The Boolean Pythagorean Triples Problem in Coq *

Luis Cruz-Filipe!, Joao Marques-Silva?, and Peter Schneider-Kamp'

! Department of Mathematics and Computer Science, University of Southern Denmark
{1lcf,petersk}@imada.sdu.dk
2 LaSIGE, Faculty of Science, University of Lisbon, Portugal
jpms@ciencias.ulisboa.pt

The Boolean Pythagorean Triples problem asks the following question: is it possible to
partition the natural numbers into two sets such that no set contains a Pythagorean triple
(three numbers a, b and ¢ with a? +b? = ¢?)? This question was answered in 2016, when Heule,
Kullmann and Marek [4] showed that it is already impossible to partition the set {1,...,7825}
into two sets such that none of them contains a Pythagorean triple. This proof was done by
means of an encoding of this finite version of the problem into propositional logic (already used
in [1]), which was then simplified and solved using the cube-and-conquer method [5].

The strategy of the proof is summarized in Figure 1. The propositional formula obtained by
encoding the problem was first simplified using blocked clause elimination and symmetry break-
ing. Afterwards, the problem was divided into one million cubes: a set of partial assignments
that cover the whole space of possible valuations. Then, it was shown that (1) the conjunction
of the simplified formula with any cube is unsatisfiable, and (2) the negation of the disjunction
of all the cubes is unsatisfiable. As a consequence, the simplified formula (and therefore also
the original formula) is unsatisfiable.

This proof was formally verified using Coq, as described in [2, 3]. In this extended abstract,
we summarize this process in a unified way.

12l
/[EK | =cube; ————-=>=0
BPT — — — > propositional — _ _ 5 simplified - :
w/ formula ~ _ /F’]\
3] *cuben777735*77>5
13] 2]
= Vicube; =0
2]

Figure 1: The original proof and the different verification steps. The dashed arrows denote the
steps in the original proof [4]: a first propositional formula was generated by a C program, and
subsequently simplified, divided and solved by SAT solvers. The dotted arrows denote proofs of
unsatisfiability obtained by a SAT solver that were verified by a certified checker extracted from
a Coq formalization [2]. The solid arrows denote the contributions of [3]: the generation, in
Coq, of propositional formulas that are proved to represent the original mathematical problem,
directly and after simplification; the formal specification of the simple reasoning behind cube-
and-conquer; and the generation of the formulas that are given as input to cube-and-conquer.

*This work was partially supported by the Danish Council for Independent Research, Natural Sciences, grant
DFF-1323-00247.

The Boolean Pythagorean Triples Problem in Coq L. Cruz-Filipe, J. Marques-Silva, P. Schneider-Kamp

The first step was to formalize the Boolean Pythagorean Triples problem in Coq and relate
it to the propositional encoding. This amounted to stating the mathematical problem in Coq
and defining a family of propositional formulas (parametrized on a natural number n) directly
corresponding to the formulas used in [4] as the starting point. We formally proved that
unsatisfiability of any of these formulas implies that the given mathematical problem does not
have a solution.

The second step was to formalize the simplification procedure. This is trivial, as the tech-
niques applied in [4] only remove clauses, trivially preserving satisfiability. However, the authors
of [4] make a stronger claim — namely, that their criterion for removing clauses also guarantees
preservation of unsatisfiability. The mathematical argument, which we formalized, is as follows:
let L be a list of triples and (a,b,c¢) € L be a triple containing a number that does not occur
in any other triple in L. If there is a coloring C' of the natural numbers such that no triple in
L\ {(a,b,c)} is monochromatic and e.g. a does not occur in any other triple in L, then we can
extend C' by changing the color of a, if necessary.

The next step was to formalize soundess of cube-and-conquer [5]. The idea behind this
methodology is simple: instead of looking for a satisfying assignment for a particular formula,
consider its conjunctions with different sets of literals (the cubes) such that every possible
assignment satisfies one of the possible cubes. For example, if ¢ is a formula on two variables
x and y, the cubes could be {z}, {Z,y} and {Z, 7}, and instead of ¢ we consider the three
formulas p Az, o AT Ay and ¢ AT A y. Furthermore, to ensure that every assignment satisfies
one of the cubes, we need to check that the formula Z A (z V §) A (z V y) is unsatisfiable. We
formalized this argument for the general case, given a formula and a list of cubes.

The last step was to check unsatisfiability of all the formulas generated by cube-and-conquer.
This was done by developing a general-purpose verifier of unsatisfiability proofs based on reverse
unit propagation [2]. This verifier, also formalized in Coq, checks that a given formula entails
the empty clause by following a list of steps given as oracle. This list of steps is produced from
a trace of an untrusted SAT solver, and is essentially a list of pairs (¢, ¢) where v is a clause
to be added and /¢ is a list of indices of already known clauses that entail 1) by reverse unit
propagation. (For efficiency, we also include deletion of clauses that are no longer relevant.)

Due to the huge size of the traces involved (over 200 TB), it is infeasible to perform the
whole verification process inside Coq; thus, we use program extraction to obtain code that is
correct by construction, and we rely on metalevel reasoning to chain the different steps in the
process. However, we reduce this dependency to checking that the same arguments are provided
to different functions. In principle, given enough resources, the whole verification could have
been done inside Coq.

References

[1] J. Cooper and R. Overstreet. Coloring so that no pythagorean triple is monochromatic. CoRR,
abs/1505.02222, 2015.

[2] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient certified resolution proof check-
ing. In TACAS, volume 10205 of LNCS, pages 118-135. Springer, 2017.

[3] L. Cruz-Filipe and P. Schneider-Kamp. Formally verifying the boolean pythagorean triples conjec-
ture. In LPAR 21. EasyChair, accepted for publication.

[4] M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples
problem via cube-and-conquer. In SAT, volume 9710 of LNCS, pages 228-245. Springer, 2016.

[5] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In HVC 2011, volume 7261 of LNCS, pages 50-65. Springer, 2012.

