Tighter integration in dl-programs

L. Cruz-Filipe':34, P. Engracial®, G. Gaspar®*, R. Henriques?, I. Nunes?*,
and D. Santos?

! Escola Superior N4utica Infante D. Henrique, Paco d’Arcos, Portugal
2 Faculdade de Ciéncias da Universidade de Lisboa, Portugal
3 Centro de Matemética e Aplicacoes Fundamentais, Lisboa, Portugal
4 LabMag, Lisboa, Portugal

Abstract. We introduce a mechanism called lifting to share predicates
between the two components of a dl-program, integrating them in a
tighter way. Using lifting, one can reason about the predicates being
shared both via the description logic knowledge base and via Datalog-
style rules, and the deductions one makes are automatically reflected
globally on both components. This is a capability not directly present in
dl-programs, since changes to the knowledge base only affect the queries
where they occur. We show that lifting has nice theoretical properties,
making it suitable for modular design of dl-programs. Furthermore, dl-
program processors can easily incorporate lifting as a new operator, and
we have extended dlvhex to work with dl-programs with lifting.

1 Introduction

For several years now, dl-programs have earned a place in the semantic web
community as a convenient language for combining rules and ontologies [5, 6].
The syntax of dl-programs facilitates interaction between ontologies, typically
expressed by means of some description logic, and rule-based reasoning, in a logic
programming style. The interaction between these two components is achieved
by means of dl-queries, which function as a bridge: the knowledge base is asked
for some conclusion, possibly assuming extra information that it does not already
contain. Furthermore, under quite general assumptions, reasoning in dl-programs
is decidable and even comes with nice complexity bounds [2, 4,9, 11].

Although the clean separation between two different worlds — the description
logic knowledge base and the rule-oriented program — is usually seen as a positive
feature of dl-programs, it has some drawbacks. The flow of information is not
symmetric: answers provided by the knowledge base have a permanent effect on
the rule-oriented program, but the extra information fed into a given query is
local and meant only to extend the knowledge base in the context of that precise
query.

However, in some specific scenarios, one might like to globally extend the
program’s view of the knowledge base. Consider the following situations, where
the dl-program is using a pre-existing general ontology as its knowledge base L:
(i) additional relations, specific to the context of the dl-program, hold between

the concepts of £; (ii) one wants to apply closed-world reasoning to some concepts
or roles of L.

We propose a mechanism, called lifting, to obtain a complete two-way in-
tegration of the two components of a dl-program. A concept or role from the
knowledge base can be lifted to the rule-oriented program, thereby becoming
available on both levels of the dl-program; changes made to it on either level will
automatically be reflected at the other level, so that lifting effectively identifies a
predicate with a concept or role. Thus, lifting achieves tightness (for that pred-
icate) in the sense of [10], but in a controlled way — the user can choose which
concepts or roles to lift, unlike in languages where all is shared. The formal
concept of lifting abstracts some of the ideas already present in previous work
by other authors; however, by studying lifting in itself, we identify a systematic
procedure suitable for automation; as such, we have extended the DL-plugin
of dlvhex, an interpreter for dl-programs, with the capability of accepting dl-
programs with lifting, thus making this construction a first-class syntactic oper-
ator. We also present some results showing that lifting is modular, and when it
is applied correctly there are no unexpected effects on the global program.

The remainder of the paper is structured as follows. Section 2 presents some
theoretical notions we will need throughout and discusses some closely related
work. Section 3 introduces our lifting construction, motivated by an example, and
Section 4 discusses an implementation. The benefits of lifting are summarized in
the conclusion, together with some thoughts on future developments.

2 Background and related work

Combining description logics (DLs) with rules has been a leading topic of re-
search for the past 15 years. In this section, we briefly summarize some relevant
issues.

Description logic programs or dl-programs [4, 6] are heterogeneous loose cou-
pling combinations of rules and ontologies in the sense that one may distinguish
the rule from the ontology part, and rules may contain queries to the ontology
part of the program. This connection is achieved through dl-rules, which are
similar to usual rules in logic programs but make it possible, through dl-atoms
in rule bodies, to query the knowledge base, possibly modifying it (adding facts)
for the duration/purpose of the specific query.

A dl-program is a pair KB = (L, P), where £ denotes the description logic
knowledge base, which we will refer to simply as “knowledge base” from this
point onwards, and P denotes the generalized logic program — a logic program?
extended with dl-atoms in rules. A dl-atom is of the form

DL[Sy opy p1,- .- Sm op,, pm; RI(t),

which we often abbreviate to DL[x; R](t), where each S; is either a concept, a
role, or a special symbol in {=,#}; op; € {W,U}, and the symbols p; are unary

! Throughout this paper, we will assume that the logic programming language is
Datalog ™, described in [9], which in particular contains negation-as-failure.

or binary predicate symbols depending on the corresponding S; being a concept
or a role. R(t) is a dl-query, that is, it is either a concept inclusion axiom F'
or its negation —F, or of the form C(t), -C(t), R(t1,t2), ~R(t1,t2), = (t1,t2),
(t1,t2), where C' is a concept, R is a role, t, t; and {2 are terms.

In a dl-atom, p1,...,p, are called its input predicate symbols. Intuitively,
op;, =W (resp., op; =) increases S; (resp., =S;) by the extension of p;.

A dl-rule r is a normal rule, i.e. ¥ = a + by,...,bg,not bgiq,...,not by,
where a is an atom, and bq,...,b,, are either atoms or dl-atoms.

We illustrate the use of dl-programs by means of the following example
from [9].

Ezample 1. Consider the dl-program KB = (L, P), where:

L: (> 2 toReview.T) C Overloaded (i1)
Overloaded C Vsupervises™.Overloaded (i2)
{(a,b)} LU {(b,c)} C supervises (i3)

P good(X) <—DLJ;supervises|(X,Y),

not D L[toReview W paper; Overloaded](Y)
overloaded(X) + not good(X)
paper(b, p1) <
paper(b, p2)

We briefly recall this program’s intended meaning as explained in [9]. Ax-
ioms (i1) and (i2) indicate that someone who has more than two papers to
review is overloaded, and that an overloaded person causes all their supervised
persons to be overloaded as well. Axiom (i3) defines the supervision hierarchy.
Rule (r1) indicates that, if X is supervising Y and Y is not overloaded, then X
is a good manager. Rule (r2) indicates that, if X is not a good manager, then
X is overloaded.

The authors of [4,6] integrated the underlying logics of OWL LITE and
OWL DL with normal logic programs, extending two different semantics for
ordinary normal programs — answer-set semantics and well-founded semantics.
For the purpose of this paper, we will only be concerned with the former, which
generalizes answer-set semantics for logic programs.

A dl-program is positive if it does not contain negations. A positive dl-
program (£, P) has a minimal model computed by the usual fixpoint construc-
tion, where an interpretation I (a subset of the Herbrand base of P extended
with all constants from £) satisfies a ground dl-atom DL[x;Q](f), with x =
S10p1 D1, - S 0Py Py 1 L(T;x) | Q(F), where L(I;x) = LU U, " Ai(1)
and, for 1 <i < m,

_) {Si(@) [pi(e) € 1},if op; = &
Adl) = {{ﬁsz‘(e) | pi(e) € I},if op; =

Given a dl-program KB = (L, P), we can obtain a positive dl-program by re-
placing P with its strong dl-transform sPé relative to £ and an interpretation
I. This is obtained by grounding every rule in P and then (i) deleting every
dl-rule r such that I =, a for some default negated a in the body of r, and
(ii) deleting from each remaining dl-rule the negative body. The informed reader
will recognize this to be a generalization of the Gelfond-Lifschitz reduct. Since
KB = (L, sPL) is a positive dl-program, it has a unique least model Mygr. A
strong answer set of KB is an interpretation I that coincides with M ;1.2

One can work with dl-programs by means of d1vhex [3], a prototype applica-
tion for computing models of HEX-programs [7], that is, higher-order logic pro-
grams with external atoms. HEX-programs are still based on answer-set seman-
tics, but have a more versatile interface mechanism and introduce higher-order
reasoning. The DL-plugin for dlvhex simulates the behaviour of dl-programs
within this more general framework, providing a rewriter that processes the
syntax of dl-atoms, thus allowing the use of dlvhex directly as a reasoner for
dl-programs. Both dlvhex and the DL-plugin are implemented in C++, using
RACER [8] as a DL reasoning engine to process OWL DL ontologies.

Giving the dl-program in Example 1 as input to the DL-plugin of dlvhex,
one obtains a single answer set,

{overloaded(c), overloaded(b), overloaded(a), paper(b, p2), paper(b, p1)},

which can easily be seen to be the only answer set of that program.

In [4] a number of encouraging results for dl-programs are presented: (i) data
complexity is preserved for dl-programs reasoning under well-founded seman-
tics (complete for P) as long as dl-queries in the program can be evaluated in
polynomial time, and (ii) reasoning for dl-programs is first-order rewritable (and
thus in LOGSPACE under data complexity) when the evaluation of dl-queries
is first-order rewritable and the dl-program is acyclic. These nice results are a
consequence of the use of Datalog: complexity of query evaluation on both Data-
log and stratified Datalog™ programs is data complete for PTIME and program
complete for EXPTIME, as shown in [2].

It is interesting to observe that [10] gives a list of other criteria by means
of which different approaches to combining description logics and rule-based ap-
proaches should be compared. These are the following four aspects: faithfulness
(the semantics of both components is preserved), tightness (both components
contribute to the consequences of one another), flexibility (the same predicate
can be viewed under closed- and open-world interpretation at will) and decid-
ability. The author argues that dl-programs are faithful, flexible and decidable,
but not tight. The latter is not completely true: the possibility of dynamically
increasing extents of concepts or roles in a dl-query means that the logic program
effectively sees an extended knowledge base for the purpose of that query, hence
some (restricted, local) form of tightness is available. This is actually much more
versatile, since one can choose for each query how each concept or role should be
extended. True tightness, achieved by universally and systematically extending

2 There is also a weak answer-set semantics, which we will not discuss here.

a predicate, can be realized by means of the lifting construction we introduce in
this paper.

3 Two-level reasoning using lifting

In order to motivate lifting, we introduce a simple, yet rich, example.

The Bigge Auto Shoppe is a well-established car sales company with branches
spread around through the country. Its sales management software includes a
description logic knowledge base, managed at headquarters, which includes all
the relevant information that is intended to be shared by all the company’s
dealers, including the kind of fuel each car uses (gas or diesel).

The knowledge base includes two subconcepts of car identifying the type of
fuel each one uses, Gas and Diesel, together with the following axioms.

Diesel C Car Gas C Car Diesel M Gas C L

Honest Joe was an independent sales agent who started off dealing in electric
cars and used a rule-based program to manage his business. Recently, he decided
to join The Bigge Auto Shoppe company, but the company’s knowledge base has
no information on electric cars (and is not planning to add it soon). In order
to integrate his data with the company’s, Joe decided to develop a dl-program,
since this allowed both systems to communicate while retaining their separate
reasoning abilities.

At the same time, since electric cars are cars, much of the reasoning machin-
ery in the central knowledge base is relevant to Joe — all properties that are true
of all cars apply to electric cars. In order to proceed, he would like the central
knowledge base to reason as if his electric cars were also there.

Lifting is the answer to Honest Joe’s problems. All he needs is to introduce
a new predicate in his program, which he will call cart, that will allow him
to extend the scope of Car in the central knowledge base. He will also need
its negation, which he will call car™ since there is no classical negation in his
rule-based system. He then writes the following rules.

cart(X) «+ DLJ; Car](X) car” (X) « DL[; -Car](X) (1)
cart(X) < electric(X) (2)

Rules (1) introduce the new predicates and guarantee that car™ inherits all
instances of cars in the knowledge base (and correspondingly for car™). Rule (2)
adds the information that electric cars are cars. In order to obtain the reverse
correspondence, namely that all facts about cart and car™ are fed back into the
knowledge base, a global change to the program is required: in every dl-atom,
the program must send all new information to the description logic. So, to the
input of each dl-atom one must add Car & car™ and Carl car™. However, this
change must be made not only to the dl-atoms presently in the program, but
also to any dl-atom added in the future. This motivates the following definition.

Definition 1. The dl-program with lifting KB, where KB = (L, P) is a di-
program and I' = {Q1,...,Qm} is a finite set of concepts or roles from L, is the
dl-program (L, Pr) where Pr is obtained from P by:

— for every Q € I', adding the rules’
¢ (X) « DL[; Q(X) ¢~ (X) + DL[;-QJ(X) ®3)

— replacing every dl-atom DL[x; R](t) (including those added in the previous
step) with

DL[Xan Lﬂqr7Qlwq;7'-~anH’Jq:ﬂQmU q;wR](E) (4)

where x = S10pyp1,...,5n 0p,, Pn corresponds to the original query’s in-
put. We will call the query in (4) a I'-extended query and abbreviate it to
DLr[x; R](?).

In practice, one can define a dl-program with lifting simply by giving KB
and I'. In our example, Honest Joe can lift the concept Car, obtaining a dl-
program with lifting where I = {Car}, and then add rule (2) to P.

In order to establish good programming practice, one should take care to add
Q to I' before enriching P with any rules involving g or ¢~. This is justified
by the following result.

Theorem 1. Let KBy = (L, Pr) be a dl-program with lifting where no rule
in P uses a lifted predicate name in its head. For every dl-atom in P, if the
knowledge base underlying its query in KCB is consistent, then so is the knowledge
base underlying it in KBp.

Proof (Sketch.). This proof relies on the observation that, after lifting a concept
or role @, the only “new” ways of proving e.g. Q(t) in £ are those arising from
proving ¢t (¢) in P. In turn, the hypothesis ensures that this can only happen
if Q(t) already holds in £. This holds for every lifted concept or role; clearly,
non-lifted concepts and roles maintain their semantics. Hence, if some dl-atom
has an inconsistent context after lifting, it already did so before lifting.

A more detailed proof of this result can be found in [1]. O

This result states that lifting works as intended. The restriction is essential,
since rules using lifted predicates can easily make the knowledge base underlying
extended queries inconsistent — just consider the case where P contains the rule
¢+ (X) g (X).

From the proof of the theorem one also obtains the following result, stating
that indeed @ and ¢' have the same semantics.

Corollary 1. In the conditions of Theorem 1, the sets {t | Q; ()} and {t | ¢;" (¢)}
coincide for every i, as well as the sets {T | ~Q; (¥)} and {t|q; (£)}.

3 Note that Q may be a concept or a role, so ¢* and ¢~ will be unary or binary
predicates. The names ¢ and ¢~ are syntactically derived from @, with the first
letter changed to lowercase to conform with the convention in logic programming.

It is simple to show that these relationships remain valid after adding new
rules to the logic program as long as {¢ | Q;(¥)} and {t | =Q;(t)} are interpreted
as in an extended query, so Corollary 1 holds in general. In other words, q;" and
g; are true counterparts to ; and —@Q);, tightly brought together by the lifting
construction.

Lifting allows Honest Joe to relate his predicate electric with other concepts
in the knowledge base. For example, if he wants to state that electric cars do
not run on diesel (from which the knowledge base will be able to infer further
information), he can extend his dl-program by lifting Diesel and adding the rule

diesel ™ (X)) « electric(X).

Examples of the kind of information the resulting dl-program can infer are:
electric cars have windows, since all cars have windows; electric cars do not have
glow plugs, since only diesel cars have glow plugs. This example also explains
why it is important to add a name for the negation of the concept being lifted.

Also included in The Bigge Auto Shoppe’s knowledge base is a role haslnj
specifying the manufacturer of the cars’ injectors (when they have injectors).
All diesel cars come with an injector, while cars running on gas may or may
not have an injector. After a few weeks of joining them, Honest Joe decided to
start selling custom-made diesel cars produced by his cousin, who is also the
local salesperson for Great Injectors Inc. Obviously, all those cars have injectors
produced by that company. Honest Joe wants to use his company’s knowledge
base to reason about these cars too, so he decided to lift haslnj and add the
following rules to his program.

diesel™(X) + customCar(X) (5)
haslnj™ (X, greatlnj) < customCar(X) (6)

Note that Diesel had already been lifted. From Honest Joe’s point of view
these concepts or roles will be updated whenever he queries the company’s knowl-
edge base. However, these custom cars will not really be present in that knowl-
edge base, since all the changes are actually performed in his part of the dl-
program. This is in line with The Bigge Auto Shoppe’s policy of only recording
information about mainstream cars.

At this stage, Honest Joe has lifted two concepts and one role in sequence, so
he is working with a dl-program with lifting where I" = {Car, Diesel, hasInj}. The
example shows how the lifting steps can be made at different points in time, the
set I" keeping track of how dl-atoms are being extended. For example, rules (1)
were introduced when I = {Car}; at that time, when processing dl-queries the
knowledge base would be given an extended context containing Car W cart and
Car car™. Afterwards, when Diesel was added to I', the context for the same
queries became extended also with Diesel & diesel™ and Diesel & diesel . Finally,
when custom cars were introduced and haslnj was lifted, this context was again
enlarged, this time with hasInj & haslnj™ and haslnj haslnj~. In the end, Pr

contains the following rules.

cart(X) < electric(X) cart(X) < DLp[; Car|(X)
X) < DLp[; ~Car](X)

(X) k

car” (X) [
diesel™ (X)) « customCar(X) diesel™ (X) «+— DLp[; Diesel](X)
(X) [
Y) k
[

diesel ™ (X) « electric(X) diesel™ (X) < DLp[; —Diesel](X)
haslnj* (X, greatlnj) < customCar(X) haslnj"(X,Y) < DLp[; haslnj](X,Y)
haslnj™ (X, Y) «+ DLp[;—hasInj](X,Y)

It is interesting to look at the latest additions to the program, namely at
rule (6), in two different ways. From an intuitive point of view, this rule is en-
suring that the knowledge base keeps its informal “requirement” that it contains
all the relevant information about the cars it knows about — and since Honest
Joe’s custom-made cars have injectors, these facts should be included in the
knowledge base.

One can, however, look at this in a different perspective, and see rule (6)
as an implementation of an integrity constraint (more specifically, as a tuple-
generating dependency) on the dl-program, seen (as a whole) as a database: all
custom-made cars have injectors from Great Injectors, Inc, so whenever a fact
is added to the dl-program about a specific car that is custom-made, one must
ensure that the corresponding information about its injector is also added. In this
case, since the information can be automatically inferred from what is already
known, this constraint can be simply added as a rule.

So far, we have shown how lifting is used in three different situations. The
first example shows how, with lifting, one can add instances of concepts or roles
defined in the knowledge base via the logic program with a global impact, so
that (from a practical perspective) the program’s view of the knowledge base is
effectively changed. The second exemplifies the addition of negative information
to the knowledge base, which may be relevant for some inference rules. The third
example shows how the interplay between the two components of the dl-program
can be made more symmetric, allowing for rules that extend (again, globally)
the knowledge base from information derived in the logic program. The key as-
pect in all these examples is that we are interested in making global changes
to the program’s view of the knowledge base, and not simply the local changes
easily achieved by means of (standard, non-extended) dl-atoms. Other situations
where this need arises include adding closed-world reasoning to specific concepts
or roles — which can only be done on the logic program’ side, since description
logics typically use open-world semantics — or, more generally, encoding default
rules in dl-programs. In particular, Section 6.1 of [5] discusses closed-world rea-
soning and introduces a complex mechanism to model the extended closed-world
assumption that has some syntactic similarities to lifting. However, the construc-
tion is presented therein with that specific goal in mind, and the authors do not
study its properties as we have done in this section.

Lifting solves one of the main shortcomings of dl-programs pointed in e.g. [10]:
its lack of tightness. Typically, in dl-programs the programmer controls the spe-

cific data being input to each dl-atom, locally extending the knowledge base for
the purpose of that specific query. However, until lifting there was no mecha-
nism to make global changes to the program’s view of the database; using lifting,
dl-programs become tight.

The next section discusses how lifting was incorporated in an existing tool
for dl-programs.

4 Implementation of lifting

Having defined lifting, it is interesting to integrate it into existing tools for
reasoning with dl-programs, allowing users to work in a more structured, robust
and modular way: writing the logic program P and specifying the set I" of lifted
concepts or roles. There are obvious advantages to this approach: not only do the
programs become significantly shorter and simpler, making them easier to write
and less error-prone, but it also ensures the global properties of the dl-program
that have to be maintained. From a programmer’s point of view, adding @ to I
is saying that predicate names ¢t and ¢~ in P should have the same meaning
as @ and —@ in the knowledge base. If lifting were not available, to achieve this
identification it would be necessary to keep track of the information that needs
to be included in every input context; with lifting, one simply writes the simpler
(non-extended) dl-atom, and the bookkeeping is done in the background via I.
Users still get the option of extending the knowledge base locally (via the usual
input predicates in dl-queries) or globally (using lifting).

In order to implement lifting, we added a module to the DL-plugin of d1vhex
that processes a dl-program with lifting. The set I" is written as special “lifting
clauses” of the form

Lfe(Q.q",q7) or Lfr(Q,q%,q7)

according to whether @) is a concept or a role. This distinction simplifies the
implementation, because it gives the module the necessary information about
the arity of ¢* and ¢—. This is in line with the syntax of dl-programs in the
DL-plugin, which also distinguishes dl-queries on roles and on concepts. Also,
the user can choose his own names for g7 and ¢~ (which was not the case in
Section 3). This feature was added for user-friendliness.

There is another difference between the implementation and Definition 1,
which is of a technical nature. Because of the conversion to an HEX-program,
dlvhex performs a strong-safety check on its input, identifying circular depen-
dencies between predicates. It then requires that, whenever a predicate P in-
volved in a circularity appears at the head of a rule, the variables in the argu-
ments of P must appear in the body of the same rule as arguments of a predicate
not involved in that circularity. This is circumvented by automatically adding
a domain predicate to the generated program without any interference by the
user.

The new module does the parsing of these lifting clauses, and translates a
dl-program with lifting to a dl-program without lifting, as in Definition 1. The

resulting dl-program is then subject to the usual processing by the DL-plugin,
which was further unchanged. In particular, if the input program does not have
lifting, then the new module simply passes it along without changes, so the
DL-plugin works exactly as without this extension.

We illustrate the extended version of the DL-plugin with the example from
Section 3. The following listing shows the logic program that was given as input;
the underlying description logic knowledge base is omitted. Note that Honest
Joe currently has two types of car for sale that are not in the ontology.

Lfc{Car,carP,carM}
Lfc{Diesel,dieselP,dieselM}
Lfr{HasInj,hasInjP,hasInjM}

carP(X) :- electric(X).

dieselM(X) :- electric(X).

dieselP(X) :- customCar(X).
hasInjP(X,greatInjInc) :- customCar(X).

electric(passat).
customCar (auditt) .

The translated dl-program produced by the module is the following. In the
DL-plugin, true negation is represented as -, W is written as += and U as -=.
Note that the domain predicate includes facts not only about Honest Joe’s cars,
but also about those that are present in the description logic knowledge base.

carP(X) :- electric(X).

dieselM(X) :- electric(X).

dieselP(X) :- customCar(X).
hasInjP(X,greatInjInc) :- customCar(X).

electric(passat).
customCar (auditt) .

domain(greatInjInc).
domain(passat) .
domain(auditt).
domain(ecoup) .
domain(polo) .
domain(jetta).
domain(golf).

carP(X) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= dieselM,
HasInj += hasInjP, HasInj -= hasInjM; Car](X), domain(X).
carM(X) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= dieselM,
HasInj += hasInjP, HasInj -= hasInjM; -Car](X), domain(X).
dieselP(X) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= dieselM,
HasInj += hasInjP, HasInj -= hasInjM; Diesel] (X), domain(X).
dieselM(X) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= diesell,
HasInj += hasInjP, HasInj -= hasInjM; -Diesel] (X), domain(X).
hasInjP(X,Y) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= dieselM,
HasInj += hasInjP, HasInj -= hasInjM; HasInj](X,Y), domain(X), domain(Y).
hasInjM(X,Y) :- DL[Car += carP, Car -= carM, Diesel += dieselP, Diesel -= dieselM,
HasInj += hasInjP, HasInj -= hasInjM; -HasInjl(X,Y), domain(X), domain(Y).

The answer-set computed by the DL-plugin (which is the only answer set of
this example) is the following, with the domain predicates omitted.
{customCar(auditt), electric(passat), hasInjM(ecoup,polo),

hasInjM(ecoup, jetta), hasInjM(ecoup,golf), hasInjM(polo,ecoup),
hasInjM(polo, jetta), hasInjM(polo,golf), hasInjM(jetta,ecoup),

hasInjM(jetta,polo), hasInjM(jetta,golf), hasInjM(golf,ecoup),
hasInjM(golf,polo), hasInjM(golf,jetta), hasInjP(auditt,greatInjInc),
dieselM(passat), dieselM(ecoup), dieselM(jetta), dieselP(auditt),
dieselP(polo), dieselP(golf), carP(passat), carP(ecoup), carP(polo),
carP(jetta), carP(golf)}

This short example already illustrates the advantages of lifting pointed out
earlier: the dl-program effectively used is much more complex than the dI-
program with lifting that was written, and without lifting one would have to
keep track of the six input context updates that were included in the program’s
six dl-atoms.

Furthermore, future changes to the program would require adding this same
six context updates to every new dl-atom, which one would very easily forget;
also, future identifications between £ and P (i.e. new additions to I') would
require changing the pre-existing part or the program. Lifting avoids both these
issues, making it a very useful programming tool.

5 Conclusions and future work

In this paper we presented a lifting construction that allows effective information
sharing between the two components of a dl-program, identifying a concept or
role in the description logic knowledge base with a predicate in the logic program,
bringing true tightness to dl-programs while at the same time making them more
flexible.

Lifting allows global changes to the knowledge base to be implemented from
the side of the logic program. This is useful not only in situations where the
knowledge base is not accessible for change, but also when the intended changes
are not desirable outside the dl-program’s specific context. Relevant examples
include adding closed-world reasoning to specific concepts or roles, or encoding
default rules in dl-programs. Furthermore, lifting presents itself as a simple syn-
tactic mechanism that can make development of dl-programs simpler whenever
tight integration is desired.

We have implemented lifting as an add-on to the DL-plugin for dlvhex, al-
lowing the input of dl-programs with special lifting clauses. This implementation
closely adheres to the theoretical definition, although some practical issues had
to be resolved, as discussed in Section 4. This implementation still has some
limitations, mostly already existing in the DL-plugin for d1vhex; namely, it does
not support dealing with namespaces associated with imported ontologies. An-
other direction of ongoing work is providing support for dealing with namespaces
associated with imported ontologies in the DL-plugin for dlvhex. We are cur-
rently working on empirically evaluating how lifting behaves in more large-scale
examples, and how the theoretical, worst-case computational complexity bounds
for dl-programs actually translate in the practical performance of dl-programs
with lifting.

Acknowledgements

This work was partially supported by Fundacao para a Ciéncia e Tecnologia
under contract PEst-OE/EEI/UI0434/2011. Rita Henriques was partially spon-
sored by a grant from LabMAg. Daniel Santos was sponsored by a grant “Bolsa
Universidade de Lisboa / Fundagdo Amadeu Dias”.

References

1.

10.

11.

L. Cruz-Filipe, P. Engracia, G. Gaspar, and I. Nunes. Achieving tightness in dI-
programs. Technical report, Faculty of Sciences of the University of Lisbon, 2012.
Available at http://hdl.handle.net/10455/6872.

. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive

power of logic programming. ACM Computing Surveys, 33(3):374-425, 2001.

The dlvhex tool. Available at http://www.kr.tuwien.ac.at/research/systems/
dlvhex/.

T. Eiter, G. lanni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics
for description logic programs in the semantic Web. ACM Transactions on Com-
putational Logic, 12(2), 2011. Article Nr 11.

T. Eiter, G. lanni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12-13):1495-1539, 2008.

T. Eiter, G. Tanni, A. Polleres, R. Schindlauer, and H. Tompits. Reasoning with
rules and ontologies. In P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sat-
tler, editors, Reasoning Web, Second International Summer School 2006, Lisbon,
Portugal, September 4-8, 2006, Tutorial Lectures, volume 4126 of LNCS, pages
93-127. Springer, September 2006.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming. In
L.P. Kaelbling and A. Saffiotti, editors, IJCAI2005, pages 90-96. Professional Book
Center, 2005.

V. Haarslev and R. Moller. RACER system description. In R. Goré, A. Leitsch, and
T. Nipkow, editors, IJCAR 2001, volume 2083 of LNCS, pages 701-706. Springer,
2001.

S. Heymans, T. Eiter, and G. Xiao. Tractable reasoning with DL-programs over
Datalog-rewritable description logics. In H. Coelho, R. Studer, and M. Wooldridge,
editors, 19th ECAI volume 215 of Frontiers in Artificial Intelligence and Applica-
tions, pages 35—40. I0S Press, 2010.

B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the
ACM, 57, June 2010. Article Nr 30.

R. Rosati. On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics, 3(1):61-73, 2005.

