of choreographies in § 4; the second assumption
ensures that this semantics is deterministic, in line with previous work on choreographies.

» Example 3. Figure 1 shows example constraint automata for useful connectors.

Sync models a synchronous channel. Indefinitely, this connector lets two processes
synchronously send and receive a message through ports p; and ps. Asyncl models an
asynchronous channel with a 1-capacity buffer (using a memory cell m). Indefinitely, first,
this connector lets a process send a message through port p1; subsequently, it lets a process
receive the message through port ps. Async2 models an asynchronous channel with a 2-
capacity buffer. SyncMulti2 and SyncMulti8 model synchronous multi-cast connectors for
two and three receivers. AsynclMulti2 models an asynchronous multi-cast connector for two
receivers. Barrier models a barrier send/receive connector. |

Choreography programmers can model connectors by explicitly defining constraint auto-
mata. Alternatively, programmers can model connectors by composing constraint automata

1 We can formalise ® as an equational theory as in [8, 29], but this is unnecessary for our development.
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mi — p2
m — p2 mi — p2 ANmg — mq

P1 — P2
p1—m pP1— m1 P1 — M2

mi1 — p2 A p1 — mi

Sync Asyncl Async?2
P1— P2
P1 — P2 A p1 — p3 P1 — P2
ANp1— p3 Ap1— pa AP3 — D4
SyncMulti2 SyncMultis Async1Multi2 Barrier

Figure 1 Example constraint automata.

p1 D2 Dp1 b2 b1 D2
Sync Asyncl Async2
P2 D2 p1 p3
p1 p1
P3 P3 P2 Pa
SyncMulti2 AsynclMulti2 Barrier

Figure 2 Example Reo connectors for the constraint automata in Figure 1.

from basic primitive constraint automata, using a synchronous product operator [8]. A
significant advantage of this latter approach is that there exists an intuitive and user-friendly
graphical syntax for constraint automaton product expressions. In this graphical syntax,
called Reo [4, 5], programmers draw constraint automaton product expressions as data-flow
graphs between (ports of) processes. As an example, Figure 2 shows Reo connectors for the
constraint automata in Figure 1. Reo conveniently hides from choreography programmers
the intimidating act of explicitly composing constraint automata, without sacrificing gen-
erality: Reo is complete for constraint automata (under the instantiation of ® considered
in this paper), meaning that every constraint automaton can be expressed as a Reo con-
nector [6, 7]. Moreover, tooling exists to animate flows of messages through Reo connectors
(http://reo.project.cwi.nl).

We use (constraint) automata and (Reo) connectors interchangeably: at the semantics
level, we use automata, while at the syntax level, we use connectors.

4 Cho-Reo-graphies

4.1 Overview

We now present our choreography calculus that combines choreographies with Reo connectors,
called Cho-Reo-graphies (CR). A choreography describes the behaviour of a set of processes.


http://reo.project.cwi.nl
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Figure 3 Cho-Reo-graphies, syntax. The boxed terms are runtime terms, necessary for defining
the semantics, but which are not meant to be used by programmers.

For simplicity, we assume that values are untyped; treating value types is straightforward
and analogous to [15, 17, 23].

The syntax of CR is displayed in Figure 3. We use C, C’, C1, ... to range over choreograph-
ies; p,q, ... to range over processes; 1,1, 71, ... to range over interactions (and 7,7, 71, . . .
to range over sets of them); v,7’,71,... to range over connector names; X to range over
procedure names; e, €', ... to range over (side-effect free) expressions; v,v’,... to range over
values; and £, ¢, ... to range over selection labels. Each process p has associated with it
a finite set of local variables var, = {z1,...,2,}, and expressions are assumed to be an
inductively defined set including var;, as base cases.

We comment briefly on label selections. It is standard practice in Choreographic Pro-
gramming to distinguish value communications, which are used to exchange data, from label
selections, which are used to propagate decisions regarding control flow. In the choreography
in Example 1, Alice uses label selections (ok or ko) to communicate her choice of whether
to buy the book or not to Carol and the bank. Although this can be encoded using value
communications [22], it is useful to distinguish them, as they are usually treated differently
in implementations. Also, as discussed in § 5, label selections are instrumental in generating
process implementations automatically. The syntax of labels is unspecified.

We write p(e) = {q1.21,...,9n-%x} (value multicast) and p > {qi,...,q9,}[¢] (label
multicast) to abbreviate {p(e) => q1.z1,...,p{e) > qn.z,} and {p => q1[{],...,p > an[{]},
respectively. Also, we write p{x) => q for p(z) = q.z (i.e., if sender p sends the value in local
variable x, and if receiver q stores the received value in a local variable with the same name,
we omit the name). If 7 is a singleton, we omit curly braces.

» Example 4 (Book sale). The choreography for our running example (cf. Example 1) can
be written as follows in CR.

a(title) => c thrua2c;
c(price) > athruc?a;
if a.happy then (a -> {c,b, s}[ok] thrua2cbs;
{a{money) -> b, c(book) -> s} thruac2bs;0)
else ( a > {c,b,s}[ko] thrua2cbs;0)

A

<

The semantics of most terms is standard. In if p.e then C; else (5, process p evaluates
expression e; if this results in ¢rue, the choreography proceeds as C7, and otherwise, as Cs.
In def X = C5 in (', procedure X is defined as Cs; it can then be invoked as X from both
Cq and C5. 0 indicates successful termination.

The interesting new bit is the semantics of a term 7 thru-y. Informally, 7 thru~y specifies
that all communications in 7 occur through connector . More precisely, in p(e) => q.z thru-y,
process p (the sender) evaluates expression e and offers the resulting value to connector +;
the connector eventually accepts and offers it to process q (the receiver), who stores it in its
local variable z. The behaviour of p => q[¢] thru+y is similar, except that p offers a selected
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label instead of a normal value. Label selections do not change the state of the receiving
process; their role in synthesizing process implementations is discussed in § 5.

The boxed terminals in Figure 3 are runtime terms, meant to be used only in defining
the formal semantics and not by programmers. They arise because connectors may have
a multi-step semantics (i.e., they do not necessarily synchronise sends with receives). In
particular, q.z?v is obtained when a communication p{e) => q.z is partially executed, and p
has already sent its value, but q has not yet received it; q[¢] arises similarly — see Example 7
below.

For the semantics of 77 thru+y to be well-defined, 77 must satisfy two conditions. First, all
interactions in 7] must have distinct receivers: if pi{e1) => q1.21 € 7 and pa(e2) => qo.x2 € 7,
then q; # qo. This ensures that the value received by a receiver is uniquely defined. Second,
all sends must be consistent: if a process p is involved in multiple interactions in the same
set, then they are either all communications of the same expression or all selections of the
same label.

» Example 5 (Book sale). In the context of our running example, the following interaction
sets are allowed (v') or disallowed (X) by our conditions for distinct receivers and consistent
sends.

v {a(money) > b, c(book) -> s} — Alice sends money to the bank, while Carol sends a book
to the shipper (distinct receivers; consistent sends).

X {a{money) > b, c(money) > b} — Both Alice and Carol send money to the bank, but
the bank can receive only from one sender at a time (receivers are not distinct).

X {c(price) -> a, c(book) -> s} — Carol sends both the price to Alice and the book to the
shipper, but Carol can send only one value at a time (sends are not consistent).

v {a > blok],a -> c[ok],a > s[ok]} — Alice sends label ok to Carol, the bank, and the
shipper (distinct receivers; consistent sends). |

4.2 Formal semantics

The semantics of CR is a reduction semantics parametrised over a connector mapping: a
function G from connector names to automata. Intuitively, G(7) denotes the automaton that
models connector v used in the choreography; the set P of ports in each G(v) is simply a
one-to-one mapping (i.e., a renaming of) the set of processes that use the connector.?

» Example 6 (Book sale). The connector names that occur in the choreography in Example 4
are a2c, c2a, a2cbs, and ac2bs. The requirements in Example 2 subsequently give rise to the
following connector mapping;:

a2c — Asynclla/p1,c/pa),

c2a +— Asyncl|c/p1,a/pa],
a2cbs — SyncMultiS[a/p1,b/p2, ¢ /D3, s/ P4l
ac2bs — Barrier[a/p1,b/p2, ¢/ps, s/p4]

where Asyncl[a/p1,c/ps] denotes automaton Async! in Figure 1, with a substituted for p;,
and c for ps (and likewise in the other mappings). Under this connector mapping, thus, Alice
and Carol communicate via asynchronous channels (a2c and c2a) to exchange title and price;

2 This means that each process can interact at most through one port in each automaton.
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Alice, Carol, the bank, and the shipper communicate via synchronous multi-cast (a2cbs) to
exchange ok or ko, and via barrier sends/receives (ac2bs) to exchange money and book. <

» Remark. The book sale scenario illustrates an important design decision, namely the
separation between intention and realisation: a choreography defines what interactions are
intended (e.g., communications of the money from Alice to the Bank and the book from
Carol to the shipper), while the connectors define how these communications are realised
(e.g., synchronously or asynchronously). As a result, every interaction has to be expressed in
two places, serving two complementary purposes: as “specifications” in the choreography and
as “implementations” in the connectors (automaton transitions). As usual, implementations
should respect specifications; we address this in § 4.4. |

The reduction relation for CR under a given G is denoted as ~-¢; it ranges over triples
C, 0, A, where C is a choreography, o is a choreography state function (mapping each process
to a mapping of its variables to values, i.e., o(p.z) is the value stored at variable x in process
p), and A is an automaton state function (mapping each connector name  in the domain of G
to a pair (s, u) of the state and memory snapshot of the automaton G(7)). Before introducing
the formal rule for communications, we give an example that discusses the intuition.

» Example 7 (Book sale). Returning to our running example, suppose that Alice wants to
buy the book titled Foo.

Let G denote the connector mapping in Example 6, let C’ denote lines 2-3 in Example 4,
let 0p denote the initial choreography state function such that og(a.title) = "foo", let
oy = oolc.title — "foo"], and let Ay = {a2c — (1,{m — L})} U A" denote the initial
automaton state function, where:

A = {22 (1, {m = L}),a2¢bs > (1,0),ac2bs - (1,0)}

Initially, thus, all connectors are in their initial state (state 1). Furthermore, connectors
a2c and c2a have an empty memory cell (m — L); connectors a2cbs and ac2bs have no
memory cells (memory snapshot @)). By rule |C|Com] (presented after this example), the
choreography in Example 4 reduces under G as follows:

a(title) -> cthrua2c; C', og, {a2c+— (1,{m+— L})}U AL

~+g |In state 1, according to G, connector a2c only has a transition that allows Alice to send
(asynchronously) to Carol. By performing such a send, Alice enables the choreography to
make a reduction, in which the first half of the communication completes; the (asynchron-
ous) receive remains. In the same step, a2c moves to state 2, and the value sent by Alice
is stored in a2c’s internal memory cell (title evaluates to "foo", based on oy).

c.title?"foo" thrua2c; C', og, {a2c+ (2,{m+ "foo"})} U AL

~»¢g | In state 2, according to G, connector a2c only has a transition that allows Carol to receive
(asynchronously) from Alice. By performing such a receive, Carol enables the choreography
to make a reduction in which the whole communication completes. In the same step, a2c
moves to state 1 (the internal memory cell is not cleared).

(thrua2c;C’, of, {a2c+ (1,{m s "foo"})} U AL
<

These intuitions are captured in the rule for communications |C|Com], which is the key
rule defining ~»g. We discuss this rule in detail.
A = (s.1)  iou S il ol s o
fithru~y; C, 0, A ~g 7 thrury; C, o', Aly = (s', 1)

| C|Com]
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Figure 4 Semantics of individual communications. The side condition (}) in rule |C|Join] reads:
if a memory cell m occurs in both ¢1 and ¢2, then it is not both written to in ¢; and read from in

P2.

Rule |C|Com] allows some of the communications in 7 to reduce only if the state of
the automaton corresponding to connector v allows it. The rule reads: under G, triple
fithru~y; C, o, A can reduce if automaton G(v) can fire a transition out of its current state
that is compatible with the interactions specified in 7.

More formally, the first premise of this rule retrieves the current state s and memory
snapshot p of the connector v controlling the communication. In the second premise, the
labelled reduction 7}, o, u 2, 77,0, 1’ (defined below) states that reducing 7 to 7’ transforms
the state of processes o into o’ and the memory snapshot of the connector p into p/. The
label ¢ represents the actions executed in this reduction. The third premise checks that these
actions are allowed by the automaton, by checking that ¢ labels an outgoing transition of s.

The rules defining labelled reductions 7,0, u — 7',0’, i’ are given in Figure 4. They
are obtained by considering the different possible cases for terms 77 and matching them to
appropriate constraints ¢. Let e |7 v denote that expression e evaluates to value v under o
(i.e., after substituting every free variable x in e by o(p.z)). In rule |C|SyncVal], an entire
communication p{e) > q.z is executed in one step. Accordingly, the label p — q denotes
that the automaton should support a synchronous communication between p and q. The
state of the receiver q is updated with the value sent by p. Rule |C|SendVal] applies in the
case where the message from p should be stored in a memory cell m of the automaton (label
p — m). This is used for asynchronous communications, where the message will be received
later on by the receiver. In the reductum, we keep a runtime term signalling that the receiver
is still waiting to receive the message (q.z7v). This kind of runtime terms is handled by
rule | C|RecvVal|, whose label specifies that q should receive the message stored in some
memory cell m. The premise of this rule checks that the value q is expecting to receive (v,
defined in the choreography term) is the one stored in m.?> Rules |C|SyncSel], |C|SendSel]

3 In other words, the automaton delivers the messages as specified in the choreography.
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and |C|RecvSel] deal with the case of label selection in a similar way. Rule |C|Mem] covers
internal transitions in the automaton that only modify memory. Finally, rules |C|Mon]
and | C|Join] extend this notion to transitions labelled by non-singleton sets. Rule |C|Mon]
states that some communications in 7 may not be executed at all (i.e., they are postponed
until a later reduction). Rule |C|Join] allows executing several communications at the same
time; note that the labels ¢ and ¢o may share constraints (e.g., with multi-cast), while 7
and 7j2 must be disjoint (W is the disjoint union operator).

The syntactic assumptions on choreography terms (page 8), namely distinct receivers (all
terms on the right-hand sides of interactions are distinct) and consistent sends (if a process
sends to several processes, then it always sends the same value or label), ensure that the
sequentialisation in rule |C|Join] is of no consequence (building the final set ¢ in any order
always yields the same final states o’ and p’ in rule |C|Com]), except if the same memory
cell is both written to and read from. In that case, the read must precede the write; this is
guaranteed by side condition (1), which ensures that concurrent accesses to a memory cell
are done in a consistent way.

» Example 8 (Book sale). We formally derive the reductions in Example 7, using rule
|C|Com] and Figure 4. Let G, o9, o), and A be defined as in Example 7.

For the first reduction, first, Ag(a2c) = (1,{m — L}) (rule |C|Com], first premise). Next,
automaton G(a2c) has one transition out of state 1, namely 1 ==, 2 (rule | C|Com], third
a—m

premise). Finally, using Figure 4, we need to derive a(title) => c,0¢,{m — L}
(rule |C|Com], second premise); this follows from rule | C|SendVal]. Thus, we derive:

title |70 "foo"

LC|SendVal]

a(title) => ¢, o9, {m — L} =2
Ap(a2c) = (1,{m +— L}) c.title?"foo", o9, {m — "foo"} 1220 0 2
a(title) -> c thrua2c; C’, oy, {a2c— (1,{m — L})} U At

~g c.title?"foo" thrua2e; €', og, {a2c+— (2,{m > "foo"})} U ALt

Henceforth, let A, = {a2c — (2, {m — "foo"})} U A=t
For the second reduction, similarly, we derive:

{m — "foo"}(m) = "foo"

|C|RecvVal]
c.title?"foo", 09, {m — "foo"}
Al (a2¢) = (2, {m — "foo"}) 2% 0, 04, {m — "foo"} pRRAATSY |
c.title?"foo" thrua2c; C’, oo, {a2c+ (2,{m > "foo"})} U Ayt
e §thrua2c;C’, of), {a2c > (1,{m > "foo"})} U ALt

<

» Example 9 (Book sale). We formally derive the reduction of line 4 in Example 4. Let G
denote the connector mapping in Example 6, let ¢ denote a choreography state function
such that o(a.money) = $10 and o(c.book) = foo.pdf, let o/ = o[b.money — $10], let
0" = o'[s.book +— foo.pdf], and let A = A™* U {ac2bs — {1,0}} denote an automaton
state function, for some A**%t. We derive:

money g $10 book |7 foo.pdf
|C|SyncVal]
{a{money) -> b}, 0,0 {c(book) => s},0’,0)
ﬂ} @70/7[2) H_S> @,U”,@ o W
Join
{a{money) => b, c(book) > s}, 0,0
Alac2bs) = (1,0) e 1 2R ks 1

{a{money) = b, c(book) => s} thruac2bs;0, o, A
g () thruac2bs; 0, o', A

XX:11
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i=1if el true, i = 2 otherwise

if p.ethenC) else Co,0, A ~>g C;,0, A |C|Cond]

C1=2Cy Cao,A~g Cy0', A Cy 20y
Ci,0,A~sg C1,0" A

Ci,0,A~g Cf,0', A
def X = C2inCy,0, A ~gdef X = CrinC},0’, A

| C|Struct]

| C|Ctx]

Figure 5 Cho-Reo-graphy, semantics.

pn(@m) Npn(n) =0 y#+
(ﬁ thru~y; 77thrufy’) = (77’ thru~y/; ﬁthrufy)

| C|Eta-Eta]

pn(m) Npn(n2) =0
(m thru-y;n2 thruy) = (71 Unz2) thruy

| C|Eta-Split]

P # pn(7) | C|Eta-Cond]
(if p.e then (7 thru~y; C) else (fjthru~y; Cs)) = (fjthru-y; if p.e then C; else C5)
Ci)N ) = @
—— Pn(C%) N pn ~) - | C|Eta-Rec]
(def X = C2in(fthru~y;C)) = (fjthruvy;def X = C2inCh)

P74
if p.ethen (if g.¢’ thenC; else Cs) else (if q.¢’ then C] else Cy)

| C|Cond-Cond]

if q.¢’ then (if p.ethenC else () else (if p.ethen (> else C5)

C|Unfold
(@ef X = s in C1[X]) < (@sf X = G an G [Cy) LCIVnfeld]

| C|EtaEnd]

| C|ProcEnd]

0 thruy;C < C (def X =Cin0) X0

Figure 6 Cho-Reo-graphy, structural precongruence.

<

Rule |C|Com] is the only rule in the semantics that can cause a choreography to get
stuck; we discuss this in more detail shortly.

The remaining rules defining ~g are standard from other choreography calculi (e.g., [22]),
and they are given in Figure 5. Rule |C|Struct] uses a structural precongruence that allows
for actions to be swapped if they do not interfere. Its definition, given in Figure 6 (where pn (7))
denotes the process names that occur in 7}), contains two interesting new rules: | C|Eta-Split]
and |C|EtaEnd]. Rule | C|Eta-Split] allows interactions through the same connector to be
joined in one 7 or split among several ones, which is necessary for correct interaction with
rule |C|Eta-Eta]. (The example below illustrates this interaction; see also [21] for a similar
discussion: this rule is needed whenever one 7} can specify several communications.) Rule
| C|EtaEnd] removes completed interactions from the head of a choreography.

» Example 10. Consider the following choreography, where for simplicity we abstract from
the actual values being communicated.

C={p—->q,r—>s}thruy;{p > q,t > v} thruy
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and assume that both G(v) and G(v') allow the interactions between the processes they
connect to occur independently and in any order. Then it is actually possible that the
communication between t and v is the first one to take place. In order for our choreography
language to allow this behaviour, we need to use both |C|Eta-Split] and |C|Eta-Eta] to
exchange actions, as follows.

C={p—->q,r—>s}thruy;{p—>q,t > v} thruy
= {p > q,r > s} thru~y;t > vthruy’;p -> qthruy’ by | C|Eta-Split]
=t ->vthruy’;{p > q,r - s} thruy;p -> qthruvy’ by |C|Eta-Eta]

4.3 Flexibility

An immediate advantage of CR is that different communication semantics can freely be mixed
in the same choreography. A second advantage is that CR enables programmers to change the
semantics of a choreography modularly, by altering the behaviour of the connectors through
which the processes interact with each other, without the need to change the choreography
itself. The following example further motivates this feature and illustrates its use.

» Example 11 (Book sale). The original book sale scenario (Examples 1 and 2) requires
Alice and Carol to send money and book to the bank and the shipper synchronously, as they
initially do not trust each other. Now, suppose Alice and Carol establish mutual trust after
successfully completing a number of book sales, such that their communications with the
bank and the shipper no longer need to occur synchronously. Instead of redeveloping the
choreography from scratch, we need to redefine only the connector mapping G in Example 6,
as follows:

c—s c—s

G:= g[ac2bsH]
a—b a—b

Thus, we updated the mapping for ac2bs; for all other connectors, the mapping remains the
same as in Example 6. The new automaton for ac2bs allows either a communication between
Alice and the bank, asynchronously followed by a communication between Carol and the
shipper (via state 2), or the same two communications in the reverse order (via state 2).*

Redefining the connector mapping for ac2bs is the only change we need to make: the
choreography itself is ezactly the same as in Example 4. This means that also the first
reductions remain exactly the same as in Examples 7 and 8. By contrast, the reduction in
Example 9 is no longer valid, as it relies on the semantics of ac2bs. To show the difference
formally, let o, ¢/, 6", and A be defined as in Example 9. Let also A" = A[ac2bs — (2, 0)]
and A” = A. We derive:

money 17 $10
{a<m0n€y> —> b}7 g, @ a—b> (2)7 0/7

|C|SyncVal]

0 |C|Mon]
{a(money) = b, c(book) -> s}, 0,0
A(ac2bs) = (1,0) 222, Le(book) -> s}, 07,0 1272 obs 2
{a{money) > b, c(book) > s} thruac2bs;0, o, A
~g {c(book) > s} thruac2bs; 0, o', A’

4 The communications between Alice and the bank, and between Carol and the shipper, are synchronous
in this automaton. We can easily make those communications asynchronous as well, but we skip this
here to save space (the automaton gets larger).
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Next, we derive:

book |7 foo.pdf

[C[SyncVal] c—s

A(ac2bs) = (2,0)  {c(book) ->s},0’,0 —5 0, 0", 0 2 —,0ms 1
{c(book) => s} thruac2bs; 0, o', A’
~g ¢ thruac2bs; 0, o, A"

Thus, as intended, our reduction rules let us derive two separate reductions with one
communication each (first Alice and the bank, then Carol and the shipper) instead of one
reduction with two communications (Example 9). Similarly, we can derive two separate
reductions whereby Carol and the shipper communicate first, followed by Alice and the
bank. <

» Example 12. The previous example works also “in the opposite direction”, from a trusting
Alice and Carol (using connector mapping G in Example 11) to cautious ones (using connector
mapping G in Example 6).

Our choreography is also compatible with the case where we have a trusting Alice and a
cautious Carol, who only sends the book after receiving payment. A connector mapping that
implements this behaviour is the following.

c—s

G := G[ac2bs — ]

a—b

This connector mapping is still compatible with the choreography in Example 4. The
symmetric case where Carol is trusting and Alice is cautious is similar. |

» Example 13. Note that the changes to connector mappings in Examples 11 and 12 would
still be possible if the programmer had written, e.g.,

...; {a(money) -> b} thruac2bs; {c(book) -> s} thruac2bs; 0

instead of the choreography in Example 4. Indeed, these two choreographies are equivalent
due to the congruence rule | C|Eta-Split], and thus the sets of connectors that are compatible
with each of them are the same.

This might be surprising at first, but it fits with the view of choreographies as global
specifications of independent processes. Specifically in this case, no choreography can impose
a causal dependency between the two communications a{money) > b and c(book) => s unless
it includes an additional communication in the middle involving a process that can observe
both. The lack of causal dependencies in this example thus leaves the connector for ac2bs
free to decide the order in which the interactions are performed. |

4.4 Deadlock-freedom

Rule |C|Com] is the only reduction rule in the semantics that can cause a choreography to
get stuck: in choreography 7 thru~y; C, there can be incompatibilities between the commu-
nications allowed by connector « and the intended communications in 7, causing none of the
communications in 7 to be permitted by ~y. In this case, we say that v does not respect the
choreography.®

5 A choreography expresses the intentions of the programmer. Although she may instantiate connectors
however she likes, we assume they do not violate her intentions.
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In more detail, the first premise in rule |C|Com] is always true (assuming the connector
mapping is defined for all connector names in 7 thru~y; C'). This gives us unique bindings
for s and p. The third premise in |C|Com] is also always true (assuming every state of
a connector has at least one outgoing transition; this can trivially be checked). For every
outgoing transition of s, this gives us bindings for ¢ and s’. Now, the choreography gets
stuck if for each of those bindings, the second premise in |C|Com] is false. This can happen
in two cases: either 7,0, u 2+ 7', 0, i’ can be derived (using the rules in Figure 4) and ¢ # ¢
for every derivation, or 7,0, u —+ 7,0, i/ cannot be derived at all. The former happens
if every ¢ contains different processes than ¢ (Example 14 below), or the same processes
but in different send/receive pairs (Example 15 below); the latter happens if 7j contains
only asynchronous receives for which rules |C|RecvVal] and |C|RecvSel] in Figure 4 are
inapplicable (Example 16 below). We now exemplify these cases.

» Example 14 (Book sale). Suppose we mistakenly redefine the connector mapping G in
Example 6 as follows (cf. Example 11; i.e., the boxed label is wrong):

oo
G := Glac2bs — M ————=(——=(2)|
a—b a—b

Thus, connector ac2bs initially allows a communication either between Alice and the bank, or
between Carol and the shipper. In the latter case, ac2bs subsequently allows a communication
between Alice and the bank, as in Example 11. But in the former case, ac2bs subsequently
allows a second communication between Alice and the bank (instead of between Carol and
the shipper).

The first derivation in Example 11 is still valid, but the second derivation is not: rule
| C|SyncVal] is still applied to derive {c(book) => s}, 0’0 === 0, ¢”, 0 to fulfill the second
premise of rule |C|Com], but ac2bs has no transition in state 2 labelled with ¢ —s. As there
are no other derivations to fulfill the second premise of rule | C|Com], the choreography gets
stuck. <

» Example 15 (Book sale). Suppose we mistakenly redefine connector mapping G in Ex-
ample 6 as follows (i.e., the boxed process names are wrong/swapped):

G := Glac2bs — Barm’er[a/pl,B/pg, c/m,@/pd]
a—s/Ac—b

Formally, automaton G(ac2bs) has the following transition: 1 —————,ps 1. Thus,
connector ac2bs allows communications between Alice and the shipper (instead of the bank),
and between Carol and the bank (instead of the shipper).

The derivation in Example 9 is no longer valid: rules |C|SyncVal] and |C|Join] are still
applied to derive {a(money) > b, c(book) => s},0,0 2RSS, 6", to fulfill the second
premise of rule |C|Com], but ac2bs has no transition labelled with a —b A ¢ — s. As there
are no other derivations to fulfill the second premise of rule |C|Com], the choreography gets
stuck. <

» Example 16 (Book sale). Suppose we mistakenly redefine the connector mapping G in
Example 6 as follows (i.e., the boxed process names are wrong/swapped):

a—rm c—m mi —|s
G := Glac2bs — (1 —(2) 53— m4]
mo —>

Thus, connector ac2bs allows an asynchronous send by Alice, followed by an asynchronous send

by Carol, followed by an asynchronous receive by the shipper, followed by an asynchronous
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receive by the bank. However, the shipper receives the value sent by Alice (instead of Carol),
while the bank receives the value sent by Carol (instead of Alice)

Let 0, o/, 0”, and A be defined as in Example 9. Furthermore, let g = {m1 — L, ms —
1}, let @/ = {my — $10,mqy — L}, and let p”’ = {m; — $10,my — foo.pdf}. The
following reductions can be derived using rule |C|Com]:

{a{money) -> b, c(book) > s} thruac2bs; 0, o, .Alac2bs— (1, u)]
~g {b.money?$10, c(book) > s} thruac2bs;0, o, Alac2bs— (2,u’)]
~g  {b.money?$10, s.book?foo.pdf } thruac2bs; 0, o, A[ac2bs— (3,u")]

At this point, the choreography gets stuck: there are no derivations to fulfill the second
premise of | C|Com]. To see this, note that only rule | C|RecvVal] may be applicable (together
with rule |C|Join]), but p”(mg) = foo.pdf, whereas the choreography states b.money?$10.
In other words, the choreography expects the bank to receive $10, but connector ac2bs allows
the bank only to receive foo.pdf, out of memory cell ms. |

None of these examples can be constructed in existing choreography models: in existing
models, all (a)synchronous channels are guaranteed to respect their choreographies, because
the choreography syntax is carefully tuned to the fized communication semantics of these
channels. In CR, we have no fixed communication semantics: the fact that connectors in CR,
may not respect their choreography is, thus, a consequence of the added expressiveness and
flexibility CR provides.

We proceed with a more formal account.

» Definition 17. Connector mapping G in automaton state function A respects choreography
C if: for every o, 7, v, ' and A', if C,0, A~ fjthruy; C’, o', A’, then there exist 0" and
A" such that 7 thruy; ', o', A’ ~5 C', 0", A”.

Connector mapping G respects choreography C' if G respects C' in initial automaton state
function A (which assigns each automaton to its initial state and memory snapshot, as
specified in G).

By definition, respectfulness is equivalent to deadlock-freedom.
» Definition 18. C, o, Aj is deadlock-free for every o iff G respects C.

We can show respectfulness/deadlock-freedom to be undecidable using a classical recursion-
theoretic argument.

» Theorem 19 (Undecidability of Deadlock-Freedom). In general, it is undecidable whether a
connector mapping G respects a choreography C'.

» Remark. Undecidability of deadlock-freedom arises exactly because of the new ways in
which a choreography and connectors can affect each other, which did not exist in previous
work. Specifically, deadlock occurs if a connector’s current state has no transitions for the
interactions in the choreography’s current 7. In previous choreography models, this can never
happen, since the choreography syntax matches the hard-wired communication semantics
by definition. Violation of respectfulness is, thus, a unique byproduct of allowing custom
communication semantics, through connectors. Concretely, the proof of Theorem 19 relies
on the existence of a communication action that does not respect G. Such an action does not
exist in previous models. |

However, we can approximate respectfulness by a decidable one, called compatibility,
essentially by abstracting away from data. The key point is that a conditional satisfies
compatibility only if both its branches satisfy compatibility.
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C = fjthru~y; C’
A7) = (s, 1) r }_i[wﬁ@/#/)] 7' thruy; C' | and 7, p i> i w (1)
and s iﬁy s’

CC|Com
re4 c LeC] W
r+9 ¢ rr9c, rtsc
— 2 |CC|Done] — |CCINil] — A2 | CC|Cond]
'+ @thruy; C F5 0 I' % if p.ethenC) else Cs
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( )L G ( X) P4 G | CC|Def] X:Aer |CC|Call]
I'9 def X = C2inCy 9 X

Figure 7 Cho-Reo-graphy, compatibility relation. The side condition (f) reads: the set of
judgments on the left is nonempty. By abuse of notation, we use set builder notation in rule
| CC|Com] to indicate that all judgments in the set must be true.

» Definition 20. Let C be a choreography, G be a connector mapping, and A be an automaton
state function. We say that C' and G are compatible by automaton state function A if l—i C,
where the relation I is defined by the rules in Figure 7. We say C' and G are compatible,
written F9 C, if Fio C with Ap as in Definition 17.

Relation - uses a context I', defined inductively as ' ::= (X : A),T" | -, and an abstraction
of the labelled reductions for communications from Figure 4, 7, u — 7, /. The latter models
a symbolic execution of communications; it is defined as in Figure 4, with two differences:
(i) o is removed from the domain of the reduction and (ii) in rule | C|SendVal], v is a fresh
token value.

Intuitively, X : A € I indicates that procedure X can be called only whenever the
automata have current states A; this is encoded in rules | CC|Def] and |CC|Call] (in the
former rule, a unique automaton state function Ax is stipulated; in the latter rule, it is
checked against the current automaton state function A). Together with the fact that we
allow actions to be swapped in rule | CC|Com], but not recursive calls to be unfolded, this
means that the recursive structures of the choreography and the automata in the connector
mapping must be similar (i.e., the loops in the automata must match the recursions in the
choreography). Furthermore, in order for these rules to ensure respectfulness, the transition
relation in the automaton also needs to be confluent (cf. Theorem 24).

» Remark. Compatibility can become more robust/modular by disregarding connectors
not occurring in procedure bodies in |CC|Def]. We chose our current formulation for
simplicity. |

We now revisit our previous examples to demonstrate cases where the compatibility
relation constitutes a precise approximation of respectfulness.

» Example 21 (Book sale). We illustrate how compatibility works in the context of our
running example by revisiting choreography {a(money) > b, c(book) -> s} thru ac2bs; 0 with
five different connector mappings from previous examples.

v Let G and A be defined as in Example 9. Using Figure 7, we derive:

) l—g |CC|Nil]
5 Alac2bs— (1,0)] |CC|Done]
A(3C2b5) = <1, ®> : }_.A[aCst»—)(l,Q))] (Z) thru 3C2bS; 0

G |CC|Com]
- F% {a(money) > b, c(book) > s} thruac2bs; 0
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Thus, the choreography and the connector mapping are compatible. Corollary 25 below
implies that the connector mapping respects the choreography.

Let G and A be defined as in Example 11. Furthermore, let A}, = A[ac2bs — (2, ()],
let AZ = Alac2bs - (2,0)], and let A" = Aj[ac2bs — (1,0)] = AZ[ac2bs — (1,0)] = A.
Using Figure 7, we derive:

— ————|CC|Nil
: l__/g4// O ° }_i// L l -‘
—_— ———+——— | CC|Done]
A’i(a52bs) -+9 0 thru A’ (ac2bs) - +9 0 thru
= (2,0) ac2bs; 0 = (2,0) ac2bs; 0
- . |CC|Com]
A(ac2bs) - {a(money) -> b} Fa {c(book) -> s}
= (1,0) *  thruac2bs;0 thruac2bs; 0
|CC|Com]

-9 {a(money) -> b, c(book) -> s} thru ac2bs; 0

The bottom application of rule | CC|Com] requires two subderivations: one to cover the
case where connector ac2bs makes a transition to state 2 (left subderivation), and another
to cover the case where ac2bs makes a transition to state 2 (right subderivation). In both
cases, we have compatibility.

Thus, the choreography and the connector mapping are compatible. Corollary 25 below
implies that the connector mapping respects the choreography.

Let G and A be defined as in Example 14. Furthermore, let A5 = A[ac2bs — (2,0)], and
let AL = Alac2bs > (2,0)]. Using Figure 7, we attempt:

F9. 0
A’E(ai2bs) -+, 0thru Al (ac2bs)
= (2,0) ac2bs; 0 = (2,0)
G G |CC|Com]
A(ac2bs) . I_A% {a(money) -> b} Fa {c(book) -> s}
= (1,0) thruac2bs; 0 thruac2bs; 0
|CC|Com]

: Fi {a{money) > b, c(book) > s} thruac2bs; 0

This attempted derivation is the same as in the second v-item, except the subderivation
inside the box has become invalid: under our current G, connector ac2bs in state 2 has
no transition labelled with ¢ — s.

Thus, the choreography and the connector mapping are incompatible. In fact, in this
case, the choreography may deadlock under G.

Let G and A be defined as in Example 15. Using Figure 7, we attempt:

A(ac2bs) = (1,0)
: Fi {a{money) > b, c(book) -> s} thruac2bs; 0

|CC|Com]

This attempted derivation is the same as in the first v-item, except the subderivation
inside the box has become invalid: under our current G, connector ac2bs in state 1 has
no transition labelled with a —+b A c — s.

Thus, the choreography and the connector mapping are incompatible. In fact, in this
case, the choreography deadlocks under G.

Let G and A be defined as in Example 16. Furthermore, let < and © denote two
fresh token values, let u = {m; — L,mg — L}, let ¢/ = {my — O,mo — LY} let
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w={my — O omo — O3, let A = Alac2bs — (2, 1)), and let A” = Alac2bs — (2, 1/"")].
Using Figure 7, we attempt:

A" (ac2bs)
— 3 "
S L | CC|Com]
A’(ac2bs) - F9% {b.money?<, s.book?V}
= (2,u) thruac2bs; 0
|CC|Com]
A(ac2bs) - F9 {o.money?$, c(book) > s}
= (1, ) thruac2bs; 0
|CC|Com]

-+ {a(money) -> b, c(book) -> s} thru ac2bs; 0

This attempted derivation fails, because the intended subderivation inside box (the receive
of {, followed by the receive of Q) is invalid: under our current G, connector ac2bs in
state 3 has no transition labelled with m; — b.

Thus, the choreography and the connector mapping are incompatible. In fact, in this
case, the choreography deadlocks under G. |

The restriction that a choreography and the automata in its connector mapping must
have similar recursive structures (for them to be judged compatible), implies there exist
connector mappings that respect their choreographies, but that cannot be shown to do so
by means of the compatibility relation — which is unavoidable in view of our undecidability
result. We illustrate this by some examples.

» Example 22. Let C be the simple choreography:
def X =p -> qthruvy;p > qthruy;r > sthruy; X in X

and G(y) a connector that allows communications from p to q to occur simultaneously with
communications from r to s (e.g., Barrier in Figure 1). Then C is deadlock-free, since
structural precongruence allows the second communication from p to q to be “delayed” and
the communication from r to s to be “pushed forward”:

p > qthru~y;p > qthru~y;r -> sthruvy
=p > qthruvy;{p > q,r > s} thruy by | C|Eta-Split |
=p -> qthru~y;r > sthru~vy;p - qthruy by | C|Eta-Split |

However, /9 C, since the second communication from p to q in the body of X cannot be
consumed without unfolding the definition of X.

In this example, the recursive structure of X (two communications from p to q and one
from r to s) differs from the recursive structure of G(vy) (one communication between each
pair of processes). |

» Example 23. Consider now the choreography C' defined as
def X =p > qthruy;r > sthruvy; Xin X

where G(v) only allows communications from p to q. Again C'is deadlock-free, since structural
precongruence allows the communications from r to s to be indefinitely postponed. However,
9 C. In general, compatibility ensures that the choreography is not only deadlock-free, but
also that there is a correspondence between the recursive structure of the choreography and
the recursive structure of the connectors: the connector must allow all interactions in the
body of a definition to be executed before calling other procedures. <
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» Theorem 24 (Preservation of Compatibility). Let C' and C’ be choreographies, G be a
connector mapping, such that the transition relation in each automaton G(v) is confluent,
o and o’ be choreography states, and A and A’ be automata state functions. If l—i C and
C,o,A~g C' o', A, then -9, C'.

The hypothesis that the transition relations of automata are confluent is required to make
sure that unfolding cannot add unwanted reductions.

» Corollary 25 (Soundness of Compatibility). Under the assumptions of Theorem 24, if }—i C,
then G in A respects C.

Furthermore, compatibility is decidable.

» Theorem 26 (Decidability of Compatibility). There is an algorithm that, given C, G and
A, returns YES if 9 C and No if 175 C.

Proof. A simple finiteness argument suffices for establishing decidability of compatibility,
since the number of automaton states is finite, the number of applicable rules at each step is
finite, and all rules have a finite number of premises, and the size of the choreographies in the
premises is always smaller than the size of the choreographies in the conclusions. Therefore,
e . . g
by non-deterministically guessing the types of all procedures, we can decide whether % C
or not. <

In the Appendix, we give a more intelligent proof that constructs the types for the recursive
definitions.

» Theorem 27 (Progress). Let C' be a choreography, G be a connector mapping, o be a
choreography state and A be an automaton state function such that l—i C. Then, either
C =0 (C has terminated) or there exist C', o’ and A’ such that C o, A ~g C' o', A'.

Proof. If C £ 0, then C is of the form 7 thru~v;C’ or if p.cthen C else C5, eventually
inside some recursive definitions. In the latter case, C' can always reduce; in the former case,
compatibility guarantees that C' can reduce. <

Given the previous theorem, if C' £ 0, then by Theorem 24 we also have that F9, C’
whenever C, 0, A ~¢g C',¢’, A'. By induction, we therefore can state a stronger result: every
choreography starting from a compatible automaton state function always keeps reducing
unless it reaches 0. Thus, choreographies starting from an automaton state function they
are compatible with can never deadlock.

» Theorem 28 (Deadlock-Freedom by Design). Let C' be a choreography, o be a choreography
state function, and A be an automaton state function. If Fi C and C,0,A ~5 C', o', A,
then either C' < 0 or there exist C", o” and A" such that C' o', A’ ~~g C" o” A".

5 Connected Processes

The results presented so far show that choreographies can be combined with connectors, but
do not indicate yet how we can use CR to obtain executable implementations of concurrent
systems. The missing link is determining how, given a choreography, we can synthesise terms
that represents executable concurrent processes that communicate through connectors. We
address this aspect in this section, first by defining a process calculus based on standard
I/0 actions and then by presenting a translation (compilation procedure) from CR to this
calculus.
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Figure 8 Connected Processes, Syntax.

5.1 Syntax and semantics

We define Connected Processes (CP), the process calculus that we use to represent concrete
implementations of choreographies. The syntax of CP is given in Figure 8. A network N
is a parallel composition of processes. A process is written p >, B, where p is its identifier,
p its current state (mapping variable names to values), and B its behaviour. Behaviours
correspond to local views of choreography interactions. Procedure definitions and calls,
conditionals, and termination (0) follow the same ideas as in choreographies. Communication
actions implement the local behaviour of each process in a choreography interaction: sending
a value through an output port (o!(e)); receiving a value through an input port (i?z);
selecting a label through an output port (o @ £); and offering a choice on some labels through
an input port (1&{¢; : B;}icr)-

The key difference with respect to choreographies is that communications now refer to
actual ports, instead of to connectors (i.e., we have no “ thru~v” for communications in the
process calculus). This reflects the principle that processes should not know how they are
connected [5, 29, 30].

The semantics of CP is parameterised on connectors represented as a set of automata
C that do not share any ports. Differently from the automata used in choreographies, the
automata in C use the names of the actual ports to which they are connected (and which
are also used by the processes). Reductions in CP have the form N, A ~»¢ N’ A’, where A
maps each automaton in C to a pair (s, ) of its state s and memory snapshot . The key
reduction rule of CP is the one for communications (the remaining ones are standard; see
the Appendix):

acC Aa) = (s,u) N7pi>N’,u’ s 25, s
N,A~s¢c N, Ala — (s, 1/)]

| CP|Com]

This rule is reminiscent of rule |C|Com] for choreographies. In particular, it uses a similar
auxiliary reduction relation on pairs of networks and memory snapshots (stated in premise
N, p 2N ,it'), whose main rules are given in Figure 9 (see the Appendix for the others).

5.2 EndPoint Projection (EPP)

The EPP of a choreography C' from CR into CP follows the usual construction, but with an

additional ingredient: we need to add port names associated with communication actions.

This is visible in the rules for projecting the individual behaviour of each process (Figure 10),
notably in the rule for projecting communications.

» Remark. In Figure 10, o and i denote variables that range over concrete ports. Thus, a

process p has output ports o,,,0,,,..., and input ports i,,,i,,,..., where o and i actually
stand for oP (“output port at p”) and iP (“input port at p”), while connector v; knows
output ports o5}, 052, ..., and similarly for input ports. <

The rule for projecting conditionals uses the standard partial merging operator LI, where

B U B’ is isomorphic to B and B’ up to branching with different labels (see [22] for details).
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el v
. .0—q.1i
P >p, 01{e); By | aPp, 1725 Bgy b == PP, By | APpyfarse) Bay 1
elfv

p >y ol(e); B, p T pr, B, ufm > v]

| CP|SyncVal]

| CP|SendVal]

p(m) = v p(mi) =v
— |CP|RecvVal] — |CP|Mem |
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Nip 2% Ni ' Noyu' 225 Nj o’ (1)
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| CP|Join]

Figure 9 Semantics of communications (process level, main rules). Side condition () in | CP|Join]
is the same as in |C|Join].

oy 1{e); [C- ifr=pandple) >qz €N

iy ?7z; [C]« if r = q and (p{e) > q.x € 7 or q.z?v € 7))
oy ® 4 [Ce ifr=pandp->q[f] €7

i, &{l: [C]:} ifr=qand (p->q[f] €7 orqlf €n)

[ thruy; CJ. =

if ethen[Ci]relse [C2]: ifr=0p
[C1]: U [Co]: T#p

[[def X =Csin Cl]]r =def X = [[Czﬂr in IICﬂIr [[0]]1« =0 [[X]]r =X

[if p.e thenC; else Cs], = {

Figure 10 Cho-Reo-graphies, Behaviour Projection.

We now define the projection of C' given a state o. As usual, this is the parallel composition
of the projections of all processes in C'.

[C,o] = H Py, [Clp where pp(z) = o(p, x) for each variable x at p
pepn(C)

We say that C is projectable when [C, o] is defined for some o. This is equivalent to saying
that [C, o] is defined for all o.

» Example 29 (Book sale). Continuing with our running example, the choreography presented
in Example 4 is projectable, and yields the following network of connected processes each
state o.

a b, oxc!(title); icoa?price; if (happy) then (0achs @ 0k; 0acobs!(money); 0)
else (0a2chs D ko; 0)
| D), La2cbs&{ 0k : iscops?money; 0; ko : 0}
| €Dy, danc?title; ocoa!(price); iaocbs&{ 0k : 0acobs!(bo0k); 0; ko : O}
| s>p, ia2cbs&{ 0k @ 1acons?book; 0; ko : O}
|

» Example 30. It is also worthwhile to note that the following choreographies are not
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congruent, and that they have different EPPs:

Cy =p > {q,r}[{] thru~; 0
Cy =p > q[f] thru~; p -> r[¢]thru~y; 0

Choreography C is syntactic sugar for {p => q[¢],p = r[¢]} thru~y; 0. The EPP to p, thus,
consists of one send; connector v must subsequently ensure that label £ is replicated to, and
received by, both q and r (i.e., formally, v must be compatible with C).5

Choreography Cs, in contrast, is not congruent to {p -> q[¢],p => r[¢]} thru~;0. Spe-
cifically, we cannot use rule |C|Eta-Split| to merge the two interactions in Cy, because its
disjointness premise does not hold (p occurs in both interactions). Accordingly, the EPP of
choreography C5 on p consists of two sends. <

To state the operational correspondence between a choreography and its projection, we
need to map the process names used as ports in a connector mapping G to the actual port
names used in networks. We define [G] to be the set of all automata in the codomain of G,
where each output port p in automaton G(vy) becomes p.o, (and likewise for input ports).
We define a similar function for automaton state function .A.

» Theorem 31 (Operational Correspondence). Let C' be a projectable choreography. Then,
forallo, G, and A:

Completeness: If C o, A ~g C',d', A, then [C, 0], [A] ~g1 [C', 0], [A];
Soundness: If [C,o],[A] ~g; N, A, then C,0,A ~g C' o', A" for some o' and A’
with [C",0'] < N and [A'] = A’

In the soundness result, the pruning relation < [15, 17] states that the processes in the
network N’ may offer more branches than those present in [C’,¢’]. Such branches can never
be selected [15, 32, 25].

In particular, if F9 C, then [C, o] is guaranteed to be deadlock-free when executed with
all automata in [G] in their initial states.

» Example 32 (Book sale). For any connector mapping G, the process network in Example 29
operates under [G] exactly as the choreography in Example 4 under G. In particular, if G
respects the original choreography, then this implementation never deadlocks under [G]. <«

6 Conclusions

Choreographic approaches to concurrent programming have been heavily investigated [1, 28],
but these approaches typically adopt some fixed (and restrictive) definition (like point-
to-point synchronous) for the semantics of communications. CR is the first model that
allows choreographies to be modularly integrated with what runs “under the hood” of
communications, allowing for user-defined communication semantics specified as connectors.
Thanks to the notion of compatibility (Definition 20), CR inherits the good properties of
both Choreographic Programming and Exogenous Coordination. Thus, we have significantly
extended the applicability of choreographies. Not only can we capture new kinds of behaviours
in choreographies (like barriers, cf. Example 6, and alternators, cf. Example 12), but

8 This behaviour was the motivation for introducing multicasts as abbreviations: the notation in Ci
better conveys how communications really happen; EPP follows this intuition.
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we can even use choreographies to describe systems that integrate different parts with
different communication semantics and check whether such integration will lead to deadlocks.
This is essential in many real-world scenarios, where different components with different
communication semantics are usually combined (e.g., some microservices in a distributed
system may asynchronously exchange data to be used later in a synchronous multiparty
transition, similarly to our example).

This work lays the foundations for applying the combined power of choreographies and
connectors to the challenge of concurrent programming, in that CR contains all the necessary
foundations to obtain a concrete implementation. The results in § 5 specify how to use
CR to obtain code in a process model supported by connectors. Thus, a natural next
step will be to implement CR by combining implementations of processes generated from
choreographies [19, 25] with distributed implementations of Reo connectors [31, 39, 40]. The
main pieces exist; the main challenge lies in their effective composition, and CR is the first
essential step towards this objective.

CR also provides a very explicit direction for future developments of this new combined
research line: allowing for more kinds of connectors would make the model immediately more
expressive. By relaxing the requirements we imposed on the automata in CR (see page 5),
we can introduce non-deterministic communication semantics to choreographies, to cater to
applications that require lossy channels and safe communication races. Likewise, a more
fine-grained semantics that splits communications into two independent send and receive
actions (similar to [24]) would enrich the class of behaviours that are captured.

We have followed the traditional approach of viewing choreographies as precise specifica-
tions of the intended interactions. However, it would be reasonable to allow choreographies to
underspecify communications, such that the underlying connectors were allowed to exchange
messages also to participants not defined in the choreography. For example, the semantics
for the choreography term p(e) => q.z thru+y can allow « to send the message from p to q
via an intermediate process r that may perform additional actions (like logging the message,
or sharing it through another connector). This generalisation can, in particular, provide a
novel way for studying how choreographies can be applied to open-ended systems, where the
processes projected from multiple choreographies execute in parallel and share connectors.
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Additional Proofs

Theorem 19. Let 1 be a communication action that does not respect A, and assume that
connector v has synchronous links p2q and q2p, from p to q and conversely (e.g., Sync in
Figure 1). Synchronous links are always enabled and do not change A.

Let f be a total function implemented at p and consider the choreography

C = def X = q(y) > p.x thru~;
if (p.f(z) =0) then p(x + 1) > q.y thruy; X
else nthruvy
in p(0) > q.y thruy; X

In this choreography, q sequentially sends the natural numbers to p, which applies f to
its input and proceeds if the result is 0. If q sends a value where f is not 0, the choreography
attempts to perform 7 and deadlocks. Then C' respects A iff f is constantly equal to 0, which
by Rice’s theorem is not decidable. |

Theorem 24. Straightforward by case analysis on the reduction from C,o, A to C’, o', A’,
using the fact that the automata are confluent (to make sure unfolding cannot add unwanted
reductions), and therefore compatibility is preserved by structural precongruence. |

Corollary 25. If C,0A ~§ n; C', o', A’, then, by induction on the length of this sequence of
reductions, we use Theorem 24 to show that n;C’, o', A’ ~¢g C’, ", A" for some A" and
o’ <

Theorem 26, alternative proof. We assume that every procedure defined in C is called at
least once outside of its body.

The idea behind our algorithm is to construct a derivation for Fg‘ C by applying the rules

in Figure 7 bottom-up. When we meet a term of the form def X = C5 in (', we focus on C}
first, and leave Ax (see rule | CC|Def]) unspecified. We instantiate Ax later, when we meet
X for the first time inside of C;. More precisely:

1. Initialize a list £ = [- -9 C].

2. While £ is not empty:

a. Remove the first pending judgement I l—i C from L.

b. If C is 0, proceed to the next iteration.

c. If C is of the form if p.ethen C; else Cy, then add I’ I—i Cyand T }—i Cy at the
beginning of L.

d. If C is of the form def X = CyinCy, then add I', (X : Ax) I—i CyandT, (X : Ax) }—i
Cs, in this order, at the beginning of L. Here, Ax is a unique variable representing an
unknown state function.

e. If C is of the form X, there are two cases. If " contains (X : Ax) with Ax instantiated,
check whether Ax = A; if so, proceed to the next iteration, otherwise return No. If T’
contains (X : Ax) with Ax uninstantiated, replace all occurrences of Ax in £ by A
and proceed to the next iteration.”

f. Otherwise, C' is of the form 77 thru~y;C’. Consider all possible ways of rewriting C' as
77 thruv; C’ by swapping independent actions, without unfolding recursive definitions.
Let A(vy) = (s, u). For each such 7', check whether 7}/, 4 2, 7", i’ for some ¢, and in

" Note that T’ must contain (X : Ax), otherwise the initial choreography is not well-formed.
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Figure 11 Semantics of communications (process level).

the affirmative case compute s’ such that s iH s’ and add T’ I—i[
at the beginning of £. If no such transitions exist, return NO.
3. Return YES.

ros(arury 1 BRTRY CF

Termination of this algorithm is straight-forward: the sum of the sizes of all the cho-
reographies in £ stricly decreases at each iteration, and each step terminates in finite time.
(The size of a choreography is the number of nodes in its abstract syntax tree, except that
p{e) = q.x and p => q[f] count as 2, while q.#7v and q[¢] count as 1.) Soundness is immediate
by observing that the judgements stored in £ are exactly those that are necessary to construct
a derivation of Fi C, since at each stage there is only one rule that can be applied to build
such a derivation, and this rule is determined by the structure of C. If the algorithm returns
YES, then a valid derivation for Fi C' can be built. If the algorithm returns NO because of a
mismatch between the state of the automata and a communication action (Step 2.f), then
clearly b‘i C. If the algorithm returns NO because of an incompatibility between the state
assigned to a procedure name X in I' and the state in the current judgement (Step 2.e), then
this failure means that we constructed two judgements involving X with different automaton
state functions, which also implies that b‘i C. <

Complete semantics of Connected Processes

Figure 11 gives the full definition of the auxiliary reduction from rule | CP|Com]. Figure 12
gives the semantics of CP. Rule | CP|Struct] uses the structural precongruence relation <
(including associativity and commutativity of |), defined in the standard way [22].
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1 =11if e [ true, ¢ = 2 otherwise
B A |CP|Cond]

pb, if ethen By else By, A ~¢ pb,
p>y By | NyA~s¢cpb, By | N/ A
pbydef X = Byin By | NJA~cp>,def X = Boin By | N', A’
N,A ~¢ N A
N|M,A~¢N' | M,A

|CP|Ctx]

N=M MA~cM,A M <N
N,A~c N A

| CP|Par] | CP|Struct]

Figure 12 Connected Processes, Semantics.



	Introduction
	Motivating Example & Approach
	Constraint Automata and Reo
	Cho-Reo-graphies
	Overview
	Formal semantics
	Flexibility
	Deadlock-freedom

	Connected Processes
	Syntax and semantics
	EndPoint Projection (EPP)

	Conclusions

