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GRAÇA GASPAR, ISABEL NUNES

BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, Univ. Lisbon
(e-mail: {gg,in}@di.fc.ul.pt)

PETER SCHNEIDER-KAMP

Department of Mathematics and Computer Science, University of Southern Denmark

(e-mail: petersk@imada.sdu.dk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Repairing an inconsistent database is a well-known problem for which several partial approaches
have been proposed and implemented in the past. One of the existing proposals uses active
integrity constraints (AICs), which are consistency requirements that also allow one to restrict
the possible ways to repair inconsistencies. The typical semantics for AICs is declarative, and
thus suggests no algorithms to compute repairs.

In this article, we show how AICs may be used directly to repair inconsistent databases in an
efficient way. First, we introduce notions of independence and precedence on AICs that allow
the search for repairs to be, respectively, parallelized and sequentialized. Afterwards, we present
an operational semantics and show that the different kinds of repairs for AICs can be effectively
computed as leaves of specific kinds of trees. We show that this operational semantics is complete
when existence of a repair is an NP-complete problem. Finally we discuss the applicability of
these techniques and results to integrity constraints in general.

KEYWORDS: active integrity constraints, operational semantics, database repair

1 Introduction

Maintaining consistency of knowledge bases is a major challenge in the face of growing

size and complexity of automated reasoning systems. In the particular field of relational

databases, this problem has been the focus of intensive research for over thirty years.

Redundancies in the data being stored give rise to semantic dependencies that have to

be enforced at all times. These dependencies are formalized as logical formulas that are

traditionally called integrity constraints (Abiteboul et al. 1995).
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An early step in systematizing the work on integrity constraints was the classification,

by Beeri and Vardi (1981), of the types of constraints most typically found. These au-

thors identified in particular three main types of such dependencies. A tuple-generating

dependency is a first-order formula ∀X.(ϕ(X) → ∃Y.ψ(X,Y )), where ϕ and ψ are con-

junctions of relation atoms. Intuitively, if the database satisfies ϕ(X), then it must also

satisfy ψ(X,Y ) for some Y – if this is not the case, a new such tuple has to be generated

and added to the database. The particular case where ψ is the empty conjunction of

atoms yields negative constraints ∀X. (ϕ(X)→ ⊥), which simply state that ϕ(X) can

never hold. An equality-generating dependency has the form ∀X.(ϕ(X) → (xi = xj)),

where xi, xj ∈ X. Although logically this fomula is a particular case of tuple-generating

dependencies, its meaning is slightly different, as it requires identifying two objects in

the database. A more comprehensive overview of different classes of integrity constraints

used in practice was given by Thalheim (1991).

As the intuition given above suggests, whenever an integrity constraint is violated, the

database must be altered in order to regain consistency. Traditionally, there are three

types of update actions that can be used for this purpose (Abiteboul 1988): insertion

of new facts, deletion of existing facts, and modification of tuples. A set of update ac-

tions that restores consistency of the database is called a repair. Intuitively, one can

compute repairs by reading integrity constraints as rules that suggest applicable update

actions (Abiteboul 1988). Throughout the years, several algorithms for computing re-

pairs of inconsistent databases have been proposed and studied, focusing on the different

ways integrity constraints are specified and on the different types of databases under

consideration (Kakas and Mancarella 1990; Marek and Truszczynski 1995; Mayol and

Teniente 1999b; Naqvi and Krishnamurthy 1988; Przymusinski and Turner 1997). This

multitude of approaches is not an accident: deciding whether an inconsistent database

can be repaired is typically a ΠP
2 - (or co-ΣP2 -) complete problem, and there is no reason

to believe in the existence of general-purpose algorithms for this problem, but one should

rather focus on developing specific algorithms for particular interesting cases (Eiter and

Gottlob 1992).

A particularly successful algorithmic approach uses event-condition-action rules (Te-

niente and Olivé 1995; Widom and Ceri 1996), where actions are triggered by specific

events, for which a procedural semantics has been defined. This approach is widely used

in practice in database management systems in the form of active rules. However, the lack

of declarative semantics for event-condition-action rules makes it difficult to understand

their joint behaviour when several rules act together and to evaluate, in a principled way,

the rule-processing algorithms.

Active integrity constraints (AICs) were introduced by Flesca et al. (2004) to address

this issue. They are similar to event-condition-action rules in that they encode both an

integrity constraint and preferred update actions to be performed whenever the former is

violated, but their semantics, as given by Caroprese and Truszczyński (2011), is declara-

tive. This semantics defines several interesting classes of repairs, and allows for an elegant

theoretical understanding of their interactions. Although AICs are not able to express the

plethora of integrity constraints defined in the literature, they are still expressive enough

for most practical applications. In particular, they can capture tuple-generating depen-

dencies, negative constraints, equality-generating dependencies, and, more generally, any

integrity constraint that can be written in denial clausal form.
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The declarative semantics of AICs inherently enforces two properties that are generally

accepted as desirable of repairs: minimality of change (Chomicki 2007; Eiter and Gottlob

1992; Winslett 1990) – one should change as little as possible – and the common sense law

of inertia (see e.g. Przymusinski and Turner 1997) – one should only change something

if there is a reason for it. Even with these restrictions, there are typically many possible

repairs for a given inconsistent database, and it is usually assumed that some human

interaction will be required to choose the “best” possible repair (Teniente and Olivé 1995).

The different classes of repairs defined in the semantics for AICs help in establishing a

“preference” hierarchy between repairs that can be used to help with this task (Caroprese

and Truszczyński 2011).

The major drawback of AICs is their exclusively declarative semantics, which hinders

the computation of repairs and, thus, their use in practice. In this work, we endow AICs

with an equivalent operational semantics that computes the same classes of repairs for

inconsistent databases. We develop algorithms to compute the different classes of repairs,

and show that these algorithms have optimal complexity. All algorithms have been im-

plemented in a proof-of-concept prototype for repairing SQL-based relational databases,

described in (Cruz-Filipe et al. 2016). This work also establishes the foundation for a

generalization of AICs to general-purpose knowledge bases (Cruz-Filipe et al. 2016).

Publication history. The propositional versions of the results in this article have been

published in conferences as (Cruz-Filipe et al. 2013) and (Cruz-Filipe 2014). The dis-

cussion of the general case is novel, and required adapting the proofs of most results. A

proof-of-concept tool implementing the algorithms described herein has been developed

and is described in (Cruz-Filipe et al. 2016).

Contribution. This article departs from the previous publications by generalizing the

results from (Cruz-Filipe et al. 2013; Cruz-Filipe 2014) to the full first-order language of

AICs, addressing the new problems that arise in this more expressive context.

The original definitions of AICs, due to Flesca et al. (2004) are set in a realistic

database scenario, in the sense that they are built upon a first-order language. However,

later work on this topic, namely dealing with the semantics – the classes of founded and

justified repairs – focused on a simpler scenario, where the underlying logic is proposi-

tional (Caroprese and Truszczyński 2011). In this work, we again consider a first-order

signature, and we address the following two problems.

• Can we split a set of AICs into several components that can be processed indepen-

dently (in parallel or at least sequentially)?

• Can we compute founded or justified repairs directly using the language of AICs and

the database? Previous work by Caroprese and Truszczyński (2011) showed that

such repairs could be computed as semantics of suitably defined revision programs,

but did not discuss how to compute them directly.

In the propositional setting, we gave positive answers to both these questions in earlier

work (Cruz-Filipe et al. 2013; Cruz-Filipe 2014). However, the constructions we proposed

transfer to the first-order case only partially.

In what concerns splitting a set of AICs into independent sets, a direct translation of

previous work would require explicitly generating all closed instances of every constraint,
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which is unrealistic in practice. We therefore introduce heuristics and sufficient conditions

to compute approximate partitions of a set of AICs in an efficient way.

Regarding the second problem, we earlier introduced tree algorithms for computing

different types of repairs directly in the propositional scenario; by restricting the con-

struction of descendant nodes in particular ways, we showed that we obtained trees that

produced specific kinds of repairs. Though these tree algorithms can be straightforwardly

adapted to a realistic database setting, their complexity changes due to the presence of

variables in rules.

Some of these results also apply in the setting of general integrity constraints, thereby

extending previous work on algorithms for regaining database consistency. We point these

out at the end of each section.

Structure The structure of this article is as follows. Section 2 introduces the framework

of AICs. Sections 3 and 4 introduce the hierarchization and stratification mechanisms

that allow repairs to be computed modularly. Section 5 introduces the operational se-

mantics for AICs, as well as a new type of repair motivated by the analysis of this

semantics. Section 6 discusses our results, reviews some further related work, and shortly

presents some extensions and generalizations of our contributions. Section 7 summarizes

the achievements described in this paper.

2 Active integrity constraints

Active integrity constraints (AICs) were first proposed by Flesca et al. (2004), and their

declarative semantics – founded and justified (weak) repairs, defined below – was studied

by Caroprese et al. (2006) and Caroprese and Truszczyński (2011), together with the

connection with revision programming. In particular, founded/justified repairs can be

computed as answer sets of particular revision programs. Although this connection was

only studied in a propositional context, AICs were introduced in the more general setting

of first-order logic, and the current work brings the discussion again to this context. In

particular, all examples throughout the paper are truly first-order, consisting of univer-

sally quantified integrity constraints, unlike the propositional examples found in previous

work.

We assume fixed a function-free first-order typed1 signature for integrity constraints,

consisting of a set T of types, a T -indexed set of sets of constants C = {CT | T ∈ T }, a

T -indexed set of sets of variables V = {VT | T ∈ T }, a set of base predicate symbols P,

and a set of built-in predicates R. The base predicates are the ones used in the database;

the built-in predicates are typically comparison operators (e.g. equality), used only to

specify constraints that the data must satisfy (Flesca et al. 2004). A constant c ∈ CT (or

a variable x ∈ VT ) is said to have type T . Each predicate in P ∪R has an arity, defined

as a finite sequence of elements of T ∪{>}. In this context, the types are simply “names”

for the sets of constants, and > stands for “any type”.

1 The choice of a typed signature is natural in the context of relational databases, where relations have
clearly defined domains. The use of types eliminates spurious instantiations of variables that make no
sense in practice, but whose presence introduces additional complexity in the theoretical analysis of
integrity constraints. This very simple typing mechanism does not achieve the full power of a relational
signature.
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A constant or variable is a term. If p ∈ P ∪R is a predicate of arity T1, . . . , Tn and, for

1 ≤ i ≤ n, ti is a term such that (i) ti has type Ti 6= > or (ii) Ti = >, then p(t1, . . . , tn)

is an atom. A literal is an atom or its negation, and it is a base literal if it is built from a

base predicate symbol, and a built-in literal otherwise. In this work we assume equality

(=) to be a built-in predicate.

A database is a finite set of ground base atoms. This purely logical view of a database

as a set of formulas, abstracting from its structure, suffices for the discussion of integrity

constraints.

Every negative constraint (as defined by Beeri and Vardi (1981), see Introduction) can

be written in clausal (or rule) form as

A1, . . . , An,¬B1, . . . ,¬Bm ⊃

with the proviso that every variable occurs at least once in A1, . . . , An, or, more generally,

as L1, . . . , Lp ⊃ with the proviso that: if Lj is a negated literal, then all variables in Lj
occur at least once in L1, . . . , Lj−1, for 1 ≤ j ≤ p. If the set fv(r) of the free variables in

rule r is empty, then r is said to be ground.

An instantiation of a rule r is a function θ : fv(r)→ C such that x and θ(x) have the

same type for every x. The instance rθ of r by θ is the ground rule obtained by replacing

each x ∈ fv(r) by θ(x).

Entailment from a database I is defined for ground base literals as (i) I |= A if A ∈ I
and (ii) I |= ¬B if B 6∈ I. Entailment of built-in literals is independent of I and has to

be defined for each predicate symbol, e.g. I |= (a = b) iff a and b are the same (syntactic)

constant. If r is a ground rule, then I satisfies r, I |= r, if I 6|= L for some literal L

occurring in r. In general, I |= r if I |= (rθ) for every instance rθ of r. Finally, if η is a

set of integrity constraints, then I |= η if I |= r for every r ∈ η.

Whenever I 6|= η, the problem of database repair is to determine how to transform I
into I ′ such that I ′ |= η by means of update actions. An update action is +A or −A,

where A is a base atom; if A is ground, this action indicates that A should be added

(resp. removed) from I. The correspondence between literals and update actions is made

precise by means of two operators: if α is an action, then lit(α) is the literal corresponding

to α, defined as lit(+A) = A and lit(−A) = ¬A; if L is a base literal, then ua(L) is the

update action corresponding to L, defined as ua(A) = +A and ua(¬A) = −A. The dual

of a literal or an update action is defined as AD = ¬A, (¬A)D = A, +AD = −A and

−AD = +A. These operators extend to sets in the natural way.

There are typically many possible sets of ground actions that will make an inconsistent

database consistent. Historically, there are a number of criteria that suggest that some

of these sets may be better than others. The formalism of active integrity constraints,

on the other hand, provides an explicit means to express preferences in each individual

rule. The definitions we give here are slightly simplified from the original ones (Flesca

et al. 2004) in view of the discussion before Theorem 3 in (Caroprese et al. 2009).

Definition 1 An active integrity constraint (AIC) is a rule r of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

such that L1, . . . , Lm ⊃ is an integrity constraint and αj are update actions whose
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dual literals occur in {L1, . . . , Lm}, i.e. {α1, . . . , αk}D ⊆ {L1, . . . , Lm}. The body of r,

body (r), is L1, . . . , Lm, and the head of r, head (r), is α1 | . . . | αk.

The set lit(head (r))D contains the updatable literals of r. The non-updatable literals of

r form the set nup(r) = body (r)\ lit (head (r))
D

. Any built-in literals occuring in body (r)

are necessarily non-updatable.

When I 6|= r, we say that r is applicable in I. This reflects the “operational” view of

AICs: if the body of a rule holds, then some action must be taken to guarantee that the

corresponding integrity constraint becomes satisfied. AICs generalize (normal) integrity

constraints, as these are equivalent to AICs with maximal head, where all allowed actions

are present.

Given a set of ground update actions U , the result of updating database I by U ,

denoted I ◦ U , is

(I ∪ {A | +A ∈ U}) \ {A | −A ∈ U} .

In order for this operation to be unambiguously defined, U is required to be consistent,

i.e. not to contain any dual atoms (although it may contain +p(t) and −p(t′) for different

sequences of terms t and t′).

Definition 2 Let I be a database, η be a set of AICs, and U be a consistent set of

ground update actions.

• An update action α is founded w.r.t. 〈I, η〉 and U if there is r ∈ η and an instantiation

θ such that: (i) α ∈ head (rθ), (ii) I ◦ U |= L for every L ∈ body (rθ) \
{

lit(α)D
}

.

• U is founded w.r.t. 〈I, η〉 if all of its elements are founded w.r.t. 〈I, η〉 and U .

• U is a founded weak repair for 〈I, η〉 if I ◦ U |= η and U is founded w.r.t. 〈I, η〉. U is a

founded repair if furthermore there is no set U ′ ( U such that I ◦ U ′ |= η.

These notions embody two of the main principles of database repair discussed in the

Introduction: minimality of change(Chomicki 2007; Winslett 1990) and the common-

sense law of inertia (Przymusinski and Turner 1997). A founded repair is guaranteed to

make the smallest possible amount of changes to the database (minimimality of change);

a founded set of update actions only contains changes that are motivated by the actual

violations of the integrity constraints (common-sense law of inertia).

Just as AICs generalize traditional integrity constraints, the notion of founded (weak)

repair coincides with the usual notion of (weak) repair for these.

In general, the problem of existence of a founded weak repair for 〈I, η〉 is NP -complete,

whereas the problem of existence of a founded repair is ΣP2 -complete (Caroprese and

Truszczyński 2011). If η contains only normal AICs (AICs whose head contains at most

one action), then both problems are NP -complete.

Example 1 The running example for this article considers the following setting: a com-

pany’s database keeps information about personnel, such as salaries, professional cate-

gory, and insurances.

The following are examples of active integrity constraints specifying the company’s
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policies.

employee(X),¬hasInsurance(X, ′basic′) ⊃ +hasInsurance(X, ′basic′) (r1)

employee(X), salary(X, ′0′),¬onLeave(X) ⊃ +onLeave(X) (r2)

employee(X), onLeave(X),¬salary(X, ′0′) ⊃ +salary(X, ′0′) (r3)

salary(X,Y ), salary(X,Z), Y 6= Z ⊃ −salary(X,Y ) (r4)

Rule r1 states that every employee must have a valid ′basic′ insurance; rules r2 and r3
state that the only employees who receive no salary are those on extended leave; and

rule r4 states that salary is a functional relation. The premise employee(X) in the first

three rules is included so that the database is not restricted to current employees: for

example, the company can keep a track of its former employees (who will typically be

uninsured), or have interns that are not formally employees (and may be working pro

bono).

The actions in the heads of the rules express preferences regarding how inconsistencies

should be fixed. It is not reasonable, for example, to solve them by removing employees

from the database. On the other hand, in rules r2 and r3, we choose to assume that it is

more likely for information to be missing than for there to be too much information in

the database.

Note that we do not need to include −salary(X,Z) in head (r4), since it can be obtained

by interchanging the values for Y and Z in any of its applicable instantiations.

Suppose that the database I contained the information

{employee( ′john′), salary( ′john′, ′500′), onLeave( ′john′)} ,

which contradicts rules r1 and r2. To become consistent w.r.t. rule r1, we are required to

add hasInsurance( ′john′, ′basic′). Likewise, to regain consistency w.r.t. rule r2, we need

to add salary( ′john′, ′0′). This change now breaks rule r4, which must then be repaired

by removing salary( ′john′, ′500′). One thus arrives at the following founded repair for I.

U1 = {+hasInsurance( ′john′, ′basic′),+salary( ′john′, ′0′),−salary( ′john′, ′500′)}

In order to check that this is indeed a founded set, note that that its actions are founded

respectively by rules r1, r2 and r4. Removing either of them leaves the database incon-

sistent, so this set is also minimal.

If we changed head (r3) to −onLeave(X) | +salary(X, ′0′), there would be two possible

founded repairs, namely U1 above and

U2 = {+hasInsurance( ′john′, ′basic′),−onLeave( ′john′)}

�

It has been observed by Caroprese and Truszczyński (2011) that founded repairs allow

the support for the actions in a founded repair to be circular. The next example is an

illustration of this situation.
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Example 2 Consider the following AICs.

category(X, ′junior′),workTime(X,Y ), Y < 36, onLeave(X) ⊃ −onLeave(X) (r5)

¬category(X, ′junior′),workDept(X, ′critical′), onLeave(X) ⊃ −onLeave(X) (r6)

¬onLeave(X), category(X, ′junior′), unsupervised(X) ⊃ −category(X, ′junior′)

(r7)

Rule r5 says that junior employees can only go on leave after being employed for at least

36 months. Rule r6 says that non-junior staff on the critical department cannot go on

leave (at all). Rule r7 states that unsupervised employees may not be juniors, unless they

are on leave.

Suppose that the database is as follows.

I = {category( ′mike′, ′junior′), onLeave( ′mike′),workTime( ′mike′, ′18′),

workDept( ′mike′, ′critical′), unsupervised( ′mike′)}

Rule r5 is not satisfied; I can be made consistent by applying the repair

U = {−onLeave( ′mike′)︸ ︷︷ ︸
α

,−category( ′mike′, ′junior′)︸ ︷︷ ︸
β

} ,

which is founded: letting θ = {X/ ′mike′}, if U ′ = U \ {α}, then I ◦ U ′ 6|= r6θ, and

α ∈ head (r6θ); similarly, if U ′′ = U \ {β}, then I ◦ U ′′ 6|= r7θ, and β ∈ head (r7θ). �

Caroprese and Truszczyński (2011) considered such circular dependencies to be prob-

lematic, and introduced justified repairs in order to avoid them.

Definition 3 Let I be a database and η a set of AICs. A set U of update actions is

closed under a ground rule r if nup(r) ⊆ lit(U) implies head (r)∩ U 6= ∅, and U is closed

under η if it is closed under every instance of every rule in η.

An update action +A (respectively, −A) is a no-effect action w.r.t. (I, I ◦ U) if A ∈
I ∩ (I ◦ U) (respectively A /∈ I ∪ (I ◦ U)) – the action does not change either I or I ◦ U .

The set of all no-effect actions with respect to (I, I ◦ U) is denoted by ne (I, I ◦ U).

A consistent set U of update actions is a justified action set for 〈I, η〉 if U is a minimal

set of update actions containing ne (I, I ◦ U) and closed under η.

A weak repair U for 〈I, η〉 is a justified weak repair if (i) U ∩ ne (I, I ◦ U) = ∅ and

(ii) U ∪ ne (I, I ◦ U) is a justified action set.

All justified weak repairs are founded, but Caroprese and Truszczyński (2011) claim that

they successfully avoid circularity of support. Section 5 gives an operational characteri-

zation of founded and justified repairs.

In spite of the minimality required of justified weak repairs, these may contain a

justified repair as a proper subset, since the minimality involved in this definition is

within a different universe.

Example 3 The repair U1 from Example 1 is a justified weak repair: the set of no-effect

actions w.r.t. I and U1 contains employee( ′john′) and salary( ′john′, ′500′) among others.

The only instances of rules that satisfy the condition nup(rθ) ⊆ lit(U1 ∪ ne (I, I ◦ U1))

are r1θ and r3θ, and U1 contains precisely the actions in the heads of those rules,
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so U1 ∪ ne (I, I ◦ U1) is a justified action set. For minimality, note that nup(rθ) ⊆
lit(ne (I, I ◦ U1)) for the same two rules, so no proper subset of U1 can yield a justi-

fied action set when joined with ne (I, I ◦ U1).

Consider now the repair U from Example 2. Here, the set ne (I, I ◦ U) contains the facts

workTime( ′mike′, ′18′), workDept( ′mike′, critical) and unsupervised( ′mike′). Since nup(rθ) ⊆
lit(ne (I, I ◦ U)) never holds, the set ne (I, I ◦ U) is a justified action set properly con-

tained in U ∪ ne (I, I ◦ U), and U is not a justified repair. �

The following example shows a different case of circularity of support.

Example 4 The company also has a security department, whose non-administrative

staff is required to have both a security certification and a special risk insurance. These

two qualifications are simultaneous: if an employee has the certification, then the company

automatically subscribes the special insurance, and it will never book that insurance for

an uncertified employee.

These employees are also eligible for a yearly prize specific to employees with high-risk

duties. The rules below encode these restrictions.

workDept(X, ′security′),¬isCertified(X, ′security′), hasInsurance(X, ′risk′)

⊃ +isCertified(X, ′security′) (r8)

workDept(X, ′security′),isCertified(X, ′security′),¬hasInsurance(X, ′risk′)

⊃ +hasInsurance(X, ′risk′) (r9)

workDept(X, ′security′),currYearPrize(X, ′risk′),¬hasInsurance(X, ′risk′)

⊃ −currYearPrize(X, ′risk′) (r10)

Suppose that the database contains the following information about an employee Jack.

DB = {employee( ′jack′),workDept( ′jack′, ′security′), currYearPrize( ′jack′, ′risk′)}

There is a simple way to repair the database, namely by applying

U1 = {−currYearPrize( ′jack′, ′risk′)} ,

which is founded because of rule r10. There is however another repair, namely

U2 = {+isCertified( ′jack′, ′security′),+hasInsurance( ′jack′, ′risk′)} ,

and this is again a founded repair that is not justified, as in Example 2. Unlike that

example, however, there is no clear way to derive this repair by analyzing which rules

are not satisfied. �

This example illustrates that a repair can be founded and still violate the common

sense law of inertia, by including subsets of actions that are not motivated by either the

database or other repair actions.

In Section 5.3 we will introduce a new notion of repair that distinguishes between the

two kinds of circularity in Examples 2 and 4.

Existence of justified weak repairs or justified repairs for 〈I, η〉 is again a ΣP2 -complete

problem (Caroprese and Truszczyński 2011) in the general case, and NP -complete if η

contains only normal AICs.

The major problem with this framework lies in the high complexity of deciding whether
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an inconsistent database can be repaired, and in computing an adequate repair; therefore,

techniques to lower the size of the problem are extremely useful in practice, and Sections 3

and 4 discuss how a set of AICs η can be divided into smaller sets such that repairs can

be computed separately for each of those sets and combined in polynomial time.

Expressing tuple-generating dependencies. The notion of AIC presented above can ex-

press both equality-generating constraints and universal constraints. However, general

tuple-generating dependencies (TGDs) are not directly translatable in this framework,

since the possible update actions would require introduction of new variables.

It is possible to extend the language of AICs with the capability to express TGDs by

allowing quantified literals of the form ∀Y.(¬A(X,Y )) in the body. Similarly to negated

atoms, it is fundamental to require that all free variables in a quantified literal appear

earlier in the clause, so that they are instantiated. This is sufficient to guarantee that the

evaluation of a quantified literal is no more complex than that of a regular literal, since

it still corresponds to a simple query to the database.

The simplest way to treat quantified literals is to see them as control conditions, in

the same way as built-in predicates were handled: there are no update actions corre-

sponding to quantified literals. However, it is also possible to allow default repairs: any

update action of the form +A(X, t) actually serves as a repair for the generalized literal

∀Y.(¬A(X,Y )).

This type of default action is quite common: in our setting, it could be used e.g. to

express that any junior employee without a supervisor is by default supervised by Alice.

category(X, ′junior′),∀W.(¬hasSupervisor(X,W )) ⊃ +hasSupervisor(X, ′alice′)

It is straightforward to generalize the notion of dual action to a binary relation such

that the results in this paper still hold.

A more general option would be to allow actions with unnamed individuals, in the style

of (Caroprese et al. 2012). However, this quickly leads to problems with decidability, and

requires implementation of chase algorithms to keep repair trees finite. The restricted

version proposed is applicable in sufficiently many contexts to make this framework

interesting in practice; however, for simplicity quantified literals will not be used in the

remainder of the paper.

3 Independence and parallelization

In practical settings, the number of integrity constraints imposed on a given database

can be quite large, but only a few of them will be relevant to repair each particular

inconsistent database. This section discusses how a set η of (general) ICs in clausal form

can be partitioned in distinct sets η1, . . . , ηn such that the search for repairs for a database

I and η can be parallelized among the ηi. For AICs, this notion of independence can be

made stronger, so that more (smaller) independent sets will appear.

3.1 Independence of integrity constraints

Two ground integrity constraints are independent if they do not share base atoms among

their literals, so that satisfaction of one does not affect satisfaction of the other.
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Recall that base atoms are those built from the database’s predicates (the set P), and

they are the only ones that can be changed by repair actions. Case in point, the following

two AICs should be independent because ±(t1 = t2) is not a valid update action, since

equality is a built-in predicate.

salary(X,Y ), salary(X,Z), Y 6= Z ⊃
workTime(X,Y ),workTime(X,Z), Y 6= Z ⊃

Definition 4

1. The atom underlying a literal L is |L|, defined as |a| = |¬a| = a.

2. Let r1 and r2 be two ground ICs, where r1 is L1, . . . , Ln ⊃ and r2 is M1, . . . ,Mm ⊃ .

Then r1 and r2 are independent, r1 ⊥ r2, if {|Li| | 1 ≤ i ≤ n} ∩ {|Mj | | 1 ≤ j ≤ m} does

not contain any base literals.

3. Two (not necessarily ground) ICs r1 and r2 are independent, r1 ⊥ r2, if r1θ1 ⊥ r2θ2 for

every instantiation r1θ1 and r2θ2 of r1 and r2.

4. Two sets of ICs η1 and η2 are independent, η1 ⊥ η2, if r ⊥ s whenever r ∈ η1 and s ∈ η2.

In particular, if the bodies of r1 and r2 share no base predicate symbols, then r1 ⊥
r2. However, this condition is not necessary: the following two rules are independent,

although they both use the base predicate symbol workDept.

intern(X),workDept(X, ′security′) ⊃
employee(X),workDept(X, ′admin′),¬category(X, ′director′) ⊃

Independence only depends on the rules. Thus, dividing a set of ICs into independent

subsets may require some computation time, but it does not have to be repeated when

the database changes. This property is expressed by Theorem 1 below.

Definition 5 A partition of a set of integrity constraints η is a set ~η = {η1, . . . , ηn} such

that η = ∪ni=1ηi and ηi ⊥ ηj for i 6= j.

Theorem 1 Let ~η be a partition of η.

1. If U is a (weak) repair for 〈I, η〉, then there exist sets U1, . . . ,Un with U = ∪ni=1Ui such

that Ui is a (weak) repair for 〈I, ηi〉.
2. If Ui is a (weak) repair for 〈I, ηi〉 for i = 1, . . . , n and U = ∪ni=1Ui, then U is a (weak)

repair for 〈I, η〉.

The proof of this result is given in Appendix A.1. Its practical significance is a par-

allelization algorithm: if η = η1 ∪ η2 with η1 ⊥ η2, then (weak) repairs for 〈I, η〉 can

be expressed as unions of (weak) repairs for 〈I, η1〉 and 〈I, η2〉, so one can search for

these instead and combine them at the end; the theorem guarantees that no spurious

results are obtained. None of these results speak about how (weak) repairs are computed.

Therefore, they can be applied together with any existing techniques to find repairs of

inconsistent databases (see e.g. (Mayol and Teniente 1999b)).
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3.2 Computing independent sets of ICs

In order to benefit as much as possible from Theorem 1 in practice, it is useful to be able

to divide η into as many independent sets as possible. To achieve this, we focus on the

negation of the independence relation.

Definition 6 Two AICs r1 and r2 are dependent, r1 � r2, if there exist instances r1θ1
and r2θ2 of r1 and r2 and literals L1 ∈ body (r1θ1) and L2 ∈ body (r2θ2) such that

|L1| = |L2|.

Lemma 1 Let ~η be a partition of η. Then ηi is closed under � for every i, i.e. for every

rule r, r′ ∈ η, if r ∈ ηi and r � r′, then r′ ∈ ηi.

Proof

Let r ∈ ηi and r′ ∈ η be such that r � r′. Since ~η is a partition of η, r′ ∈ ηk for some k.

But i 6= k would contradict ηi ⊥ ηk, hence i = k. Therefore ηi is closed under �.

This relation is reflexive and symmetric, so its transitive closure is an equivalence

relation, which we represented by 6⊥ in view of the next result.

Theorem 2 The quotient set η/6⊥ is a partition of η. Furthermore, for any other partition

~η′ of η, if η′i ∈ ~η′, there exists ηj ∈ η/6⊥ such that ηj ⊆ η′i.

Proof

Let η/6⊥ = {η1, . . . , ηn}. Then
⋃n
i=1 ηi = η and ηi ⊥ ηj by definition of quotient set. Given

η′i as in the statement of the theorem and choosing r ∈ η′i, it follows that [r] ⊆ η′i by

Lemma 1 and the fact that [r] is the minimal set containing r and closed under �.

Unlike in the propositional case (Cruz-Filipe 2014), the direct algorithm for computing
η/6⊥ is computationally heavy because it needs to consider all possible instances of all rules.

Theorem 3 Let η be a set of closed ICs such that every rule in η contains at most k

literals in its body. Then η/6⊥ can be computed in O (k × |η|).

Proof

Consider the undirected graph whose nodes are both the rules in η and the atoms oc-

curring in those rules, and where there is an edge between an atom and a rule if that

atom occurs in that rule. This graph has at most k × |η| nodes and can be constructed

in O (k × |η|) time; it is a well-known fact that its connected components can again be

computed in O (k × |η|) time, and the rules in each component coincide precisely with

the equivalence classes in η/6⊥.

The problem is that, for a general set of ICs η, this complexity bound is polynomial

on the number of its grounded instances – which are typically exponential in η. On the

otherhand, this complexity bound is independent of the underlying database, which is

useful since the database typically changes more often than η. Furthermore, when new

rules are added to η one can reuse the existing partition for η as a starting point, rather
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than computing η/6⊥. We also observe that k typically does not grow with η and is usually

small, so essentially this complexity bound depends only on the size of η.

The criterium presented after Definition 4 – r1 ⊥ r2 if r1 and r2 share no base predicate

symbols – does not necessarily yield an optimal partition of η. However, it is much

more efficient to implement, since it does not require grounding η. Our proof-of-concept

prototype tool uses only this method to split a set of ICs into independent sets, already

obtaining substantial improvements in running times (see (Cruz-Filipe et al. 2016) and

Section 6).

Any algorithm for computing (weak) repairs for a database I w.r.t. a set of integrity

constraints η can then be parallelized in the following way.

1. Find a partition ~η of η.

2. For each ηi ∈ ~η, find the weak repairs of 〈I, ηi〉.
3. Return all U = ∪iUi where each Ui is a weak repair for 〈I, ηi〉.

3.3 Independence of active integrity constraints

All the results above can also be applied to active integrity constraints. However, the

presence of update actions in the head of a rule means that only those actions should be

considered when updating the database. This leads to a stronger notion of independence.

Definition 7

1. Let r1 and r2 be ground AICs. Then r1 affects r2, r1 � r2, if there are α ∈ head (r1) and

L ∈ body (r2) such that |lit(α)| = |L|.
2. Let r1 and r2 be (not necessarily ground) AICs. Then r1 � r2 if r1θ1 � r2θ2 for some

instances r1θ1 and r2θ2 of r1 and r2.

Intuitively, r1 affects r2 if applying r1 may affect applicability of r2. In particular, r1 � r2
implies r1 � r2, but not conversely: in fact, � induces a stronger independence relation.

Definition 8 Two sets of AICs η1 and η2 are strongly independent, η1 |= η2, if r1 6� r2
and r2 6� r1 for every r1 ∈ η1 and r2 ∈ η2.

In particular, if the actions in the heads of rules of ηi cannot add or remove atoms that

underlie literals in the body of rules of η3−i, then η1 |= η2. Thus, η1 ⊥ η2 implies η1 |= η2,

but not conversely.

Example 5 Combining the rules in Examples 1 and 2, the sets {r1} and {r2, r3, r4, r5, r6, r7}
are independent, although rules r1, r2 and r3 all include employee(X) in their body (and

so, for any θ, e.g. r1θ and r2θ both include employee(θ(X)) in their body). �

The algorithm in the proof of Theorem 2 can be readily adapted for AICs.

In general, it is not the case that repairs for 〈I, η〉 can be divided in repairs for 〈I, η1〉
and for 〈I, η2〉 when η = η1 ∪ η2 with η1 |= η2; however, in the framework of AICs the

focus is typically not on arbitrary repairs. Indeed, item 1 on Theorem 1 applies directly

to sets U1 and U2 such that every update action in Ui occurs in the head of an instance of

a rule in ηi, since this implies the hypothesis. Conversely, if U is a (weak) repair for 〈I, η〉
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containing only actions in the head of instances of rules in η, then the proof of item 2

also goes through. This variant of Theorem 1 is the one that it is natural to consider,

since the specific semantics for AICs only consider actions in heads of rules.

Furthermore, strong independence also fits in nicely with the concepts of founded and

justified (weak) repairs. Given a set of update actions U and a set of AICs η, define the

restriction of U to η to be

Uη = {α ∈ U | α ∈ head (rθ) for some instance rθ of r ∈ η} .

Theorem 4 Let I be a database, η1 and η2 be sets of AICs with η1 |= η2, and η = η1∪η2.

Then:

1. If U1 and U2 are founded (weak) repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then U1 ∪U2
is a founded (weak) repair for 〈I, η〉.

2. If U1 and U2 are justified (weak) repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then U1 ∪U2
is a justified (weak) repair for 〈I, η〉.

3. If U is a founded (weak) repair for 〈I, η〉, then each Uηi is a founded (weak) repair for

〈I, ηi〉.
4. If U is a justified (weak) repair for 〈I, η〉, then each Uηi is a justified (weak) repair for

〈I, ηi〉.

The proof of this result is given in Appendix A.2. The practical significance of this re-

sult is that the parallel computation of repairs of databases w.r.t. a given set of integrity

constraints extends to the case of founded or justified repairs w.r.t. a set of AICs. Fur-

thermore, the parallelization algorithm at the end of the previous section can be applied

to strong independence. Note that Theorem 4 can be generalized to partitions (w.r.t.

strong independence), similar to Theorem 1.

4 Stratification of active integrity constraints

Strong independence can also be used to split a set of AICs in several sets such that

repairs can be computed incrementally.

Recall that an AIC r1 affects another AIC r2, r1 � r2, if there is an action in the head

of an instance of r1 whose underlying atom occurs (possibly negated) in the body of an

instance of r2. For a given η, let �η be the transitive closure of � in η, and ≈η be the

equivalence relation induced by �, i.e. r1 ≈η r2 iff r1 �η r2 and r2 �η r1. Throughout

the remainder of this section, the set η is fixed and we omit the subscripts in � and ≈.

Definition 9 Let η1, η2 ⊆ η be closed under ≈. Then η1 precedes η2, written η1 ≺ η2, if

(i) r1 � r2 for some r1 ∈ η1 and r2 ∈ η2, but (ii) r2 6� r1 for every r1 ∈ η1 and r2 ∈ η2.

In particular, if η1 ≺ η2, then η1 and η2 must be disjoint.

Example 6 In the setting of Example 4, the set {r8, r9, r10} can be divided into two

subsets η1 = {r8, r9} and η2 = {r10} with η1 ≺ η2. �

It is well-known that 〈η/≈,�〉 is a partial order, where [r1]≈ � [r2]≈ iff r1 � r2. Sets

that are closed under ≈ can be written as a union of elements of η/≈; in the particular

case that η1, η2 ∈ η/≈, then η1 ≺ η2 iff η1 � η2 and η1 6= η2.
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The construction in Theorem 2 can again be readily adapted to compute η/≈, using

directed graphs and strongly connected components.

The term precedes stems from the fact that η1 ≺ η2 implies that different types of

repairs for 〈I, η1 ∪ η2〉 can be computed by first considering only the AICs in η1, and

afterwards considering the repairs in η2. This is formally stated in the following two

theorems.

Theorem 5 Let η1, η2 ⊆ η with η1 ≺ η2, I be a database and U be a set of update

actions such that all actions in U occur in the head of some instance of a rule in η1 ∪ η2,

and take U1 = Uη1 and U2 = Uη2 .

1. If U is a weak repair for 〈I, η1 ∪ η2〉, then U1 and U2 are weak repairs for 〈I, η1〉 and

〈I ◦ U1, η2〉, respectively.

2. If U is a founded weak repair for 〈I, η〉, then U1 and U2 are founded weak repairs for

〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

3. If U is a justified weak repair for 〈I, η〉, then U1 and U2 are justified weak repairs for

〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

The proof of Theorem 5 is given in Appendix A.3. The analogous result for repairs

does not hold in this setting: it may happen that U is a repair, but U1 is a weak repair,

since there may be a repair for 〈I, η1〉 such that there is no (weak) repair for 〈I ◦U1, η2〉.

Example 7 Consider the setting where we have rules r6 and r7 from Example 2, to-

gether with the two new rules r11 and r12, specifying supervisor policy within the critical

department.

¬category(X, ′junior′),workDept(X, ′critical′), onLeave(X) ⊃ −onLeave(X) (r6)

¬onLeave(X), category(X, ′junior′), unsupervised(X) ⊃ −category(X, ′junior′) (r7)

workDept(X, ′critical′), category(X, ′junior′),

¬hasSupervisor(X, ′ellen′) ⊃ +hasSupervisor(X, ′ellen′) (r11)

onLeave(X), hasSupervisor(X,W ) ⊃ −hasSupervisor(X,W ) (r12)

Taking η1 = {r6, r7} and η2 = {r11, r12}, one has η1 ≺ η2. Take

I = {unsupervised( ′ann′), category( ′ann′, ′junior′), onLeave( ′ann′),workDept( ′ann′, ′critical′)}

Then I is consistent w.r.t. η1, but the only founded repair for 〈I, η1 ∪ η2〉 is

U = {−onLeave( ′ann′),−category( ′ann′, ′junior′)}

which is not the union of ∅ with a repair for 〈I, η2〉. �

In the converse direction, the relationship between U , U1 and U2 also holds for repairs.

Theorem 6 Let η1, η2 ⊆ η with η1 ≺ η2, I be a database, and U1 and U2 be sets of

update actions such that all actions in Ui occur in the head of some instance of a rule in

ηi. Let U = U1 ∪ U2.

1. If U1 is a weak repair for 〈I, η1〉 and U2 is a weak repair for 〈I ◦U1, η2〉, then U is a weak

repair for 〈I, η1 ∪ η2〉.
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2. If U1 is a repair for 〈I, η1〉 and U2 is a repair for 〈I ◦ U1, η2〉, then U is a repair for

〈I, η1 ∪ η2〉.
3. If U1 is a founded (weak) repair for 〈I, η1〉 and U2 is a founded (weak) repair for 〈I◦U1, η2〉,

then U is a founded (weak) repair for 〈I, η1 ∪ η2〉.
4. If U1 is a justified (weak) repair for 〈I, η1〉 and U2 is a justified (weak) repair for 〈I◦U1, η2〉,

then U is a justified (weak) repair for 〈I, η1 ∪ η2〉.

The proof of Theorem 6 can be found in Appendix A.4.

Using Theorem 5, the search for (weak) repairs can be divided into smaller steps, whose

results can then be combined invoking Theorem 6. However, 〈η/≈,�〉 is in general not

a total order. Therefore, to obtain (weak) repairs for η, it is also necessary to be able

to combine weak repairs of sets that are not related via ≺; for example, if η1 ≺ η2 and

η1 ≺ η3, then the first step would be to search for a weak repair for 〈I, η1〉, and then

extend this to weak repairs for 〈I, η1 ∪ η2〉 and 〈I, η1 ∪ η3〉; but now these weak repairs

must be combined in a single one.

Consider a weak repair U for 〈I, η1 ∪ η2 ∪ η3〉. By Theorem 5, Uη1 is a weak repair for

〈I, η1〉 and Uη2∪η3 is a weak repair for 〈I ◦ η1, η2 ∪ η3〉. The key is that, in this situation,

η2 |= η3, so Theorem 1 and 4 also apply.

We illustrate the general technique by an example, which also explains why we need

to consider, in general, sets that are closed under ≈, rather than only elements of η/≈.

η4

η2

==

η3

aa

η1

aa ==

Example 8 Consider sets η1, . . . , η4 of AICs with precedence rela-

tion as summarized in the diagram on the right. In order to find e.g.

a founded weak repair for 〈I, η〉, where η =
⋃4
i=1 ηi, we can apply

the following sequence of steps:

1. find all founded weak repairs for 〈I, η1〉;
2. extend each such U to founded weak repairs for 〈I ◦ U , η2〉 and 〈I ◦ U , η3〉;
3. for each pair of weak repairs U2 for 〈I, η1∪η2〉 and U3 for 〈I, η1∪η3〉 such that U2 and U3

coincide on the actions from heads of rules in η1, find weak repairs for 〈I ◦ (U2 ∪U3), η4〉.

The last step relies on the fact that any weak repair U for 〈I, η〉 must contain a weak

repair U ′ for 〈I, η1∪η2∪η3〉, which can be split into a weak repair U1 for 〈I, η1〉 and weak

repairs U ′2 for 〈I ◦U1, η2〉 and U ′3 for 〈I ◦U1, η3〉. Defining U2 = U ′2∪U1 and U3 = U ′3∪U1,

it must be the case that U ′ = U1 ∪ U ′2 ∪ U ′3 = U2 ∪ U3.

The results in this section guarantee that this algorithm finds all founded weak repairs

for 〈I, η〉. �

The following is a general strategy for computing founded or justified weak repairs

for a database inconsistent w.r.t. a set η of AICs, assuming that η cannot be split into

strongly independent subsets.

1. Compute η/≈ (or an overapproximation of this partial order).

2. Find repairs for the minimal elements of η/≈.

3. For each non-minimal element ηj , find its repairs by (i) combining the repairs for

its predecessors, (ii) applying each result to I, with result I ′, and (iii) computing

repairs for 〈I ′, ηj〉 (as in Example 8).
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The only catch regards the situation depicted in Example 7: in step 3, whenever a

repair cannot be extended when moving upwards in ηi/≈, one must also consider weak

repairs extending that repair, since the end result may be a repair for the larger set.

Combining these results with those in the previous section, any algorithm to find

founded or justified (weak) repairs for an inconsistent database may be sped up by

first splitting the set of integrity constraints into strongly independent sets, and then

stratifying these components. See (Cruz-Filipe et al. 2016) for an implementation of

these algorithms and a discussion of their practical impact.

5 Finding repairs of inconsistent databases

We now look into a different question: how to compute repairs for a database I not

satisfying a set of integrity constraints η. The idea is simple: attempt to fix the database

by looking at each integrity constraint that is not being satisfied at a time. Of course,

this may lead to other integrity constraints not being satisfied, so the procedure must

be repeated until a repaired database is obtained. The first construction we presente is a

generic (not very efficient) algorithm applicable to any set of clausal integrity constraints,

while the later ones refine on this to obtain specific kinds of repairs for sets of active

integrity constraints.

Throughout this section, I will always be a database and η a finite set of (active)

integrity constraints. In practice, finiteness of η always holds, and it is relevant for some

theoretical properties discussed below.

5.1 Computing repairs from integrity constraints

As remarked before Theorem 3 in (Caroprese et al. 2009), every repair for a given set of

integrity constraints is contained in the set
⋃
r∈η{ua(L)D | L ∈ body (rθ) for some θ}.

This suggests the following way to compute them by constructing a tree.

Definition 10 The repair tree for 〈I, η〉, T〈I,η〉, is a tree where: nodes are sets of update

actions; each edge is labeled with an instance of a rule; the root is ∅; and for each

consistent node n and instance rθ of rule r ∈ η, if I ◦n 6|= rθ then for each L ∈ body (rθ)

the set n′ = n ∪
{

ua(L)D
}

is a child of n, with the edge from n to n′ labeled rθ.

The following example illustrates this construction. We use the following convention

on all repair trees: each node only indicates the update actions that are added to its

parent, so the whole set can be read by following the branch from the root to that node.

Example 9 In the setting of Example 1, the repair tree T〈I,η〉 is partially depicted

below, where θ = {X/ ′john′, Y/ ′0′, Z/ ′500′};2 for legibility, the arguments ′john′ and

2 Technically, one should also consider the substitution σ = {X/ ′john′, Y/ ′500′, Z/ ′0′}, as this yields a
different instance of r4; but for the purposes of building the tree the distinction is immaterial.
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′basic′ in the labels of the nodes are omitted.

∅r1θ

qq r1θ

uu
r3θ �� r3θ

**

r3θ

..

−employee
(a) +hasInsurance

r3θ

tt r3θ

��

r3θ

**

−employee
(b) −onLeave

r1θ
��

r1θ

++

+salary( ′0′)
...

−onLeave
(c) +salary( ′0′)

r4θ

ss
r4θ

++

−employee
(d)

−employee
(e)

+hasInsurance
(f)

−salary( ′0′)
�

−salary( ′500′)
(g)

The rightmost branch has not been fully expanded. In the picture, one can identify

leaves: (i) corresponding to the three possible repairs U1 ((a) and (b)), U2 ((c) and (f))

and U3 ((g)), computed in different ways; (ii) corresponding to the weak repairs U4
((e)) and U5 ((d)); and (iii) one contradictory leaf (marked �). In particular, all re-

pairs are included in the tree, together with some weak repairs. The missing branch

contains an additional seven leaves, corresponding to U3 (two leaves), to the weak repair

{−employee( ′john′),+salary( ′john′, ′0′),−salary( ′john′, ′500′)} (two leaves), or inconsis-

tent (three leaves). �

Lemma 2 T〈I,η〉 is finite.

Proof

Since η is finite and there are only a finite number of individuals in I, the number of rules

not satisfied at each node is always finite. Furthermore, each rule has a finite number of

literals in its body, therefore the degree of every node is finite.

If there is an edge from n to n′ labeled by rθ, then (by construction of n′) either n′ is

a leaf or I ◦ n′ |= rθ and I ◦ n′′ |= rθ for every descendant n′′ of n′. Since the number of

instances of rules is finite, this means that the depth of T〈I,η〉 is also finite.

Thus T〈I,η〉 is a finite branching tree with no infinite branches, hence by Kőnig’s Lemma

it is finite.

In general, the number of nodes in T〈I,η〉 can be enormous. A simple way to prune this

tree substantially is to identify nodes labeled with the same set (transforming the repair

tree into a directed acyclic graph). In either case, the maximal number of nodes does not

depend on the concrete database I, as already observed by Caroprese and Truszczyński

(2011). Although a graph representation is more compact, it is less understandable for

human readers; therefore, this presentation will adhere to the original representation and

continue to discuss (and show) repair trees.

Since inconsistent nodes cannot be weak repairs, from this point onwards we omit them

from repair trees; a consistent node with only inconsistent descendants is marked by a

box (�) to distinguish it from a consistent leaf.

The next result justifies the name repair tree for T〈I,η〉.

Theorem 7

1. Every consistent leaf of T〈I,η〉 is labeled by a weak repair for 〈I, η〉.
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2. If U is a repair for 〈I, η〉, then there is a branch of T〈I,η〉 ending at a leaf labeled by U .

Proof

1. If there is a rule in η not satisfied in node n, then either n is inconsistent or n has

descendants.

2. Note that U is finite. The proof proceeds by showing that there is a branch of the tree

whose nodes are ∅ = U0,U1, . . . ,Un = U , i.e. where Ui+1 is obtained from Ui by adding

an action in U \ Ui.
One can always find Ui+1 as described, for i < n. Since U is a repair, Ui ( U cannot be a

repair; therefore, some rules are not satisfied in I ◦ Ui. Let rθ be an unsatisfied instance

of one of these rules; if ua (body (rθ))
D ∩ (U \ Ui) = ∅, then I ◦ U 6|= rθ, which is absurd

since U is a repair. Therefore, Ui+1 exists. Recursive application of this argument yields

the desired branch of T〈I,η〉.

In particular, if η is inconsistent, then the repair tree for 〈I, η〉 has no consistent leaves.

Thus, constructing the repair tree for 〈I, η〉 yields a decision procedure for deciding

whether there are weak repairs for 〈I, η〉. Since the depth of the tree is polynomial in the

number of grounded instances of the AICs in η, this provides an alternative proof that this

problem can be solved in non-deterministic polynomial time on that set. Furthermore,

by constructing all consistent leaves of the repair tree one can also find all repairs for

〈I, η〉 – they are the labels of those leaves that are minimal w.r.t. inclusion.

5.2 Repair trees for sets of active integrity constraints

The natural adaptation of the algorithm in the previous section to AICs would be to

consider only descendants of a node n that are obtained by adding to n an action in the

head of an instance of a rule not satisfied in I ◦ n. However, this is too restrictive: there

may be founded repairs that are no longer in the tree.

Example 10 Consider the setting of Example 4. Building the repair tree as described

yields the tree in Figure 1 (left), where θ = {X/ ′jack′}. The only leaf corresponds to the

founded repair U1 of Example 4; however, as discussed in that example, there is another

founded repair for this database. �

In order to have all founded repairs in the repair tree, one must allow all descendants

obtained by applying actions that occur in the head of an instance of any rule in η. Case

in point, rule r9θ includes +hasInsurance( ′jack′, ′risk′) in its head, and this action is

dual to a literal in the body of r10θ. Using this strategy, the repair tree for Example 4

would be the one shown in Figure 1 (right), and the new leaf (b) now contains the founded

repair U2.

Definition 11 The founded repair tree for 〈I, η〉, T f〈I,η〉, is obtained from T〈I,η〉 by

eliminating edges labeled with actions that do not occur on the head of any instance of

a rule in η.
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∅
r10θ��

−currYearPrize( ′jack′, ′risk′)

∅
r10θ

ss
r10θ

��

r10θ

--

−workDept( ′jack′, ′security′) +hasInsurance( ′jack′, ′risk′)

r8θ��

−currYearPrize( ′jack′, ′risk′)
(a)

+isCertified( ′jack′, ′security′)
(b)

Fig. 1. Alternative possibilities for repair trees for sets of AICs.

Since T f〈I,η〉 is a subtree of T〈I,η〉, by Lemma 2 it is finite. Furthermore, it contains all

founded repairs for 〈I, η〉 by Theorem 7 and the fact that founded repairs only contain

actions in the head of instances of rules in η. However, in general not all leaves correspond

to founded weak repairs – nor is this to be expected, since deciding whether there is a

founded repair for 〈I, η〉 is a ΣP2 -complete problem. Hence, the best algorithm for finding

founded repairs using repair trees is to choose the consistent leaves of T f〈I,η〉 with minimal

labels w.r.t. set inclusion, and to test these for foundedness.

The first attempt at a founded repair tree above actually eliminated the repair that was

not justified, so one might suspect that the first construction could be used to obtain only

justified weak repairs for 〈I, η〉. In fact, Example 2 shows that this is not the case; more

importantly, deciding whether justified weak repairs for 〈I, η〉 exist is also ΣP2 -complete,

so it is unlikely that a tree that can be constructed in non-deterministic polynomial time

can answer this question. As it turns out, one can actually prune many more spurious

branches that never contain justified repairs.

The intuition behind justified repairs suggests that one should go one step further: the

rule leading to the introduction of an action in a would-be repair should be the same rule

supporting that action in the final repair. This is too restrictive, however, as one can easily

find examples where justified repairs exist but they would not be found by this approach

– this would be the case if rule r5 in Example 2 also included −category(X, ′junior′) in

its head.

However, the definition of justified repair does not directly refer to support for actions,

but to justified action sets, which in turn look at the non-updatable literals in the rules’

bodies. This motivates the use of a technique described by Antoniou et al. (2004) to

keep track not only of the actions introduced at each step, but also of the non-updatable

assumptions made when introducing the actions.

Definition 12 Let I be a database and η be a set of AICs. The justified repair tree for

〈I, η〉, T j〈I,η〉, is a tree where: each node n is a pair of sets of repair actions 〈Un,Jn〉
(the update set and the justification set); node n is consistent if Un is consistent and

Un ∩ (Jn)
D

= ∅; each edge is labeled with an instance of a rule; the root is 〈∅, ∅〉; and

for each consistent node n and instance rθ of a rule r ∈ η, if I ◦ Un 6|= rθ, then for each
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α ∈ head (rθ) there is a descendant n′ of n, with the edge from n to n′ labeled by rθ,

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {ua(nup(rθ))}) \ Un.

Example 11 Consider again Example 2. Then T j〈I,η〉 is the following, where θ = {X/ ′mike′}.
For clarity, in this example we write the labels of each node in full.

∅, ∅
r5θ��

{−onLeave( ′mike′)}, {+category( ′mike′, ′junior′),+workTime( ′mike′, ′18′)}

r7θ��
{−onLeave( ′mike′),−category( ′mike′, ′junior′)}, {+category( ′mike′, ′junior′),+workTime( ′mike′, ′18′),+unsupervised( ′mike′)}

�

The only leaf of this tree contains −category( ′mike′, ′junior′) in its update set and

the dual action in its justification set, so it is inconsistent. Therefore this tree has no

consistent leaves, which agrees with the fact that there are no justified weak repairs for

〈I, η〉. �

Indeed, every justified repair of 〈I, η〉 is computed by T j〈I,η〉.

Theorem 8 Let U be a justified repair for 〈I, η〉. Then T j〈I,η〉 contains a consistent leaf

n such that Un = U .

To prove this theorem it does not suffice to show that there is a branch leading to

U : there may be inconsistent leaves with U as update set. The usage of J is therefore

essential to guarantee the existence of a path to a consistent leaf. The details of the proof

are given in Appendix B.1.

As discussed above, one expects that T j〈I,η〉 will usually contain leaves that do not

correspond to justified (weak) repairs. The following example illustrates this situation.

Example 12 In the setting consisting of rules (r8) and (r9) from Example 4, together

with

workDept(X, ′security′),¬isCertified(X, ′security′),

¬category(X, ′admStaff′) ⊃ +isCertified(X, ′security′)

| +category(X, ′admStaff′)

(r13)

secretary(X),¬category(X, ′admStaff′) ⊃ +category(X, ′admStaff′)

(r14)

and I = {workDept( ′Mary′, ′security′), secretary( ′Mary′)}, the tree T j〈I,η〉 contains valid

leaves labeled with the following update action sets.

U1 = {+category( ′mary′, ′admStaff′)}
U2 = {+isCertified( ′mary′, ′security′),+hasInsurance( ′mary′, ′risk′)} ∪ U1

The set U1 is a justified repair for 〈I, η〉 (actually, the only one), but U2 is a weak repair

for 〈I, η〉 that is not justified: the set U1 ∪ ne (I, I ◦ U2) is closed under η and contains

the no-effect actions of U2. �
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In the case of normal AICs, where heads of rules may contain at most one action,

the problem of existence of justified repairs is NP -complete. In this case, T j〈I,η〉 is also

optimal.

Theorem 9 Let I be a database and η be a set of normal AICs. Then every consistent

leaf of T j〈I,η〉 contains a justified repair for 〈I, η〉.

In short: T j〈I,η〉 contains all justified repairs and, if η is normal, it only contains justified

repairs. These results cannot be improved: if η is not normal, then (1) there may be weak

justified repairs that are not in T j〈I,η〉; and (2) there may be weak justified repairs in T j〈I,η〉,

so the tree does not contain only repairs. For concrete examples see (Cruz-Filipe et al.

2013).

At this stage, direct algorithms have been introduced to compute repairs and justified

repairs for inconsistent databases with (active) integrity constraints. Since the general

problem of finding these repairs is at least NP -complete, in the worst case these algo-

rithms are asymptotically equivalent to the techniques presented by Caroprese et al.

(2006) – namely, translating the context to production rules and computing a stable

model of these.

However, the general case is not the worst case, and the presentation and discussion

of these algorithms serves several purposes. First, these algorithms operate directly on

the database and the integrity constraints, requiring significantly less overhead in their

execution. Second, they provide insight into the definitions of founded and justified repair,

which are not very intuitive in the first place. Third, they allow a refinement of the notion

of founded support that is interesting on its own, which we now discuss.

5.3 Well-founded repairs

Examples 2 and 4 show that circularity of support can present itself in different forms. In

both examples, the repairs consist of two actions α and β such that α provides support

for β and reciprocally, making these repairs not justified. However, the legitimacy of

the founded repair from Example 2 can be defended by noticing that rule r5 provides a

motivation for introducing one of the problematic actions in the repair (although that

same rule does not support that action at the end). This is different from the situation in

Example 4, where none of the actions are “suggested” by a rule that is initially violated.

This motivates looking for a new notion of repair more plausible than that of founded,

but weaker than that of justified weak repair.

Definition 13 Let I be a database and η be a set of AICs. The well-founded repair tree

for I and η, Twf
〈I,η〉, is constructed as T〈I,η〉 by only generating a descendant n′ of a node

n if n′ = n ∪ {α} and α occurs in the head of the instance rθ labeling the edge from n

to n′.

A set of update actions U is a well-founded weak repair if U is a consistent leaf of

Twf
〈I,η〉.

Since T j〈I,η〉 is a subtree of Twf〈I,η〉, we immediately get the following relation.
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Lemma 3 Every justified (weak) repair for 〈I, η〉 is a well-founded (weak) repair for

〈I, η〉.

However, founded and well-founded weak repairs are incomparable: the well-founded

repair tree for Example 4, shown in Example 10, shows that there exist founded weak

repairs that are not well-founded, and the following example shows that there exist well-

founded weak repairs that are not founded.

Example 13 Consider the rules in Example 2 together with

category(X, ′junior′), onLeave(X), currYearPrize(X, ′promise′) ⊃ −currYearPrize(X, ′promise′)

(r15)

and the following database.

I = {category( ′mike′, ′junior′), onLeave( ′mike′),workTime( ′mike′, ′18′), unsupervised( ′mike′),

workDept( ′mike′, ′critical′), currYearPrize( ′mike′, ′promise′)}

Then Twf〈I,η〉 is the tree below, and leaf (b) does not correspond to a founded weak repair.

For simplicity, we omit the instantiations from the labels on the edges.

∅
r5
tt

r15
++

−onLeave( ′mike′)

r7 ��

−currYearPrize( ′mike′, ′promise′)

r5
��−category( ′mike′, ′junior′)

(a) −onLeave( ′mike′)

r7��
−category( ′mike′, ′junior′)

(b)

�

The parallelization results from Section 3 also extend to well-founded repairs. The

proof is given in Appendix B.3.

Theorem 10 Let I be a database, η1 and η2 be two sets of AICs such that η1 |= η2,

and η = η1 ∪ η2.

1. If U1 and U2 are well-founded (weak) repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then

U = U1 ∪ U2 is a well-founded (weak) repair for 〈I, η〉.
2. Let U be a well-founded (weak) repair for 〈I, η〉. Then U1 = Uη1 and U2 = Uη2 are such

that U = U1 ∪ U2 and each Ui is a well-founded (weak) repair for 〈I, ηi〉.

However, well-founded repairs do not blend well with stratification: in the setting of

Example 13, η1 = {r5, r6, r7} ≺ {r15} = η2, but the weak repair corresponding to leaf (b)

cannot be obtained by first constructing Twf〈I,η1〉 and then trying to extend the repair

obtained using η2, so the analog of Lemma 12 does not hold. Counter-examples involving

only repairs can also be built.

For completeness, we also give a declarative semantics for well-founded weak repairs,

in the style of (Caroprese et al. 2009; Caroprese and Truszczyński 2011).
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Lemma 4 Given a database I and a set of AICs η, a set of update actions U is a well-

founded repair w.r.t. 〈I, η〉 if U is a weak repair for 〈I, η〉 and there is a sequence of

actions α1, . . . , αn such that:

1. U = {αi | 1 ≤ i ≤ n};
2. for each i, αi is founded w.r.t. 〈I, η〉 and {αj | 1 ≤ j < i}.

The proof of this result is straightforward, since this is simply a translation of the con-

dition for being a consistent leaf in Twf〈I,η〉.

6 Discussion and Related Work

Theoretical bounds for the complexity of computing simple repairs, founded repairs, and

justified repairs are given in (Caroprese et al. 2006; Caroprese and Truszczyński 2011).

Thus, the complexity of the algorithms presented in the previous section is asymptotically

optimal. For every case where finding repairs is NP -complete, the corresponding repair

trees exactly compute the desired kinds of (weak) repairs (possibly requiring an inclusion

test, which does not affect the overall complexity); in the case where this problem is ΣP2
complete, the extra verification step is again an NP -complete problem. Our algorithms

also provide more intuition on the different semantics of repairs, since they follow the

original idea behind AICs: that the actions in their heads should “guide” the search for

repairs. These algorithms are also suitable for parallel computation, since each branch

is independent of the remaining ones; and all the well-known search techniques for trees

can be applied, especially if one only wishes to find one viable repair.

In order to obtain an empirical assessment of the feasibility and impact of our con-

tribution, we created an early-stage proof-of-concept implementation for validating and

repairing SQL databases (Cruz-Filipe et al. 2016). This tool repAIrC has been imple-

mented in Java, can work with any SQL database that supports JDBC, and implements

repair trees as described in Section 5 for finding simple, founded, well-founded, and justi-

fied (weak) repairs. For the last, a more efficient practical criterion for validating justified

repairs is used, as constructing the set of no-effect actions directly requires processing

the entire database and is, thus, prohibitive.

The performance of repAIrC is dominated by the many database interactions required

for building the repair trees. For small sets of AICs the performance is typically accept-

able, with runtimes in the sub-second or seconds range. For larger sets of AICs, the high

worst-case complexity of our algorithms suggests that it should pay off to split them into

smaller ones. Thus, our tool implements the parallelization and stratification algorithms

described in Sections 3 and 4. Indeed, these have been shown empirically to provide four

orders of magnitude improvements for some sets of AICs – see (Cruz-Filipe et al. 2016)

for details.

Our parallelization and stratification techniques are reminiscent of similar techniques in

nearby fields. Semantic independency and syntactic precedence were introduced by Naqvi

and Krishnamurthy (1988), and the latter is used to compute models in the more general

scenario of deductive databases. In logic programming, notions of syntactic independence

allowing parallel evaluation of rules were also discussed by Wolfson and Silberschatz

(1991). Syntactic precedence between integrity constraints was also discussed with the
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explicit goal of making the search for database repairs more efficient (Mayol and Teniente

1999a), but in contrast to AICs the authors did not allow for cyclic dependencies.

More recently, Bravo et al. (2007) and Fan et al. (2014) use graphs to model the

dependencies in the context of cell-based updates (Fan and Geerts 2012). Parallelization

is likewise exploited in this setting (Geerts et al. 2013). The use of tuple-generating

dependencies allows to also model insertions in (Bohannon et al. 2005) and (Geerts et al.

2014). Our work can be seen as extending this line of work to the setting of AICs.

Approximation fixpoint theory unifies several semantics for logical frameworks, and

generic stratification techniques have also been considered in this more general domain

by Vennekens et al. (2006). The application of approximation fixpoint theory to AICs

by Bogaerts and Cruz-Filipe (2018) yields an alternative characterization of all existing

AIC semantics (as well as defining some new ones) in terms of fixpoints of a particular

operator. Preliminary results suggest that the stratification developed in this work exactly

corresponds to the application of the general formalism for approximation fixpoint theory

to the AIC operator from (Bogaerts and Cruz-Filipe 2018).

Our original motivation for studying the framework of AICs was to develop a theory of

integrity constraints and repairs for general-purpose knowledge bases. The work described

in this article is a first step in this direction. AICs have been generalized to heterogenous

non-monotonic multi-context systems (Brewka and Eiter 2007; Cruz-Filipe et al. 2016;

Cruz-Filipe et al. 2016) following the ideas presented here.

7 Conclusions and Future Work

This paper builds on previous work by Flesca et al. (2004) and Caroprese and Truszczyński

(2011), with emphasis on the operational aspects of active integrity constraints. As such,

it first introduces independence and precedence relations between AICs, which allow par-

allelization and sequentialization of the computation of repairs for inconsistent databases,

in turn speeding up the process of finding these repairs – a problem that is typically NP -

or Σ2
p-complete. In the worst case scenario, there will be no parallelization or sequential-

ization; however, in typical databases concepts are generally built from more primitive

ones, suggesting that this division can play a key role in making the search for repairs

much faster. Furthermore, both relations are well behaved w.r.t. the different kinds of

repairs considered in the denotational semantics for AICs (Caroprese and Truszczyński

2011).

A second part of the paper concerns an operational semantics for AICs, showing how

repairs can be computed by building an adequate tree. Different pruning mechanisms for

the branches of the tree yield different types of repairs. Each type of tree is complete, in

the sense that it contains as leaves all repairs of a given type, but in some cases these

leaves must be checked a posteriori. This characteristic is to be expected, since these tree

algorithms are all polynomial but some of these problems are Σ2
p-complete.

The study of these tree algorithms also led to the introduction of well-founded repair

trees. They provide a more fine-grained characterization of non-justified repairs, distin-

guishing essential circularity of support from support that is indeed circular when one

considers the final repair, but can be motivated by the heads of violated active integrity

constraints.
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Appendix A Proofs of results on parallelization

A.1 Proof of Theorem 1

We first consider the case of two independent sets; the main result follows by induction.

The first lemma is a technical remark that we use repeatedly in proofs.
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Lemma 5 Let I be a database, η1, η2 be independent sets of ICs, and U1 and U2 be

sets of update actions such that: if α ∈ Ui, then there is L ∈ body (rθ) for some instance

of a rule r ∈ ηi with |lit(α)| = |L|. Take U = U1 ∪ U2. For every literal L such that

L ∈ body (rθ) for some instance rθ of a rule r ∈ ηi, I ◦U |= L iff I ◦Ui |= L. In particular,

for every r ∈ ηi, I ◦ U |= r iff I ◦ Ui |= r.

Proof

Let L ∈ body (rθ) for some r ∈ η1 and θ. If α ∈ U2, then |lit(α)| 6= |L| because η1 ⊥ η2,

whence I ◦ U |= L iff I ◦ U1 |= L (as I ◦ U = (I ◦ U1) ◦ U2). This holds for every θ, so

I ◦ U |= r iff I ◦ U1 |= r. The argument for U2 is similar.

Lemma 6 In the conditions of Lemma 5, if U1 and U2 are weak repairs for 〈I, η1〉 and

〈I, η2〉, respectively, then U = U1 ∪ U2 is a weak repair for 〈I, η1 ∪ η2〉. Furthermore, if

U1 and U2 are both repairs, then so is U .

Proof

Consistency of U follows from the disjointness of the sets of atoms underlying the actions

in U1 and U2, which is a consequence of the hypothesis and η1 ⊥ η2. Hence, if {+α,−α} ⊆
U = U1∪U2, then {+α,−α} ⊆ Ui for some i, and Ui would be inconsistent. Furthermore,

if α ∈ Ui then α must change I (since Ui is a weak repair for 〈I, ηi〉), so every action in

U changes I.

To see that U is a weak repair, consider r ∈ η1. Then I ◦ U1 |= r, since U1 is a weak

repair for 〈I, η1〉, whence I ◦ U |= r by Lemma 5. The argument for r ∈ η2 is similar.

Now assume that U1 and U2 are both repairs. Let U ′ ( U and define U ′i = U ′ ∩ Ui for

i = 1, 2. One of the inclusions U ′i ⊆ Ui must be strict; without loss of generality, assume

that U ′1 ( U1. Since U1 is a repair, this means that U ′1 cannot be a weak repair, hence

there is a rule r ∈ η1 such that U ′1 6|= r. By Lemma 5 U ′1 ∪ U ′2 6|= r, hence U ′ = U ′1 ∪ U ′2 is

not a weak repair for 〈I, η〉. Therefore U is a repair for 〈I, η〉.

The hypotheses of Lemma 6 imply that the actions in each Ui are all duals of literals in

the body of some rule in ηi. This is an essential requirement: otherwise U1 could “break”

satisfaction of some rule in η2 or reciprocally, or there might be inconsistencies from

joining U1 and U2. Although it can be weakened, this hypothesis is a (very) reasonable

assumption, since this verification can be done efficiently. See also the discussion in

Section 5 of (Caroprese et al. 2009).

The converse result also holds: splitting the actions in a (weak) repair U according to

whether they affect rules in η1 or η2 yields (weak) repairs for those sets of ICs.

Lemma 7 Let I be a database, η1 and η2 be independent sets of ICs, η = η1 ∪ η2, and

U be a weak repair for 〈I, η〉. Then each

Ui = {α ∈ U | lit(α)D ∈ body (rθ) for some instance rθ of r ∈ ηi}

is a weak repairs for 〈I, ηi〉. Furthermore, if every action in U is the dual of a literal in

the body of an instance of some rule in η, then U = U1∪U2. In particular, if U is a repair,

then so are U1 and U2.
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Proof

Assume that U is a weak repair for 〈I, η〉 and let Ui be as stated. Since U is a weak repair

for 〈I, η〉, I ◦ U |= r for every rule r ∈ ηi. By Lemma 5, I ◦ Ui |= r. Therefore Ui is a

weak repair for 〈I, ηi〉.
The equality U = U1 ∪ U2 holds if every action in U satisfies the condition defining Ui

for some i, i.e. it is the dual of a literal in the body of an instance of some rule in η.

In particular, this holds if U is a repair. Assume that this is the case, and suppose that

U ′1 ( U1 is also a weak repair for 〈I, η1〉. By Lemma 5, U ′ = U ′1 ∪ U2 is a weak repair

for 〈I, η〉 with U ′ ( U , which is absurd. Therefore U ′1 is not a weak repair, hence U1 is a

repair. The case for U2 is similar.

The equality U = U1 ∪ U2 can be made to hold in general by adding the actions that

do not affect any rule to either U1 or U2; however, this is not an interesting situation,

and it will not be considered further.

Theorem 1

By induction on n. For n = 1, the results are trivial. Assume the result for n; applying

the induction hypothesis to η1, . . . , ηn and Lemmas 6 or 7 to η′ =
⋃n
i=1 ηi and ηn+1 yields

the result for η1, . . . , ηn+1, since η′ ⊥ ηn+1.

A.2 Proof of Theorem 4

Again we divide the proof in several lemmas. Throughout this section, we assume I to

be database, η1 and η2 to be sets of AICs with η1 |= η2, and η = η1 ∪ η2.

Lemma 8 If U1 and U2 are sets of update actions founded w.r.t. 〈I, η1〉 and 〈I, η2〉,
respectively, then U = U1 ∪ U2 is founded w.r.t. 〈I, η〉.

Proof

For U to be founded w.r.t. 〈I, η〉, every action in U must be founded w.r.t. 〈I, η〉 and

U . Without loss of generality, assume α ∈ U1. Since U1 is founded w.r.t. 〈I, η1〉, there

is an instance rθ of r ∈ η1 such that α ∈ head (rθ) and I ◦ U1 |= L for every L ∈
body (rθ) \ {lit(α)D}. By Lemma 5, I ◦ U |= L for every such L. Since η1 ⊆ η, α is

founded w.r.t. 〈I, η〉 and U .

Corollary 1 If U1 and U2 are founded (weak) repairs, then U is also a founded (weak)

repair.

Proof

Consequence of Lemmas 6 and 8.

Lemma 9 Let U be a set of update actions founded w.r.t. 〈I, η〉. Then U1 = Uη1 and

U2 = Uη2 are such that U = U1 ∪ U2 and each Ui is founded w.r.t. 〈I, ηi〉.
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Proof

Without loss of generality, assume α ∈ U1. Since U is founded w.r.t. 〈I, η〉, there is an

instance rθ of r ∈ η such that α ∈ head (rθ) and I ◦ U |= L for every L ∈ body (rθ) \
{lit(α)D}. But α ∈ head (rθ) implies that r ∈ η1, whence I ◦ U1 |= L for every L ∈
body (rθ) \ {lit(α)D} by Lemma 5. Therefore α is founded w.r.t. 〈I, η1〉 and U1, whence

U1 is founded w.r.t. 〈I, η1〉.
By definition of founded set, all actions in U must be in either U1 or U2, so U = U1∪U2.

Corollary 2 If U is a (weak) founded repair, then Uη1 and Uη2 are also (weak) founded

repairs.

Proof

Consequence of Lemmas 7 and 9.

Similar results hold for justified (weak) repairs, although the proofs are a bit more

involved.

Lemma 10 If U1 and U2 are justified (weak) repairs for 〈I, η1〉 and 〈I, η2〉, respectively,

then U = U1 ∪ U2 is a justified (weak) repair for 〈I, η〉.

Proof

The following simple facts will be used recurrently throughout the proof.

(a) For i = 1, 2, ne (I, I ◦ U) ⊆ ne (I, I ◦ Ui), since Ui ⊆ U .

(b) For i = 1, 2, ne (I, I ◦ Ui) ⊆ (ne (I, I ◦ U) ∪ U3−i): U can only change literals changed

by either U1 or U2. In particular, since η1 |= η2, if nup(rθ) ⊆ lit(ne (I, I ◦ Ui)) for some

instance rθ of r ∈ ηi, then nup(rθ) ⊆ lit(ne (I, I ◦ U)); and if α ∈ head (rθ) for some

instance rθ of r ∈ ηi and α ∈ ne (I, I ◦ Ui), then α ∈ ne (I, I ◦ U).

(c) For i = 1, 2, if L ∈ body (rθ) with r ∈ ηi and L ∈ lit(U), then L ∈ lit(Ui): η1 |= η2 and

Ui only contains actions in the heads of rules of ηi.

The first step is to show that U ∪ ne (I, I ◦ U) is closed for η. Without loss of general-

ity, assume r ∈ η1. Suppose that nup(rθ) ⊆ lit (U ∪ ne (I, I ◦ U)), and let L ∈ nup(rθ).

If L ∈ lit(U), then L ∈ lit(U1) by (c), hence nup(rθ) ⊆ lit (U1 ∪ ne (I, I ◦ U)), whence

nup(rθ) ⊆ lit(U1 ∪ ne (I, I ◦ U1)) by (a). But U1 ∪ ne (I, I ◦ U1) is closed for η1, so

head (rθ)∩(U1 ∪ ne (I, I ◦ U1)) 6= ∅. By U1 ⊆ U and (b), also head (rθ)∩(U ∪ ne (I, I ◦ U)) 6=
∅.

For minimality, suppose that U ′ ( U and U ′ ∪ ne (I, I ◦ U) is closed for η. Take U ′i =

U ′∩Ui for i = 1, 2; then one of the inclusions U ′i ⊆ Ui must be strict. Without loss of gen-

erality, assume this holds for i = 1, and take r ∈ η1. If nup(rθ) ⊆ lit (U ′1 ∪ ne (I, I ◦ U1)),

then nup(rθ) ⊆ lit (U ′ ∪ ne (I, I ◦ U)), consequence of U ′1 ⊆ U ′ and (b). Since U ′ ∪
ne (I, I ◦ U) is closed for η and η1 ⊆ η, it follows that head (rθ)∩(U ′ ∪ ne (I, I ◦ U)) 6= ∅.
By definition of U1 and (a), it follows that head (rθ) ∩ (U ′1 ∪ ne (I, I ◦ U1)) 6= ∅. Then

U ′1 ∪ ne (I, I ◦ U1) is closed for η1, contradicting minimality of U1.

Hence U is a justified weak repair for 〈I, η〉. By Lemma 6, if U1 and U2 are both

justified repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then U is also a justified repair for

〈I, η〉.
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Lemma 11 If U is a justified (weak) repair for 〈I, η〉, then U1 = Uη1 and U2 = Uη2 are

such that U = U1 ∪ U2 and each Ui is a justified (weak) repair for 〈I, ηi〉.

Proof

Properties (a), (b) and (c) from the previous proof still hold. To show that U1∪ne (I, I ◦ U1)

is closed under η1, take r ∈ η1 and suppose that nup(rθ) ⊆ lit (U1 ∪ ne (I, I ◦ U1)). Then

nup(rθ) ⊆ lit(U ∪ ne (I, I ◦ U)) by U1 ⊆ U and (b). Since U ∪ ne (I, I ◦ U) is closed

for η, it follows that head (rθ) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅. By construction of U1 and (a),

head (rθ) ∩ (U1 ∪ ne (I, I ◦ U1)) 6= ∅. The case for U2 is similar.

For minimality, suppose that U ′1 ( U1 and U ′1 ∪ ne (I, I ◦ U1) is closed for η1; take

U ′ = U ′1 ∪U2, let r ∈ η, and assume that nup(rθ) ⊆ lit(U ′ ∪ ne (I, I ◦ U)). There are two

cases.

• Suppose r ∈ η1 and let L ∈ nup(rθ). Then L 6∈ lit(U2), since η1 |= η2, therefore nup(rθ) ⊆
lit (U ′1 ∪ ne (I, I ◦ U)), whence by (a) nup(rθ) ⊆ lit (U ′1 ∪ ne (I, I ◦ U1)), and therefore

head (rθ) ∩ (U ′1 ∪ ne (I, I ◦ U1)) 6= ∅. From U ′1 ⊆ U ′ and (b), also head (rθ) ∩ (U ′ ∪
ne (I, I ◦ U)) 6= ∅.

• Suppose r ∈ η2 and let L ∈ nup(rθ). Again L 6∈ lit(U ′1), whence L ∈ U2 ∪ ne (I, I ◦ U);

and since U2 ⊆ U also nup(rθ) ⊆ lit(U ∪ ne (I, I ◦ U)). Since U ∪ ne (I, I ◦ U) is closed

for η (which contains η2), it follows that head (rθ) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅, and since

head (rθ) does not contain actions in U1 necessarily head (rθ) ∩ (U2 ∪ ne (I, I ◦ U)) 6= ∅,
whence head (rθ) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

In either case, if nup(rθ) ⊆ (U ′ ∪ ne (I, I ◦ U)) then head (rθ)∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅,
whence U ′ ∪ ne (I, I ◦ U) is closed for η, contradicting minimality of U . This is absurd,

so U1 is a justified weak repair. The case for U2 is similar.

Since justified weak repairs are founded, Lemma 9 guarantees that U = U1 ∪ U2.

Furthermore, if U is a justified repair for 〈I, η〉, then each Ui is a justified repair for

〈I, ηi〉 by Lemma 7.

A.3 Proof of Theorem 5

We divide the proof in several lemmas for convenience. Throughout this section, let

η1, η2 ⊆ η with η1 ≺ η2, I be a database and U be a set of update actions such that all

actions in U occur in the head of some instance of a rule in η1 ∪ η2, and take U1 = Uη1
and U2 = Uη2 .

Lemma 12 If U is a weak repair for 〈I, η1 ∪ η2〉, then U1 and U2 are weak repairs for

〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof

Since η1 ≺ η2, (a) actions in the head of an instance of a rule in η2 cannot refer to atoms

underlying literals in the body of instances of rules in η1, and in particular (b) U1 and

U2 are disjoint. By (a), I ◦ U1 |= r iff I ◦ U |= r for every r ∈ η1, so U1 is a weak repair

for 〈I, η1〉. By (b), I ◦ U = I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2, hence U2 is a weak repair for

〈I ◦ U1, η2〉.
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Lemma 13 If U is founded w.r.t. 〈I, η1 ∪ η2〉, then U1 and U2 are founded w.r.t. 〈I, η1〉
and 〈I ◦ U1, η2〉, respectively.

Proof

(i) Let α ∈ U1. Since U is founded w.r.t. 〈I, η1 ∪ η2〉, there is an instance rθ of a rule

r ∈ η1 ∪ η2 such that α ∈ head (rθ) and I ◦ U |= L for every L ∈ body (rθ) \ {lit(α)D}.
Since η1 ≺ η2, r ∈ η1. By (b) from the proof of Lemma 12, I ◦ U1 |= L for every

L ∈ body (rθ) \ {lit(α)D}, whence α is founded w.r.t. 〈I, η1〉 and U1. Thus U1 is founded

w.r.t. 〈I, η1〉.
(ii) Let α ∈ U2. Again there must be an instance rθ of a rule r ∈ η such that α ∈

head (rθ) and I ◦ U |= L for every L ∈ body (rθ) \ {lit(α)D}, and as before necessarily

r ∈ η2. Since I ◦ U = (I ◦ U1) ◦ U2, it follows that α is founded w.r.t. 〈I ◦ U1, η2〉 and U2,

hence U2 is founded w.r.t. 〈I ◦ U1, η2〉.

Corollary 3 If U is a founded weak repair for 〈I, η〉, then U1 and U2 are founded weak

repairs for 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof

Immediate consequence of Lemmas 12 and 13.

Lemma 14 If U is a justified weak repair for 〈I, η1 ∪ η2〉, then U1 and U2 are justified

weak repairs for 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof

(i) The proof that U1 is a justified weak repair for 〈I, η1〉 is as in Lemma 11.

(ii) Denote by N the set ne (I ◦ U1, I ◦ U1 ◦ U2). To show that U2 is a justified weak

repair for 〈I ◦ U1, η2〉, we need to show that U2 ∪ N is closed for η2 and that it is the

minimal such set containing N . The first part is again as in the corresponding step of

the proof of Lemma 11.

Now let U ′2 ( U2 be such that U ′2 ∪ N is closed for η2 and take U ′ = U1 ∪ U ′2. Then

U ′∪ne (I, I ◦ U) is closed under η: let r ∈ η be such that nup(rθ) ⊆ lit(U ′∪ne (I, I ◦ U));

there are two cases to consider.

• r ∈ η1: since U ′ ⊆ U , also nup(rθ) ⊆ lit(U ∪ ne (I, I ◦ U)), whence head (rθ) ∩ (U ∪
ne (I, I ◦ U)) 6= ∅ because U ∪ ne (I, I ◦ U) is closed for η. But actions in head (rθ) may

not occur in U2, hence head (rθ) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅ since (U \ U ′) ⊆ U2.

• r ∈ η2: note that N = U1 ∪ ne (I, I ◦ U), since I ◦ U1 is “between” I and I ◦ U (as

U1 ⊆ U); therefore, U ′ ∪ ne (I, I ◦ U) = U1 ∪ U ′2 ∪ ne (I, I ◦ U) = U ′2 ∪ N , whence

head (rθ) ∩ (U ′2 ∪N ) 6= ∅ because U ′2 ∪N is closed for η2, which amounts to saying that

that head (rθ) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

In either case, head (rθ) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅, so U ′ ∪ ne (I, I ◦ U) is closed under

η, contradicting the fact that U is a justified weak repair for 〈I, η〉. Therefore U2 is a

justified weak repair for 〈I ◦ U1, η2〉.

Theorem 5

Combination of Lemma 12, Corollary 3 and Lemma 14.
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A.4 Proof of Theorem 6

Again we divide the proof in several lemmas. Throughout this section, let η1, η2 ⊆ η with

η1 ≺ η2, I be a database, and U1 and U2 be sets of update actions such that all actions

in Ui occur in the head of some instance of a rule in ηi. Define U = U1 ∪ U2.

Lemma 15 If U1 is a weak repair for 〈I, η1〉 and U2 is a weak repair for 〈I ◦ U1, η2〉,
then U is a weak repair for 〈I, η1 ∪ η2〉.

Proof

Since η1 ≺ η2, the hypothesis over U2 imply that (a) actions in U2 cannot refer to atoms

underlying literals in the body of instances of rules in η1, and in particular (b) U1 and

U2 are disjoint. If r ∈ η1, then I ◦ U1 |= r, whence I ◦ U |= r by (a). If r ∈ η2, then

(I ◦ U1) ◦ U2 |= r, and by (b) (I ◦ U1) ◦ U2 = I ◦ U . Therefore U1 ◦ U2 is a weak repair for

〈I, η1 ∪ η2〉.

Lemma 16 In the conditions of Lemma 15, if U1 is a repair for 〈I, η1〉 and U2 is a repair

for 〈I ◦ U1, η2〉, then U is a repair for 〈I, η1 ∪ η2〉.

Proof

By Lemma 15, U is a weak repair for 〈I, η1 ∪ η2〉. Suppose U is not a repair; then there

is U ′ ( U such that U ′ is also a weak repair for 〈I, η1 ∪ η2〉.
Take U ′1 = U ′ ∩ U1 and U ′2 = U ′ ∩ U2; by Lemma 12, U ′1 is a weak repair for 〈I, η1〉

and U ′2 is a weak repair for 〈I ◦ U1, η2〉. But at least one of the inclusions U ′1 ⊆ U1 and

U ′2 ⊆ U2 must be strict, contradicting the hypothesis that U1 and U2 are both repairs.

Therefore U is a repair for 〈I, η1 ∪ η2〉.

The condition that U1 and U2 be repairs is sufficient but not necessary, as illustrated

by Example 7 – unlike in Lemma 6 earlier.

Lemma 17 If U1 is founded w.r.t. 〈I, η1〉 and U2 is founded w.r.t. 〈I ◦ U1, η2〉, then U
is founded w.r.t. 〈I, η1 ∪ η2〉.

Proof

Take α ∈ U1. Since U1 is founded w.r.t. 〈I, η1〉, there is an instance rθ of a rule r ∈ η1
such that α ∈ head (rθ) and I ◦ U1 |= L for every L ∈ body (rθ) \ {lit(α)D}. By (b) from

the proof of Lemma 15, also I ◦ U |= L for every L ∈ body (rθ) \ {lit(α)D}, whence α is

founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Take α ∈ U2. Since U2 is founded w.r.t. 〈I ◦U1, η2〉, there is an instance of a rule r ∈ η2
such that (I◦U1)◦U2 |= L for every L ∈ body (rθ)\{lit(α)D}, and since (I◦U1)◦U2 = I◦U
this implies that α is founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Therefore U is founded w.r.t. 〈I, η1 ∪ η2〉.

Corollary 4 If U1 is a founded (weak) repair for 〈I, η1〉 and U2 is a founded (weak)

repair for 〈I ◦ U1, η2〉, then U is a founded (weak) repair for 〈I, η1 ∪ η2〉.
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Proof

Consequence of Lemmas 15, 16 and 17.

Lemma 18 In the conditions of Lemma 15, if U1 is a justified weak repair for 〈I, η1〉
and U2 is a justified weak repair for 〈I ◦ U1, η2〉, then U is a justified weak repair for

〈I, η1 ∪ η2〉.

Proof

Define N = ne (I ◦ U1, I ◦ U1 ◦ U2) as in the proof of Lemma 14, and note the following

properties.

(a) ne (I, I ◦ U) ⊆ ne (I, I ◦ U1) ⊆ ne (I, I ◦ U) ∪ U2, as in Lemma 10.

(b) I ◦ U1 |= L iff I ◦ U |= L for every literal L ∈ body (rθ) with r ∈ η1, as in Lemma 12.

(c) N = U1 ∪ ne (I, I ◦ U), as in Lemma 14.

To see that U ∪ ne (I, I ◦ U) is closed for 〈I, η〉, let r ∈ η1 ∪ η2 and θ be such that

nup(rθ) ⊆ lit(U ∪ ne (I, I ◦ U)). There are two cases to consider.

• If r ∈ η1, then nup(rθ) ⊆ lit(U1 ∪ ne (I, I ◦ U1)) by (a) and (b), and since U1 ∪
ne (I, I ◦ U1) is closed for η1 this implies that head (rθ) ∩ (U1 ∪ ne (I, I ◦ U1)) 6= ∅,
whence also head (rθ) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅ by U1 ⊆ U and (a).

• If r ∈ η2, then by (c) U ∪ ne (I, I ◦ U) = U2 ∪ U1 ∪ ne (I, I ◦ U) = U2 ∪ N ; then

nup(rθ) ⊆ lit(U2 ∪N ), whence head (rθ)∩ (U2 ∪N ) 6= ∅ because U2 ∪N is closed for η2,

and the latter condition can be rewritten as head (rθ) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅.

In either case U∪ne (I, I ◦ U) is closed for r, whence U∪ne (I, I ◦ U) is closed for η1∪η2.

For minimality, let U ′ ⊆ U be such that U ′ ∪ ne (I, I ◦ U) is closed for η1 ∪ η2, and

take U ′i = U ′ ∩ Ui for i = 1, 2. Then U ′1 = U1 and U ′2 = U2:

• Let r ∈ η1 and θ be such that nup(rθ) ⊆ lit(U ′1 ∪ ne (I, I ◦ U1)). Since U ′1 ⊆ U ′, from (a)

and the fact that nup(rθ) ∩ lit(U2) = ∅ (because η1 ≺ η2) it follows that nup(rθ) ⊆
lit(U ′∪ne (I, I ◦ U), whence head (rθ)∩(U ′∪ne (I, I ◦ U)) 6= ∅. By (a) and the fact that

head (rθ)∩U2 = ∅, also head (rθ)∩ (U ′1∪ne (I, I ◦ U1)) 6= ∅. Therefore U ′1∪ne (I, I ◦ U1)

contains ne (I, I ◦ U1) and is closed for η1; since U1 ∪ ne (I, I ◦ U1) is the minimal set

with this property and U1 ∩ ne (I, I ◦ U1) = ∅, it follows that U ′1 = U1.

• Let r ∈ η2 and θ be such that nup(rθ) ⊆ lit(U ′2∪N ). From (c) and the equality U ′1 = U1 es-

tablished above, nup(rθ) ⊆ lit(U ′∪ne (I, I ◦ U)), whence head (rθ)∩(U ′∪ne (I, I ◦ U)) 6=
∅. Again by (c) and U ′1 = U1 this amounts to saying that head (rθ)∩(U ′2∪N ) 6= ∅. There-

fore U ′2 ∪N contains N and is closed for η2, whence as before necessarily U ′2 = U2.

Therefore U ′ = U , hence U ∪ne (I, I ◦ U) is the minimal set containing ne (I, I ◦ U) and

closed for η1 ∪ η2. Thus U is a justified weak repair for 〈I, η1 ∪ η2〉.

Appendix B Proofs of results on repair trees

B.1 Proof of Theorem 8
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Theorem 8
Suppose U is a justified repair for 〈I, η〉 and let J be

{nup(rθ) ∩ lit(ne (I, I ◦ U)) | ua(nup(rθ)) ⊆ U ∪ ne (I, I ◦ U)}

The set J will be used to “guide” the construction of the branch of the tree leading

to U . Note that, by construction, U ∩ JD = ∅.
The proof amounts to showing that every node n satisfying Un ( U and Jn ⊆ J has

a descendant n′ such that Un′ ⊆ U and Jn′ ⊆ J . Since ∅ ⊆ U and ∅ ⊆ J , the root node

satisfies this last condition.

Let n be a node of T j〈I,η〉 such that Un ( U and Jn ⊆ J . Since Un cannot be a repair

(it is a proper subset of U), there is some instance rθ of a rule r ∈ η such that I◦Un 6|= rθ.

Assume that nup(rθ) \ lit(U) 6⊆ J ; then Un ∪ ne (I, I ◦ U) is closed for rθ.

Observe that

ua(nup(rθ)) = (ua(nup(rθ)) ∩ Un)︸ ︷︷ ︸
⊆ Un ⊆ U

∪ (ua(nup(rθ)) \ Un)︸ ︷︷ ︸
⊆ ne (I, I ◦ Un)

.

Since ne (I, I ◦ Un) = ne (I, I ◦ U) ∪ (U \ Un)
D

, actions in ua(nup(rθ)) coming from

the second of the above sets must be in either ne (I, I ◦ U) or (U \ Un)
D

. If the former

were the case for every action, then ua(nup(rθ)) ⊆ U ∪ ne (I, I ◦ U), whence nup(rθ) ∩
lit(ne (I, I ◦ U)) = nup(rθ) ∩ lit (ne (I, I ◦ Un)) ⊆ J , which contradicts the hypothesis.

Therefore, there is an action in ua(nup(rθ)) ∩ (U \ Un)
D

, whence ua(nup(rθ)) 6⊆ Un ∪
ne (I, I ◦ U) and therefore Un ∪ ne (I, I ◦ U) is closed for rθ.

But if Un ∪ ne (I, I ◦ U) is closed for every instance of a rule applicable in node n,

then Un ∪ ne (I, I ◦ U) is closed for η: rθ is not applicable in node n if either one of its

non-updatable literals is contradicted in I ◦Un or Un contains an action in its head. This

cannot be the case, since U is a justified repair for 〈I, η〉. Therefore, there is some rθ

applicable in node n and such that nup(rθ) \ lit(U) ⊆ J ; yielding a node n′ satisfying

the required conditions.

Since U is finite, this construction must terminate at a leaf with update set U .

B.2 Proof of Theorem 9

We first state an auxiliary lemma.

Lemma 19 Let I be a database and η be a set of normal AICs. Then every consistent

leaf of T j〈I,η〉 contains a founded weak repair.

Proof
Let n be a leaf in T j〈I,η〉. Since Un is the label of a leaf T〈I,η〉, by Theorem 7 it is a weak

repair for 〈I, η〉. To show that it is founded, let α ∈ Un. The rule instance rθ labeling the

edge from n1 to n2 in the step where α was introduced provides support for α. Indeed,

α ∈ head (rθ) by construction; furthermore, since every literal L 6= lit(α) in body (rθ) is

not updatable (α is the only action in the head of rθ), either ua(L) ∈ Un1 or ua(L) ∈ Jn2 .

In the first case, ua(L) ∈ U , since Un1
⊆ U ; in the second case, ua(L) ∈ Jn1

. Since n

was not pruned, this means that L ∈ I and that ua(L)D 6∈ U . In either case, I ◦ U |= L.

Therefore rθ supports α in U .
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Theorem 9

Lemma 19 establishes that every consistent leaf of the justified repair tree for 〈I, η〉 is

founded for 〈I, η〉. Let U be the weak founded repair in a leaf and assume that U is not a

justified repair for 〈I, η〉; since founded weak repairs are always closed, this means that

there is U ′ ⊆ U such that U ′ ∪ ne (I, I ◦ U) is closed under η.

Let α ∈ U \ U ′. For every instance rθ of a rule r ∈ η such that α ∈ head (rθ) and

I◦(U\{α}) satisfies every literal in body (rθ) except for lit(α)D, necessarily ua(nup(rθ)) 6⊆
U ′∪ne (I, I ◦ U): if ua(nup(rθ)) ⊆ U ′∪ne (I, I ◦ U), then there is an action β ∈ head (rθ)

such that β ∈ U ′ ∪ ne (I, I ◦ U), which is absurd – β cannot be α (since α /∈ U ′ and

α /∈ ne (I, I ◦ U)), but then I ◦ (U \ {α}) |= lit(β)D. Since U is founded, at least one

such instance rθ must exist. Therefore there exists β ∈ ua(nup(rθ)) such that β 6∈
U ′ ∪ ne (I, I ◦ U), hence β ∈ U \ U ′. In other words: for every α ∈ U \ U ′, if a rule

supports α in U , then α is not applicable in U ′.
Now consider the branch from the root to this particular leaf. The update set at the

root is ∅ ⊆ U ′. Each stage extends the update set with an action in either U ′ or U \ U ′.
In the first case, the invariant Un ⊆ U ′ is maintained; in the second case, an action α is

introduced by means of a rule that does not support α in U . But the proof of Lemma 19

shows that the rule introducing an action is always supported in leaves that are not

pruned, which is a contradiction. Therefore, U \ U ′ = ∅, whence U is a justified weak

repair. But if η is normal then justified weak repairs are necessarily repairs (Theorem 4

in (Caroprese and Truszczyński 2011)), so U is a justified repair.

B.3 Proof of Theorem 10

Theorem 10

1. Under the hypothesis, for i = 1, 2 there exist branches ∅ = U0
i ,U1

i , . . . ,U
ni
i = Ui of Twf〈I,ηi〉

ending with a consistent leaf and where no rule of ηi is applicable.

Then ∅ = U0
1 ,U1

1 , . . . ,U
n1
1 = U1 ∪ U0

2 ,U1 ∪ U1
2 , . . . ,U1 ∪ U

n2
2 is a branch Twf〈I,η〉. For

i = 0, . . . , n1 − 1 this is immediate, since η1 ⊆ η; for j = 0, . . . , n2 − 1, simply observe

that I ◦
(
U1 ∪ U j2

)
evaluates every instance of every rule in η2 in the same way as

I ◦ U j2 , since Lemma 5 applies. Therefore U1 ∪ U j+1
2 is a descendant of U1 ∪ U j2 in Twf〈I,η〉.

Furthermore, since U1 ∪ Uj2 also evaluates every rule in η1 in the same way as U1, it

follows that U1 ∪ Un2
2 = U is a weak repair for 〈I, η〉 – consistency being a consequence

of Lemma 6. If U1 and U2 are both repairs, them Lemma 6 ensures that U is also a

well-founded repair.

2. Since U is a well-founded weak repair for 〈I, η〉, there is a branch ∅ = U0,U1, . . . ,Un in

Twf〈I,η〉 whose leaf is U . Consider the sets U iη1 = U i ∩ U1. By Lemma 5 U iη1 always assigns

the same semantics to every rule in η1 as U i. Then one can show by induction that U iη1
is a label of some node in Twf〈I,η1〉. If i = 0, this is trivial: ∅ labels the root. Assume the

result holds for i; there are two cases to consider. If the action added from U i to U i+1

is in η2, then U i+1
η1 = U iη1 also labes a node in this tree. Otherwise, this action occurs in

the head of an instance of a rule from η1 applicable in I ◦ U i; this rule is also applicable

in I ◦ U iηi by Lemma 5, so U i+1
η1 is also a node in Twf〈I,η1〉.

Therefore Twf〈I,η1〉 contains a branch ending in Uη1 = U1. This is a leaf, since no rule in
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η1 is applicable. Therefore U1 is a well-founded weak repair for 〈I, η1〉. If U is a repair,

then so is U1 by Lemma 7. The case for η2 is similar.

Finally, by definition of Twf〈I,η〉, all actions in U must occur in either U1 or U2, so U =

U1 ∪ U2.


