
A Constructive Formalization of the
Fundamental Theorem of Calculus

Lúıs Cruz-Filipe

Department of Computer Science, University of Nijmegen, The Netherlands
Center for Logic and Computation, IST, UTL, Portugal

lcf@cs.kun.nl

Abstract. We have finished a constructive formalization in the theorem
prover Coq of the Fundamental Theorem of Calculus, which states that
differentiation and integration are inverse processes. In this formaliza-
tion, we have closely followed Bishop’s work ([4]). In this paper, we de-
scribe the formalization in some detail, focusing on how some of Bishop’s
original proofs had to be refined, adapted or redone from scratch.

1 Introduction

In this paper we describe how constructive real analysis can be formalized in the
theorem prover Coq. The results proved include notions of continuity, differen-
tiability, integration and the main theorems in calculus of one variable: Taylor’s
Theorem and the Fundamental Theorem of Calculus.

This formalization was developed using the algebraic hierarchy developed for
the FTA project described in [14] and extending it whenever necessary. Working
in this way, we intend to show that it is possible to formalize large pieces of
mathematics in a modular way—that is, such that new blocks can be built on
top of the old ones without disrupting the existing work. We feel that this is the
way to successfully build a comprehensive library that can be actually used in
real mathematics.

We assume all functions to be partial so that we can define all usual func-
tions of real analysis (e.g. the logarithm). For this, we identify domains with
their characteristic predicate and represent each real-valued function by a bi-
nary function which takes a proof term as a second argument—a proof that the
function is defined at the point where we are trying to evaluate it. This process,
which is described in detail in [7], is very similar to the approach which was orig-
inally followed in the Automath system (see for example [3]). Of course, total
functions simply correspond to the case when the predicate is always true.

For generality’s sake, we decided to work constructively (following Bishop,
see [4]). This means essentially that we do not in general accept reasoning by
contradiction and work with an equality which is not decidable. On the other
hand, we make no extra assumptions about the properties of real numbers, which
means that within classical mathematics (that is, where the axiom (A ∨ ¬A) is
accepted) our work is still valid. Arguments on why our approach may be argued
to be more sensible can be found in the first chapter of [4].

2

In this paper, we will follow the structure of Chapter 2 of [4] (which was
the reference closely followed throughout the whole formalization) and compare
several of the statements and proofs therein with those in our formalization,
focusing specifically on the two or three points where we had to follow a differ-
ent path than his and trying to understand why this was so. We feel that it is
relevant to point out that those were the exceptional cases—most of the formal-
ization amounted in fact to choosing good representations for the definitions,
translating Bishop’s original proofs into Coq code and filling in the details—,
meaning that the formalized work is an accurate representation of the piece of
informal mathematics we started with.

A relevant part of the work which we will not go into in this paper is automa-
tion. The interested reader can find more information about some automation
techniques that were developed in parallel with the formalization in [7].

The formalization itself, including some documentation, can be downloaded
from http://www.cs.kun.nl/~lcf/ftc.tgz.

2 Basic Coq Notation

This paper intends to focus on the mathematical aspects of the formalization,
rather than in specific Coq issues. However, we will present some specific Coq
terms; for the reader unfamiliar with the Coq syntax, we briefly present the
notations we will need:

– There are two basic types for data types and propositions, which are respec-
tively Set and Prop1;

– λ-abstraction is denoted by square brackets; therefore, [x:A]M represents the
term λx :A.M ;

– Π-abstraction (and universal quantification) is denoted by curved brackets;
therefore, the term (x:A)M corresponds to the term Πx : A.M or, via the
Curry-Howard isomorphism, to the proposition ∀x :A.M ;

– Existential quantification and Σ-types are represented by curly braces; for
example, the term {x:A & M} can correspond to the term Σx : A.M or to
the proposition ∃x :A.M ;

– The logical connectives ∧ (and) and ∨ (or) are represented respectively by
* and +2.

– The usual algebraic operations (addition, multiplication, etc.) and relations
(less, less or equal, equal) will be denoted by their usual symbols enclosed in
square brackets: [+], [*], [<=] and so on. In particular, [--] denotes the
unary group inverse operator.

More specific notation will be explained whenever it occurs.

1 A more precise description of these types and of the Coq type theory can be found in
the Coq reference manual, see [6], but is not needed to understand this presentation.

2 This is not standard Coq notation; a more detailed explanation for these connectives
can be found in [14].

3

3 The Real Numbers, Sequences and Series

The algebraic hierarchy which constituted the basis for our work already included
a definition of real numbers. This definition does not completely coincide with
Bishop’s, so we will briefly discuss both constructions and compare them.

In the FTA project, a real number structure IR was defined axiomatically as
being a complete ordered field with the archimedian property, that is, an ordered
field with an operation lim such that (1) every Cauchy sequence s converges to
lim(s) and (2) for every natural number n, there is an element x of the field
such that x < n (where n denotes the image of n in the ring).3

Then, a concrete structure, the set of Cauchy sequences of rational numbers
with equality defined as equality of limits, is defined (see [13]) and proved both
to satisfy these axioms and to be isomorphic to every other structure that sat-
isfies these axioms. However, in our work we suppose an arbitrary real number
structure. This allows us to be more general and apply it to any other such
structure, and is also more efficient as the construction of the concrete structure
does not need to be loaded into memory.

Bishop takes a slightly different approach, defining a real number to be a
regular sequence4 of rational numbers. Two such sequences {xn} and {yn} cor-
respond to the same real number iff their difference converges to 0 in the rational
numbers.

Sections 1 and 2 of [4] amount mainly to establishing that this structure is
indeed a real number structure in the sense above defined; from this it follows
that it is isomorphic to every other real number structure, and therefore all of
the remaining work applies to any such structure.

We decided to work in the more general setting of real number structures
for two reasons. On the one hand, we wanted to use the work which previously
had been done for the FTA project; on the other hand, we felt that working
with an axiomatic characterization would lead to more generality, as we then
can apply our results not only to Bishop’s real numbers but to any other real
number structure without any further work.

Sequences and Series

Section 2.3 of [4] is concerned with properties of sequences and series of real
numbers.

In the FTA project, sequences were already quite extensively treated, cov-
ering most of the reference material. These include a predicate Cauchy_prop
that states that a sequence is a Cauchy sequence (see [14]); in a real number
structure there is also an operator Lim that associates to every Cauchy sequence
its limit. New results include a straightforward definition of subsequence and its
main properties, which we will not discuss.

3 This axiomatization is based on Heyting’s work on algebraic structures presented
in [19].

4 A regular sequence is a Cauchy sequence such that ∀m,n∈IN |xm − xn| ≤
∣∣ 1

m
− 1

n

∣∣

4

To study series, we begin by associating to each sequence the sequence of its
partial sums in the obvious way:

Definition seq_part_sum [x:nat->IR] := [n:nat](sum0 n x).

where (sum0 n x) simply represents
∑n−1

i=0 xn.
Following Bishop, a series is said to converge iff this sequence is a Cauchy

sequence; in this case, the limit of this sequence is said to be the sum of the
series. The formalization of these is direct, using the definitions already present
for sequences:

Definition convergent [x:nat->IR] :=
(Cauchy_prop (seq_part_sum x)).

Definition series_sum [x:nat->IR][H:(convergent x)] :=
(Lim (seq_part_sum x) H).

Two criteria are then proved for determining convergence of a series: the
comparison test and ratio test (respectively Propositions 9 and 10 in Chapter 2
of [4]).

As an example, we discuss the formalization of the comparison test. In
Bishop’s book, this reads:

Proposition: If
∑∞

n=1 yn is a convergent series of nonnegative terms and |xn| ≤
yn for each n, then

∑∞
n=1 xn converges.

In this statement, the hypothesis that y is nonnegative is superfluous; there-
fore, we formalize this lemma simply as

Lemma comparison : (x,y:nat->IR)(convergent y)->
((n:nat)(AbsIR (x n))[<=](y n))->(convergent x).

To use this lemma in practice, it is useful to weaken the hypothesis in the
last result further and use the following

Lemma str_comparison : (y:nat->IR)(convergent y)->
{k:nat & ((n:nat)(le k n)->(AbsIR (x n))[<=](y n))}->
(convergent x).

which only requires that |xn| be bounded by yn from some point on.
The ratio test is similarly stated and proved both in Bishop’s formulation

and in a similar generalized way.
As special cases, e and π are defined as the some of two series. For the

formalization, this is done in three steps: first, we define the relevant sequence;
then, we prove it converges as a series; finally, we define the constant in terms
of the sum of this series. As an example, e is defined by e =

∑∞
n=0

1
n! , which is

formalized in the following three steps:5

5 In the first definition, the notation is simplified, as we are omitting a proof term—
namely, one which states that n! 6= 0.

5

Definition e_series := [n:nat]One[/](fac n).
Lemma e_series_conv : (convergent e_series).
Definition E := (series_sum e_series e_series_conv).

4 Continuous Functions

When looking at properties that real-valued functions may have, it is usual to
do so in two levels: point-wise (f has property P at x) or in an interval (f has
property P on I, meaning that f has property P at x for all x ∈ I). If P is a
property characterized by an ε-δ definition (that is, it is of the form ∀ε∃δ), then
there is also a corresponding uniform notion obtained by a quantifier interchange.
Classically, if I is compact it is usually a theorem that having property P on I
is equivalent to having property P uniformly on I.

For example, letting P be the property of “being continuous”, the point-wise
definition (at an arbitrary point x) reads

∀ε>0∃δ>0∀y∈IR|x− y| < δ → |f(x)− f(y)| < ε .

The corresponding global definition on an interval I would then read

∀ε>0∀x∈I∃δ>0∀y∈I |x− y| < δ → |f(x)− f(y)| < ε .

And finally the uniform definition is

∀ε>0∃δ>0∀x,y∈I |x− y| < δ → |f(x)− f(y)| < ε ,

and these last two are proved to be equivalent for closed finite I.
Constructively, however, things happen in a different way. This is mainly

for two reasons: first, equality on the real numbers is undecidable, and thus
point-wise information about f is seldom usable; on the other hand, uniform
properties are not implied by point-wise ones on closed finite intervals (because
these cannot be constructively proved to be compact in the classical sense).

Bishop gets around this problems by defining a compact interval to be a finite
closed interval6. He then argues that uniform concepts are the only relevant ones,
and defines the corresponding global ones (in an arbitrary interval I) as follows:
f has property P in I if for every compact interval [a, b] ⊆ I it is the case that
f has property P in [a, b].

For formalization purposes, this requires two levels of reasoning to be always
present. At a lower level, properties are defined in a compact interval—which
consists simply of two real numbers a and b and a proof that a ≤ b. Then the
corresponding global property is defined in terms of the local one. We give the
example of continuity: first, in a context where a,b:IR, a[<=]b holds, f is a
partial function, I is the predicate characterizing [a, b] and P is the predicate
characterizing the domain of f7, we define
6 From now on, when we speak of a compact interval, we will be referring to a closed,

finite interval. When we want to speak about a set satisfying the classical definition
of compactness we will speak of a classically compact set.

7 Subsets are in fact identified with predicates, see [7]

6

Definition continuous_I := (included I P)*
((e:IR)(Zero[<]e)->{d:IR & (Zero[<]d)*
((x,y:IR)(I x)->(I y)->((AbsIR x[-]y)[<=]d)->
((AbsIR (f x)[-](f y))[<=]e))}).

A few comments are due: all functions are assumed to be partial, so there
is an extra assumption at the beginning that [a, b] is within the domain of f ;
this also means that in fact we can’t simply write down (f x)—there needs to
be some proof term, but for clarity of exposition (and as its form is irrelevant
from the mathematical point of view) we chose to omit it from this presentation.
Finally, this definition differs from the classical one in that the inequalities are
stated with ≤ instead of <; this is because, within the constructive framework,
statements about ≤ can be proved by contradiction (because x ≤ y is defined as
¬(y < x)). It is easily seen, however, that these definitions are equivalent.

Because we work constructively, the value of d can be effectively computed
from e; we will call this operation the modulus of continuity for f and, when
needed, we will denote it by ω.

In order to make the general definition, we need to be able to speak about
intervals. The approach we took was the following: we defined a syntactic type
of intervals and a function iprop that associates to each of them a predicate.
For example, the real line is associated to λx : IR . True; the interval]a, b] is
associated to λx : IR . a < x ∧ x ≤ b, and so forth. This allows us to write down
the following definition, where PartIR is the type of partial functions:

Definition Continuous [I:interval][f:PartIR] :=
(included (iprop I) (Pred f))*
((a,b:IR)(Hab:a[<=]b)(included (compact a b Hab) (iprop I))->
(continuous_I a b f)).

We now prove, closely following [4], that both notions of continuity are pre-
served through algebraic operations: addition, subtraction, multiplication, divi-
sion, composition and absolute value of continuous functions all yield continuous
functions. However, unlike in the classical case, some side conditions have to be
assumed:

– In the case of multiplication, we have to assume that the values of the func-
tions considered are bounded. This turns out to be a general property of
continuous functions in a compact interval, stated as the Corollary of The-
orem 3 in Chapter 2 of [4]; its proof, however, is not as trivial as therein
indicated, and we will discuss it hereafter.

– For composition, given continuous f : I → IR and g : J → IR, we can prove
g ◦ f to be continuous provided, obviously, that f(I) ⊆ J , but furthermore
we need to assume that the image of every compact subinterval of I is con-
tained in a compact subinterval of J . Although this is classically the case,
constructively it is not provable.8

8 This may seem a bit counterintuitive; the problem is that, constructively, given a
compact A ⊆ I, we cannot compute a maximum (respectively minimum) of f(A),

7

– A consequence of the previous remark is that the rule for division also has
a side condition—namely, that the denominator function g be not only non-
zero but bounded away from zero, that is, for some c > 0 it is the case that
|g(x)| ≥ c for all x in the relevant interval. Once again, classically this is
trivially true.

In order to bound the value of a continuous function in a compact interval,
Bishop starts by making the following definition:

Definition: A set A ⊆ IR is said to be totally bounded iff for every ε > 0
there exist points x1, . . . , xn such that for every y ∈ A one of the numbers
|y − x1|, . . . , |y − xn| is less than ε.

The reason for this definition is the following: classically, being compact is
equivalent to being totally bounded and complete; however, constructively this
is not true, and in particular closed intervals cannot be constructively proved to
be classically compact. However, they are totally bounded and complete, and
that is enough to prove the usual results in analysis.

Bishop now proves that every totally bounded set has a least upper bound
and a greatest lower bound. Finally, it is shown that the image of a compact set
through a continuous function is totally bounded.

In formalizing this reasoning there turn out to be two major problems. The
first one is a technical issue: the definition of totally bounded can be written
down, given a set A, as

∀ε>0∃n∈IN∃x1,...,xn
∀y∈A∃i∈{1,...,n}|y − xi| < ε .

But formalizing this definition cannot be done in a direct way, as we have a
variable number of existential quantifiers. We manage to get around this problem
by quantifying over a list:

Definition totally_bounded [P:IR->Set] : Set :=
(e:IR)(Zero[<]e) -> {l:(list IR) &
((x:IR)(member x l)->(P x))*
(x:IR)(P x)->{y:IR & (member y l)*((Abs x[-]y)[<]e)}}.

The problem, however, is that the introduction of lists is quite unnatural and
generates some complexity which is usually not present in the original (informal)
proofs.

The second problem is that Bishop assumes without proving that a compact
interval is totally bounded. This is actually the case, and it is probably quite
obvious to anyone; formalizing it, however, requires giving an algorithm to deter-
mine, given the points x1, . . . , xn and y, an index i such that xi is close enough

but only a least upper bound (resp. greatest lower bound), which is not guaranteed
to be actually in the image of f , and may therefore lie outside of J . For a model of
Bishop style mathematics where a function which doesn’t satisfy this property see
Theorem 8.1 on p. 71 of [2]

8

to y. This is achieved through dividing the interval [a, b] into n subintervals of
length ε

2 (appealing to the archimedian axiom); then, using a tricky induction
argument and the properties of the less than relation, we find an i such that
ai < y < ai+2, from which it is easy to prove that |y − ai+1| < ε.

Finally, we define (uniform) convergence of sequences and series of func-
tions in compact and general intervals and prove convergence criteria for series
analogous to the ones for real number series; we define the limit (or sum) of
a sequence (or series) of continuous functions and prove continuity of the thus
defined function. As a special (and very important) case, we define power series
and prove the Dirichlet criterion for the interval of convergence of such series.
These formalizations are very close both to those in [4] and to the similar proofs
for sequences and series of real numbers, and are therefore quite straightforward.

5 Differentiation

The formalization of differential calculus follows Bishop closely. As before, we
define first what it means for a function f ′ to be the derivative of f in a proper9

compact interval [a, b] with characteristic predicate I:

Definition derivative_I [f,f’:PartIR] :=
(continuous_I a b f)*(continuous_I a b f’)*
((e:IR)(Zero[<]e)->{d:IR & (Zero[<]d)*
(x,y:IR)(I x)->(I y)->((AbsIR x[-]y)[<=]d)->
(AbsIR (f y)[-](f x)[-](f’ x)[*](y[-]x))[<=]e[*](AbsIR y[-]x)}).

Then, we define the general concept in an arbitrary proper interval:

Definition Derivative [I:interval][pI:(proper I)][f,f’:PartIR] :=
(included (iprop I) (Pred f))*(included (iprop I) (Pred f’))*
((a,b:IR)(Hab:a[<]b)(included (compact a b Hab)) (iprop I))->
(derivative_I a b f f’)).

In both cases, the requirement that the interval is proper (that is, it contains
more than one point) is important to assure uniqueness of the derivative.

At first sight, the constructive definition may seem a bit different from the
classical one; but in fact it isn’t. Classically they are equivalent; however, writing
down the division requires the existence of some proof terms, which means that
this definition is constructively more general: the classical version gives us no
information regarding what happens for values of x and y in I such that it is
not known whether or not x = y.

We then follow Bishop closely and prove the usual rules for derivation of
sums, products, powers, quotients and composition of differentiable functions.
In the last two cases, we assume side conditions similar to the ones assumed to
prove preservation of continuity.

9 E.g. not empty.

9

The most important results in this section are the constructive versions of
Rolle’s theorem, the Mean Law and Taylor’s theorem. These three theorems
differ from their classical counterparts in a similar way: classically, they state
the existence of a point, under suitable hypotheses, satisfying a certain equality;
constructively, they state that given any positive number ε there exists a point
which satisfies the same equality up to an error smaller than ε.

For example, the constructive version of Rolle’s theorem reads as following:

Theorem: Let f be differentiable on the interval [a, b] and let f(a) = f(b). Then
for each ε > 0 there exists x in [a, b] with |f ′(x)| ≤ ε.

This is formalized in the following way:

Theorem Rolle : (a,b:IR)(Hab:a[<]b)(f,f’:PartIR)
(derivative_I a b f f’)->((f a)[=](f b))->
(e:IR)(Zero[<]e) -> {x:IR & (I x)*(AbsIR (f’ x))[<=]e}.

The proof of this result follows Bishop’s with no significant modifications. As
a straightforward corollary, we get the constructive Mean Law:

Theorem: Let f be differentiable on the interval [a, b]. Then for each ε > 0
there exists x in [a, b] with |f(b)− f(a)− f ′(x)(b− a)| ≤ ε.

The formalization of Taylor’s theorem requires a number of auxiliary notions
to be defined prior to it. However, it gives no new insights into the process
of formalization, being quite similar (though more complicated) to these two
examples; therefore, we will not discuss it here.

Some general remarks are due on the statements of these theorems. Being
presented as approximations, they are at first sight not as useful as their classical
counterparts; however, in most applications the presence of an equality doesn’t
really help, as it holds for an unspecified existentially quantified point in a com-
pact interval, and the best we can get is an inequality. Taking the Mean Law as
an example, the only thing it allows us to establish without question is that

|f(b)− f(a)| ≤ ||f ′||[a,b] ∗ |b− a| ,

where ||f ′||[a,b], the norm of f ′ in [a, b], is the least upper bound of the image of
[a, b] through |f ′|, and this will be the practical application of the theorem.

Interestingly, this formulation is valid both classically and constructively
(classically it is immediate; constructively it can also be proved simply by ob-
serving that if we add any positive constant to the righthandside then we have
an upper bound for the expression on the lefthandside). The fact that some
authors state and prove it directly in this form (Dieudonné is one of them, see
for example [8] and [9]) is evidence that at least for some people it is the best
formulation of the Mean Law.

10

6 Integration

Integration turned out to be by far the most difficult process to formalize fol-
lowing Bishop’s work. There were several reasons for this:

– The need for heavy computation involving sums—in previous work we had
already come across several computations and majorations, but they required
usually little more than properties of the absolute value and algebraic iden-
tities;

– The need for very technical lemmas which include specific identities between
sums, results about proof irrelevance and formalizing fuzzy concepts like
“sufficiently close approximation”.

In this section, we will outline the process of definition of the integral and
focus on the proof of one specific lemma, which accidentally was incorrect in the
reference book, and which illustrates quite well the kind of technicalities that
are needed at the level of formulation—as well as the kind of proof steps that
don’t seem likely to be automated in the near future.

Following Bishop, we define a variant of the Riemann integral of continuous
functions. There are two main reasons for this choice, namely:

– The classical construction of the Riemann lower and upper integrals as lower
and upper bounds of sequences of sums cannot directly be made constructive,
as those bounds are not guaranteed to exist; adding the assumption that
the function we are integrating is continuous, however, allows us to prove
constructively that they do exist and coincide, yielding a simple definition;

– On the other hand, all constructive functions are believed to be continuous,
which means that this approach does not imply less generality; in other
words, we can integrate every function we can define, so the need to look at
other integrals is not so imperative.

Finally, we also chose to follow the Bishop formalization in order to be able to
compare our work with his. Therefore, we did not consider alternative definitions
which might be easier to formalize; we hope to look at those in a near future.

We begin by defining a partition of a compact interval [a, b] with length n as
a finite sequence (a0, . . . , an) such that a0 = a, an = b and for 0 ≤ i < n it is
the case that ai ≤ ai+1. We formalize this as a record type:

Record partition [a,b:IR][Hab:a[<=]b][lng:nat] : Set :=
{pts : (i:nat)(le i lng)->IR;
prf1 : (i,j:nat)i=j->(Hi:(le i lng))(Hj:(le j lng))

(pts i Hi)[=](pts j Hj);
prf2 : (i:nat)(H:(le i lng))(H’:(le (S i) lng))

(pts i H)[<=](pts (S i) H’);
start : (H:(le O lng))(pts O H)[=]a;
finish : (H:(le lng lng))(pts lng H)[=]b}.

11

This is simply the Coq way to say that a partition (that is, an element of
type partition) is a 5-tuple; each component of the tuple has an identifier which
allows us to refer to it and a type. Thus, pts is the function that given i provides
the point ai; prf2, start and finish contain proof terms that ensure that the
required properties hold. The proof term (second argument) in pts is required
because we only want to have n + 1 points in the partition10; prf1 states that
this proof term does not influence the choice of the points.

The mesh of a partition is the greatest of the values ai+1 − ai. A partition
Q = (a′0, . . . , a

′
m) is said to be a refinement of P iff for every i there is a j such

that ai = a′j ; in other words, P is a subsequence of Q.
Given a partition P of [a, b], if x0, . . . , xn−1 satisfy the condition ai ≤ xi ≤

ai+1 we say that they respect the partition P . This is formalized by a predicate
points_in_partition. Given a function f , a number SP of the form

SP =
n−1∑
i=0

f(xi)(ai+1 − ai)

is said to be a sum of f that respects P . We can then define this sum in the
following way, where for clarity we are omitting the proof terms and some of the
types:

Definition partition_sum [P,x,f][H:(points_in_partition P x)] :=
(Sum [i:nat](f (x i))[*]((pts P (S i))[-](pts P i))).

Given any partition a0, . . . , an there is a canonical choice for x: just take
xi = ai; also, given any interval [a, b] and a natural number n there is a canonical
partition of [a, b]: just take ai = a+ i b−a

n (called an even partition of [a, b]). This
justifies that we define the canonical sequence of sums, given a function f , as
the sequence of canonical sums of the even partitions with increasing number of
points:

S(f, n) =
n−1∑
i=0

f

(
a + i

b− a

n

)
b− a

n
.

Definition integral_seq : nat->IR :=
(even_partition_sum a b f (S n)).

In order to prove convergence of this sequence, the following theorem is
needed:

Theorem: Let f be a continuous function on a compact interval [a, b] with
modulus of continuity ω. If P is any partition of [a, b], if ε > 0, and if mesh(P) ≤
ω(ε), then, for any sum SP of f respecting P , there is an n such that

|SP − S(f, n)| ≤ ε(b− a) . (1)

10 We could have required instead that am = b for m > n, but this actually makes
things harder, so we chose to keep closer to the original definition.

12

The proof of this result relies on the following two lemmas, where it is as-
sumed that f is a continuous function with modulus of continuity ω in [a, b]:

Lemma 1: If P and Q are partitions of [a, b], mesh(P) ≤ ω(ε) and Q is a
refinement of P , then, for any sums SP and SQ of f respecting, correspondingly,
P and Q, we have that |SP − SQ| ≤ ε(b− a).

Lemma 2: If P and R are partitions such that mesh(P) ≤ ω(ε) and mesh(R) ≤
ω(ε′), and if there exists a partition Q which is simultaneously a refinement of
P and of R, then for any sums SP and SR of f respecting P and R it is the case
that |SP − SR| ≤ (ε + ε′)(b− a).

The proof of the first result presents no problems other than technical issues.
It hangs mainly on the following fact: given i, we know that there are j and j′

such that ai = a′j and ai+1 = a′j′ ; this allows us to write SP in terms of points
of Q, and use the modulus of continuity to establish the result. However, some
manipulation of double sums is required which involves a lot more than just
trivial computation.

The second lemma is quite simpler, as it just amounts to two applications
of the first one: |SP − SR| = |(SP − SQ) + (SQ − SR)|, and from the triangle
inequality we get the expected result.

The theorem can then be proved assuming every two partitions have a com-
mon refinement and applying the second lemma to SP and the sequence S(f, n);
using properties of inequalities and limits we arrive at the required result. All
that remains is proving that any two partitions share a common refinement,
which is stated without proof in [4]

Unfortunately, though classically this is a trivial statement, constructively it
is not true! The reason for that is that in a partition points must be ordered,
and ≤ is not decidable on the real numbers.11

This error was corrected in [5] in the following way: first, we say that two
partitions P = (a0, . . . , an) and R = (b0, . . . , bm) are separated iff for all i and
j in the appropriate ranges ai < ai+1 and bj < bj+1; furthermore, if 0 < i < n
and 0 < j < m then ai 6= bj .

Now, we can prove that any two separated partitions have a common refine-
ment. This is a trivial consequence of co-transitivity of the < relation: we can
always tell, for every i and j, that either ai < bj or bj < ai+1, which allows
us to order the points.12 The theorem is then proved by taking close enough
approximations of P and R that are separated.

Of course, though we can intuitively see that the “close enough approxima-
tions” exist, to prove the result we have to construct them; we will now explain
how this is done13.
11 This is easy to see, as equality can be expressed in terms of ≤ by the relation x = y

iff x ≤ y ∧ y ≤ x.
12 Formalizing this, though not complex, is still a long and tedious process.
13 This is a level of detail to which [4] never goes, and in our view really illustrates the

difference between formal and informal mathematics.

13

We formalize the property of separation in two steps. A partition is P =
(a0, . . . , an) said to be (simply) separated iff ai < ai+1:

Definition separated [P:(Partition a b n)] :=
(i:nat)(Pts P i)[<](Pts P (S i)).

Two partitions are said to be (mutually) separated iff each of them is sepa-
rated and if ai 6= bj whenever 0 < i < n and 0 < j < m.

Definition Separated [P:(Partition a b n)]
[Q:(Partition a b m)]:= (separated P)*(separated Q)*
(i,j:nat)(lt O i)->(lt O j)->(lt i n)->(lt j m)->
(Pts P i)[#](Pts Q j).

As before, we have omitted some proof terms in these definitions.
The construction of separated approximations of two partitions is done in

two steps. First, given a partition P and positive real numbers α and ξ, we want
an algorithm to get a separated partition P ′ with the following properties:

– mesh(P ′) ≤mesh(P) + ξ;
– for every sum SP respecting P we can find a sum SP ′ respecting P ′ such

that |SP − SP ′ | < α.

To do this, we take δ to be min(ξ, α
n·M), where n is the number of points in

P and M is the norm of f in [a, b]. δ is positive, which means that for every
real number x either x > 0 or x < δ

2 . We then recursively define the following
sequence of partitions:

– P 0 = P ;
– P i+1 is obtained from P in the following way: for every pair ai

j , a
i
j+1 of

consecutive points in P i, test whether ai
j+1 − ai

j > 0 or ai
j+1 − ai

j < δ
2 . If

there is a j for which the second is the case, choose the least such j and
define ai+1

m = ai
m for m ≤ j and ai+1

m = ai
m−1 for m > j14 (that is, obtain

P i+1 by removing the (j + 1)th point in P i); else P i+1 = P i.

This construction always gets to a fixed point, provided b − a is sufficiently
big (which is OK, as if b and a are too close the theorem holds trivially). This
is a partition P ′ satisfying both desired conditions (the first is trivial; for the
second, take any choice of points respecting P and simply remove the points
corresponding to points that were removed in P ′).

Now, given P and R, we determine separated partitions P ′ and R′ by the
above construction; then, we shift the points in P ′ by a similar (but even less
obvious) construction to get a partition P ′′ which is also separated from R′ and
for which the previous two properties hold.

At this point, there turns out to be still a small detail which has to be cor-
rected in the statement of the Theorem. We assumed that we began with a
14 This is a slight simplification, as we have to take some care if j + 1 is the length of

P i, but we won’t go into that level of detail here.

14

partition P with mesh(P) ≤ ω(ε); however, although we can take the approxi-
mations with mesh as close to P as we want, we cannot actually require them
to be equal (to see this, consider the case when P is an even partition; then
any shifting of its points will necessarily increase the mesh). This invalidates
the reasoning through approximations, as if mesh(P ′) > ω(ε) we can no longer
establish a bound for the sum. We solve this problem by requiring (in the state-
ment of the theorem) that mesh(P) < ω(ε). We can then find approximations
which still respect that inequality (just take α = 1

2ω(ε)−mesh(P)), and we are
still able to apply lemma 2.

It is then trivial to prove that the sequence of sums we previously defined is
a Cauchy sequence; the integral of f in [a, b] is defined as its limit.

Lemma Cauchy_integral_Seq : (Cauchy_prop integral_seq).

Definition integral := (Lim integral_seq).

Linearity and monotonicity of the integral operator are proved simply by
unfolding the definition of integral and appealing to the corresponding properties
of limits of Cauchy sequences and of sums.

It has been pointed out that all the problems we discussed arose simply
because we have a definition of partition which is too general; in fact, to define
the integral we only need even partitions, so we could simply have restricted our
attention to these. This would simplify matters a lot, as it is trivial to define a
common refinement of any two even partitions, and we wouldn’t need all these
auxiliary concepts.

Up to this point, this is indeed true; and our first approach upon stumbling
with the above-mentioned error in Bishop’s original proof was to restrict our
attention to even partitions. Unfortunately, for the next result (which is a fun-
damental theorem, and not just an auxiliary lemma) we really need the general
definition, and at this stage we had to go back and redo our work according
to [5].

We want to show that∫ b

a

f(x)dx =
∫ c

a

f(x)dx +
∫ b

c

f(x)dx (2)

whenever a ≤ c ≤ b. This is trivially done using properties of limits, closely
following Bishop’s proof, and appealing to (1). This requires choosing arbitrary
(even) partitions of [a, b] and [b, c] and obtaining from those a partition of [a, c]
which contains all the points in the two original partitions. However, if we take
for example a = 0, b = 1 and c =

√
2 it is easy to see that there can be no even

partition of [a, c] which refines even partitions on [a, b] and [b, c], except in trivial
cases. Therefore, we really must consider partitions in general.

With these considerations in mind, we prove (2) and use that as a motivation
to define, for arbitrary a and b,

∫ b

a
f(x)dx =

∫ b

min(a,b)
f(x)dx−

∫ a

min(a,b)
f(x)dx:

15

Definition Integral :=
(integral (Min a b) b f)[-](integral (Min a b) a f).

As usual, we slightly simplified the Coq code by omitting some proof terms.
It is easy to prove that this new integral inherits all the properties of the old

one. We finally define an operator FPrim that takes as arguments a function f ,
an interval I, a point a ∈ I and a proof that f is continuous in I and yields the
primitive of f defined by g(x) =

∫ x

a
f(t)dt. This is a continuous function, and

we can prove the fundamental theorem of calculus:

Theorem: Let f be a continuous function on a proper interval I and a ∈ I. Let
g be the function defined in I by the expression g(x) =

∫ x

a
f(t)dt; then:

1. f is a derivative of g in I;
2. if f is a derivative of g0 in I, then the difference g−g0 is a constant function

in I;
3. for every g0 such that f is a derivative of g0 in I and for every points x, y ∈ I,∫ y

x
f(t)dt = g0(y)− g0(x).

These theorems are formalized as follows: first, we take any proper inter-
val I and function f continuous in I; we let a be a point of I and define
g:=(FPrim f a).

We first state that f is a derivative of g in I.

Theorem FTC1 : (Derivative I g f).

We now take any other g0 and assume that f is a derivative of g0 in I, that
is, that there exists a term of type (Derivative I g0 f). We can now prove:

Theorem FTC2 : {c:IR & (Feq I g{-}g0 {-C-}c)}.

Here, Feq is a ternary relation that states that the second and third ar-
guments (functions) coincide in the domain given as first argument, {-} is a
notation for function subtraction, and {-C-}c denotes the constant function
with value c. This theorem thus states that there is a real number c such that
in I g and g0 differ by c.

Finally, the last part of the theorem is stated as follows:

Theorem FTC3 : (x,y:IR)(iprop I x)->(iprop I y)->
(continuous_I (Min x y) (Max x y) f)->
(Integral x y f)[=](g0 b)[-](g0 a).

Interestingly, the formalization of the proofs of the first two results requires
little more than what is presented in [4]. The third part of the theorem is not
presented there, but it is the usual classical formulation of the FTC.

As corollaries of this theorem, we are able to prove that if {fn} is a sequence
of continuous functions converging uniformly to a continuous function f then
both the sequence of derivatives {f ′n} and the sequence of primitives {Fn} with
the same origin will converge respectively to the derivative f ′ and the primitive
F of f , assuming all these exist.

16

7 Transcendental Functions

To conclude this work, Bishop defines some of the most important functions in
analysis and proves their main properties using the tools previously built. We
will briefly show how this work was formalized.

The exponential, sinus and cosine are all defined as power series. Using the
previously established results, we defined an operator FPowerSeries that assigns
to every real number sequence a a sequence of functions defined by

fn(x) =
an

n!
(x− x0)n ,

where x0 is a parameter. We then prove that under suitable conditions the sum
of these functions is defined for all real numbers.

To define the exponential function, we take x0 = 0 and an = 1; we can then
easily prove that this series converges in the real line.

Definition Exp_ps := (FPowerSeries Zero [n:nat]One).

Lemma Exp_conv : (fun_series_convergent_IR realline Exp_ps).

Next, the partial function Expon is defined as the sum of this series; this
function is total, so we define Exp:IR->IR as an abbreviation so that we can
always forget about proof terms:

Definition Expon:=(FSeries_Sum Exp_ps Exp_conv).
Definition Exp := [x:IR](Expon x Set_I).

Here Set_I is a canonical inhabitant of True, which is the predicate for the
domain of Expon.

The definition of sinus and cosine is very similar; the tangent is then defined
as the quotient of these two functions.

As for the logarithm, it is defined in the interval]0,∞[as the indefinite
integral with origin 1 of the function defined by f(x) = 1/x. We begin by proving
that this function is continuous in that interval, and define the logarithm as the
corresponding indefinite integral (recall the definition of FPrim in the previous
section):

Lemma log_defn_lemma : (Continuous (openl Zero) {1/}FId).
Definition Log := (FPrim (openl Zero) {1/}FId log_defn_lemma One).

The inverse trigonometric functions are similarly defined.
We finish with a small selection of the main results we have proved. We would

like to point out that no proof terms have been omitted in what follows—it is
completely correct Coq code.

– Algebraic properties: the equation ex+y = exey is formalized in Coq as the
term (x,y:IR)(Exp x[+]y)[=](Exp x)[*](Exp y);

17

– Order properties: ex > 0 reads (x:IR)(Zero[<](Exp x));
– Inverse relation properties: the fundamental relation elog(x) = x is expressed

as (x:IR)(H:Zero[<]x)(Exp (Log x H))[=]x.
– Analytical properties: the following result states that Expon is the only func-

tion that is its own derivative and evaluates to 1 at 0:

Lemma Exp_unique : (F:PartIR)(Derivative realline Set_I F F)->
(H1:(Pred F Zero))(F Zero H1)[=]One->
(Feq (iprop realline) Expon F).

The proofs of the majority of these results are extremely simple, and amount
basically to translating the proofs in [4] to Coq commands and proving eventual
trivial side conditions.

Trigonometric functions and their inverses are defined in a similar way; their
basic properties are then proved just as those for the exponential and logarithmic
function were, and for conciseness we will not present them.

8 Related Work

Several formalizations of real numbers, real analysis and properties of elementary
transcendental functions have been previously completed in different systems.
They all differ from ours in that they are classical formalizations, however, and
they have not taken constructive issues into account.

Mizar [1] presently includes a classical formalization of real analysis. Dif-
ferental calculus was developed by J. Kotowicz, K. Raczkowski and P. Sadowski,
whereas N. Endou, K. Wasaki, and Y. Shidama have formalized integral calcu-
lus. The classical counterparts to the results which we presented are all included
in this formalization; it is also interesting to note that it is the only other for-
malization of those here mentioned that explicitly attempts to deal with partial
functions.

Micaela Mayero has formalized differential calculus and transcendental func-
tions in Coq, starting with an axiomatic characterization of the reals, and showed
how this formalization can be used to prove correctness of programs in numerical
analysis (see [20] and [21]).

John Harrison [17] has also formalized real numbers and differential calculus
on his HOL-light system. This has been used together with his formalization of
floating point arithmetic, described in [18], to prove correctness of floating point
algorithms

Similarly, Bruno Dutertre has developed a library of real analysis (see [10])
which was later extended by Hanne Gottliebsen to include the elementary tran-
scendental functions and their properties. Gottliebsen proceeds to show in [16]
how this system can be used interactively with computer algebra systems to
ensure (greater) correctness of the results obtained by these.

On the other hand, work has been done on exact real number arithmetic.
Some representations of real numbers are presented and briefly discussed by
A. Edalat and P. J. Potts in [11]; Edalat and Krznaric further show in [12]

18

how one specific representation can be used to compute integrals. It would be
interesting to examine how well these real number representations fit with our
axiomatization of the reals, but we feel that that would be outside of the scope
of this paper.

9 Conclusions

As we have showed, we successfully managed to formalize a significant piece of
mathematics, namely the chapter on real analysis of [4] which corresponds quite
closely to a basic course on real analysis at undergraduate level. In doing so, we
feel to have provided evidence for the claim that it is possible to formalize large
pieces of mathematics that can actually be used.

The modular way in which the formalization was done also showed that it is
possible to build large libraries which can be built and consistently enlarged: as
we mentioned, we worked using the algebraic library which was developed for
and extensively used in the FTA project [14]; in the end, we obtained a much
larger library without having to change any of its original content.

We did not discuss automation in this paper, as it was already done in [15]
and [7]. In those papers, it was shown how several frequently occurring goals –
including proofs of algebraic identities and checking that a function is continuous
– can be automatically solved or, at least, significantly simplified. However, the
work on integration underlined the need for a much higher level of automation,
which may probably be efficiently achieved only through communication with
computer algebra systems, as described in [22]. Still, we feel that this work is
a significant step toward the building of a useful library of formalized analysis
that can be actually used in the building of interactive proofs.

Finally, we feel to have given further arguments favoring Bishop’s claim that
the constructive way to do things is at least as powerful as the classical one,
as we proved the most important results of real analysis. Our proofs, being
constructive, have the advantage of possessing computational content, which in
theory allows the Coq extraction mechanism to generate from them algorithms
to actually compute with real numbers. This hasn’t been actually done, as the
memory and time requirements demanded are currently too high for it to be
feasible; however, we feel we have shown the way in which it can actually be
done.

Acknowledgments

Support for this work was provided by the Portuguese Fundação para a Ciência e
Tecnologia, under grant SFRH / BD / 4926 / 2001 and by the FCT and FEDER
via CLC.

The author would also like to thank H. Barendregt, H. Geuvers, B. Spitters
and F. Wiedijk both for the many discussions throughout the development of
this work, which contributed to its successful outcome, and for their suggestions
regarding the contents and form of this paper.

19

References

1. http://www.mizar.org

2. Beeson, M., Foundations of constructive mathematics, Springer-Verlag, 1985
3. Benthem Jutting, L. S. van, Checking Landau’s “Grundlagen” in the Automath

System, in Nederpelt, R. P., Geuvers, J. H. and de Vrijer, R. C. (Eds.), Selected
Papers on Automath, North-Holland, 1994

4. Bishop, E., Foundations of Constructive Analysis, McGraw-Hill Book Company,
1967

5. Bishop, E. and Bridges, D., Constructive Analysis, Springer-Verlag, 1985
6. The Coq Development Team, The Coq Proof Assistant Reference Manual Version

7.2, INRIA-Rocquencourt, December 2001
7. Cruz-Filipe, L., Formalizing Real Calculus in Coq, in Theorem Proving in Higher

Order Logics, Carreño, V., Muñoz, C. and Tahar, S. (eds.), NASA Conference
Proceedings, Hampton, VA, 2002

8. Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York, 1969
9. Dieudonné, J., Calcul Infinitésimal, Hermann, Paris, 1968

10. Dutertre, B., Elements of Mathematical Analysis in PVS, 9th International Con-
ference, TPHOLs 1996, Springer LNCS 1125, 1996

11. Edalat, A. and Potts, P. J., A New representation for Exact real Numbers, in
Electronic Notes in Theoretical Computer Science vol. 6, 1997

12. Edalat, A. and Krznaric, M., Numerical integration with Exact Arithmetic, in Pro-
ceedings of ICALP’99, 1999

13. Geuvers, H. and Niqui, M., Constructive Reals in Coq: Axioms and Categoricity, in
Callaghan, P., Luo, Z., McKinna, J. and Pollack, R. (Eds.), Proceedings of TYPES
2000 Workshop, Durham, UK, LNCS 2277

14. Geuvers, H., Pollack, R., Wiedijk, F. and Zwanenburg, J., The Algebraic Hierarchy
of the FTA Project, in Linton, S. and Sebasitani (eds.), Journal of Symbolic Com-
putation, Special Issue on the Integration of Automated Reasoning and Computer
Algebra Systems, pp. 271-286, Elsevier, 2002

15. Geuvers, H., Wiedijk, F. and Zwanenburg, J., Equational Reasoning via Partial
Reflection, in Theorem Proving in Higher Order Logics, 13th International Confer-
ence, TPHOLs 2000, Springer LNCS 1869, 162-178, 2000

16. Gottliebsen, H., Transcendental Functions and Continuity Checking in PVS, in
Theorem Proving in Higher Order Logics, 13th International Conference, TPHOLs
2000, Springer LNCS 1869, 197-214, 2000

17. Harrison, J., Theorem Proving with the Real Numbers, Springer-Verlag, 1998
18. Harrison, J., A machine-checked theory of floating point arithmetic, in Theorem

Proving in Higher Order Logics, 12th International Conference, TPHOLs 1999,
Springer LNCS 1690, 113-130, 1999

19. Heyting, A., Intuitionism: an Introduction, Studies in Logic and the Foundations
of Mathematics, North-Holland Publishing Company, Amsterdam, 1956

20. Mayero, M., Formalisation et automatisation de preuves en analyses réelle et
numérique, PhD thesis, Université Paris VI, décembre 2001

21. Mayero, M. Using Theorem Proving for Numerical Analysis, in Theorem Proving
in Higher Order Logics, 15th International Conference, TPHOLs 2002, Springer
LNCS 2410, 246-262, 2002

22. Oostdijk, M., Generation and Presentation of Formal Mathematical Documents,
Ph.D. Thesis, Technische Universiteit Eindhoven, 2001

