
Procedural Choreographic Programming

Lúıs Cruz-Filipe, Fabrizio Montesi

University of Southern Denmark, Department of Mathematics and Computer Science,
Campusvej 55, 5230 Odense M, Denmark

Abstract

Choreographic Programming is an emerging paradigm for correct-by-construction
concurrent programming based on message passing. Models based on choreo-
graphic programming have been successfully developed for different settings
where concurrent programming is challenging, including service-oriented com-
puting and cyber-physical systems. However, the general applicability of the
paradigm is limited by the current lack of support for reusable procedures,
which hinders modularity.

We propose Procedural Choreographies (PC), a choreographic language model
with full procedural abstraction. PC includes unbounded process creation and
name mobility, yielding a powerful framework for writing correct concurrent
algorithms that can be compiled into a process calculus. This expressivity re-
quires a typing discipline to ensure that processes are properly connected when
enacting procedures. Connections may form networks of arbitrary graph struc-
tures. We develop a formal synthesis procedure that, given a program in PC,
generates a correct-by-construction concurrent implementation in terms of a
process calculus. We illustrate the expressivity of PC with a series of examples,
including parallel streams and parallel computation based on pipelining.

Keywords: Choreographic Programming, Deadlock-freedom, Process Calculi

1. Introduction

Developing correct concurrent software is challenging, because it is hard to
reason about multiple simultaneous executions. In the setting of message pass-
ing, programming errors can lead to unexpected communications, or systems
reaching a deadlock because of mismatched I/O actions. Choreographic Pro-
gramming (Montesi, 2013) is a paradigm for programming concurrent software
based on message passing that is deadlock-free by construction, by using an
“Alice and Bob” notation that syntactically prevents mismatched I/O commu-
nications in programs (called choreographies), and using an EndPoint Projection

Email addresses: lcf@imada.sdu.dk (Lúıs Cruz-Filipe), fmontesi@imada.sdu.dk
(Fabrizio Montesi)

Preprint submitted to Elsevier February 5, 2018

(EPP for short) to synthesise correct process implementations (Qiu et al., 2007;
Carbone et al., 2012; Carbone and Montesi, 2013). The key idea of choreo-
graphic notation is to define the desired interactions explicitly, as atomic prim-
itives, rather than doing it indirectly by composing separate I/O actions. This
makes communication flows explicit, in a way that recalls the security protocol
notation of Needham and Schroeder (1978) and message sequence charts (In-
ternational Telecommunication Union, 1996). For these reasons, choreographies
have been used in: standards, like the Business Process Model and Notation by
the Object Management Group (2017) and the Web Services Choreography De-
scription Language (WS-CDL) by the W3C WS-CDL Working Group (2004);
formal models for concurrent systems (Qiu et al., 2007; Carbone et al., 2012);
experimental languages (Honda et al., 2011; Chor, 2017); and software devel-
opment methodologies, like Testable Architecture (JBoss Community and Red
Hat, 2017).

Since their inception, the link between choreographies and the theory of
process calculi was evident (Busi et al., 2006; Bravetti and Zavattaro, 2007;
Qiu et al., 2007; Lanese et al., 2008; Carbone et al., 2012). This sparked a
fruitful line of research that, much alike to the one on process calculi, can be
seen as a “workshop” of choreographic models designed to explore different
features. Recently, in particular, research on choreographic programming has
gained in breadth, and our knowledge of choreographies is extending rapidly.
For example, choreographic programming has been studied in the settings of:
service-oriented programming, both for the synthesis of skeleton communica-
tion code to be used as a “black box” from independent services (Carbone and
Montesi, 2013; Dalla Preda et al., 2014) or for the formalisation of modular
systems using behavioural types (Montesi and Yoshida, 2013); runtime adapta-
tion (Dalla Preda et al., 2017); information flow (Lluch-Lafuente et al., 2015);
linear logic, where choreographies syntactically describe the process of cut elim-
ination (Carbone et al., 2018); cyber-physical systems (López et al., 2016; López
and Heussen, 2017); and decompilation, which intuitively is the right adjoint of
EPP (Lange et al., 2015; Cruz-Filipe et al., 2017).

In this work, we focus on another important aspect: procedural program-
ming. Writing procedures that can be arbitrarily instantiated and composed
into larger programs is still unsupported in choreographic programming. The
absence of full procedural abstraction prevents the creation of libraries that can
be reused in different programs.

Example 1. We discuss a parallel version of merge sort, written as a choreogra-
phy. We assume that concurrent processes communicate by exchanging messages
and possess local memory. In this example, each process stores a list and can
use the following local functions: split1 and split2, respectively returning the
first or the second half of the stored list; is_small, which tests if the stored list
has at most one element; and merge, which combines two sorted lists into one.
The following (choreographic) procedure, MS, implements merge sort on the list

2

stored at its parameter process p.1

MS(p) = if p.is_small then 0

else p start q1 ,q2 ; p.split1 -> q1 ; p.split2 -> q2 ;

MS< q1 >; MS< q2 >; q1 .* -> p; q2 .* -> p.merge

Procedure MS starts by checking whether the list at process p is small, in which
case it does not need to be sorted (0 denotes termination); otherwise, p starts two
other processes q1 and q2 (p start q1,q2), to which it respectively sends the first
and the second half of the list (p.split1 -> q1 and p.split2 -> q2). We point out
that q1 and q2 are process variables, bound by the start action. The procedure is
recursively reapplied to q1 and q2, which independently (concurrently) proceed to
ordering their respective sub-lists. When this is done, MS stores the first ordered
half from q1 to p (q1.* -> p, where * retrieves the data stored in q1) and merges
it with the ordered sub-list from q2 (q2.* -> p.merge).

Procedure MS in Example 1 is a simple toy example. Even so, it cannot
be written in current choreographic programming models because it uses two
unsupported features: general recursion, allowing procedure calls to be followed
by arbitrary code; and parametric procedures, which can be reused with different
processes (as in MS<q1> and MS<q2>). These features are key to many useful
algorithmic and communication patterns in practice (like divide-et-impera and
map-reduce). Similarly, in the remainder, we explore more realistic and involved
examples that illustrate the need for more advanced features, like: mobility of
process names, which enables networks with connections that evolve at runtime;
the propagation of branching choices among processes; and the support for
procedures that take a variable number of process parameters, where the exact
number is decided at runtime. As we show through our examples, these features
are important in the context of procedural choreographic programming because
they allow us to: connect the processes that need to communicate in order
to execute a procedure; make processes agree on what procedure they should
execute together; and write procedures that define the behaviour of groups
of processes of variable size. Mobility and branching have been explored in
restricted form in previous work, which is not enough for our setting where the
number of processes simultaneously executing is unbounded (for related work,
see § 7).

Developing a language model for choreographic programming that supports
these features is challenging, because we need to provide an EndPoint Projec-
tion (EPP) – EPP is what makes choreographic programming useful, since it
is how we synthesise process implementations (which abstractly represent exe-
cutable code) from choreographies. This challenge is multifaceted. First, EPP
should generate code that follows the original choreography (correctness-by-
construction) and is deadlock-free, which are two typical properties of choreography-
based models. For this, we need to deal with different issues caused by potential

1In this work, we use a monospaced font for readability of our concrete examples, and other
fonts for distinguishing syntactic categories in our formal arguments, as usual.

3

bad usage of our features of interest, for example: attempted communication
between two unconnected processes (e.g., bad usage of name mobility), or dis-
agreement on which processes should enact a procedure (e.g., bad usage of
procedure parametricity). Second, EPP should respect the programmer’s inten-
tion on communications, i.e., the synthesised processes should execute exactly
the communications defined in the originating choreography. Concretely, this
means that EPP cannot inject extra communications (or remove some) to en-
sure that all processes are coordinated as needed. If we did that, we would
risk adding unexpected overhead – maybe the efficiency of the choreography
given as input is relevant – or even unexpected information leaks – maybe it
is actually important for the programmer that some processes do not know
of some decision. Third, EPP should yield parallel implementations when the
algorithm described in a choreography is conceptually parallel. This requires
understanding when procedure executions can be parallelised. For instance, in
Example 1, the two calls in MS<q1>; MS<q2> can be run in parallel because they
involve separate processes and are thus non-interfering.

Contributions. We present Procedural Choreographies (PC), a new model for
choreographic programming that includes all the ingredients mentioned earlier.
PC has a simple syntax, but as we show throughout the remainder, it is ex-
pressive enough to write sophisticated concurrent programs (e.g., implementing
concurrent data streams or pipelining). The semantics of PC infers automati-
cally safe concurrent executions of choreographic procedures (and choreographic
code in general, down to the level of single statements).

PC comes with a typing discipline that prevents wrong procedure compo-
sition (e.g., due to dangling process references or wrong parameter usage), by
typing the connections that a code block in a choreography requires and pro-
duces. Typing ensures that choreographies progress. This discipline supports
both decidable type checking and type inference.

We define an EndPoint Projection (EPP) that synthesises concurrent imple-
mentations of choreographies in terms of a process calculus, and prove that such
implementations are correct (operationally equivalent to the choreography) and
deadlock-free. This process calculus is an abstraction of systems where processes
refer to one another’s locations or identifiers (as in the MPI Forum (2015) or
the Internet Protocol).

We illustrate the expressivity of our development through a series of repre-
sentative examples: parallel sorting (mergesort, quicksort), distributed authen-
tication, parallel streams (a downloader), Gaussian Elimination (which uses
pipelining), and Fast Fourier Transform.

All our results hold both for systems that make use of synchronous (ren-
dezvous) communications and for systems based on asynchronous communica-
tions. As a consequence, a choreography developed with synchronous commu-
nications in mind can be safely reused in a system with asynchronous commu-
nications, with no intervention required by the programmer: we simply get a
more concurrent implementation, thanks to asynchrony. The extension to the
asynchronous setting is a simple adaptation of the technique of Cruz-Filipe and

4

C ::= η;C | I;C | 0 η ::= p.e -> q.f | p -> q[`] | p start qT | p : q <-> r

D ::= X(q̃T) = C,D | ∅ I ::= if p.e thenC1 elseC2 |X〈p̃〉 | 0

Figure 1: Procedural Choreographies, Syntax.

Montesi (2017a) to PC, and is therefore only sketched in § 7. The details of the
construction can be found in the technical report by Cruz-Filipe and Montesi
(2016b).

Publication history. This article combines results previously included in two
conference publications. The language of PC, together with its synchronous se-
mantics, type system and EndPoint Projection, was originally published by Cruz-
Filipe and Montesi (2017b), while some language extensions and the more com-
plex examples (QuickSort, Gaussian elimination, Fast Fourier transform) were
described by Cruz-Filipe and Montesi (2016). The proofs of all results are pre-
sented here for the first time: they were only included in the technical report
by Cruz-Filipe and Montesi (2016b).

Structure. We describe the syntax and semantics of PC in § 2, and its type
system in § 3. § 4 introduces the model that we use to represent process imple-
mentations and the corresponding EPP from PC. We present a small extension
of PC in § 5 that does not intrinsically change its theory, but allows us to write
the more sophisticated examples in § 6. We discuss related work in § 7 before
concluding in § 8.

2. Procedural Choreographies (PC)

We begin by introducing the language model of Procedural Choreographies
(PC).

2.1. Syntax

A procedural choreography is a pair 〈D , C〉, where C is a choreography and
D is a set of procedure definitions, following the syntax displayed in Figure 1.
Process names (p, q, r, . . .) identify processes that execute concurrently. Each
process is equipped with a memory cell that stores a single value of a fixed type.
Specifically, we consider a fixed set T of datatypes (numbers, lists, etc.); each
process p stores only values of type Tp ∈ T.

Statements in a choreography can either be communication actions (η) or
compound instructions (I), both of which can have continuations. Term 0 is
the terminated choreography, which we often omit in examples. We call all
terms but 0;C program terms, or simply programs, since these form the syntax
intended for developers to use for writing programs. Term 0;C is necessary
only for the technical definition of the semantics, to capture termination of

5

procedure calls with continuations, and can appear only at runtime. It is thus
called a runtime term.

Processes communicate through direct references (names) to each other.2

In a value communication p.e -> q.f , process p sends the result of evaluating
expression e to q. The expression e may contain the placeholder ∗, which is
replaced at runtime with the data in p’s memory. When q receives the value
from p, it applies to it the (total) function f and stores the result. The definition
of f may also access the contents of q’s memory (through ∗). The precise syntax
of expressions and functions is left unspecified, as it is essentially immaterial for
our development.

In a selection term p -> q[`], p communicates to q its choice of label `, which
is a constant. This term is intended to propagate information on which internal
choice has been made by a process to another (see Remark 3 below).

In term p start qT , process p spawns the new process q, which stores data of
type T . Process name q is bound in the continuation C of p start qT ;C.

Process spawning introduces the need for name mobility. In real-world sys-
tems, after execution of p start qT , p is the only process that knows q’s name.
Any other process wanting to communicate with q must therefore be first in-
formed of its existence. This is achieved with the introduction term p : q <-> r,
read “p introduces q and r” (with p, q and r distinct). As its double-arrow
syntax suggests, this action represents two communications – one where p sends
q’s name to r, and another where p sends r’s name to q. This is made explicit
in § 4.

In a conditional term if p.e thenC1 elseC2, process p evaluates e to choose
between the possible continuations C1 and C2.

The set D contains definitions of global procedures. Term X(q̃T) = CX
defines a procedure X with body CX , which can be used anywhere in 〈D , C〉 –
in particular, inside CX . The names q̃ are bound to CX , and they are exactly
the free process names in CX .3 Each procedure can be defined at most once
in D . Term X〈p̃〉 calls (invokes) procedure X by passing the processes in p̃ as
parameters. All processes in p̃ must be distinct. Furthermore, procedure calls
inside definitions must be guarded, i.e., they can only occur after some other
action,

Remark 1. In PC, we make heavy use of the Barendregt variable conven-
tion: all bound variables have distinct names, and those names are distinct
from the names of all free variables. We use this convention in two implicit as-
sumptions: (1) we work up to α-equivalence in choreographies, renaming bound
variables as needed; (2) in reductions that duplicate bound variables (typically,
when expanding procedure calls), we assume that the bound variables are re-
named to conform with the convention. For example, if we include the definition

2PC thus easily applies to settings based on actors, objects, or ranks (e.g., MPI).
3We could relax this requirement by having q̃ be a superset of the free process names in

CX . Having equality simplifies our technical development later.

6

X(p) = p start r;X(r), then unfolding X twice in the choreography X(q) yields,
e.g., q start r; r start r′;X(r′), rather than q start r; r start r;X(r).

Example 2. Recall procedure MS from our merge sort example in the Introduc-
tion (Example 1). If we annotate the parameter p and the started processes
q1 and q2 with a type, e.g., List(T) for some T (the type of lists containing
elements of type T), then MS is a valid procedure definition in PC, as long as

we allow two straightforward syntactic conventions: (i) p start q̃T stands for the
sequence p start qT1

1 ; . . . ; p start qTn
n ; (ii) a communication of the form p.e -> q

stands for p.e -> q.id, where id is the identity function: this action simply sets
the content of q to the value received from p. We adopt these conventions also
in the remainder.

Remark 2 (Design choices). We comment on two of our design choices.
The introduction action (p : q <-> r) requires a three-way synchronization,

essentially performing two communications. The alternative development of PC
with asymmetric introduction (an action p : q -> r whereby p sends q’s name to
r, but not conversely) would be very similar. Since in our examples we always
perform introductions in pairs, the current choice makes the presentation easier.

The restriction that each process stores only one value of a fixed type is,
in practice, a minor constraint. As in Example 2, types can be tuples or lists,
which mimics storing several values. Also, a process can create new processes
with different types – so we can encode changing the type of p by having p create
a new process p′ and then continuing the choreography with p′ instead of p.

Remark 3 (Label Selection). We motivate the need for selections (p -> q[`]).
Consider the choreography if p.coinflip then (p.∗ -> r) else (r.∗ -> p). Here, p flips
a coin to decide whether to send a value to r or to receive a value from r. Since
processes run independently and share no data, only p knows which branch of
the conditional will be executed; but this information is essential for r to decide
on its behaviour. To propagate p’s decision to r, we use selections:

if p.coinflip then (p -> r[l]; p. ∗ -> r) else (p -> r[r]; r. ∗ -> p)

Now r receives a label reflecting p’s choice, and can use it to decide what to do.
This information propagation is essential for compilation (see § 4): the first

choreography above is not projectable, whereas the second one is. Selections can
be inferred automatically, and thus could be removed from the user syntax, but
it is useful to be able to specify them manually (see Remark 8). This aspect is
found repeatedly in the choreography models by Carbone et al. (2012), Carbone
and Montesi (2013), Coppo et al. (2016) and Cruz-Filipe and Montesi (2016a).
See also Example 5 at the end of this section.

2.2. Semantics

We define a reduction semantics →D for PC, parameterised over the set D
(Figure 2). Given a choreography C, we model the state of its processes with
a state function σ, where σ(p) denotes the value stored in p. The domain of σ

7

p
G←→ q e ↓pσ v f(v) ↓qσ w

G, p.e -> q.f ;C, σ →D G,C, σ[q 7→ w]
bC|Come

p
G←→ q

G, p -> q[`];C, σ →D G,C, σ
bC|Sele

G, p start qT ;C, σ →D G ∪ {p↔ q}, C, σ[q 7→ ⊥T]
bC|Starte

p
G←→ q p

G←→ r

G, p : q <-> r;C, σ →D G ∪ {q↔ r}, C, σ
bC|Telle

i = 1 if e ↓pσ true, i = 2 otherwise

G, (if p.e thenC1 elseC2);C, σ →D G,Ci # C, σ
bC|Conde

C1 �D C2 G,C2, σ →D G′, C′2, σ
′ C′2 �D C′1

G,C1, σ →D G′, C′1, σ
′ bC|Structe

Figure 2: Procedural Choreographies, Semantics.

is the set pn(C) containing all free process names in C. (As C is executed, the
domain of σ is extended by the processes that are created.) We assume that
each type T ∈ T has a special value ⊥T , representing an uninitialised process
state. We also use a connection graph G, keeping track of which processes know

each other. In the rules, p
G←→ q denotes that G contains an edge between p

and q, and G ∪ {p↔ q} denotes the graph obtained from G by adding an edge
between p and q (if missing).

Executing a communication action p.e -> q.f in rule bC|Come requires that:
p and q are connected in G; e is well typed; and the type of e matches that
expected by the function f at the receiver. The last two conditions are encapsu-
lated in the conditions e ↓pσ v and f(v) ↓qσ w. The term e ↓pσ v, read “e evaluates
to v under σ at process p”, denotes the result of evaluating the expression ob-
tained by replacing the placeholder ∗ in e with the value σ(p). Choreographies
can thus deadlock (be unable to reduce) because of errors in the programming
of communications; this issue is addressed by our typing discipline in § 3.

Rule bC|Sele defines selection as a no-op for choreographies (see Remark 3).
Rule bC|Startemodels the creation of a process. In the reductum, the starter

and started processes are connected and can thus communicate with each other.
This rule also extends the domain of the state function σ accordingly. Rule
bC|Telle captures name mobility, creating a connection between two processes
q and r when they are introduced by a process p connected to both.

Rule bC|Conde uses the auxiliary operator # to obtain a reductum in the
syntax of PC regardless of the forms of the branches C1 and C2 and the contin-
uation C. This operator is defined as follows.

0 # C = C η # C = η;C I # C = I;C (C1;C2) # C = C1; (C2 # C)

An important characteristic of this operator is that it extends the scope of bound
names: in C # C ′, any name p bound in C has its scope extended also to C ′.

8

0;C �D C
bC|Ende

X(q̃T) = CX ∈ D

X〈p̃〉;C �D CX [p̃/q̃] # C
bC|Unfolde

pn(η) # pn(η′)

η; η′ ≡D η′; η
bC|Eta-Etae

pn(I) # pn(I ′)

I; I ′ ≡D I ′; I
bC|I-Ie pn(I) # pn(η)

η; I ≡D I; η
bC|I-Etae

p 6∈ pn(η)

if p.e then (η;C1) else (η;C2) ≡D η; if p.e thenC1 elseC2
bC|Eta-Conde

p 6∈ pn(I)

if p.e then (I;C1) else (I;C2) ≡D I; if p.e thenC1 elseC2
bC|I-Conde

p 6= q

if p.e then (if q.e′ thenC1 elseC2) else (if q.e′ thenC′1 elseC
′
2)

≡D

if q.e′ then (if p.e thenC1 elseC
′
1) else (if p.e thenC2 elseC

′
2)

bC|Cond-Conde

Figure 3: Procedural Choreographies, Structural Precongruence �.

This scope extension is capture-avoiding, as the use of the Barendregt variable
convention guarantees that p does not occur in C ′.4

Rule bC|Structe uses structural precongruence �D , which is defined by
the rules in Figure 3. The first two rules deal with garbage collection of 0
(rule bC|Ende) and unfolding of procedure calls (rule bC|Unfolde, again using
the # operator defined above.) The remaining rules are symmetric, and formalise
the notion of parallelism in PC – recalling out-of-order execution, as detailed in
Example 3 below. In these rules, we write C ≡D C ′ for C �D C ′ and C ′ �D C,
and A # B for the requirement that the two sets A and B are disjoint. Intu-
itively, these rules state that actions involving disjoint sets of processes can be
swapped (and therefore executed in any order), modelling that processes run
independently of one another.

Case in point, rule bC|Eta-Etae permutes two communications performed by
processes that are all distinct. For example, p. ∗ -> q; r. ∗ -> s ≡D r. ∗ -> s; p. ∗
-> q because these two communications are non-interfering, but p. ∗ -> q; q. ∗
-> s 6≡D q. ∗ -> s; p. ∗ -> q: since the second communication causally depends
on the first (both involve q).

This reasoning is extended to instructions in rule bC|I-Ie; in particular, pro-
cedure calls that share no arguments can be swapped. This is sound, as a
procedure can only refer to processes that are either passed as arguments or
started inside its body, and the latter cannot be leaked to the original call site.
Thus, any actions obtained by unfolding the first procedure call necessarily in-

4The reader might wonder why we did not introduce general sequential composition –
C1;C2 – as a primitive. Including this primitive would add no expressivity, but would make
the definition of our semantics significantly more complex. In particular, the rules for swapping
independent actions, see below, are much easier to define structurally with our syntax.

9

volve different processes than those obtained by unfolding the second one. As
Example 3 below also shows, calls to the same procedure can be exchanged, since
X and Y need not be distinct. The remaining rules follow similar intuitions,
allowing actions to be moved inside or outside both branches of a conditional,
or switching independent nested conditionals.

Example 3. In our merge sort example, structural precongruence �D allows
the recursive calls MS<q1> and MS<q2> to be exchanged. Furthermore, after the
calls are unfolded, their code can be interleaved in any way.

This example exhibits map-reduce behaviour: each new process receives its
input, runs independently from all others, and then sends its result to its creator.

Example 4. Our semantics captures also more fine-grained parallelism. For
example, we can sometimes swap communications from procedure calls that share
process names. Consider the procedure

auth(c,a,r,l) = c.creds -> a.rCreds;

a.chk -> r.res; a.log -> l.app

Client c sends its credentials to an authentication server a, which stores the
result of authentication in r and appends a log of this operation at process l.
In the choreography auth<c,a1,r1,l>; auth<c,a2,r2,l>, a client c authenticates at
two different authentication servers a1 and a2. After unfolding the two calls,
rule bC|Eta-Etae can be used to yield the following interleaving:

c.creds -> a1.rCreds; c.creds -> a2.rCreds;

a2.chk -> r2.res; a1.chk -> r1.res;

a1.log -> l.app; a2.log -> l.app

Thus, the two authentications can proceed in parallel. Observe that the logging
operations cannot be swapped, since they use the same logging process l.

Example 5. A more sophisticated example involves modularly composing dif-
ferent procedures that take multiple parameters. Here, we write a choreography
where a client c downloads a collection of files from a server s. Files are down-
loaded in parallel via streaming, by having the client and the server each create
subprocesses to handle the transfer of each file. Thus, the client can request and
start downloading each file without waiting for previous downloads to finish.

par_download(c,s) = if c.more

then c -> s [more]; c start c’; s start s’;

s: c <-> s’; c.top -> s’; pop <c>;

c: c’ <-> s’; download <c’,s’>;

par_download <c,s>; c’.file -> c.store

else c -> s [end]

At the start of par_download, the client c checks whether it wants to download more
files and informs the server s of the result via a label selection. In the affirmative
case, the client and the server start two subprocesses, c′ and s′ respectively, and
the server introduces c to s′ (s: c <-> s’). The client c sends to s′ the name
of the file to download (c.top -> s’) and removes it from its collection, using
procedure pop (omitted), afterwards introducing its own subprocess c′ to s′. The

10

file download is handled by c′ and s′ (using procedure download), while c and s
continue operating (par_download<c,s>). Finally, c′ waits until c is ready to store
the downloaded file.

Procedure download has a similar structure. It implements a stream where a
file is sequentially transferred in chunks from a process s to another process c.

download(c,s) = if s.more

then s -> c [more]; s.next -> c.app; pop <s>; download <c,s>

else s -> c [end]

The implementation of par_download exploits out-of-order execution consider-
ably. All calls to download are made with disjoint sets of parameters (processes),
and can thus be fully parallelised: many instances of download run at the same
time, each one implementing a (sequential) stream. Due to our semantics, we
effectively end up executing many streaming behaviours in parallel.

We can even compose par_download with auth, such that we execute the parallel
download only if the client can successfully authenticate with an authentication
server a. Below, we use the shortcut p -> q̃[`] for p -> q1[`]; . . . ; p -> qn[`].

auth <c,a,r,l>; if r.ok then r -> c,s[ok]; par_download <c,s>

else r -> c,s[ko]

3. Typing and Deadlock-Freedom

As we saw in the previous section, choreographies in PC may get stuck be-
cause of problems with communication actions. We now give a typing discipline
for PC, to check that (a) the types of functions and processes are respected by
communications and (b) processes that need to communicate are first properly
introduced (or connected). Regarding (b), two processes created independently
can communicate only after they receive the names of each other. For instance,
in Example 5, the execution of download<c’,s’> would get stuck if c’ and s’ were
not properly introduced in par_download, since our semantics requires them to be
connected.

Typing judgements have the form Γ;G ` C . G′, read “C is well-typed
according to Γ, and running C with a connection graph that contains G yields
a connection graph that includes G′”. Typing environments Γ are used to track
the types of processes and procedures; they are defined as:

Γ ::= ∅ | Γ, p : T | Γ, X(q̃T) :G . G′ .

A typing p : T states that process p stores values of type T , and a typing

X(q̃T) : G.G′ records the effect of the body of X on graph G, given the names
and types of the arguments of X.

The rules for deriving typing judgements are given in Figure 4. We assume
standard typing judgements for functions and expressions, and write ∗ : T `T
e : T and ∗ : T1 `T f : T2 → T3 meaning, respectively “e has type T assuming
that ∗ has type T” and “f has type T2 → T3 assuming that ∗ has type T1”.
Verifying that communications respect the expected types is straightforward,

11

p
G←→ q Γ ` p : Tp, q : Tq Γ;G ` C . G′ ∗ : Tp `T e : T1 ∗ : Tq `T f : T1 → Tq

Γ;G ` p.e -> q.f ;C . G′
bT|Come

p
G←→ q Γ;G ` C . G′

Γ;G ` p -> q[`];C . G′
bT|Sele

p
G←→ q p

G←→ r Γ;G ∪ {q↔ r} ` C . G′

Γ;G ` p : q <-> r;C . G′
bT|Telle

Γ, q : T ;G ∪ {p↔ q} ` C . G′

Γ;G ` p start qT ;C . G′
bT|Starte

Γ;G ` 0 . G
bT|Ende

Γ;G ` C . G′

Γ;G ` 0;C . G′
bT|EndSeqe

Γ ` p : T ∗ : T `T e : bool Γ;G ` Ci . Gi Γ;G1 ∩G2 ` C . G′

Γ;G ` (if p.e thenC1 elseC2);C . G′
bT|Conde

Γ ` X(q̃T) : GX . G′X Γ ` pi : Ti GX [p̃/q̃] ⊆ G Γ;G ∪ (G′X [p̃/q̃]) ` C . G′

Γ;G ` X〈p̃〉;C . G′
bT|Calle

Figure 4: Procedural Choreographies, Typing Rules.

using the connection graph G to track which processes have been introduced to
each other. In rule bT|Starte, we implicitly use the fact that q does not occur
in G, which follows from our use of the Barendregt convention. The final graph
G′ is required to deal with procedure calls (rule bT|Calle), and all other rules
leave it unchanged.

To type a procedural choreography, we need to type its set of procedure

definitions D . We write Γ ` D if: for eachX(q̃T) = CX ∈ D , there is exactly one

typingX(q̃T) : GX.G
′
X ∈ Γ, and this typing is such that Γ, q̃ : T ,GX ` CX.G′′X ,

where G′X is G′′X restricted to the processes in q̃.
We say that Γ ` 〈D , C〉 if Γ,ΓD ;GC ` C .G′ for some ΓD such that ΓD ` D

and some G′, where GC is the complete graph whose nodes are the free process
names in C. The choice of GC is motivated by observing that (i) all top-
level processes should know each other and (ii) eventual connections between
processes not occuring in C do not affect its typability.

Well-typed choreographies enjoy progress, i.e., they either terminate or di-
verge.5 Also, typing is preserved by reductions.

Theorem 1 (Progress and Type Preservation). Let 〈D , C〉 be a procedural
choreography. If Γ ` D and Γ;G1 ` C . G′1 for some Γ, G1 and G′1, then
one of the following holds.

• C �D 0;

• for every σ, there exist G2, C ′ and σ′ such that G1, C, σ →D G2, C
′, σ′

and Γ′;G2 ` C ′ . G′2 for some Γ′ ⊇ Γ and G′2.

5Since we are interested in communications, we assume that evaluation of functions and
expressions always terminates on values with the right types (see also § 7, Faults).

12

The proof of this result is included in the Appendix.
As usual, the hypothesis in Theorem 1 is not necessary: the process

p start qN, rN; if p.false then q.0 -> r; 0 else 0

is not typable, as q and r cannot know each other, but that communication
is never reached in actual execution. This is unavoidable, as undecidability of
deadlock-freedom for PC can be established using Rice’s theorem, as usual.

Checking that Γ ` 〈D , C〉 is not trivial, as it requires “guessing” ΓD . How-
ever, this set can be computed from 〈D , C〉. The key idea is that type-checking
may require expanding recursive definitions, but their parameters only need to
be instantiated with process names from a finite set.

Theorem 2. Given Γ, D and C, Γ ` 〈D , C〉 is decidable.

Proof. We first observe that deciding whether Γ;G ` C . G′ is completely me-
chanical, as the typing rules are deterministic. Furthermore, those rules can
also be used to construct G′ from G and C.

We can therefore give a simple non-deterministic algorithm for deciding
whether Γ ` 〈D , C〉. Given Γ, D and C, we non-deterministically guess graphs
Gi and G′i for each procedure name Xi and set ΓD = {Xi(q̃i) : Gi.G

′
i. Since the

graphs Gi and G′i have the set q̃i as vertices, there is only a finite number of pos-
sibilities. For each Xi, we then try to construct G′′i such that Γ;Gi ` CXi

.G′′i ; if
this succeeds, we then remove any vertices not in q̃ from G′′i , and edges leading
to those vertices, and check whether we obtain G′i. If we can do this for all Xi,
we have established that ΓD ` D . Finally, we check that Γ,ΓD ;GC ` C . G′,
again with G′ inferred.

If Γ ` 〈D , C〉, then there is one choice of {Gi}i and {G′i}i that leads to a
successful branch. Otherwise, the algorithm fails.

Although this proof establishes decidability, the number of possibilities to
test is unrealistic in practice: for a procedure X with n parameters, there are

2
n(n−1)

2 possibilities for GX and a similar number for G′X , even if we restrict the
search to those G′X that contain Gx. In the Appendix, we include an alternative
proof that iteratively constructs these sets in a more clever way.

Using Theorem 2, we can readily obtain a type inference algorithm for PC,
as we only need to “guess” types for the processes in the choreography.

Theorem 3. There is an algorithm that, given any 〈D , C〉, outputs one of the
following:

• a set Γ such that Γ ` 〈D , C〉, if such a Γ exists;

• NO, if no such Γ exists.

Proof. Construct Γ by going through C and adding p : Tp every time there is an
action that depends on p’s type (i.e. p is a sender or receiver in a communication,
or an argument of a procedure call). If Γ contains two different types for any

13

process, then output NO. Otherwise, check whether Γ ` 〈D , C〉; in the negative
case, output NO, else output Γ. Termination is trivial, since C is finite and type
checking is decidable. This algorithm does not necessarily assign a type to all
processes in C, in case C contains processes whose memory is never accessed.

As a corollary of the proof, we can also infer the types for parameters of
procedural definitions and freshly created processes.

Corollary 1. The types of arguments in procedure definitions and the types of
freshly created processes can be inferred automatically.

Proof. Inferring the types of freshly created processes is analogous to the previ-
ous proof. For parameters of procedure definitions, define an operator TT over
tuples of typing contexts (one for each Xi defined in D) that generates a typing
context for each Xi in the same way as in the previous proof. If any contradic-
tions are found, then fail. The result of applying TT from the tuple of empty
contexts does not necessarily include types for all parameters (for example, if
procedure Xi has an argument p that is only passed as a parameter to another
procedure Xj), so iterate TT until either failure occurs (in which case the Xis
are not properly defined) or a fixpoint is reached. Finally, assign a random
type (e.g. N) to each process variable that has not received a type during this
procedure. The algorithm readily extends to infer the types of processes created
inside procedure definitions.

Remark 4 (Inferring introductions). Theorems 3 and 1 allow us to omit all
type annotations in choreographies, if the types of functions and expressions at
processes are known (i.e., given in `T). Thus, programmers can write chore-
ographies as in our examples.

The same reasoning can be used to infer missing introductions (p : q <-> r)
in a choreography automatically, thus lifting the programmer also from having
to think about connections. However, while the types inferred for a choreography
do not affect its behaviour, the placement of introductions does. In particular,
when invoking procedures one is faced with the choice of adding the necessary
introductions inside the procedure definition (weakening the conditions for its
invocation) or in the code calling it (making the procedure body more efficient).

Example 6. Consider a procedure

X(p, q, r) = p. ∗ -> q; p : q <-> r; q. ∗ -> r

whose invocation requires only that p be connected to q and r. If we invoke X
twice with the same parameters, as in X〈p, q, r〉;X〈p, q, r〉, we end up perform-
ing the same introduction p : q <-> r twice. We could avoid this duplication by
rewriting X as X(p, q, r) = p. ∗ -> q; q. ∗ -> r and then performing the intro-
duction only once before invoking the procedure – p : q <-> r;X〈p, q, r〉;X〈p, q, r〉.
However, this makes invoking X more complicated. Deciding which variant is
best depends heavily on the context.

14

Remark 5. Well-typed choreographies enjoy global deadlock-freedom, as shown
above. However, they do not necessarily enjoy liveness: every process that is
not terminated eventually reduces. For example, if procedure X is defined as
X(p, q) = p. ∗ -> q;X〈p, q〉, then in the choreography X〈p, q〉; p. ∗ -> r process r
is not terminated, but it will be forever waiting for a message from p that never
arises.

The feature of PC that is responsible for this behaviour is the ability to write
calls to procedures followed by arbitrary code. If we restrict PC to those chore-
ographies where, in all subterms of the form I;C ′, we have C ′ = 0, then we gain
liveness thanks to the argument: if p is not terminated in C, then the sequence
of actions syntactically preceding the first action involving p (which may require
unfolding procedure definitions in C) is finite, and can be reduced in finite time,
since it cannot include any procedure calls.

Studying liveness for PC is an interesting topic that we leave to future work.
Liveness is most useful under fair semantics, and the semantics that we pre-
sented for PC is not fair (similar to the situation in other choreography calculi).
Consider a procedure definition Y (p, q, r, s) = p. ∗ -> q; r. ∗ -> s;Y 〈p, q, r, s〉.
Due to swapping, there is an infinite sequence of reductions of Y 〈p, q, r, s〉 con-
sisting only of communications from p to q; thus r and s, both of which have
communications enabled, can starve. This example can be written in most other
choreography languages, since it only involves communications and tail recur-
sion.

Previous works on choreographic programming with procedures have only tail
recursion, so some of them would trivially enjoy liveness if they were specified
with a fair semantics as well, e.g., the model by Carbone and Montesi (2013).

4. Synthesising Process Implementations

We now present our EndPoint Projection (EPP), which compiles a choreog-
raphy to a concurrent implementation represented in terms of a process calculus.

4.1. Procedural Processes (PP)

We first introduce our target process model, Procedural Processes (PP),
which features syntactic primitives similar to those of PC.

Syntax. A procedural network is a pair 〈B, N〉, where B is a set of procedure
definitions and N (the network) is a parallel composition of processes. A process
is written as p .v B, where p is its name, v is its value, and B is its behaviour.
The full syntax of PP is given in Figure 5. Values, expressions and functions
are as in PC; again, the procedures defined in B may be invoked both in N and
in their own definitions.

We comment on the syntax of behaviours. A process executing a send term
q!e;B sends the evaluation of expression e to q, and proceeds as B. Term p?f ;B
is the dual receiving action: the process executing it receives a value from p,
combines it with its value as specified by f , and then proceeds as B. Term q!!r

15

B ::= X(q̃) = B,B | ∅ B ::= q!e;B | p?f ;B | q!!r;B | p?r;B | q⊕ `;B | p&{`i : Bi}i∈I ;B

N,M ::= p .v B | (N |M) | 0 | 0 | start qT . B2;B1 | if e thenB1 elseB2;B |X〈p̃〉;B | 0;B

Figure 5: Procedural Processes, Syntax.

u = (f [w/∗])(e[v/∗])
p .v q!e;B1 | q .w p?f ;B2 →B p .v B1 | q .u B2

bP|Come

j ∈ I
p .v q⊕ lj ;B | q .w p&{li : Bi}i∈I →B p .v B | q .w Bj

bP|Sele

i = 1 if e[v/∗] = true, i = 2 otherwise

p .v if e thenB1 elseB2 →B p .v Bi
bP|Conde

q′ fresh

p .v (start qT . B2;B1)→B p .v B1[q′/q] | q′ .⊥T
B2

bP|Starte

p .v q!!r;B1 | q .w p?r;B2 | r .u p?q;B3 →B p .v B1 | q .w B2 | r .u B3

bP|Telle

N →B N ′

N |M →B N ′ |M
bP|Pare N �B M M →B M ′ M ′ �B N ′

N →B N ′
bP|Structe

Figure 6: Procedural Processes, Semantics.

sends process name r to q and process name q to r, making q and r “aware”
of each other. The dual action is p?r, which receives a process name from p
that replaces the bound variable r in the continuation. Term q⊕ `;B sends the
selection of a label ` to process q. Selections are matched with branching terms
p&{`i : Bi}i∈I , which can receive a selection for any of the labels `i and proceed
as the corresponding Bi. Branching terms must offer at least one branch. Term
start q . B2;B1 starts a new process (with a fresh global name) executing B2,
and proceeds in parallel as B1. Conditionals, procedure calls, and termination
are standard. Term start q . B2;B1 binds q in B1, and p?r;B binds r in B.

Semantics. The transition semantics of PP formalises the intuition given above.
The rules defining the reduction relation →B for PP are shown in Figure 6. As
in PC, they are parameterised on the set of behavioural procedures B. Rule
bP|Come models value communication: a process p executing a send action
towards a process q can synchronise with a receive-from-p action at q; in the
reductum, f is used to update the memory of q by combining its contents with
the value sent by p. The placeholder ∗ is replaced with the current value of p
in e (resp. q in f). Rule bP|Sele is the standard rule for selection due to Honda
et al. (1998), where the sender process selects one of the branches offered by the
receiver.

Rule bP|Starte requires the name of the created process to be globally fresh.

16

0;B �B B
bP|Ende

p .v 0 �B 0
bP|AZeroe

N |0 �B N
bP|NZeroe

X(q̃T) = BX ∈ B

X〈p̃〉;B �B BX [p̃/q̃] #B
bP|Unfolde

Figure 7: Procedural Processes, Structural precongruence �B.

Rule bP|Telle establishes a three-way synchronisation, allowing a process to
introduce two others. Since the received names are bound at the receivers,
we use α-conversion to make the receivers agree on each other’s name, as in
session types (Honda et al., 1998). In this we follow the tradition from process
calculi, and depart from the Barendregt variable convention: in the term p .v
q!!r;B1 | q .w p?r;B2 | r .u p?q;B3, the process name r is used both free (as an
identifier and in p’s behaviour) and bound (in the receive action at q).

All other rules are standard. Relation →B is closed under a structural
precongruence �B, defined by the rules in Figure 7 and associativity and com-
mutativity of parallel (|). Rule bP|Unfolde, which expands procedure calls. It
uses again the # operator, defined as for PC but with terms in the PP language.

Remark 6. The three-way synchronisation in rule bP|Telle could be encoded
with two standard two-way communications of names, as done by Sangiorgi and
Walker (2001) for π-calculus (Sangiorgi and Walker, 2001) (see also Remark 2).
However, our choice gives a clearer formulation of EPP.

Example 7. We show a process implementation of the merge sort choreography
in Example 1 from § 1. All processes are annotated with type List(T) (omitted);
id is the identity function (Example 2).

MS p (p) = if is_small then 0

else start q 1 . (p?id; MS p <q 1 >; p!*);

start q 2 . (p?id; MS p <q 2 >; p!*);

q 1 !split 1 ; q 2 !split 2 ; q 1 ?id; q 2 ?merge

In the next section, we show that our EPP generates this process implementation
automatically from the choreography in Example 1.

4.2. EndPoint Projection (EPP)

We now show how to compile programs in PC to processes in PP.

Behaviour Projection. We start by defining how to project the behaviour of a
single process p, a partial function denoted [[C]]p. The rules defining behaviour
projection are given in Figure 8. Each choreography term is projected to the
local action of the process that we are projecting. For example, a communication
term p.e -> q.f projects a send action for the sender p, a receive action for the
receiver q, or skips to the continuation otherwise. The rules for projecting a
selection or an introduction (name mobility) are similar.

17

[[p.e -> q.f ;C]]r =


q!e; [[C]]r if r = p

p?f ; [[C]]r if r = q

[[C]]r otherwise

[[p -> q[`];C]]r =


q⊕ l; [[C]]r if r = p

p&{l : [[C]]r} if r = q

[[C]]r otherwise

[[p : q <-> r;C]]s =


q!!r; [[C]]s if s = p

p?r; [[C]]s if s = q

p?q; [[C]]s if s = r

[[C]]s otherwise

[[X〈p̃〉;C]]r =

{
Xi〈p̃〉; [[C]]r if r = pi

[[C]]r otherwise

[[0]]r = 0 [[0;C]]r = [[C]]r

[[if p.e thenC1 elseC2;C]]r =

{
if e then [[C1]]r else [[C2]]r; [[C]]r if r = p

([[C1]]r t [[C2]]r); [[C]]r otherwise

[[p start qT ;C]]r =

{
start q . [[C]]q; [[C]]r if r = p

[[C]]r otherwise

Figure 8: Procedural Choreographies, Behaviour Projection.

The rule for projecting a conditional uses the partial merging operator t,
which adapts the homonymous operator due to Carbone et al. (2012) to PC.
Intuitively, BtB′ is isomorphic to B and B′ up to branching, where branches of
B or B′ with distinct labels are also included. This is expressed by the following
equation:

(p&{li : Bi}i∈I ;B) t
(
p&{lj : B′j}j∈J ;B′

)
=

p&
(
{lk : (Bk tB′k)}k∈I∩J ∪ {li : Bi}i∈I\J ∪ {lj : B′j}j∈J\I

)
; (B tB′)

For all other syntactic constructs, merging proceeds homomorphically, e.g.:

(q!e;B) t (q!e;B′) = q!e; (B tB′)
(start q . B2;B1) t (start q . B′2;B′1) = start q . (B2 tB′2) ; (B1 tB′1)

and BtB′ is undefined if B and B′ do not agree on their initial action. Merging
allows the process that decides a conditional to inform other processes of its
choice later on, using selections, and it is found repeatedly in choreography
models, e.g., those by Lanese et al. (2008), Carbone et al. (2012), Coppo et al.
(2016) and Cruz-Filipe and Montesi (2016a).

Building on behaviour projection, we define how to project the set D of
procedure definitions. We need to consider two main aspects. The first is that,
at runtime, the choreography may invoke a procedure X multiple times, but
potentially passing a process r at different argument positions each time. This
means that r may be called to play different “roles” in the implementation of the
procedure. For this reason, we project the behaviour of each possible process
parameter p as the local procedure Xp. The second aspect is: depending on the
role that r is called to play by the choreography, it needs to know the names of

18

the other processes that it is supposed to communicate with in the choreographic
procedure. We deal with this by simply passing all arguments (some of which
may be unknown to the process invoking the procedure). This is not a problem:
for typable choreographies, typing ensures that processes unknown to e.g. p do
not occur in the projected procedure Xp (so they act as “dummies”).6

We thus define

[[D]] =
⋃{

[[X(q̃T) = C]] | X(q̃T) = C ∈ D
}

where, for q̃T = qT1
1 , . . . , qTn

n , we set

[[X(q̃T) = C]] = {X1(q̃) = [[C]]q1 , . . . , Xn(q̃) = [[C]]qn}

Definition 1 (EPP). Given a procedural choreography 〈D , C〉 and a state σ,
the EPP [[D , C, σ]] is the parallel composition of the processes in C with all
definitions from D :

[[D , C, σ]] = 〈[[D]], [[C, σ]]〉 =

〈
[[D]],

∏
p∈pn(C)

p .σ(p) [[C]]p

〉

where [[C, σ]], the EPP of C wrt state σ, is independent of D .

Since every σ is total, if [[C, σ]] is defined for some σ, then [[C, σ′]] is defined
also for all other σ′; in this case, we say that C is projectable. The same holds
for [[D , C, σ]].

Example 8. The EPP of the choreography in Example 1 is given in Example 7.

Example 9. For an example involving merging and introductions, we project
the procedure par_download (Example 5) for process s, omitting type annotations.

par_download s (c,s) = c&{

more: start s’ . (s?c; c?id; c?c’; download s <c’,s’>);

c!!s’; par_download s <c,s>

end: 0

}

Observe that we invoke procedure downloads, since s’ occurs in the position of
download’s formal argument s.

4.3. Properties of EPP

EPP guarantees the following operational correspondence, which is the hall-
mark correctness-by-construction property of choreography languages. It uses a

6We do this for clarity, since it yields a simpler formulation of EPP. In practice, we can
annotate the EPP by analysing which parameters of each recursive definition are actually used
in each of its projections, and instantiating only those – see Remark 7 below. Likewise, in a
realistic setting a process should not pass its own name as an argument to a procedure call,
but rather a special keyword such as this.

19

pruning relation ≺, also introduced by Carbone et al. (2012), which eliminates
branches introduced by the merging operator t when they are not needed any-
more to follow the originating choreography. We write N � N ′ for N ′ ≺ N .
Pruning does not alter reductions: Carbone et al. (2012) also showed that the
eliminated branches are never selected.

Theorem 4 (EPP Theorem). If 〈D , C〉 is projectable, G is a connection graph,
and there exist Γ and G∗ such that Γ ` D and Γ;G ` C . G∗, then, for all σ,
the following hold.

Completeness. If G,C, σ →D G′, C ′, σ′, then [[C, σ]] →[[D]]� [[C ′, σ′]].

Soundness. If [[C, σ]] →[[D]] N , then G,C, σ →D G′, C ′, σ′ for some G′, C ′ and
σ′ such that [[C ′, σ′]] ≺ N .

Proof sketch (Theorem 4). The structure of the proof follows those of Carbone
et al. (2012), Carbone and Montesi (2013) and Montesi (2013), so we only show
the most interesting differing details. In particular, we need to be careful about
how we deal with connections, which is a new key ingredient in PC wrt previ-
ous work. We demonstrate this point for the direction of (Completeness); the
direction for (Soundness) is adapted similarly. The proof proceeds by induction
on the derivation of G,C, σ →D G′′, C ′, σ′. The interesting cases are reported
below.

• bC|Telle: From the definition of EPP we get:

[[p : q <-> r;C◦, σ]] � p.σ(p)q!!r; [[C◦]]p | q.σ(q)p?r; [[C◦]]q | r.σ(r)p?q; [[C◦]]r | N

By bP|Telle we get:

[[p : q <-> r;C◦, σ]] → p .σ′(p) [[C◦]]p | q .σ′(q) [[C◦]]q | r .σ′(r) [[C◦]]r | N

which proves the thesis, since the projection of C ′ remains unchanged for
the other processes (N stays the same).

• bC|Starte: This is the most interesting case. From the definition of EPP
we get:

[[p start qT ;C◦, σ]] � p .σ(p) start qT . [[C◦]]q; [[C◦]]p | N

From the semantics of PP we get, for some fresh q′:

[[p start qT ;C◦, σ]] → p .σ′(p) ([[C◦]]p)[q
′/q] | q′ .⊥T

[[C◦]]q′ | N

Since q′ does not occur in C, C is α-equivalent to p start q′
T

; (C◦[q′/q]).
We now have to prove that:

[[C◦[q′/q], σ]] � p .σ′(p) ([[C◦]]p)[q
′/q] | q′ .⊥T

[[C◦]]q′ | N

We observe that this is true only if process q does not occur free in N , i.e.,
q may appear in N only inside the scope of a binder. Such a binder must
be of the form r?q;B. This is guaranteed by the fact that C is well-typed,
since the typing rules prevent other processes in N to communicate with
q without being first introduced.

20

By combining Theorem 4 with Theorem 1, we conclude that the projections
of typable PC terms never deadlock.

Corollary 2 (EPP Progress). Let N be a network such that N = [[C, σ]] for
some C and σ, and assume that there exist Γ, G and G′ such that Γ;G ` C .G′
and Γ ` D . Then one of the following holds.

• N �[[D]] 0 (N has terminated);

• there exists N ′ such that N →[[D]] N
′ (N can reduce).

Remark 7 (Projections of procedure definitions). We shortly discuss how to
use typing to refine the projection of procedures, so that no process includes
references to uninstantiated process variables. The key idea is to use typing
information to decide which parameters should be kept in each projection. In

other words, when computing [[X(q̃T) = C]], the projected procedure Xi only

contains as arguments those qj such that qi
GX←→ qj, where GX is given by

typing. (This definition is non-deterministic, but it can be made deterministic
e.g. by using the minimal graph GX computed by the type inference algorithm.)
A simple annotation can then ensure that projected procedure calls only keep the
arguments in the corresponding positions, and typing guarantees that all those
arguments are known at runtime by the process invoking the recursive call. In
§ 6.1 we show an implementation of Quicksort showcasing this reasoning.

Remark 8 (Amendment). A choreography can only be unprojectable because of
unmergeable subterms, and thus can be made projectable by adding label selec-
tions. This can be formalised in an amendment algorithm, similar to the ones
of Lanese et al. (2013) and Cruz-Filipe and Montesi (2016a). For example, the
first (unprojectable) choreography in Remark 3 can be amended to the projectable
choreography presented at the end of the same remark.

The same argument as in Remark 4 applies: amendment allows us to dis-
regard label selections, but placing them manually can be useful. For example,
suppose p makes a choice that affects q and r. If q has to perform a slower
computation as a result, then it makes sense for p to notify q first.

5. Parameter Lists

Before we present more complex examples of choreographies that we can
write in PC, we describe a simple extension to its syntax that enhances its
expressivity. This extension consists of allowing procedure parameters to be lists
of processes, upon which procedures can act uniformly by recursion. Informally,
a procedure parameter can now be either a process or a list of processes all with
the same type. Lists of processes can only be used as the arguments of procedure
calls; however, they may be manipulated by means of pure total linear functions
that take a list as their only argument.

21

Extending PC. Formally, we extend the syntax of PC as follows.

Definition 2. An acceptable (process) list manipulating function is a total
function f whose arguments are processes and lists of processes and whose result
is either:

• a single process contained in one of its arguments;

• a list built from the processes in its arguments, which does not contain
duplicates if no process occurs twice among the arguments of f .

We assume a fixed set of acceptable list manipulating functions whose se-
mantics is rigidly defined. Typically, these are standard functions taking the
head or tail of a list, the element at a given position in a list, appending an
element to a list, filtering the elements of a list according to a predicate, etc.
We do not allow acceptable list manipulating functions to be nested, i.e., they
can only be applied to processes or lists of processes that are explicitly defined.

In procedure definitions, we allow some arguments to be lists of uniformly
typed parameters. In procedure calls, we allow some arguments to be applica-
tions of acceptable list manipulating functions, with the proviso that the results
must not share processes.7 Observe that communication actions are still only
allowed to use processes directly identified by their name. For example, if proce-
dure X takes a list P as an argument, then X’s body may call other procedures
on P , head(P) or tail(P), but it may not include a communication action in-
volving head(P).

The semantics of PC is extended with the new garbage collection ruleX〈〈〉〉 �D

0, stating that calling a procedure with an empty list yields a terminated chore-
ography (0). In order to type procedures that take process lists as arguments,
in a typing X :G.G′ we allow the vertices of G and G′ to be not only processes,
but also (formal) lists. This requires adjusting the premise of bT|Calle to the
case when some of the arguments are lists. When a concrete list is given as
argument, we update the premise GX [p̃/q̃] ⊆ G to check that: if GX contains
an edge between two process lists P and Q and these lists are instantiated by p̃
and q̃, respectively, then G must contain edges between p and q for every p ∈ p̃
and every q ∈ q̃. The interpretation of an edge between an argument process
and an argument list is similar. In the case where the instantiated process or
list is the result of a function call, we test all arguments to the function.8

7Our type system assumes that this condition holds, which must be ensured by the pro-
grammer when writing procedure calls. Since acceptable list manipulating functions cannot
be nested and their semantics is fixed, the programmer should easily be able to guarantee this
condition.

8This may sound very restrictive, but in practice it is quite reasonable as long as the
functions do not take spurious arguments. Consider, e.g., f(p, Q). The result of this function
is likely a list containing p and some elements from Q. If we need to check that, e.g., f(p, Q)
is connected to q, then we are requiring that p is connected to q and that all elements of Q
are connected to q – and the latter condition is a test on the single edge between Q and q,
since Q is uninstantiated.

22

To ensure projectability, we need to be able to broadcast label selections
to all elements of a parameter list in a way that is recognized by the merge
operator. At the choreography level, we assume that, for every label `, the set
D contains procedure definitions

gsel`(p, Q) = gselone` (p, hd(Q)); gsel`(p, tl(Q))

gselone` (p, q) = p -> q[`]

where hd and tl are the usual head and tail functions on lists. Our syntactic
restrictions on parameter lists forbid us from writing a communication action
p -> hd(Q)[`], which is why we need the auxiliary procedure gselone` .

Example 10. We illustrate this extended language with a very simple toy chore-
ography. Consider the procedure

X(p,Q) = if p.coinflip then gsel ok (p,Q); X(head(Q), tail(Q))

else gsel ko (p,Q); 0

A possible reduction path for X(p,〈q1,q2,q3〉), assuming all coinflips evaluate to
true, is:

X(p, 〈 q1 ,q2 ,q3 〉)
� if p.coinflip then gsel ok (p, 〈 q1 ,q2 ,q3 〉); X(q1 , 〈 q2 ,q3 〉)

else gsel ko (p, 〈 q1 ,q2 ,q3 〉); 0

→ gsel ok (p, 〈 q1 ,q2 ,q3 〉); X(q1 , 〈 q2 ,q3 〉)
� gselone ok (p, q1); gselone ok (p, q2); gselone ok (p, q3); X(q1 , 〈 q2 ,q3 〉)
� p-> q1 [ok]; p-> q2 [ok]; p-> q3 [ok]; X(q1 , 〈 q2 ,q3 〉)
→∗ X(q1 , 〈 q2 ,q3 〉)
� if q1 .coinflip then gsel ok (q1 , 〈 q2 ,q3 〉); X(q2 , 〈 q3 〉)

else gsel ko (q1 , 〈 q2 ,q3 〉); 0

→ gsel ok (q1 , 〈 q2 ,q3 〉); X(q2 , 〈 q3 〉)
� gselone ok (q1 ,q2); gselone ok (q1 ,q3); X(q2 , 〈 q3 〉)
� q1 ->q2 [ok]; q1 ->q3 [ok]; X(q2 , 〈 q3 〉)
→∗ X(q2 , 〈 q3 〉)
� if q2 .coinflip then gsel ok (q2 , 〈 q3 〉); X(q3 , 〈 〉)

else gsel ko (q2 , 〈 q3 〉); 0

→ gsel ok (q2 , 〈 q3 〉); 0

� gselone ok (q2 ,q3)

� q2 ->q3 [ok]

→ 0

Extending PP and EPP. In order to be able to project our enriched choreogra-
phies, we need to extend the syntax of PP accordingly. Thus, we allow procedure
definitions and invocations to contain parameter lists with the same restrictions
as described above. In the semantics, we add the rule q .v Xi〈p̃1, . . . , p̃n〉 �D

q .v 0 if q 6∈ p̃i.
Furthermore, PP needs to contain terms corresponding to the projection of

the procedures gsel`. We extend the set of labels with terms `(Q) where ` is a
label and Q a process list (possibly containing variables). These terms may then
be used inside branching terms. Structural precongruence is extended with the

23

rule

all r̃j instantiated J ′ = {j ∈ J | q ∈ fj (̃rj)}
p .v q&

(
{`i : Bi}i∈I ∪ {`j(fj (̃rj)) : B′j}j∈J

)
};B

�B

p .v q&
(
{`i : Bi}i∈I ∪ {`j : B′j}j∈J′

)
;B

bP|EmptyBranche

which replaces each `(Q) with either ` (if q ∈ Q) or 0 (otherwise) once Q has
been instantiated.

In EPP, we need to make two changes. First, since the same parameter list
may occur in several argument positions in a procedure call (for example, in
X(hd(Q), tl(Q))), we need to define [[X〈p̃〉;C]]Q as the sequential composition
Xi1〈p̃1〉; . . . ;Xin〈p̃n〉; [[C]]Q, where i1, . . . , in are the argument positions where
Q occurs. At runtime, all these calls reduce to 0 except for at most one.

Second, we need to project gsel` to the extended labels defined above by
means of the rule

[[gsel`(p, Q);C]]Q = p&{`(Q) : [[C]]Q} .

The merge operator then deals with extended labels as before.

Example 11. The choreography in Example 10 projects to the following two
definitions.

X 1 (p,Q) = if coinflip then gsel p
ok (p,Q) else gsel p

ko (p,Q)

X 2 (p,Q) = p&{ok(Q) : X 1 (head(Q),tail(Q)); X 2 (head(Q),tail(Q)),

ko(Q) : 0}

The previous reduction path, at the process level, begins as follows.

p . X 1 (p, 〈 q1 ,q2 ,q3 〉)
| q1 . X 2 (p, 〈 q1 ,q2 ,q3 〉)
| q2 . X 2 (p, 〈 q1 ,q2 ,q3 〉)
| q3 . X 2 (p, 〈 q1 ,q2 ,q3 〉)
�

p . if coinflip then gsel p
ok (p, 〈 q1 ,q2 ,q3 〉) else gsel p

ko (p, 〈 q1 ,q2 ,q3 〉)
| q1 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),

ko(〈 q1 ,q2 ,q3 〉) : 0}

| q2 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),
ko(〈 q1 ,q2 ,q3 〉) : 0}

| q3 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),
ko(〈 q1 ,q2 ,q3 〉) : 0}

→
p . gsel p

ok (p, 〈 q1 ,q2 ,q3 〉)
| q1 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),

ko(〈 q1 ,q2 ,q3 〉) : 0}

| q2 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),
ko(〈 q1 ,q2 ,q3 〉) : 0}

| q3 . p&{ok(〈 q1 ,q2 ,q3 〉) : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉),
ko(〈 q1 ,q2 ,q3 〉) : 0}

�
p . q1⊕ok; q2⊕ok; q3⊕ok

| q1 . p&{ok : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉), ko : 0}

24

| q2 . p&{ok : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉), ko : 0}

| q3 . p&{ok : X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉), ko : 0}

→
q1 . X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉)

| q2 . X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉)
| q3 . X 1 (〈 q1 〉 , 〈 q2 ,q3 〉); X 2 (〈 q1 〉 , 〈 q2 ,q3 〉)
�

q1 . X 1 (〈 q1 〉 , 〈 q2 ,q3 〉)
| q2 . X 2 (〈 q1 〉 , 〈 q2 ,q3 〉)
| q3 . X 2 (〈 q1 〉 , 〈 q2 ,q3 〉)

Properties. Provided that our assumptions regarding procedure calls are re-
spected, all the results that we proved for PC still hold in this extended setting
with parameter lists, in particular Theorems 1 and 4. The changes to the syntax
regarded arguments of procedure calls and adding the possibility of broadcasting
label selections. The extensions of EPP and of the merge operator ensure that
Theorem 4 still holds for the case of label selections. Regarding procedure calls,
there are no changes to the structure of the proof, since the extended syntax,
rules for unfolding, and garbage collection behave in the same way at the levels
of choreographies and processes.

6. Examples

We now illustrate the expressivity of PC and the power of out-of-order exe-
cution by means of three examples.

6.1. QuickSort

We illustrate PC’s capability of supporting the programming of divide-
and-conquer algorithms by providing a detailed implementation of (concurrent)
Quicksort. We begin by defining procedure split, which splits the (non-empty)
list stored at p among three processes: q<, q= and q>. Before giving the code for
split, we describe the (standard) auxiliary functions and procedures that we
are going to use.

We assume that all processes store objects of type List(T), where T is some
type. We also assume that these lists are implemented such that the following
operations are supported and take constant time: accessing the first element
(fst); accessing the second element (snd); checking that the length of a list is
at most 1 (short); appending an element (add); and, appending another list
(append). This can be readily achieved, for example, by an implementation of
linked lists with pointers to the first, second and last node (and short simply
checks where the pointer to the second node is null). We use the predicates
fst<snd and fst>snd to test whether the first element of the list at a process is,
respectively, smaller or greater than the second element. Finally, the procedure
pop2 (which we omit) removes the second element from the list at its argument
process.

We use the abbreviation p -> q1,...,qn[l] to signify that p sends the label l

to the processes q1,. . . ,qn, i.e., as an abbreviation for the sequence of selections
p -> q1[l]; ...; p -> qn[l].

25

p

q<
q=

q>

q><=

q<m

q<=
q<M

q><<

q><>

q>=

q>M
q>m

Figure 9: Example of a network connection graph after some recursive calls of QS.

split(p, q< , q= , q>) =

if p.short then (p -> q< , q= , q> [stop]; p.fst -> q= .add)

else if p.fst <snd then (p -> q< [get]; p.snd -> q< .add; p -> q= , q> [skip])

else if p.fst >snd then (p -> q> [get]; p.snd -> q> .add; p -> q< , q= [skip])

else (p -> q= [get]; p.snd -> q= .add; p -> q< , q> [skip])

; pop2 <p>; split <p, q< , q= , q> >

Procedure split starts by testing whether the list at process p is short. If so,
its element is stored in process q= and the procedure terminates. Otherwise, we
test whether the second element in the list is smaller, greater, or equal to the
first element in the list, and add it to the respective process q<, q=, or q>; then,
we pop the second element of the list at p and recursively invoke split. When
split terminates, we know that all elements in q< and q> are respectively smaller
and greater than those in q=.

Sending the label skip to the processes that will not receive messages in
an iteration is required for projectability. Using split we can implement a
robust version of Quicksort (in the sense that it works with lists containing
duplicates), the procedure QS below. We use p start q1, ..., qn as a shortcut
for the sequence p start q1; ...; p start qn. Observe that split is only called
when p stores a non-empty list.

QS(p) = if p.short then 0

else p.start q< , q= , q> ; split <p, q< , q= , q> >; QS< q< >; QS< q> >;

q< .c -> p.id; q= .c -> p.append; q> .c -> p.append

Procedure QS implements Quicksort using its standard recursive structure.
Since the created processes q<, q= and q> do not have references to each other,
they cannot exchange messages, and thus the recursive calls run completely in
parallel. Therefore, the network of processes becomes tree-like, as exemplified
in Figure 9.

Applying EPP, we get the following process procedures, where the projec-
tions of procedure definitions include only the arguments that are actually used
inside the procedures (see Remark 7).

split p (p, q< , q= , q>) =

if short then q<⊕stop; q=⊕stop; q>⊕stop; q= !fst

else if fst <snd then q<⊕get; q< !snd; q=⊕skip; q>⊕skip
else if fst >snd then q>⊕get; q> !snd; q<⊕skip; q=⊕skip

else q=⊕get; q= !snd; q<⊕skip; q>⊕skip

26

; pop2 <p>; split p <p, q< , q= , q> >

split_ q< (p,q) = p&{stop: 0,

get: p?add;split_ q< (p,q),

skip: split_ q< (p,q)}

QS p (p) = if small then 0

else (start q< . split_ q< <p, q< >; QS p < q< >; p!c);

(start q= . split_ q= <p, q= >; p!c);

(start q> . split_ q> <p, q> >; QS p < q> >; p!c);

q< ?id; q= ?append; q> ?append

Observe that procedure split_q< only takes two of the four original parameters,
as the remaining ones are never used in its body.

Remark 9. This implementation of split is suitable in a context where com-
munication is cheap, e.g., as in object-oriented programming and/or a multi-
threaded application. In architectures where communications are costly, it could
be better to use a select function at p to compute the lists of elements smaller
than, equal to, or larger than the pivot and send each of these in a single message
to q<, q= or q>, respectively.

6.2. Gaussian Elimination

We now show how we can program the distributed resolution of systems of
linear equations by Gaussian elimination. Let A~x = ~b be a system of linear
equations in matrix form. We define a procedure gauss that applies Gaussian
elimination to transform it into an equivalent system U~x = ~y, with U upper
triangular (so this system can be solved by direct substitution). We use param-
eter processes aij , with 1 ≤ i ≤ n and 1 ≤ j ≤ n+ 1. For 1 ≤ i, j ≤ n, aij stores
one value from the coefficient matrix; ai,n+1 stores the independent term in one
equation. (Including the independent terms in the coefficient matrix substan-
tially simplifies the notation, as Gaussian elimination treats the independent
vector exactly as the columns in the coefficient matrix.) After execution, each
aij stores the corresponding term in the new system. For simplicity, we assume
that the matrix A is non-singular and numerically stable.

The definition of gauss assumes the following functions, all of which can easily
be seen to be acceptable list manipulating functions: hd and tl (computing the
head and tail of a list of processes); fst and rest (taking a list of processes
representing a matrix and returning the first row of the matrix, or the matrix
without its first row); and minor (removing the first row and the first column
from a matrix). Processes use standard arithmetic operations to combine their
value with values received.

The code of procedure gauss follows.

gauss(A) = solve(fst(A)); elim(fst(A),rest(A)); gauss(minor(A))

solve(A) = divideall(hd(A),tl(A)); set 1 (hd(A))

divideAll(a,A) = divide(a,hd(A)); divideAll(a,tl(A))

divide(a,b) = a.* -> b.div

27

elim(A,B) = elimRow(A,fst(B)); elim(A,rest(B))

elimRow(A,B) = elimAll(tl(A),hd(B),tl(B)); set 0 (hd(B))

elimAll(A,m,B) = elimOne(hd(A),m,hd(B)); elimAll(tl(A),m,tl(B))

elimOne(a,m,b) = b start x; b: x<->a; b: x<->m;

a.* -> x.id; m.* -> x.mult; x.* -> b.minus

set 0 (a) = a start p; p.0 -> a.id

set 1 (a) = a start p; p.1 -> a.id

This implementation follows the standard sequential algorithm for Gaussian
elimination, as described in, e.g., Algorithm 8.4 in (Grama et al., 2003). Proce-
dure solve divides the first equation by the pivot, obtaining the new first equa-
tion in the reduced system. Then, elim uses this row to perform an elimination
step, setting the first column of the coefficient matrix to zeroes. The auxiliary
procedure elimRow performs this step at the row level, using elimAll to iterate
through a single row and elimOne to perform the actual computations. The first
row and the first column of the matrix are then removed in the recursive call,
as they do not change further.

Despite being written as a sequential algorithm, this implementation runs
concurrently, due to the implicit parallelism in the semantics of choreographies.
We illustrate this behaviour by means of a concrete example. Let A be a 3 ×
3 matrix, so there are 12 processes in total. For legibility, we write b1 for
the independent term a14 etc.; A=〈a11,a12,a13,b1,a21,a22,a23,b2,a31,a32,a33,b3〉 for
the matrix; A1=〈a11,a12,a13,b1〉 for the first row (likewise for A2 and A3); and
A’2=〈a22,a23,b2〉 and likewise for A’3.

Calling gauss(A) unfolds to

solve(A1); elim(A1, 〈A2,A3〉); solve(A’2); elim(A’2,A’3); solve(〈a33,b3〉)

or, unfolding elim,

solve(A1); elimRow(A1,A2); elimRow(A1,A3); solve(A’2); elimRow(A’2,A’3); solve(〈a33,b3〉)

Unfolding solve(A1) is straightforward, leading to

a11.* -> a12.div; a11.* -> a13.div; a11.* -> b1.div; a11 start x1; x1.1 -> a11.id

and likewise for the remaining calls to solve. In turn, elimRow(A1,A2) becomes

elimAll(〈a12,a13,b1〉 ,a21, 〈a22,a23,b2〉); set 0 (a21)

which again expands to

elimOne(a12,a21,a22); elimOne(a13,a21,a23); elimOne(b1,a21,b2); set 0 (a21)

and we note that each of these procedure calls involves only communication
between the processes explicitly given as arguments.

Since all these procedures involve a21, the semantics of choreographies re-
quires them to be executed in this order. Likewise, the call to elimRow(A1,A3)

must be executed afterwards (since it also involves processes a11 through a13),
and unfolds to a sequential composition of procedure calls with a31 as argument.

The interesting observation is that none of the processes intervening in
elimRow(A1,A3) occur in the expansion of solve(A’2). In other words,

28

elimRow(A1,A3); solve(A’2)

expands to

elimOne(a12,a31,a32); elimOne(a13,a31,a33); elimOne(b1,a31,b3); set 0 (a31);

a21.c -> a22.div; a21.c -> a23.div; a21.c -> b2.div; a21 start x2; x2.1 -> a21.id

and the semantics of PC allows the communications in the second line to be
interleaved with those in the first line in any possible way. In the terminology
of Cruz-Filipe and Montesi (2016a), the calls to elimRow(A1,A3) and solve(A’2)

run in parallel.
This corresponds to implementing Gaussian elimination with pipelined com-

munication and computation as in § 8.3 of (Grama et al., 2003). Indeed, as soon
as any row has been reduced by all rows above it, it can apply solve to itself and
try to begin reducing the rows below. It is a bit surprising that we get such par-
allel behaviour by straightforwardly implementing an imperative algorithm; the
explanation is that EPP encapsulates the part of determining which communi-
cations can take place in parallel, removing this burden from the programmer.

6.3. Fast Fourier Transform

Our last example illustrates how we can compute the discrete Fourier trans-
form of a vector in PC using the Fast Fourier Transform (FFT). We refer the
reader to § 13.1 of (Grama et al., 2003) for details.

Definition 3. Let ~x = 〈x0, . . . , xn−1〉 be a vector of n complex numbers. The

discrete Fourier transform of ~x is ~y = 〈y0, . . . , yn−1〉, where yj =
∑n−1
k=0 xkω

kj

with ω = e2πi/n.

Given ~x, its discrete Fourier transform can be computed efficiently by the
Fast Fourier Transform (FFT) as follows (Algorithm 13.1 in (Grama et al.,
2003)). We assume n to be a power of 2; in the first call, ω has the value
defined above.

procedure R FFT(X,Y ,n,ω)
if n = 1 then y0 = x0

else R FFT(〈x0, x2, . . . , xn−2〉,〈q0, q1, . . . , qn/2〉,n/2,ω2)
R FFT(〈x1, x3, . . . , xn−1〉,〈t0, t1, . . . , tn/2〉,n/2,ω2)
for j = 0 to n− 1 do yj = q(j%n

2) + ωjt(j%n
2)

To implement this procedure in PC, we need to communicate labels in selec-
tions to a group of processes as described in § 5. Our implementation thus uses
the procedures gselthen(p,Q) and gselelse(p,Q). The list functions we require (and
which again can easily be seen to be acceptable list manipulating functions) are
again hd and tl, together with even and odd (returning the elements on even or
odd positions in the argument list, respectively) and half1 and half2 (returning
the first or second half of the argument list, respectively).

We also use (without specifying them) the following auxiliary procedures.

• intro(n,m,P), where n introduces m to every process in P (defined similarly
to e.g. gselthen)

29

• power(n,m,nm), where at the end nm stores the result of exponentiating the
value in m to the power of the value stored in n – see (Cruz-Filipe and
Montesi, 2016a) for a possible implementation in a sublanguage of PC.

The one major difference between our implementation of FFT below and the
algorithm R FFT reported above is that we cannot create a variable number of
fresh processes and pass them as arguments to other procedures (the auxiliary
vectors ~q and ~t). Instead, we use ~y to store the result of the recursive calls, and
create two auxiliary processes inside each iteration of the final for loop.

fft(X,Y,n,w) = if n.is1

then gselthen(n,join(X,Y)); n -> w[then]; base(hd(X),hd(Y))

else gselelse(n,join(X,Y)); n -> w[else];

n start n’; n.half -> n’; intro(n,n’,Y);

w start w’; w.square -> w’; intro(w,w’,Y);

n: n’ <-> w; w: n’ <-> w’;

fft(even(X),half1(Y),n’,w’);

fft(odd(X),half2(Y),n’,w’);

n’ start wn; n’: w <-> wn; power(n’,w,wn);

w start wj; w.1 -> wj; intro(w,wj,Y);

combine(half1(Y),half2(Y),wn,w,wi)

base(x,y) = x.c -> y

combine(Y1,Y2,wn ,w,wj) = combine 1 (hd(Y1),hd(Y2),wn ,wj);

w.c -> wj.mult;

combine(tl(Y1),tl(Y2),wn,w,wj)

combine 1 (y1 ,y2,wn,wj) = y1 start q; y1.c -> q; y1: q <-> y2;

y2 start t; y2.c -> t; y2: t <-> y1; y2: t <-> wj;

q.c -> y1; wj.c -> t.mult; t.c -> y1.add;

q.c -> y2; wn.c -> t.mult; t.c -> y2.add

The level of parallelism in this implementation is suboptimal, as both recur-
sive calls to fft use n’ and w’. By duplicating these processes, these calls can run
in parallel as in the previous example. (We chose the current formulation for
simplicity.) Process n’ is actually the main orchestrator of the whole execution.

7. Related Work

Choreographic Programming. Our examples cannot be written in previous mod-
els for choreographic programming, which lack full procedural abstraction. In
state-of-the-art models such as those of Carbone et al. (2012) and Carbone and
Montesi (2013), procedures cannot have continuations, there can only be a lim-
ited number of protocols running at any time (modulo dangling asynchronous
actions), and the process names used in a procedure are statically determined.
In PC, all these limitations are lifted.

Differently from PC, name mobility in choreographies is typically done using
channel delegation, as shown by Carbone and Montesi (2013), which is less
powerful: a process that introduces two other processes requires a new channel
to communicate with them thenceforth.

30

Some choreography models include explicit parallel composition, C |C ′. Most
behaviours of C |C ′ are already captured in PC; for example, X〈p, q〉 |Y 〈r, s〉 is
equivalent to X〈p, q〉;Y 〈r, s〉 in PC (cf. Example 3) – see (Carbone and Montesi,
2013) for a deeper discussion. If a parallel operator is desired, PC can be easily
extended as in the work of Carbone et al. (2012).

In the work of Montesi and Yoshida (2013), choreographies can be integrated
with existing process code (which can abstractly represent legacy code) by means
of a type system, which we could easily integrate in PC.

Multiparty Session Types (MPST). In MPST, due to Honda et al. (2016), global
types are choreographic specifications of single protocols, used for verifying the
code of manually-written implementations in process models. Global types are
similar to a simplified fragment of PC, obtained (among others) by replacing
expressions and functions with constants (representing types), removing process
creation (the processes are fixed), and restricting recursion to parameterless tail
recursion.

MPST leaves protocol composition to the implementors of processes, which
can result in deadlocks, unlike in PC. We illustrate this key difference using
our syntax; we view a protocol in MPST as a (simplification of a) procedure
in PC. Consider the protocols X(r, s) = r.e -> s.f and Y (r′, s′) = r′.e′ -> s′.f ′,
and their instantiations X〈p, q〉 and Y 〈q, p〉. In MPST, protocols are projected
separately and then they can be interleaved freely. Thus, a valid composition
of the projections of these two protocols (in PP) is p .v q?f ′; q!e | q .v p?f ; p!e′.
This network is obviously deadlocked, but MPST does not detect it because
the interleaving of the two protocols is not checked. In PC, we can only ob-
tain correct implementations, because compositions are defined at the level of
choreographies, e.g., X〈p, q〉;Y 〈q, p〉 or Y 〈q, p〉;X〈p, q〉.

Deadlock-freedom for compositions in MPST can be obtained by restricting
connections among processes participating in different protocols to form a tree,
as shown by Carbone et al. (2016) and Carbone et al. (2017). This limits the
communication structures that can be written, and is not necessary in PC,
where there are no restrictions on the shape of connection graphs. Coppo et al.
(2016) developed another technique for MPST using pre-orders, but this is also
not as expressive as PC, as discussed by Cruz-Filipe and Montesi (2016b).

MPST can be extended to protocols where the number of participants is fixed
only at runtime (Yoshida et al., 2010), or can grow during execution (Deniélou
and Yoshida, 2011). These results use ad-hoc primitives and “middleware”
terms in the process model, e.g., for tracking the number of participants in a
session (Deniélou and Yoshida, 2011), which are not needed in PC. MPST can
be nested (Demangeon and Honda, 2012), partially recalling our parametric
procedures. Differently from PC, nested procedures in MPST are invoked by a
coordinator (requiring extra communications), and compositions of such nested
types can deadlock.

Asynchrony. It is also possible to endow PC with an asynchronous semantics
that splits communication actions (value communications, label selections and

31

name-passing) into independent send and receive actions, which then may be
interleaved with other actions through structural precongruence. The technique
is a direct adaptation of the generic construction of Cruz-Filipe and Montesi
(2017a): we introduce new runtime terms (not to be used by the programmer)
to denote send and receive actions, extend structural precongruence to unfold
communications into send/receive pairs, and prove that the resulting semantics
does not essentially add new behaviours to the choreographies. Formally: each
reduction step in the asynchronous semantics can always be completed to yield
a reduction step in the original synchronous semantics. Likewise, the semantics
of PP can be made asynchronous by adding a queue of incoming messages to
each process and suitably changing the communication rules; again we can show
that this semantics is a refinement of the synchronous semantics for PP.

Both progress (Theorem 1) and the EPP theorem (Theorem 4) readily extend
to this new semantics. For progress, we simply observe that if reducing a typable
choreography C yields a new choreography C ′ containing runtime terms, then
C ′ can always reduce to another choreography C ′′ with no runtime terms, and
C ′′ is also typable. For the EPP theorem, we need to extend EPP to the runtime
terms – again following the strategy from (Cruz-Filipe and Montesi, 2017a) –
and extend the proof of the theorem to the new cases. Both constructions are
described in detail in the technical report (Cruz-Filipe and Montesi, 2016b),
which also extends the type system of PC to the whole asynchronous language.
As a consequence, choreography projections can never have orphan messages,
in the sense that any message that is (asynchronously) sent can eventually be
consumed by the intended receiver.

Sessions and Mobility. Recent theories based on session types, e.g., the works
of Carbone et al. (2012), Carbone and Montesi (2013), Coppo et al. (2016),
Honda et al. (2016) and Carbone et al. (2017), assume that all pairs of pro-
cesses in a session have a private bidirectional channel to communicate. Thus,
processes in a protocol must have a complete connection graph. PC can be used
to reason about different kinds of network topologies.

Another important aspect of sessions is that each new protocol execution
requires the creation of a new session, whereas procedure calls in PC reuse
available connections – allowing for more efficient implementations. Our parallel
downloader example uses this feature (Example 5).

The standard results of communication safety found in session-typed calculi
can be derived from our EPP Theorem (Theorem 4), as discussed by Carbone
and Montesi (2013).

Faults. We have abstracted from faults and divergence of internal computations:
in PC, we assume that all internal computations terminate successfully. If we
relax these conditions, deadlock-freedom can still be achieved simply by using
timeouts and propagating faults through communications.

PC abstracts from the concrete locations of processes, but these may be
useful in future studies on performance and fault recovery. Some interesting
distributed bugs described by Leesatapornwongsa et al. (2016) are triggered by

32

unexpected fault conditions at nodes, making such faults an immediate candi-
date for the future developments of PC. Useful inspiration to this aim may be
provided by (Capecchi et al., 2016).

8. Conclusions

We have presented Procedural Choreographies (PC), a language model for
the development of correct-by-construction concurrent software based on mes-
sage passing. PC advances the state of the art in choreographic programming
towards realistic examples, by supporting modular programming through para-
metric procedures and by capturing networks with arbitrary connection struc-
tures (represented as graphs) and unbounded numbers of participants (pro-
cesses). We conclude this article by describing some possible future directions.

An important future work will be to implement the new features explored
in PC in current languages based on choreographic programming. The lan-
guages Chor (2017) and AIOCJ (Dalla Preda et al., 2014) are the respective
implementations of the choreographic programming models due to Carbone and
Montesi (2013) and Dalla Preda et al. (2017). Their compilers produce correct
executable code in the Jolie language (Montesi et al., 2014) (for microservices).
Both languages would benefit from full procedural abstraction, as investigated
in this work.

Another future direction will be to explore how to apply PC to algorithms
(or communication flows in general) that have to work in environments with
restricted connection structures (e.g., due to hardware design). Specifically, we
could use typing information on the connections used by a choreography to
check whether such choreography can run on specific networks, e.g., hypercube
or butterfly networks.

Finally, we wish to understand how to further extend the expressive power of
PC. An important question is how we can express speculative parallelism, e.g.,
to program a process that contacts many other processes and then waits for the
first available response from any of the contacted processes. Another interesting
feature would be to support higher-order choreographies, by passing closures
that describe the behaviour of multiple processes as parameters to procedures.
This would allow us to compose choreographies in a functional style, rather than
the imperative style that has been followed in choreographic programming so
far.

Acknowledgements. This work was partly supported by the Danish Council for
Independent Research, grant no. DFF–4005-00304, DFF-1323-00247 and DFF-
7014-00041, and by the Open Data Framework project at the University of
Southern Denmark.

33

References

Bravetti, M., Zavattaro, G., 2007. Towards a unifying theory for choreography
conformance and contract compliance. In: Software Composition, 6th Inter-
national Symposium, SC 2007, Braga, Portugal, March 24-25, 2007, Revised
Selected Papers. pp. 34–50.
URL http://dx.doi.org/10.1007/978-3-540-77351-1_4

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G., 2006. Choreography
and orchestration conformance for system design. In: Proc. of Coordination.
Vol. 4038 of LNCS. Springer, pp. 63–81.

Capecchi, S., Giachino, E., Yoshida, N., 2016. Global escape in multiparty ses-
sions. Mathematical Structures in Computer Science 26 (2), 156–205.
URL http://dx.doi.org/10.1017/S0960129514000164

Carbone, M., Honda, K., Yoshida, N., 2012. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst. 34 (2), 8.

Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P., 2016. Co-
herence generalises duality: A logical explanation of multiparty session types.
In: CONCUR. Vol. 59 of LIPIcs. Schloss Dagstuhl, pp. 33:1–33:15.

Carbone, M., Montesi, F., 2013. Deadlock-freedom-by-design: multiparty asyn-
chronous global programming. In: POPL. ACM, pp. 263–274.

Carbone, M., Montesi, F., Schürmann, C., 2018. Choreographies, logically. Dis-
tributed Computing 31 (1), 51–67.

Carbone, M., Montesi, F., Schürmann, C., Yoshida, N., 2017. Multiparty session
types as coherence proofs. Acta Inf. 54 (3), 243–269.

Chor, 2017. Programming Language. http://www.chor-lang.org/.

Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L., 2016. Global
progress for dynamically interleaved multiparty sessions. Mathematical Struc-
tures in Computer Science 26 (2), 238–302.
URL http://dx.doi.org/10.1017/S0960129514000188

Cruz-Filipe, L., Larsen, K. S., Montesi, F., 2017. The paths to choreography
extraction. In: FoSSaCS. Vol. 10203 of Lecture Notes in Computer Science.
pp. 424–440.

Cruz-Filipe, L., Montesi, F., 2016. Choreographies in practice. In: FORTE. Vol.
9688 of LNCS. Springer, pp. 114–123.

Cruz-Filipe, L., Montesi, F., 2016a. A core model for choreographic program-
ming. In: FACS. Vol. 10231 of Lecture Notes in Computer Science. pp. 17–35.

Cruz-Filipe, L., Montesi, F., 2016b. A language for the declarative composition
of concurrent protocols. CoRR abs/1602.03729.

34

http://dx.doi.org/10.1007/978-3-540-77351-1_4
http://dx.doi.org/10.1017/S0960129514000164
http://www.chor-lang.org/
http://dx.doi.org/10.1017/S0960129514000188

Cruz-Filipe, L., Montesi, F., 2017a. On asynchrony and choreographies. In:
Bartoletti, M., Bocchi, L., Henrio, L., Knight, S. (Eds.), Proceedings 10th In-
teraction and Concurrency Experience. Vol. 261 of EPTCS. Open Publishing
Association, pp. 76–90.

Cruz-Filipe, L., Montesi, F., 2017b. Procedural choreographic programming. In:
Bouajjani, A., Silva, A. (Eds.), FORTE. Vol. 10321 of LNCS. Springer, pp.
92–107.

Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J., 2017.
Dynamic choreographies: Theory and implementation. Logical Methods in
Computer Science 13 (2).

Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli, M., 2014.
AIOCJ: A choreographic framework for safe adaptive distributed applications.
In: Combemale, B., Pearce, D., Barais, O., Vinju, J. (Eds.), SLE. Vol. 8706
of LNCS. Springer, pp. 161–170.

Demangeon, R., Honda, K., 2012. Nested protocols in session types. In: CON-
CUR. pp. 272–286.

Deniélou, P.-M., Yoshida, N., 2011. Dynamic multirole session types. In: POPL.
ACM, pp. 435–446.

Grama, A., Gupta, A., Karypis, G., Kumar, V., 2003. Introduction to Parallel
Computing. Pearson, 2nd edition.

Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N., 2011. Scrib-
bling interactions with a formal foundation. In: ICDCIT. Springer, pp. 55–75.

Honda, K., Vasconcelos, V., Kubo, M., 1998. Language primitives and type
disciplines for structured communication-based programming. In: ESOP. Vol.
1381 of LNCS. Springer, pp. 122–138.

Honda, K., Yoshida, N., Carbone, M., 2016. Multiparty Asynchronous Session
Types. J. ACM 63 (1), 9.
URL http://doi.acm.org/10.1145/2827695

International Telecommunication Union, 1996. Recommendation Z.120: Mes-
sage sequence chart.

JBoss Community and Red Hat, 2017. SAVARA and Testable Architecture.
http://www.jboss.org/savara/.

Lanese, I., Guidi, C., Montesi, F., Zavattaro, G., 2008. Bridging the gap between
interaction- and process-oriented choreographies. In: SEFM. pp. 323–332.

Lanese, I., Montesi, F., Zavattaro, G., 2013. Amending choreographies. In:
WWV. pp. 34–48.

35

http://doi.acm.org/10.1145/2827695
http://www.jboss.org/savara/

Lange, J., Tuosto, E., Yoshida, N., 2015. From communicating machines
to graphical choreographies. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. pp. 221–232.

Leesatapornwongsa, T., Lukman, J. F., Lu, S., Gunawi, H. S., 2016. TaxDC:
A taxonomy of non-deterministic concurrency bugs in datacenter distributed
systems. In: ASPLOS. ACM, pp. 517–530.

Lluch-Lafuente, A., Nielson, F., Nielson, H. R., 2015. Discretionary information
flow control for interaction-oriented specifications. In: Logic, Rewriting, and
Concurrency. Vol. 9200 of Lecture Notes in Computer Science. Springer, pp.
427–450.

López, H. A., Heussen, K., 2017. Choreographing cyber-physical distributed
control systems for the energy sector. In: SAC. ACM, pp. 437–443.

López, H. A., Nielson, F., Nielson, H. R., 2016. Enforcing availability in failure-
aware communicating systems. In: FORTE. Vol. 9688 of Lecture Notes in
Computer Science. Springer, pp. 195–211.

Montesi, F., 2013. Choreographic Programming.
Ph.D. Thesis, IT University of Copenhagen,
http://fabriziomontesi.com/files/choreographic programming.pdf .

Montesi, F., Guidi, C., Zavattaro, G., 2014. Service-oriented programming with
jolie. In: Web Services Foundations. pp. 81–107.
URL http://dx.doi.org/10.1007/978-1-4614-7518-7_4

Montesi, F., Yoshida, N., 2013. Compositional choreographies. In: CONCUR.
Vol. 8052 of LNCS. Springer, pp. 425–439.

MPI Forum, 2015. MPI: A Message-Passing Interface Standard. High-
Performance Computing Center Stuttgart, version 3.1.

Needham, R., Schroeder, M., Dec. 1978. Using encryption for authentication in
large networks of computers. Commun. ACM 21 (12), 993–999.

Object Management Group, 2017. Business Process Model and Notation. http:
//www.omg.org/spec/BPMN/2.0/.

Qiu, Z., Zhao, X., Cai, C., Yang, H., 2007. Towards the theoretical foundation
of choreography. In: WWW. ACM, pp. 973–982.

Sangiorgi, D., Walker, D., 2001. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press.

W3C WS-CDL Working Group, 2004. Web services choreography de-
scription language version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-
20040427/.

36

http://fabriziomontesi.com/files/choreographic_programming.pdf
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R., 2010. Parameterised multi-
party session types. In: FOSSACS. Vol. 6014 of LNCS. Springer, pp. 128–145.

37

Appendix A. Detailed definitions and proofs

We report on proofs of results that were omitted from the main part of this
paper.

Appendix A.1. Type checking and type inference

To prove this theorem, we begin by establishing some technical lemmas about
typing.

Lemma 1 (Monotonicity). Let Γ and Γ′ be typing contexts with Γ ⊆ Γ′, G1,
G′1 and G be connection graphs such that G1 ⊆ G, and C be a choreography. If
Γ;G1 ` C . G′1, then Γ′;G ` C . G ∪G′1.

Proof. Straightforward by induction on the derivation of Γ;G1 ` C . G′1.

Lemma 2 (Sequentiality). Let Γ be a typing context, G1, G′1, G2 and G′2
be connection graphs such that G2 ⊆ G′1, and C1, C2 be choreographies. If
Γ;G1 ` C1 . G

′
1 and Γ;G2 ` C2 . G

′
2, then Γ;G1 ` C1 # C2 . G

′
1 ∪G′2.

Proof. Straightforward by induction on the derivation of Γ;G2 ` C2 . G
′
2.

Lemma 3 (Substitution). Let Γ be a typing context, G and G′ be connection
graphs, and C be a choreography. Let p̃ be a set of process names that are free
in C and q̃ be a set of process names that do not occur (free or bound) in C. If
Γ;G ` C . G′, then Γ[p̃/q̃];G[p̃/q̃] ` C[p̃/q̃] . G′[p̃/q̃].

Proof. Straightforward by induction on the derivation of Γ;G ` C . G′, as all
typing rules are valid when substitutions are applied.

We are now ready to start proving Theorem 1. The following lemma takes
care of the base cases, and is required for one of the inductive steps.

Lemma 4. Let Γ be a set of typing judgements, D a set of procedure definitions,
G1 and G′1 connection graphs, and C a choreography that does not start with
0 or a procedure call. Assume that Γ ` D and Γ;G1 ` C . G′1. For every
state σ, there exist Γ′, σ′, C ′, G2 and G′2 such that G1, C, σ →D G2, C

′, σ′ and
Γ′;G2 ` C ′ . G′2.

Proof. By case analysis on the last step of the proof of Γ;G1 ` C . G′1. By hy-
pothesis, this proof cannot end with an application of rules bT|Ende, bT|EndSeqe
or bT|Calle; we detail all cases for completeness, but the only non-trivial one is
the last.

• bT|Starte: then C is p start qT ;C◦ and by hypothesis

Γ, q : T ;G1 ∪ {p↔ q} ` C◦ . G′1 .

SinceG1, p start qT ;C, σ →D G1∪{p↔ q}, C◦, σ[q 7→ ⊥T] by rule bC|Starte,
taking Γ′ = Γ, q : T , σ′ = σ[q 7→ ⊥T], C ′ = C◦, G2 = G1 ∪ {p ↔ q} and
G′2 = G′1 establishes the thesis.

38

• bT|Come: then C is p.e -> q.f ;C◦ and by hypothesis p
G1←→ q, f [σ(q)/∗](e[σ(p)/∗])

is a valid expression of type Tq, and Γ;G1 ` C .G′1. Then all the precon-
ditions of bC|Come are met, so taking Γ′ = Γ, σ′ = σ[q 7→ w] where e ↓pσ v
and f(v) ↓qσ w, C ′ = C◦, G2 = G1 and G′2 = G′1 establishes the thesis.

• bT|Sele: then C is p -> q[`];C◦ and by hypothesis p
G1←→ q and Γ;G1 `

C . G′1. By bC|Sele, G1, p -> q[`];C◦, σ →D G1, C
◦, σ, so taking Γ′ = Γ,

σ′ = σ, C ′ = C◦, G2 = G1 and G′2 = G′1 again establishes the thesis.

• bT|Telle: then C is p : q <-> r;C◦ and by hypothesis both p
G1←→ q, p

G1←→ r,
and Γ;G1 ∪ {q ↔ r} ` C◦ . G′1. Since the preconditions of rule bC|Telle
are met, by taking Γ′ = Γ, σ′ = σ, C ′ = C◦, G2 = G1 ∪ {q ↔ r} and
G′2 = G′1 establishes the thesis.

• bT|Conde: then C is if p.e thenC1 elseC2;C◦ and by hypothesis e[σ(p)/∗]
is a valid Boolean expression, Γ;G1 ` Ci . G◦i and Γ;G◦1 ∩G◦2 ` C◦ . G′1.

Suppose e ↓pσ true (the other case is similar). ThenG1, if p.e thenC1 elseC2;C◦, σ →D

G1, C1 # C, σ. Since G◦1 ∩ G◦2 ⊆ G◦1, Lemma 2 allows us to conclude that
Γ;G1 ` C1 # C . G′1 ∪G◦1, whence the thesis follows by taking Γ′ = Γ,
C ′ = C1 # C, G2 = G1 and G′2 = G′1 ∪G◦1.

Proof (Theorem 1). If C �D 0, then the first case holds. Assume that C 6�D 0;
we show that the second case holds by induction on the proof of Γ;G1 ` C .
G′1. By hypothesis, the last rule applied in this proof cannot be bT|Ende; the
cases where the last rule applied is bT|Starte, bT|Come, bT|Sele, bT|Telle or
bT|Conde follow immediately from Lemma 4, while the case of rule bT|EndSeqe
is straightforward from the induction hypothesis.

We focus on the case of rule bT|Calle. In this case, C has the form X〈p̃〉;C◦,
and we know that Γ ` X(q̃T) : (GX . G′X), Γ ` p̃ : T , GX [p̃/q̃] ⊆ G1 and
Γ;G1 ∪ (G′X [p̃/q̃]) ` C◦ . G′1. Let CX be the body of X as defined in D ; from
the hypothesis that Γ ` D we also know that ΓX ;GX ` CX . G′′X for some G′′X
such that G′X is G′′X restricted to the set p̃. By Lemma 3, ΓX [p̃/q̃];GX [p̃/q̃] `
CX [p̃/q̃] . G′′X [p̃/q̃], whence by Lemma 1 also Γ;G1 ` CX [p̃/q̃] . G′′X [p̃/q̃] ∪G1.
By applying rule bC|Unfolde, we conclude that X〈p̃〉;C◦ �D CX [p̃/q̃] #C◦, and
Lemma 2 allows us to conclude that Γ;G1 ` CX [p̃/q̃] # C◦ .G′1. Since procedure
calls are guarded, CX does not begin with a procedure call, and Lemma 4
establishes the thesis.

We now present an alternative proof of Theorem 2 that constructs the graphs
GX and G′X required for typing each procedure body using the information from
the choreography to be typed.

Theorem 2. The key step in this proof is showing, given Γ and 〈D , C〉, how to
find a “canonical typing” for the recursive definitions, the set ΓD , such that
ΓD ` D and Γ,ΓD ;GC ` C . G′ (with G′ inferred) iff Γ,Γ′;GC ` C . G′′ for

39

some Γ′ and G′′. More precisely, we need to find graphs GX and G′X for each
procedure X defined in D .

Our proof proceeds in three steps. First, for each X we compute an underap-
proximation G◦X of the output graph G′X , containing all the relevant connections
that executing X can add. Using this, we compute the input graph GX and the
output graph G′X = GX ∪ G◦X . Both these steps are achieved by computing a
minimal fixpoint of a monotonic operator in the set of all graphs whose vertices
are the parameters of X. Finally, we argue that the typing X : GX . GX is
minimal, and therefore the set ΓD of all such typings fulfills the property we
require.

Throughout the remainder of this proof, we assume D = {Xi(q̃i) = Ci | i =
1, . . . , n}.

1. In order to compute G◦Xi
, we define an auxiliary function fwd with in-

tended meaning as follows: fwdG̃i

Cj
(G) computes the communication graph

obtained from G after one execution of the body of Xj , assuming that
Xi(q̃i) : ∅ . Gi for all i and ignoring newly created processes. We use a
conditional union operator] where G] {e} denotes G ∪ {e} if e is an
edge connecting two vertices in G, and G otherwise. The function fwd is
defined as follows.

fwdG̃i
0 (G) = G

fwdG̃i
0;C(G) = fwdG̃i

C (G)

fwdG̃i

p.e -> q.f ;C
(G) = fwdG̃i

C (G)

fwdG̃i

p -> q[`];C
(G) = fwdG̃i

C (G)

fwdG̃i

p start qT ;C
(G) = fwdG̃i

C (G)

fwdG̃i

p:q<-> r;C
(G) = fwdG̃i

C (G] {q↔ r})

fwdG̃i
if p.e thenC1 elseC2;C

(G) = fwdG̃i
C (fwdG̃i

C1
(G) ∩ fwdG̃i

C2
(G))

fwdG̃i
Xi〈p̃〉;C

(G) = fwdG̃i
C (G]Gi[p̃/q̃i])

Using fwd, we define an operator Tfwd over the set G of tuples of graphs

over the parameters of Xi, i.e. G = {G̃i | Gi is a graph over q̃i}. Observe
that G is a complete lattice wrt componentwise inclusion.

Tfwd(G̃i) =
˜

fwdG̃i

Ci
(Gi)

This operator is monotonic, since fwd only adds edges to its argument,
and thus has a least fixpoint that can be computed by iterating Tfwd from
the tuple of empty graphs over the right sets of vertices. Furthermore,
since G is finite (each graph has a finite number of vertices) this fixpoint
corresponds to a finite iterate, and can thus be computed in finite time.
We denote this fixpoint by G̃◦Xi

.

40

bck
G̃i
0 (Ga, Gb) = 〈Ga, Gb〉

bck
G̃i
0;C(Ga, Gb) = bck

G̃i
C (Ga, Gb)

bck
G̃i
p.e -> q.f;C

(Ga, Gb) =

{
bck

G̃i
C (Ga, Gb) if p↔ q ∈ Gb

bck
G̃i
C (Ga] {p↔ q}, Gb] {p↔ q}) otherwise

bck
G̃i
p -> q[`];C

(Ga, Gb) =

{
bck

G̃i
C (Ga, Gb) if p↔ q ∈ Gb

bck
G̃i
C (Ga] {p↔ q}, Gb] {p↔ q}) otherwise

bck
G̃i
p start qT ;C

(Ga, Gb) = bck
G̃i
C (Ga, Gb)

bck
G̃i
p:q <-> r;C

(Ga, Gb) =


bck

G̃i
C (Ga, Gb] {q↔ r}) if p↔ q, p↔ r ∈ Gb

bck
G̃i
C (Ga] {p↔ q}, Gb] {p↔ q, q↔ r}) if p↔ q 6∈ Gb, p↔ r ∈ Gb

bck
G̃i
C (Ga] {p↔ r}, Gb] {p↔ r, q↔ r}) if p↔ q ∈ Gb, p↔ r 6∈ Gb

bck
G̃i
C (Ga] {p↔ q, p↔ r}, Gb] {p↔ q, p↔ r, q↔ r}) if p↔ q, p↔ r 6∈ Gb

bck
G̃i
if p.e thenC1 elseC2;C(Ga, Gb) = bck

G̃i
C (fst(bck

G̃i
C1

(Ga, Gb)) ∪ fst(bck
G̃i
C2

(Ga, Gb)), snd(bck
G̃i
C1

(Ga, Gb)) ∩ snd(bck
G̃i
C2

(Ga, Gb)))

bck
G̃i
Xi〈p̃〉;C

(Ga, Gb) = bck
G̃i
C (Ga] (Gi[p̃/q̃i] \Gb), Gb]Gi[p̃/q̃i]]G◦i [p̃/q̃i])

Figure A.10: Definition of bck (case 2 in the proof of Theorem 2).

2. The construction of the input graphs GXi
follows the same idea: we go

through the Cis noting the edges that are required for all communications
to be able to take place. It is however slightly more complicated, because
we have to keep track of edges that the choreography adds to the graph;
we therefore need a function bck that manipulates two graphs instead of

one. More precisely, bckG̃i

C (G,G) returns the graph extending G that is
needed for correctly executing C (ignoring newly created processes); the
first argument keeps track of the edges that need to be added to G, and
the second argument keeps track of edges added by executing C. This
function uses the graphs G◦Xi

computed earlier, which explains why it
has to be defined afterwards. We use the same notational conventions as
above, and let fst〈a, b〉 = a and snd〈a, b〉 = b. The definition of bck is given
in Figure A.10; it is not the simplest possible, but the formulation given
is sufficient for our purposes.

Again we define a monotonic operator over the same G as above.

Tbck(G̃i) =
˜

fst(bckG̃i

Ci
(Gi, Gi))

We do not need to recompute G◦i , since these graphs contain all edges that
can possibly be added by executing Ci. The least fixpoint of Tbck can again
be computed by finitely iterating this operator, and it is precisely G̃Xi

.
We then define G′Xi

= GXi
∪G◦Xi

.

3. We now show that ΓD = {Xi(q̃i) : GXi . G
′
Xi
} is a minimal typing of D ,

in the sense explained earlier. Observe that it is possible that ΓD 6` D , in
particular if the Xi are ill-formed choreographies.

41

Suppose that Γ,Γ′;GC ` C . G for some Γ′ and G. We argue that
Γ,ΓD ;GC ` C . G′, where G′ is inferred from the typing rules. For each
procedure Xi(q̃i) = Ci, there must be a unique typing Xi(q̃i) : G∗Xi

.G∗∗Xi

in Γ′. By a simple inductive argument one can show that G◦Xi
⊆ G∗∗

(since ∅ ⊆ G∗∗Xi
and Tfwd preserves inclusion in G∗∗Xi

). Similarly, one shows
that GXi

⊆ G∗Xi
and that G∗∗Xi

\G∗Xi
⊆ G′Xi

\GXi . As a consequence, the
typing derivation for Γ,Γ′;GC ` C .G can be used for Γ,ΓD ;GC ` C .G′,
as all applications of rule bT|Calle are guaranteed to be valid (their pre-
conditions hold) and to produce the same results (they change the com-
munication graph in the same way).

42

	Introduction
	Procedural Choreographies (PC)
	Syntax
	Semantics

	Typing and Deadlock-Freedom
	Synthesising Process Implementations
	Procedural Processes (PP)
	EndPoint Projection (EPP)
	Properties of EPP

	Parameter Lists
	Examples
	QuickSort
	Gaussian Elimination
	Fast Fourier Transform

	Related Work
	Conclusions
	Detailed definitions and proofs
	Type checking and type inference

