
Hierarchical Reflection

Lúıs Cruz-Filipe1,2 and Freek Wiedijk1

1 NIII, Radboud University of Nijmegen
2 Center for Logic and Computation, Lisboa

{lcf,freek}@cs.kun.nl

Abstract. The technique of reflection is a way to automate proof con-
struction in type theoretical proof assistants. Reflection is based on the
definition of a type of syntactic expressions that gets interpreted in the
domain of discourse. By allowing the interpretation function to be par-
tial or even a relation one gets a more general method known as “partial
reflection”. In this paper we show how one can take advantage of the
partiality of the interpretation to uniformly define a family of tactics
for equational reasoning that will work in different algebraic structures.
The tactics then follow the hierarchy of those algebraic structures in a
natural way.

1 Introduction

1.1 Problem

Computers have made formalization of mathematical proof practical. They help
getting formalizations correct by verifying all the details, but they also make it
easier to formalize mathematics by automatically generating parts of the proofs.

One way to automate proving is the technique called reflection. With reflec-
tion one describes the desired automation inside the logic of the theorem prover,
by formalizing relevant meta-theory. Reflection is a common approach for proof
automation in type theoretical systems like NuPRL and Coq, as described for
example in [1] and [10] respectively. Another name for reflection is “the two-level
approach”.

In Nijmegen we formalized the Fundamental Theorems of Algebra and Cal-
culus in Coq, and then extended these formalizations into a structured library
of mathematics named the C-CoRN library [3, 5]. For this library we defined a
reflection tactic called rational that automatically establishes equalities of ratio-
nal expressions in a field by bringing both to the same side of the equal sign and
then multiplying everything out. With this tactic, equalities like

1
x

+
1
y

=
x + y

xy

can be automatically proved without any human help.
The rational tactic only works for expressions in a field, but using the same

idea one can define analogous tactics for expressions in a ring or a group. The

2 Lúıs Cruz-Filipe and Freek Wiedijk

trivial way to define these is to duplicate the definition of the rational tactic
and modify it for these simpler algebraic structures by removing references to
division or multiplication. This was actually done to implement a ring version
of rational.

However this is not efficient, as it means duplication of the full code of the
tactic. In particular the normalization function that describes the simplification
of expressions, which is quite complicated, has to be defined multiple times. But
looking at the normalization function for field expressions, it is clear that it
contains the normalization function for rings. In this paper we study a way to
integrate these tactics for different algebraic structures.

1.2 Approach

In the C-CoRN library algebraic structures like fields, rings and groups are orga-
nized into an Algebraic Hierarchy. The definition of a field reuses the definition of
a ring, and the definition of a ring reuses the definition of a group. This hierarchy
means that the theory about these structures is maximally reusable. Lemmas
about groups are automatically also applicable to rings and fields, and lemmas
about rings also apply to fields.

At the same time, a tactic for proving equalities in arbitrary fields was de-
veloped using a partial interpretation relation, as described in [10]. In this paper
we show how we can take advantage of this partial interpretation relation to
reuse the same tactic for simpler structures. As it turns out, the simplification
of expressions done in a field can be directly applied to rings and groups as
well. This is quite surprising: the normal forms of expressions that get simplified
in this theory will contain functions like multiplication and division, operations
that do not make sense in a group.

1.3 Related Work

In the C-CoRN setoid framework, rational is the equivalent of the standard Coq
tactic field for Leibniz equality (see [7] and [4, Chapter 8.11]). Both tactics were
developed at about the same time. The field tactic is a generalization of the Coq
ring tactic [4, Chapter 19], so with the field and ring tactics the duplication of
effort that we try to eliminate is also present. Also the ring tactic applies to rings
as well as to semirings (to be able to use it with the natural numbers), so there
is also this kind of duplication within the ring tactic itself.

Reflection has also been widely used in the NuPRL system as described
originally in [1]. More recently, [12] introduces other techniques that allow code
reuse for tactics in MetaPRL, although the ideas therein are different from ours.
Since the library of this system also includes an algebraic hierarchy built using
subtyping (see [15]), it seems reasonable to expect that the work we describe
could be easily adapted to that framework.

Hierarchical Reflection 3

1.4 Contribution

We show that it is possible to have one unified mechanism for simplification of
expressions in different algebraic structures like fields, rings and groups. We also
show that it is not necessary to have different normalization functions for these
expressions, but that it is possible to decide equalities on all levels with only
one normalization function. Presently, both the ring and the field versions of
the tactic are used extensively throughout C-CoRN (a total of more than 1.500
times).

Another extension which we present is the addition of uninterpreted function
symbols. With it we can now automatically prove goals of the form |t1| = |t2|,
which earlier had to be manually simplified to t1 = t2.

The whole tactic is about 100kb of code, divided between the ML implemen-
tation (17kb), the normalization function (14kb) and the interpretation relation
and correctness (23kb for groups, 25kb for rings and 29kb for fields); in Section 6
we discuss why the correctness has to be proved anew for each structure.

We compared the speed of our tactic with that of ring and field, and also
with a similar tactic for the HOL Light system [11]. All these tactics have a
comparable speed: our tactic is a bit faster than ring, but slower than field.

1.5 Outline

In Section 2 we summarize the methods of reflection and partial reflection. In
Section 3 we describe in detail the normalization function of the rational tac-
tic. Section 4 is a small detour where we generalize the same method to add
uninterpreted function symbols to the expressions that rational understands. In
Section 5 we show how to do reflection in an algebraic hierarchy in a hierarchical
way. Finally in Section 6 we present a possibility to have even tighter integration
in a hierarchical reflection tactic, which unfortunately turns out to require the
so-called K axiom [14].

2 Reflection and Partial Reflection

In this section we will briefly summarize [10]. That paper describes a gener-
alization of the technique of reflection there called partial reflection. One can
give a general account of reflection in terms of decision procedures, but here we
will only present the more specific method of reflection with a normalization
function, which is used to do equational reasoning.

In the normal, “total”, kind of reflection one defines a type E of syntactic
expressions for the domain A that one is reasoning about, together with an
interpretation function

[[−]]ρ : E → A

which assigns to a syntactic expression e an interpretation [[e]]ρ. In this, ρ is a
valuation that maps the variables in the syntactic expressions to values in A.
The type E is an inductive type, and therefore it is possible to recursively define

4 Lúıs Cruz-Filipe and Freek Wiedijk

a normalization function N on the type of syntactic expressions inside the type
theory (this is not possible for A; so the reason for introducing the type E is to
be able to define this N).

N : E → E

One then proves the correctness lemma stating that the normalization function
conserves the interpretation.

[[e]]ρ =A [[N (e)]]ρ

Then, to reason about the domain A that [[−]] maps to, one first constructs a
valuation ρ and syntactic expressions in E which map under [[−]]ρ to the terms
that one want to reason about, and then one uses the lemma to do the equational
reasoning.

For instance, suppose that one wants to prove a =A b. One finds e, f and
ρ with [[e]]ρ = a and [[f]]ρ = b. Now if N (e) = N (f) then we get a = [[e]]ρ =A

[[N (e)]]ρ = [[N (f)]]ρ =A [[f]]ρ = b. (Clearly this uses the correctness lemma
twice, see Figure 1.) Note that the operation of finding an expression in E that

e ∈ E
N //

[[−]]ρ

""

N (e) = N (f)

[[−]]ρ

}}||
||

||
||

||
||

||
||

|

[[−]]ρ

ÃÃB
BB

BB
BB

BB
BB

BB
BB

BB
f ∈ E

Noo

[[−]]ρ

||
a ∈ A

bb

/
2

5
8

<
@

D

oo =A // b ∈ A

<<

²
¯

ª
§

£
~

Fig. 1. Proving equalities

corresponds to a given expression in A (dotted arrows) is not definable in the
type theory, and needs to be implemented outside of it. In a system like Coq it
will be implemented in ML or in the tactic language Ltac described in [6] and [4,
Chapter 9].

Things get more interesting when the syntactic expressions in E contain
partial operations, like division. In that case the interpretation [[e]]ρ will not
always be defined. To address this we generalized the method of reflection to
partial reflection. The naive way to do this is to define a predicate

wfρ : E → Prop

that tells whether an expression is well-formed. Then the interpretation function
takes another argument of type wfρ(e).

[[−]]ρ : Πe:E .wfρ(e) → F

Hierarchical Reflection 5

The problem with this approach is that the definition of wf needs the interpre-
tation function [[−]]. Therefore the inductive definition of wf and the recursive
definition of [[−]] need to be given simultaneously. This is called an inductive-
recursive definition. Inductive-recursive definitions are not supported by the Coq
system, and for a good reason: induction-recursion makes a system significantly
stronger. In set theory it corresponds to the existence of a Mahlo cardinal [8].

The solution from [10] for doing partial reflection without induction-recursion
is to replace the interpretation function with an inductively defined interpreta-
tion relation.

][ρ ⊆ E ×A

The relation [[e]]ρ = a now becomes e][ρ a. It means that the syntactic expression
e is interpreted under the valuation ρ by the object a. The lemmas that one then
proves are the following.

e][ρ a ∧ e][ρ b ⇒ a =A b

e][ρ a ⇒ N (e)][ρ a

The first lemma states that the interpretation relation is functional, and the
second lemma is again the correctness of the normalization function. Note that
it is not an equivalence but just an implication. This is the only direction that
is needed. In fact, in our application the equivalence does not hold.3

For each syntactic expression e that one constructs for an object a, one
also needs to find an inhabitant of the statement e][ρ a. In [10] types Ēρ(a)
of proof loaded syntactic expressions are introduced to make this easier. These
types correspond to the expressions that evaluate to a. They are mapped to the
normal syntactic expressions by a forgetful function

|−| : Ēρ(a) → E

and they satisfy the property that for all ē in the type Ēρ(a)

|ē|][ρ a.

In this paper we will not go further into this, although everything that we do
also works in the presence of these proof loaded syntactic expressions.

3 Normalization Function

We will now describe how we defined the normalization function for our main
example of rational expressions. Here the type E of syntactic expressions is given
by the following grammar.

E ::= Z | V | E + E | E · E | E/E

3 A simple example is e = 1/(1/0), which does not relate to any a. Its normal form is
0/1, which interprets to 0.

6 Lúıs Cruz-Filipe and Freek Wiedijk

In this Z are the integers, and V is a countable set of variable names (in the
Coq formalization we use a copy of the natural numbers for this). Variables will
be denoted by x, y, z, integers by i, j, k. The elements of this type E are just
syntactic objects, so they are different kind of objects from the values of these
expressions in specific fields. Note that in these expressions it is possible to divide
by zero: 0/0 is one of the terms in this type.

Other algebraic operations are defined as an abbreviation from operations
that occur in the type. For instance, subtraction is defined by

e− f ≡ e + f · (−1)

We now will describe how we define the normalization function N (e) that maps
an element of E to a normal form. As an example, the normal form of 1

x−y + 1
x+y

is
N (

1
x− y

+
1

x + y
) =

x · 2 + 0
x · x · 1 + y · y · (−1) + 0

.

This last expression is the “standard form” of the way one would normally write
this term, which is

2x

x2 − y2
.

From this example it should be clear how the normalization function works:
it multiplies everything out until there is just a quotient of two polynomials
left. These polynomials are then in turn written in a “standard form”. The
expressions in normal form are given by the following grammar.

F ::= P/P

P ::= M + P | Z
M ::= V ·M | Z

In this grammar F represents a fraction of two polynomials, P are the polyno-
mials and M are the monomials. One should think of P as a “list of monomials”
(where + is the “cons” and the integers take the place of the “nil”) and of M as
a “list of variables” (where · is the “cons” and again the integers take the place
of the “nil”).

On the one hand we want the normalization function to terminate, but on the
other hand we want the set of normal forms to be as small as possible. We achieve
this by requiring the polynomials and monomials to be sorted ; furthermore, no
two monomials in a polynomial can have exactly the same set of variables. Thus
normal forms for polynomials will be unique.

For this we have an ordering of the variable names. So the “list” that is a
monomial has to be sorted according to this order on V, and the “list” that is a
polynomial also has to be sorted, according to the corresponding lexicographic
ordering on the monomials. If an element of P or M is sorted like this, and
monomials with the same set of variables have been collected together, we say
it is in normal form.

Hierarchical Reflection 7

Now to define N we have to “program” the multiplying out of E expressions
together with the sorting of monomials and polynomials, and collecting factors
and terms. This is done simultaneously: instead of first multiplying out the
expressions and then sorting them to gather common terms, we combine these
two things.

We recursively define the following functions (using the Fixpoint operation
of Coq).

− ·MZ − : M × Z → M
− ·MV − : M × V → M
− ·MM − : M × M → M
− +MM − : M × M → M
− +PM − : P × M → P
− +PP − : P × P → P
− ·PM − : P × M → P
− ·PP − : P × P → P
− +FF − : F × F → F
− ·FF − : F × F → F
− /FF − : F × F → F

(Actually, these functions all have type

E × E → E

as we do not have separate types for F , P and M . However, the idea is that
they only will be called with arguments that are of the appropriate shape and in
normal form. In that case the functions will return the appropriate normal form.
In the other case they will return any term that is equal to the sum or product
of the arguments — generally we just use the sum or product of the arguments.)

For example, the multiplication function ·MM looks like

e ·MM f :=

f ·MZ i if e = i ∈ Z
(e2 ·MM f) ·MV e1 if e = e1 · e2

e · f otherwise

and the addition function +PM is4

e +PM f :=

i +MM j if e = i ∈ Z, f = j ∈ Z
f + i if e = i ∈ Z
e1 + (e2 +PM i) if e = e1 + e2, f = i ∈ Z
e2 +PM (e1 +MM f) if e = e1 + e2, e1 = f
e1 + (e2 +PM f) if e = e1 + e2, e1 <lex f
f + e if e = e1 + e2, e1 >lex f
e + f otherwise

where the lexicographic ordering <lex is used to guarantee that the monomials
in the result are ordered.
4 In the fourth case, the equality e1 = f is equality as lists, meaning that they might

differ in the integer coefficient at the end.

8 Lúıs Cruz-Filipe and Freek Wiedijk

Finally we used these functions to recursively “program” the normalization
function. For instance the case where the argument is a division is defined like

N (e/f) := N(e) /FFN(f).

The base case (when e is a variable) looks like

N (v) :=
v · 1 + 0

1
.

To prove that a = b, then, one builds the expression corresponding to a− b and
checks that this normalizes to an expression of the form 0/e. (This turns out
to be stronger than building expressions e and f interpreting to a and b and
verifying that N (e) = N (f), since normal forms are in general not unique.)

4 Uninterpreted Function Symbols

When one starts working with the tactic defined as above, one quickly finds out
that there are situations in which it fails because two terms which are easily seen
to be equal generate two expressions whose difference fails to normalize to 0. A
simple example arises is when function symbols are used; for example, trying to
prove that

f(a + b) = f(b + a)

will fail because f(a + b) will be syntactically represented as a variable x and
f(b + a) as a (different) variable y, and the difference between these expressions
normalizes to

x · 1 + y · (−1) + 0
1

,

which is not zero.
In this section we describe how the syntactic type E and the normalization

function N can be extended to recognize and deal with function symbols. The
actual implementation includes unary and binary total functions, as well as
unary partial functions (these are binary functions whose second argument is a
proof)5. We will discuss the case for unary total functions in detail; binary and
partial functions are treated in an analogous way.

Function symbols are treated much in the same way as variables; thus, we
extend the type E of syntactic expressions with a new countable set of function
variable names V1, which is implemented (again) as the natural numbers. The
index 1 stands for the arity of the function; the original set of variables is now
denoted by V0. Function variables will be denoted u, v.

E ::= Z | V0 | V1(E) | E + E | E · E | E/E

5 Other possibilities, such as ternary functions or binary partial functions, were not
considered because this work was done in the setting of the C-CoRN library, where
these are the types of functions which are used in practice.

Hierarchical Reflection 9

Intuitively, the normalization function should also normalize the arguments of
function variables. The grammar for normal forms becomes the following.

F ::= P/P

P ::= M + P | Z
M ::= V0 ·M | V1(F) ·M | Z

But now a problem arises: the extra condition that both polynomials and mono-
mials correspond to sorted lists requires ordering not only variables in V0, but
also expressions of the form V1(F). The simplest way to do this is by defining
an ordering on the whole set E of expressions.

This is achieved by ordering first the sets V0 and V1 themselves. Then, ex-
pressions are recursively sorted by first looking at their outermost operator

x <E i <E e + f <E e · f <E e/f <E v(e)

and then sorting expressions with the same operator using a lexicographic or-
dering. For example, if x <V0 y and u <V1 v, then

x <E y <E 2 <E 34 <E x/4 <E u(x + 3) <E u(2 · y) <E v(x + 3).

With this different ordering, the same normalization function as before can be
used with only trivial changes. In particular, the definitions of the functions ·MM

and +PM remain unchanged. Only at the very last step does one have to add a
rule saying that

N (v(e)) :=
v(N (e)) · 1 + 0

1
.

Notice the similarity with the rule for the normal form of variables.
The next step is to change the interpretation relation. Instead of the valuation

ρ, we now need two valuations

ρ0 : V0 → A

ρ1 : V1 → (A → A)

and the inductive definition of the interpretation relation is extended with the
expected constructor for interpreting expressions of the form v(e).

As before, one can again prove the two lemmas

e][ρ0,ρ1 a ∧ e][ρ0,ρ1 b ⇒ a =A b

e][ρ0,ρ1 a ⇒ N (e)][ρ0,ρ1 a

Our original equality f(a + b) = f(b + a) can now easily be solved: f(a + b)
can be more faithfully represented by the expression v(x + y), where ρ1(v) = f ,
ρ0(x) = a and ρ0(y) = b; the syntactic representation of f(b + a) becomes
v(y + x); and each of these normalizes to

v
(

x·1+y·1+0
1

) · 1 + 0
1

,

10 Lúıs Cruz-Filipe and Freek Wiedijk

so that their difference normalizes to 0 as was intended.
Adding binary functions simply requires a new sort V2 of binary function

symbols and extend the type of expressions to allow for the like of v(e, f); the
normalization function and the interpretation relation can easily be adapted, the
latter requiring yet another valuation

ρ2 : V2 → (A×A → A).

Partial functions are added likewise, using a sort V6 1 for partial function symbols
and a valuation

ρ6 1 : V6 1 → (A 6→ A).

As was already the case with division, one can write down expressions like
v(e) even when ρ6 1(v) is not defined at the interpretation of e; the definition
of][ρ0,ρ1,ρ6 1,ρ2 ensures that only correctly applied partial functions will be inter-
preted.

5 Hierarchical Reflection

The normalization procedure described in Section 3 was used to define a tactic
which would prove algebraic equalities in an arbitrary field in the context of the
Algebraic Hierarchy of [9].

In this hierarchy, fields are formalized as rings with an extra operation (di-
vision) which satisfies some properties; rings, in turn, are themselves Abelian
groups where a multiplication is defined also satisfying some axioms. The ques-
tion then arises of whether it is possible to generalize this mechanism to the
different structures of this Algebraic Hierarchy. This would mean having three
“growing” types of syntactic expressions EG, ER and EF (where the indices
stand for groups, rings and fields respectively) together with interpretation re-
lations6.

EF

][Fρ // F : Field

²²
ER

⊆
OO

][Rρ // R : Ring

²²
EG

⊆
OO

][Gρ // G : Group

However one can do better. The algorithm in the normalization function works
outwards; it first pushes all the divisions to the outside, and then proceeds
to normalize the resulting polynomials. In other words, it first deals with the
field-specific part of the expression, and then proceeds working within a ring.
6 For simplicity we focus on the setting where function symbols are absent; the more

general situation is analogous.

Hierarchical Reflection 11

This suggests that the same normalization function could be reused to define
a decision procedure for equality of algebraic expressions within a ring, thus
allowing EF and ER to be unified.

Better yet, looking at the functions operating on the polynomials one also
quickly realizes that these will never introduce products of variables unless they
are already implicitly in the expression (in other words, a new product expres-
sion can arise e.g. from distributing a sum over an existing product, but if the
original expression contains no products then neither will its normal form). So
our previous picture can be simplified to this one.

E
][Fρ //

@A
][Rρ //

@A
][Gρ //

F : Field

²²
R : Ring

²²
G : Group

The key idea is to use the partiality of the interpretation relation to be able
to map E into a ring R or a group G. In the first case, expressions of the form
e/f will not be interpreted; in the latter, neither these nor expressions of the
form e · f relate to any element of the group.

There is one problem, however. Suppose x is a variable with ρ(x) = a; then
a + a is represented by x + x, but

N (x + x) =
x · 2 + 0

1
][Gρ a + a

does not hold.
In order to make sense of the normal forms defined earlier, one needs to

interpret the special cases e/1 in groups and rings, as well as e ·f with f = i ∈ Z
in groups (assuming, of course, that e can be interpreted).

The following table summarizes what each of the interpretation relations can
interpret.

][Gρ][Rρ][Fρ

v ∈ V yes yes yes
i ∈ Z if i = 0 yes yes
e + f yes yes yes
e · f if f ∈ Z yes yes
e/f if f = 1 if f = 1 if f 6= 0

In the last three cases the additional requirement that e and f can be interpreted
is implicit.

12 Lúıs Cruz-Filipe and Freek Wiedijk

Once again, one has to prove the lemmas

e][Gρ a ∧ e][Gρ b ⇒ a =A b

e][Gρ a ⇒ N (e)][Gρ a

and analogous for][Rρ and][Fρ .
In these lemmas, one needs to use the knowledge that the auxiliary functions

will only be applied to the “right” arguments to be able to finish the proofs.
This is trickier to do for groups than for rings and fields. For example, while
correctness of ·MM w.r.t.][Fρ is unproblematic, as it states that

e][Fρ a ∧ f][Fρ b ⇒ e ·MM f][Fρ a · b,

the analogue of this statement for][Gρ cannot be written down, as a · b has
no meaning in a group. However, by definition of][Fρ , this is equivalent to the
following.

e · f][Fρ a · b ⇒ e ·MM f][Fρ a · b
Now this second version does possess an analogue for][Gρ , by replacing the ex-
pression a · b with a variable.

e · f][Gρ c ⇒ e ·MM f][Gρ c.

This is still not provable, because ·MM can swap the order of its arguments. The
correct version is

e · f][Gρ c ∨ f · e][Gρ c ⇒ e ·MM f][Gρ c;

the condition of this statement reflects the fact that the normalization function
will only require computing e ·MM f whenever either e or f is an integer.

The implementation of the tactic for the hierarchical case now becomes
slightly more sophisticated than the non-hierarchical one. When given a goal
a =A b it builds the syntactic representation of a and b as before; and then looks
at the type of A to decide whether it corresponds to a group, a ring or a field.
Using this information the tactic can then call the lemma stating correctness of
N w.r.t. the appropriate interpretation relation.

Optimization

As was mentioned in Section 3, normal forms for polynomials are unique, con-
trarily to what happens with field expressions in general. This suggests that,
when A is a group or a ring, the decision procedure for a =A b can be simpli-
fied by building expressions e and f interpreting respectively to a and b and
comparing their normal forms. Clearly, this is at most as time-consuming as the
previous version, since computing N (e − f) requires first computing N (e) and
N (f).

Hierarchical Reflection 13

Also, since the normalization function was not defined at once, but resorting
to the auxiliary functions earlier presented, it is possible to avoid using divisions
altogether when working in rings and groups by defining directly N ′ by e.g.

N ′(e + f) = N ′(e) +PP N (f)′;

the base case now looks like

N ′(v) = v · 1 + 0.

Notice that although we now have two different normalization functions we still
avoid duplication of the code, since they are both defined in terms of the same
auxiliary functions and these are where the real work is done.

6 Tighter Integration

In the previous section we managed to avoid having different syntactic expres-
sions for the different kinds of algebraic structures. We unified the types of
syntactic expressions into one type E.

However we still have different interpretation relations][Fρ ,][Rρ and][Gρ . We
will now analyze the possibility of unifying those relations into one interpretation
relation][Sρ . This turns out to be possible, but when one tries to prove the relevant
lemmas for it one runs into problems: to get the proofs finished one needs to
assume an axiom (in the type theory of Coq).

Every field, ring or group has an underlying carrier. We will write Â for the
carrier of an algebraic structure A. We now define an interpretation relation][Sρ
from the type of syntactic expressions E to an arbitrary set7 S, where that set is
a parameter of the inductive definition. This inductive definition quantifies over
different kinds of algebraic structures in the clauses for the different algebraic
operations. For instance the inductive clause for addition quantifies over groups.

ΠG:GroupΠe,f :EΠa,b,c:Ĝ (a +G b =G c) → (e][Ĝρ a) → (f][Ĝρ b) → (e + f][Ĝρ c)

With this definition the diagram becomes the following.

E

@A
][Sρ //

F : Field

²²
R : Ring

²²
G : Group

b·
²²

S : Set
7 In the formalization we actually have setoids instead of sets, but that does not make

a difference.

14 Lúıs Cruz-Filipe and Freek Wiedijk

This gives a nice unification of the interpretation relations. However, when one
tries to prove the relevant lemmas for it in Coq, the obvious way does not work.
To prove e.g.

e][Sρ a ∧ e][Sρ b ⇒ a =A b

one needs to use inversion with respect to the inductive definition of][Sρ to get
the possible ways that e][Sρ a can be obtained; but the inversion tactic of Coq
then only produces an equality between dependent pairs where what one needs
is equality between the second components of those pairs. In Coq this is not
derivable without the so-called K axiom, which states uniqueness of equality
proofs [13].

forall (A:Set) (x:A) (p:(x=x)), p = refl_equal A x

We did not want to assume an axiom to be able to have our tactic prove equalities
in algebraic structures that are clearly provable without this axiom. For this
reason we did not fully implement this more integrated version of hierarchical
reflection.

7 Conclusion

7.1 Discussion

We have shown how the rational tactic (first described in [10]), which is used
to prove equalities of expressions in arbitrary fields, can be generalized in two
distinct directions.

First, we showed in Section 4 how this tactic could be extended so that
it would also look at the arguments of functions; the same mechanism can be
applied not only to unary total functions, as explained, but also to binary (or n-
ary) functions, as well as to partial functions as defined in the C-CoRN library [3].

In Section 5 we discussed how the same syntactic type E and normalization
function N could be reused to define similar tactics that will prove equalities
in arbitrary rings or commutative groups. The work described here has been
successfully implemented in Coq, and is intensively used throughout the whole
C-CoRN library.

Further extensions of this tactic are possible; in particular, the same ap-
proach easily yields a tactic that will work in commutative monoids (e.g. the
natural numbers with addition). For simplicity, and since this adds nothing to
this presentation, this situation was left out of this paper.

Extending the same mechanism to non-commutative structures was not con-
sidered. The normalization function intensively uses commutativity of both ad-
dition and multiplication, so it cannot be reused for structures that do not satisfy
these; and the purpose of this work was to reuse as much of the code needed for
rational as possible.

The correctness of the normalization function w.r.t. the interpretation rela-
tion had to be proved three times, one for each type of structure. In Section 6 we
showed one possible way of overcoming this, which unfortunately failed because

Hierarchical Reflection 15

proving correctness of the tactic would then require assuming an axiom which
is not needed to prove the actual equalities that the tactic is meant to solve. It
would be interesting to know whether this approach can be made to work with-
out needing the K axiom. Though this axiom is required to prove these lemmas
using inversion, there might be an alternative way to prove them that avoids this
problem.

A different approach to the same problem would be to use the constructor sub-
typing of [2]. This would allow one to define e.g. the interpretation relation for
rings][Rρ by adding one constructor to that for groups][Gρ ; proving the relevant
lemmas for the broader relation would then only require proving the new case
in all the inductive proofs instead of duplicating the whole code.

Another advantage of this solution, when compared to the one explored in
Section 6, would be that the tactic could be programmed and used for e.g.
groups before rings and fields were even defined. It would also be more easily
extendable to other structures. Unfortunately, constructor subtyping for Coq is
at the moment only a theoretical possibility which has not been implemented.

Acknowledgments. The first author was partially supported by FCT and FEDER
under POCTI, namely through grant SFRH / BD / 4926 / 2001 and CLC project
FibLog FEDER POCTI / 2001 / MAT / 37239.

References

1. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The
Semantics of Reflected Proof. In Proceedings of the 5th Symposium on Logic in
Computer Science, pages 95–197, Philadelphia, Pennsylvania, June 1990. IEEE,
IEEE Computer Society Press.

2. Gilles Barthe and Femke van Raamsdonk. Constructor subtyping in the Calculus
of Inductive Constructions. In Jerzy Tiuryn, editor, Proceedings 3rd Int. Conf.
on Foundations of Software Science and Computation Structures, FoSSaCS’2000,
Berlin, Germany, 25 March – 2 Apr 2000, volume 1784, pages 17–34, Berlin, 2000.
Springer-Verlag.

3. Constructive Coq Repository at Nijmegen. http://c-corn.cs.kun.nl/.
4. The Coq Development Team. The Coq Proof Assistant Reference Manual, April

2004. Version 8.0.
5. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN: the Constructive Coq Repos-

itory at Nijmegen. To appear.
6. David Delahaye. A Tactic Language for the System Coq. In Michel Parigot and

Andrei Voronkov, editors, Proceedings of Logic for Programming and Automated
Reasoning (LPAR), Reunion Island, volume 1955 of LNCS, pages 85–95. Springer-
Verlag, 2000.

7. David Delahaye and Micaela Mayero. Field: une procédure de décision pour les
nombres réels en Coq. Journées Francophones des Langages Applicatifs, January
2001.

8. Peter Dybjer and Anton Setzer. Induction-recursion and initial algebras. Annals
of Pure and Applied Logic, 124:1–47, 2003.

16 Lúıs Cruz-Filipe and Freek Wiedijk

9. H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The Algebraic Hierarchy
of the FTA Project. Journal of Symbolic Computation, Special Issue on the Inte-
gration of Automated Reasoning and Computer Algebra Systems, pages 271–286,
2002.

10. H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational Reasoning via Partial
Reflection. In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher
Order Logics, 13th International Conference, TPHOLs 2000, volume 1869 of LNCS,
pages 162–178, Berlin, Heidelberg, New York, 2000. Springer Verlag.

11. John Harrison. The HOL Light manual (1.1), 2000. http://www.cl.cam.ac.uk/

users/jrh/hol-light/manual-1.1.ps.gz.
12. Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzi-

lay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph
Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin
Yu. MetaPRL — A Modular Logical Environment. In David Basin and Burkhart
Wolff, editors, Proceedings of the 16th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2003), volume 2758 of LNCS, pages 287–303.
Springer-Verlag, 2003.

13. Martin Hoffman and Thomas Streicher. The Groupoid Interpretation of Type
Theory. In Giovanni Sambin and Jan Smith, editors, Proceedings of the meeting
of Twenty-five years of constructive type theory, Venice. Oxford University Press,
1996.

14. Thomas Streicher. Semantical Investigations into Intensional Type Theory. LMU
München, 1993. Habilitationsschrift.

15. Xin Yu, Aleksey Nogin, Alexei Kopylov, and Jason Hickey. Formalizing Abstract
Algebra in Type Theory with Dependent Records. In David Basin and Burkhart
Wolff, editors, 16th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2003). Emerging Trends Proceedings, pages 13–27. Universität
Freiburg, 2003.

