
Reasoning about probabilistic sequential

programs∗

R. Chadha, L. Cruz-Filipe, P. Mateus and A. Sernadas
SQIG – IT and IST, Portugal
{rch,lcf,pmat,acs}@math.ist.utl.pt

Abstract

A complete and decidable Hoare-style calculus for iteration-free prob-
abilistic sequential programs is presented using a state logic with truth-
functional propositional (not arithmetical) connectives.

1 Introduction

Reasoning about probabilistic systems is very important due to applications
in randomized algorithms, security, reliability, distributed systems and, more
recently, quantum computation and information. Logics supporting such rea-
soning have branched in two main directions. Firstly, Hoare-style [31, 25, 10]
and dynamic logics [13, 21] have been developed building upon denotational se-
mantics of probabilistic programs [20]. The second approach enriches temporal
modalities with probabilistic bounds [14, 17, 27].

Our work is in the area of Hoare-style reasoning about probabilistic sequen-
tial programs. A Hoare assertion [15] is a triple of the form {η1} s {η2} meaning
that: if program s starts in state satisfying the state assertion formula η1, and
if s halts, then s ends in a state satisfying the state transition formula η2. For-
mula η1 is known as the pre-condition and formula η2 as the post-condition
of the Hoare assertion. For probabilistic programs, the development of Hoare
logic has taken primarily two distinct paths. The common denominator of the
two approaches is forward denotational semantics of sequential probabilistic
programs [20]: program states are (sub)-probability measures over valuations
of memory cells and denotations of programs are (sub)-probability transforma-
tions.

The first sound Hoare logic for probabilistic programs was given in [31] using
a truth-functional state assertion language, i.e., the formulas of the logic are in-
terpreted as either true or false, and the truth value of a formulas is determined
by the truth values of the sub-formulas. This state assertion language consists of
two levels: i) classical state formulas γ interpreted over the valuations of mem-
ory cells; (ii) probabilistic state formulas η interpreted over (sub)-probability

∗Supported by FCT and FEDER through POCTI via CLC and project QuantLog
POCI/MAT/55796/2004. Additional support for Lúıs Cruz-Filipe and Rohit Chadha came
from FCT and FEDER grants SFRH/BPD/16372/2004 and SFRH/BPD/26137/2005, respec-
tively.

1

measures of the valuations. The latter contains terms of the form (
∫
γ) repre-

senting probability of γ being true. But the language at the probabilistic level is
extremely restrictive, and it is built from term equality using conjunction. Fur-
thermore, the Hoare rule for the alternative if-then-else is incomplete and even
simple valid assertions may not be provable. The reason for incompleteness of
the Hoare rule for the alternative composition in [31], as observed in [31, 21], is
that the Hoare rule tries to combine absolute information of the two alternates
truth-functionally to get absolute information of the alternative composition.
This fails because the effects of the two alternatives are not independent.

In order to avoid this problem, a probabilistic dynamic logic is given in [21]
with an arithmetical state assertion logic: the state formulas are interpreted as
measurable functions and the connectives are arithmetical operations such as
addition and subtraction. Inspired by the dynamic logic in [21], there are several
important works in the probabilistic Hoare logic, e.g. [18, 25], where the state
formulas are either measurable functions or arithmetical formulas interpreted
as measurable functions. Intuitively, the Hoare triple {f} s {g} means that the
expected value of the function g after the execution of s is at least as much as
the expected value of the function f before the execution.

Although research in probabilistic Hoare logic with arithmetical state logics
has yielded several interesting results, the Hoare triples themselves do not seem
very intuitive. A high degree of sophistication is required to write down the
Hoare assertions needed to verify relatively simple programs. For this reason,
it is worthwhile to investigate Hoare logics with truth-functional state logics.

A sound Hoare logic with a truth-functional state logic was presented in [10],
and completeness for a fragment of the Hoare-logic was shown for iteration-free
programs. In order to deal with alternative composition, a test construct bm?η
and a probabilistic sum construct (η1 + η2) was introduced. Intuitively, the
formula γ? η is satisfied by a (sub)-probability measure µ on valuations over
memory cell if µ(v) is non-zero only when the valuation v satisfies γ and there
is a valuation µ′ such that µ+µ′ satisfies η. The formula (η1+η2) is satisfied by a
(sub)-probability measure µ if µ can be be written as the sum of two measures
µ1 and µ2 that satisfy η1 and η2 respectively. The drawback of [10] is that
no axiomatization is given for the state assertion logic. The choice construct
and the probabilistic sum constructs are the essential obstacles in achieving a
complete axiomatization for the state language.

The gap between [31] and [10] was addressed in [8], which provides a sound
Hoare logic with a complete and decidable state assertion logic. The Hoare
rule for alternative construct is tackled using two key ingredients. First, the
usual if-then-else construct is slightly modified: a boolean memory variable bm
is marked with the choice taken at the end of the conditional branch. This
modification gives a handle on the Hoare rule for the alternative construct as
all the choices are marked by the appropriate memory variable and thus become
independent. Secondly, the state assertion language has a conditional construct
(η/γ). Intuitively, the formula (η/γ) is satisfied by a (sub)-probability mea-
sure µ if η is true of the (sub)-probability measure obtained by eliminating the
measure of all valuations where γ is false. The conditional formulas (η/bm)
and (η/(¬ bm)) in the state logic can then be used to combine information of
the alternative paths. Another feature of the state language in [8] is that a
distinction is maintained between possibility and probability, yielding a more
expressive state language. The completeness of the Hoare logic was left as an

2

open question.
This paper addresses the gap between [31] and [10, 8], providing a com-

plete and decidable Hoare logic for iteration-free probabilistic programs using a
complete and decidable truth-functional probabilistic state assertion logic. The
Hoare calculus provided herein was arrived at while attempting to prove the
completeness of the Hoare logic proposed in [8].

Our probabilistic state assertion logic, henceforth referred to as Exogenous
Probabilistic Propositional Logic (EPPL), is essentially the logic of [11], de-
signed by taking the exogenous semantics approach [11, 1, 24] to enriching a
given logic – the models of the enriched logic are sets of models of the given logic
with some additional structure. A semantic model of EPPL is a discrete (sub)-
probability space that gives the probability of each possible valuation. For the
sake of convenience, we work with finitely additive, discrete and bounded mea-
sures and not just (sub)-probability measures. In order to achieve a recursive
axiomatization for EPPL, it is also convenient to assume that the measures take
values from an arbitrary real closed field instead of the set of real numbers. The
first-order theory of such fields is decidable [16, 4], and this technique of achiev-
ing decidability is detailed in other works on probabilistic reasoning [11, 1]. The
exogenous approach to probabilistic logics first appeared in [28, 29] and later
in [11, 1]. The general exogenous mechanism for building new logics is described
in detail in [24, 6] and used for developing quantum logics in [23, 7].

As in [31], there are two levels of formulas in EPPL: classical state formulas
γ, interpreted over individual valuations, and probabilistic state formulas η, in-
terpreted over the models of EPPL. Terms p in the language at the probabilistic
level represent elements of a real closed field and the probability of γ being true
is represented by the term (

∫
γ). Probabilistic state formulas are built from

probabilistic atoms p1 ≤ p2, meaning that the term p1 is less than or equal to
the term p2, using the disjunctive connectives fff and ⊃.

The essential difference from our state assertion logic and the logic in [11]
is that our terms p contain variables that are interpreted over elements in the
real closed field. In order to interpret these variables, our semantic structures
also contain an assignment. We do not allow quantification over these variables,
allowing us to maintain the propositional nature of the state assertion language.
The other advantage is that the complexity of the known decision procedures
of quantifier-free formulas interpreted over real closed fields is simpler than the
complexity of the known decision procedures of the full first-order language [16,
4]. As we shall see, variables are crucial in the proof of completeness of the Hoare
logic. They are used in the Hoare logic to keep track of individual contributions
of the alternate choices to the measure terms (

∫
γ). A second difference is

that we also allow products in terms. The logic in [11] does not have general
product terms and allows only products with constants, mainly for complexity
considerations.

The programming language we consider is a basic imperative language with
assignment to memory variables, sequential composition, probabilistic assign-
ment and alternative choice. The probabilistic assignment toss(bm, r) assigns
bm to true with probability r. The term r is a constant and does not depend on
the state of the program. This is not a serious restriction; for instance, r is taken
to be 1

2 in probabilistic Turing machines. The alternative choice construct de-
scribed here is the standard if-then-else construct and not the modified marked
if-then-else proposed in [8]. It turns out that the variables in the state language

3

are sufficient to keep track of individual contributions of the alternate choices
and it is not necessary to mark the choices explicitly to achieve completeness.
Another difference between our work and the work in [8] is that is that we do
not distinguish between possibility and probability. This is in accordance with
standard works on probabilistic programs, and it simplifies the proof of com-
pleteness of Hoare logic. The obvious disadvantage of this decision is that we
loose expressiveness.

The completeness and decidability of the proposed Hoare calculus for reason-
ing about iteration-free probabilistic programs is achieved using the standard
technique. First, we define a weakest precondition operator wp(·, ·) assigning to
each program s and each formula η a new state formula wp(s, η) corresponding
to the weakest logical property that a state must satisfy to ensure that η holds
after execution of s. The weakest precondition operator is defined in terms of an
auxiliary preterm operator pt(·, ·) assigning to each program s and each formula
p a new state formula pt(s, p) such that the denotation of pt(s, p) before execu-
tion of s is the same as the denotation of p after the execution of p regardless of
initial state. The weakest precondition wp(s, η) is then built by replacing each
term p in η by the preterm pt(s, p).

We then show that, for any program s and formula η, the Hoare calculus
derives the judgment {wp(s, η)} s {η}; in other words, wp(s, η) is a sufficient
precondition for s and η. The proof of completeness concludes after showing
that (V,K, µ)ρ wp(s, η) iff [[s]](V,K, µ)ρ η. The decidability of EPPL com-
bined with the fact that weakest precondition can be built algorithmically gives
decidability of the Hoare logic.

The rest of the paper is organized as follows. The syntax, semantics and
the complete recursive axiomatization of EPPL are presented in Section 2. The
programming language is introduced in Section 3 and the sound Hoare logic in
Section 4. The proofs of completeness and decidability of the Hoare calculus are
given in Section 6. We finish by presenting two examples illustrating the Hoare
calculus and the generated weakest pre-conditions in Section 7. We discuss
related work in Section 8 and summarize the results and future work in Section 9.

Acknowledgements. We would like to thank Peter Selinger and Michael
Ben-Or for useful and interesting discussions.

2 Logic of probabilistic states: EPPL

The state logic presented herein is the probability logic proposed in [11] extended
with variables that assist in the proof of completeness of the Hoare calculus. In
our probabilistic programs, we work with a finite number of memory cells of two
kinds: registers containing real values (with a finite range D fixed once and for
all) and registers containing boolean values. In addition to reflecting the usual
implementation of real numbers as floating-point numbers, the restriction that
real registers take values from a finite range D is also needed for completeness
results. Note that, instead of reals, we could have also used any type with finite
range.

Any run of a program probabilistically assigns values to these registers. Such
an assignment is henceforth called a valuation. If we denote the set of valuations
by V, then intuitively a semantic structure of EPPL is a finitely additive, discrete
and bounded measure µ on ℘V, the power-set of V; in other words, µ is a map

4

from ℘V to R+ (the set of non-negative real numbers) such that:

• µ(∅) = 0;

• µ(U1 ∪ U2) = µ(U1) + µ(U2) if U1 ∩ U2 = ∅.

Loosely speaking, µ(U) denotes the probability of a possible valuation being
in the set U . A measure µ is said to be a probability measure if µ(V) = 1.
We work with general measures instead of probability measures as it makes the
semantics simpler.

Furthermore, it is convenient to assume that the measures take values from
an arbitrary real closed field instead of the set of real numbers. An ordered field
K = (K,+, ., 1, 0,≤) is said to be a real closed field if the following hold:

• every non-negative element of the K has a square root in K;

• every polynomial of odd degree with coefficients in K has at least one
solution.

Examples of real closed fields include the set of real numbers with the usual
multiplication, addition and order relation. Another example is the set of com-
putable real numbers with the same operations. A measure that takes values
from a real closed field K will henceforth be called a K-measure.

Any real closed field has copies of the integers and the rationals. In addition,
in a real closed field we can take roots of positive elements and odd n-roots. In
general, any real algebraic number is definable in a real closed field. The set of
real algebraic numbers shall be denoted by A; we shall use these numbers as
constants in probability terms of our logic.

A semantic structure of EPPL consists of a real closed field K and a K-
measure on ℘V. We will call these semantic structures generalized probabilistic
structures.

We start by describing the syntax of the logic.

2.1 Language

The language of EPPL consists of formulas at two levels. The formulas of
the first level – classical state formulas – allow us to reason about individual
valuations over the memory cells. The formulas of the second level – probabilistic
state formulas – allow us to reason about generalized probabilistic structures.

There are two kinds of terms in the language: real terms, used in classical
state formulas to denote elements from the set D, and probability terms, used in
probabilistic state formulas to denote elements in an arbitrary real closed field.
The syntax of the language is given in Table 1 using the BNF notation and
discussed below.

Given a fixed m = {0, . . . ,m−1}, there are two finite disjoint sets of memory
variables: xM = {xmk : k ∈m}, representing the contents of real registers, and
bM = {bmk : k ∈ m}, representing the contents of boolean registers. We also
have two sets of (rigid over time and random) logical variables which are useful
in parametric reasoning about programs: B = {Bk : k ∈ N}, ranging over the
truth values in 2 = {ff, tt}, and X = {Xk : k ∈ N}, ranging over elements of
D. At the end of Subsection 2.2 we will show that the special case in which
these random variables behave deterministically except on a set of measure

5

Real terms (with the proviso c ∈ D)
t := xm 8X 8 c 8 (t+ t) 8 (t t)

Classical state formulas
γ := bm 8B 8 (t ≤ t) 8 ff 8 (γ⇒ γ)

Probability terms (with the proviso r ∈ A)
p := y 8 r 8 (

∫
γ) 8 (p+ p) 8 (p p) 8 r̃

Probabilistic state formulae:
η := (p ≤ p) 8 fff 8 (η ⊃ η)

Table 1: Language of EPPL

zero can be expressed in the logic. Therefore, we can used these variables as
deterministic parameters in applications. On the other hand, the randomness
of these variables allow us to have random initial states, which is useful for
compositional reasoning about programs; furthermore, it simplifies the theory.

The real terms, ranged over by t, t1, . . ., are built from the sets D, xM and
X using the usual addition and multiplication1. The classical state formulas,
ranged over by γ, γ1, . . ., are built from bM, B and comparison formulas (p1 ≤ p2)
using the classical disjunctive connectives ff and ⇒. As usual, other classical
connectives (¬,∨,∧,⇔, tt) are introduced as abbreviations. For instance, (¬ γ)
stands for (γ⇒ ff).

The probability terms, ranged over by p, p1, . . ., denote elements of the real
closed field in a semantic structure. We also assume a set of (rigid and deter-
ministic) logical variables, Y = {yk : k ∈ N}, ranging over elements of the real
closed field. These logical variables, which were not present in [11], are essential
in our proof of completeness of the Hoare logic.

The probability terms also contain real algebraic numbers as constants. The
denotation of the probability term r̃ is r if 0 ≤ r ≤ 1, 0 if r ≤ 0 and 1 otherwise.
The probability term (

∫
γ) denotes the measure of the set of valuations that

satisfy γ. The terms of the kind (
∫
γ) shall henceforth be called measure terms.

We denote the set of all probability terms by PTerms.
The probabilistic state formulas, ranged over by η, η1, . . ., are built from

comparison formulas (p1 ≤ p2) using the connectives fff and ⊃. Other prob-
abilistic connectives (,∪,∩,≈, ttt) and comparison operators (=,≥, <,>) are
introduced as abbreviations in the classical way. For instance, (η) stands for
(η ⊃ fff) and (p1 = p2) stands for ((p1 ≤ p2) ∩ (p2 ≤ p1)). We denote the set of
all probabilistic state formulas by PForms.

It is also convenient for applications to introduce as an abbreviation the
formula (�γ) which stands for the formula ((

∫
γ) = (

∫
tt)). Intuitively, �γ is

satisfied if the set of the valuations where γ does not hold has measure zero.
We shall also use (♦γ) as an abbreviation for ((�(¬ γ))). Intuitively, (♦γ) is
satisfied if the set of valuations where γ holds has non-zero measure. We shall
see in Section 2.2 that � and ♦ behave somewhat as necessity and possibility

1The arithmetical operations addition and multiplication are assumed to be defined so as
to restrict them to the range D. This is satisfied if we assume D to be closed under them.

6

modalities. However, � and ♦ are not full fledged modalities, since they cannot
be nested2.

The notion of occurrence of a term p and a probabilistic state formula η1 in
the probabilistic state formula η is defined as usual. The same holds for the no-
tion of replacing zero or more occurrences of probability terms and probabilistic
formulas. The set of variables y ∈ Y occurring in a term p and a formula η will
be denoted by PVar(p) and PVar(η). For the sake of clarity, we shall often drop
parentheses in formulas and terms if it does not lead to ambiguity.

We shall also identify here a useful sub-language of probabilistic state for-
mulas which do not contain any occurrence of a measure term.

κ := (a ≤ a) 8 fff 8 (κ⊃ κ)
a := x 8 r 8 (a+ a) 8 (aa) 8 r̃

The terms of this sub-language will be called analytical terms and the formulas
will be called analytical formulas.

2.2 Semantics

A valuation is a map v : (xM→ D, bM→ 2,X→ D,B→ 2) that provides values
to the memory variables and corresponding logical variables. The set of all
possible valuations is denoted by V. Given a valuation v, the denotation of
real terms [[t]]v and satisfaction of classical state formulas v c γ are defined
inductively as expected. Given V ⊆ V, the extent of γ in V is defined as
|γ|V = {v ∈ V : v c γ}.

A generalized probabilistic state is a pair (K, µ) where K a real closed field
and µ is a finitely additive, discrete and finite K-measure over ℘V. The set of
all generalized states is denoted by G.

Given a classical formula γ we also need the sub-measure of µ defined by

µγ = λV. µ(|γ|V).

Intuitively, µγ is null outside of the extent of γ and coincides with µ inside it.
To interpret the probabilistic variables y ∈ Y, we need the concept of assign-

ment. Given a real closed field K, a K-assignment is a map ρ : Y → K.
Given a generalized state (K,µ) and a K-assignment ρ, the denotation of

probabilistic terms and satisfaction of probabilistic state formulas are defined
inductively in Table 2. The formula (p1 ≤ p2) is satisfied if the term denoted
by p1 is less than or equal to p2. The formula (η1 ⊃ η2) is satisfied by a se-
mantic model if either η1 is not satisfied by the model or η2 is satisfied by the
model. Observe that the probabilistic connectives behave like the classical ones.
Also, the K-assignment ρ is sufficient to interpret an analytical formula, i.e., a
probabilistic formula without measure terms.

Entailment is defined as usual: Λ entails η (written Λ � η) if (K,µ)ρ η
whenever (K,µ)ρ η0 for each η0 ∈ Λ. The meta-theorem of entailment holds:
Λ, η � η′ iff Λ � (η ⊃ η′).

We can also define the probabilistic sum construct similar to the one defined
in [10] by saying that (K,µ)ρ η1 + η2 if there exist µ1 and µ2 such that
µ = µ1 + µ2, (K, µ1)ρ η1 and (K, µ1)ρ η2. However, as already observed in
Section 1, it is not obvious how to axiomatize this construction.

2We do not have formulas such as �(�γ).

7

Denotation of probability terms
[[r]]ρ(K,µ) = r

[[y]]ρ(K,µ) = ρ(y)
[[(

∫
γ)]]ρ

(K,µ)
= µ(|γ|V)

[[p1 + p2]]
ρ
(K,µ) = [[p1]]

ρ
(K,µ) + [[p2]]

ρ
(K,µ)

[[p1p2]]
ρ
(K,µ) = [[p1]]

ρ
(K,µ) × [[p2]]

ρ
(K,µ)

Satisfaction of probabilistic formulas
(K,µ)ρ (p1 ≤ p2) iff ([[p1]]

ρ
(K,µ) ≤ [[p2]]

ρ
(K,µ))

(K,µ)ρ 6 fff
(K,µ)ρ (η1 ⊃ η2) iff (K,µ)ρ η2 or (K,µ)ρ 6 η1

Table 2: Semantics of EPPL

Recall the derived formula (�γ) defined above. Clearly, (K, µ)ρ (�γ) iff
µ(|γ|V) = µ(V) iff µ(| ¬ γ|V) = 0. Similarly, (K, µ)ρ (♦γ) iff µ(|γ|V) > 0.

It follows easily from the semantics that � (�(γ1 ∧ γ2)) ≈ ((�γ1) ∩ (�γ2)).
Hence, (�γ) behaves as necessity modality. Similarly, (♦γ) behaves as possibil-
ity modality, i.e., � (♦(γ1 ∨ γ2))≈ ((♦γ1) ∪ (♦γ2)). However, it is not the case
that � ((�γ) ⊃ (♦γ)). Consider a generalized probabilistic state (K, µ) where
µ is identically zero; then (K, µ) �γ for all classical state formulas γ, but
(K, µ) ♦γ holds for none of them.

Returning to the random nature of our logical variables in X and B, observe
that we can impose that they behave deterministically except with zero prob-
ability. For instance, the formula

⋃
c∈D(�(Xk = c)) constrains Xk to have a

fixed value except with measure zero. Clearly, this is possible because both our
data types are finite.

2.3 The axiomatization

We need three new concepts for the axiomatization: that of valid state formula,
that of probabilistic tautology and that of valid analytical formula.

A classical state formula γ is said to be valid if it holds for all valuations
v ∈ V. As a consequence of the finiteness of D, the set of valid classical state
formulas is recursive.

Consider propositional formulas built from a countable set of propositional
symbols Q using the classical connectives ⊥ and →. A probabilistic formula η
is said to be a probabilistic tautology if there exist a propositional tautology β
over Q and a map σ from Q to the set of probabilistic state formulas such that
η coincides with βpσ, where βpσ is the probabilistic formula obtained from β by
replacing all occurrences of ⊥ by fff, → by ⊃ and q ∈ Q by σ(q). For instance,
the probabilistic formula ((y1 ≤ y2)⊃ (y1 ≤ y2)) is tautological (obtained from
the propositional tautology q → q).

As noted in Section 2.2, if K0 is the real closed field in a generalized prob-
abilistic structure, then a K0-assignment is enough to interpret all analytical
formulas. We say that κ is a valid analytical formula if κ is satisfied by ρ for

8

any real closed field K and any K-assignment ρ. Clearly, a valid analytical for-
mula holds in all semantic structures of EPPL. It is a well-known fact from the
theory of quantifier elimination [16, 4] that the set of valid analytical formulas
so defined is decidable. We shall not go into details of this result as we want to
focus on reasoning about probabilistic aspects only.

The axioms and inference rules of EPPL are listed in Table 3 and better
understood in the following groups.

Axioms
[CTaut] ` (�γ) for each valid state formula γ
[PTaut] ` η for each probabilistic tautology η

[RCF] ` κ~y
~p for any valid analytical formula κ and sequences of
probability variables and probability terms ~y and ~p,
respectively

[Meas∅] ` ((
∫

ff) = 0)
[FAdd] ` (((

∫
(γ1 ∧ γ2)) = 0)⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] ` ((�(γ1⇒ γ2))⊃ ((
∫
γ1) ≤ (

∫
γ2)))

Inference rule
[PMP] η1, (η1 ⊃ η2) ` η2

Table 3: Axioms for EPPL

Axiom CTaut says that if γ is a valid classical state formula then (�γ) is an
axiom. Axiom PTaut says that a probabilistic tautology is an axiom. Since the
set of valid classical state formulas and the set of probabilistic tautologies are
both recursive, there is no need to spell out the details of tautological reasoning.

The term κ~y
~p in axiom RCF is the term obtained by substituting all occur-

rences of yi in κ by the probability term pi. Axiom RCF says that if κ is a
valid analytical formula, then any formula obtained by replacing variables by
probability terms is a tautology. Again, we refrain from spelling out the details
as the set of valid analytical formulas is recursive.

Axiom Meas∅ states simply that the measure of empty set is 0, while axiom
FAdd expresses finite additivity of measures. Finally, axiom Mon relates the
classical connectives with probability measures and is a consequence of mono-
tonicity of measures.

The inference rule PMP is the modus ponens for classical and probabilistic
implication.

As usual we say that a set of formulas Λ derives η, written Λ ` η, if we can
build a derivation of η from axioms and the inference rules using formulas in
Λ as hypotheses. It can be easily shown that the meta-theorem of deduction
holds, that is, Λ, η1 ` η2 iff Λ ` (η1 ⊃ η2).

Throughout this paper, we shall only be concerned with judgments of the
form Λ ` η where Λ is a finite set. Since both meta-theorems of entailment and
deduction hold in EPPL, it suffices to consider judgments where Λ is empty.

9

The soundness of the axiom system is a consequence of the definition.

Theorem 2.1 The axiom system of EPPL is sound, i.e., if ` η then � η.

Proof. The validity of the axioms and the inference rule PMP follow from the
definition of the semantics. 4

The proofs of completeness and decidability of EPPL go hand-in-hand and
essentially follows the lines of the proof of completeness in [11, 24]. The main
ingredient is the model existence lemma: if a probabilistic formula η is consis-
tent, i.e. 6` (η), then there is a model that satisfies η. Furthermore, there is
an algorithm that decides the consistency of a probabilistic formula. We give a
sketch of the proof and refer the reader to [11] for details.

Theorem 2.2 The proof system of EPPL is weakly complete, i.e., if � η then
` η. Moreover, the set of theorems of EPPL is recursive.

Proof sketch. The central result is to show that if η is consistent (that is,
6` (η)) then there is a model (K, µ)ρ such that (K, µ)ρ η. The decidability
follows by showing that the consistency of a formula is decidable.

The proof in [11, 24] adapted to EPPL is summarized as follows: (i) compute
the (finite) set of valuations over the memory cells and the logical variables in
the sets B and X occurring in η and let this set of valuations be V ; (ii) let κ1 be
the analytical formula obtained from η by effectively replacing measure terms
(
∫
γ) by sums

∑
vcγ,v∈V yv where yv represents the probability of the valuation

v; (iii) let κ be the analytical formula
⋂

yvv∈V (0 ≤ yv); (iv) η is consistent iff κ
is; (v) finally, consistency of κ is decided by the axiom RCF and the model is
constructed for a consistent κ by solving for yv in real closed fields. 4

3 Basic probabilistic sequential programs

We shall now describe briefly the syntax and semantics of our programming
language.

3.1 Syntax

Assuming the syntax of EPPL, the syntax of the programming language in the
BNF notation is as follows (with the proviso r ∈ R).

s := skip 8 xm← t 8 bm← γ 8 toss(bm, r) 8 s; s 8 if γ then s else s

The statement skip does nothing. The statement xm ← t assigns to the
memory cell xm the value denoted by t, and the statement bm← γ assigns to
the cell bm the truth value of γ. For the rest of the paper, by expression we
shall mean either a term t or a classical state formula γ. Note that both t and
γ may contain variables in the set X (which may be thought of as input to a
program).

The statement toss(bm, r) sets bm to true with probability r̃. Sequential
composition of commands is written s; s. The statement if γ then s1 else s2 is
alternative choice: if γ is true then s1 is executed, else s2 is executed.

Bounded iteration may be introduced as an abbreviation. Given k ∈ N, one
may define

(whilek γ do s) as (if γ then s else skip)k
.

10

3.2 Semantics

The semantics of the programming language is basically the forward semantics
in [21] adapted to our programming language. Given G, the set of generalized
probabilistic states, the denotation of a program s is a map [[s]] : G → G defined
inductively in Table 4. The definition uses the following notations.

• The denotation of a real term t given a valuation v can be extended to
classical state formulas as [[γ]]v = tt if v c γ and [[γ]]v = ff otherwise.

• If m is a memory cell (xm or bm) and e is an expression of the same type
(t or γ, respectively), then the map δm

e : V → V is defined as δm
e (v) =

vm
[[e]]v

where vm
[[e]]v

assigns the value [[e]]v to the cell m and coincides with
v elsewhere. As usual, (δm

e)−1 : ℘V → ℘V is defined by taking each set
U ⊂ V to the set of its pre-images.

• (K, µ1) + (K, µ2) = (K, µ1 + µ2).

• r(K, µ) = (K, rµ).

The denotation of classical assignments and sequential composition are as ex-
pected. The probabilistic toss toss(bm, r,) assigns to bm the value tt with prob-
ability r̃ and the value ff with probability 1− r̃; therefore, the denotation of the
probabilistic toss is the “weighted” sum of the two assignments bm← tt and
bm← ff. The denotation of the alternative composition is as expected: s1 is
executed in the states where γ is true and s2 is executed in the states where
γ is false. It can be easily shown that any probabilistic program preserves the
total measure, i.e., if [[s]](K, µ) = (K′, µ′) then µ(V) = µ′(V).

[[skip]] = λ(K, µ). (K, µ)
[[xm← t]] = λ(K, µ). (K, µ ◦ (δxm

t)−1)
[[bm← γ]] = λ(K, µ). (K, µ ◦ (δbm

γ)−1)
[[toss(bm, r)]] = λ(K, µ). (r̃ ([[bm← tt]](K, µ))+

(1− r̃) ([[bm← ff]](K, µ)))
[[s1; s2]] = λ(K, µ). [[s2]] ([[s1]](K, µ))
[[if γ then s1 else s2]] = λ(K, µ). ([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Table 4: Denotation of programs

4 Probabilistic Hoare logic

We are ready to define the Hoare logic. As usual, Hoare assertions are

Ψ := η 8 {η} s {η}.

Satisfaction of Hoare assertions is defined as follows.

• (K, µ)ρ h η if (K, µ)ρ η;

11

• (K, µ)ρ h {η1} s {η2} if (K, µ)ρ η2 whenever [[s]](K, µ)ρ η1.

We say that a Hoare assertion Ψ is semantically valid (written � Ψ) if (K, µ)ρ h

Ψ for every generalized probabilistic state (K, µ) and any K-assignment ρ.

4.1 Calculus

We shall now give a sound and complete axiomatization of the Hoare calcu-
lus. We will only consider judgments of the form ` Ψ, i.e., judgments with no
hypotheses. Hence, in all inference rules the premises are assumed to be theo-
rems of the Hoare calculus. We need some new concepts for the axiomatization:
tossed terms, tossed formulas, conditional terms and conditional formulas.

Given a memory cell bm, a constant r ∈ A and a probabilistic term p ∈
PTerms, we define the (bm, r)-tossed term toss(bm, r; p) to be the term obtained
from p by replacing every occurrence of each measure term (

∫
γ) by r̃(

∫
γbm

tt)+(1−
r̃)(

∫
γbm

ff), where the formula γbm
e is obtained from γ by replacing all occurrences

of bm by e. Similarly, we define the probabilistic formula toss(bm, r; η) to be
the formula obtained from η by replacing every occurrence of each measure
term (

∫
γ) by r̃(

∫
γbm

tt) + (1 − r̃)(
∫
γbm

ff). Formally, toss(bm, r; ·) can be defined
recursively on the set of probabilistic terms PTerms and the set of probabilistic
formulas PForms. The recursive definition is given in Table 5. Note that this
recursive definition also gives a recursive algorithm for computing toss(bm, r; p)
and toss(bm, r; η).

Tossed terms
toss(bm, r; r′) = r′

toss(bm, r; y) = y
toss(bm, r; (

∫
γ)) = (r̃(

∫
γbm

tt) + (1− r̃)(
∫
γbm

ff))
toss(bm, r; (p+ p′)) = (toss(bm, r; p) + toss(bm, r; p′))
toss(bm, r; (pp′)) = (toss(bm, r; p) toss(bm, r; p′))

Tossed formulas
toss(bm, r;fff) = fff
toss(bm, r; (p ≤ p′)) = (toss(bm, r; p) ≤ toss(bm, r; p′))
toss(bm, r; (η ⊃ η′)) = (toss(bm, r; η)⊃ toss(bm, r; η′))

Table 5: Tossed terms and formulas

Given a classical state formula γ and a probabilistic term p ∈ PTerms, we
define the γ-conditioned term (p/γ) to be the term obtained from p by replac-
ing every occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)). Similarly, we

define the probabilistic formula η/γ to be the formula obtained from η by replac-
ing every occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)). The recursive

definition of (·)/γ is given in Table 6. Again, this recursive definition gives a re-
cursive algorithm for computing p/γ and η/γ. Given two probabilistic formulas
η1 and η2, we shall use (η1gγη2) as an abbreviation for ((η1/γ) ∩ (η2/(¬ γ))).

A sound and complete Hoare calculus for our probabilistic sequential pro-
grams is given in Table 7. The axioms TAUT and SKIP and the inference rules

12

Conditional terms
r/γ = r
y/γ = y
(
∫
γ′)/γ = (

∫
(γ ∧ γ′))

(p+ p′)/γ = (p/γ + p′/γ)
(pp′)/γ = ((p/γ) (p′/γ))

Conditional formulas
fff/γ = fff
(p ≤ p′)/γ = (p/γ ≤ p′/γ)
(η ⊃ η′)/γ = (η/γ ⊃ η′/γ)

Table 6: Conditional terms and formulas

SEQ, CONS, OR and AND are similar to the ones in the case of deterministic
sequential programs. The others are briefly discussed below.

Recall that an analytical formula is a probabilistic formula that does not
contain any measure terms (terms of the kind (

∫
γ)). Since an analytical formula

does not contain any memory cells, a execution of a program does not change
the truth value of an an analytical formula κ. This fact is reflected in the axiom∫
FREE3.

In the axioms ASGR and ASGB, the notation ηm
e stands for the formula

obtained from η by replacing all occurrences of the memory variable m by the
expression e. The axioms ASGR and ASGB are analogous to the Hoare rules
for assignment in the case of deterministic sequential programs. The axiom
TOSS covers the case of probabilistic tosses.

For the inference rule IF, recall that η1 gγ0 η2 is an abbreviation for the
formula ((η1/γ0) ∩ (η2/(¬ γ0))). This inference rule keeps track of (

∫
γ), the

measure of γ. The variables y1 and y2 account for the contributions to (
∫
γ)

from the alternative branches s1 and s2, respectively. Although this rule might
seem a bit restrictive, it is sufficient to guarantee the completeness of the Hoare
calculus along with the axiom

∫
FREE and the inference rule ELIMV.

The inference rule ELIMV eliminates variables in the set Y. In this rule,
η cannot have any conditional constructs and the variable y does not occur in
either the probabilistic term p or the post-condition η. This inference rule is
essential for proving the completeness of Hoare logic and is not present in [8].
It can be viewed as a special case of the inference rule for existential quantifiers
in first-order Hoare logic, which is often stated as

{ϕ} s {ψ} ` {(∃z. ϕ)} s {ψ} if z does not occur in ψ.

The inference rule ELIMV can then be viewed as a special instance of this rule
by observing that the first-order formula (∃z. (ϕ(z) ∧ (z = r))) is equivalent to
(∃z. (ϕ(r) ∧ (z = r))), which in turn is equivalent to ϕ(r) if z does not occur in
r.

3Actually, this axiom is only needed in the case s is an alternative statement. It can be
derived in other cases by induction.

13

Axioms
[TAUT] ` η if η is an EPPL theorem
[
∫
FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ } bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Inference rules
[SEQ] {η0} s1 {η1}, {η1} s2 {η2} ` {η0} s1; s2 {η2}
[IF] {η1} s1 {y1 = (

∫
γ0)},

{η2} s2 {y2 = (
∫
γ0)} ` {η1 gγ η2} if γ then s1 else s2

{y1 + y2 = (
∫
γ0)}

[ELIMV] {η ∩ (y = p)} s {η} ` {ηy
p} s {η} if y does not occur

in p or η
[CONS] η0 ⊃ η1, {η1} s {η2},

η2 ⊃ η3 ` {η0} s {η3}
[OR] {η0} s {η2}, {η1} s {η2} ` {η0 ∪ η1} s {η2}
[AND] {η0} s {η1}, {η0} s {η2} ` {η0} s {η1 ∩ η2}

Table 7: Hoare calculus

5 Soundness of the Hoare logic

We now show that the Hoare calculus presented in 4 is sound, i.e., if ` Ψ then
h Ψ. It is sufficient to show that all the axioms and inference rules of the
Hoare calculus are sound.

The proofs of soundness of the axioms ASGB and ASGR rely on the sub-
stitution lemma for classical valuations. This situation is similar to the one in
deterministic sequential pograms, where the key ingredient for the soundness of
the axiom for assingments is also a substitution lemma. Recall that the valua-
tion vm

[[e]]v
assigns the value [[e]]v to the cell m and coincides with the valuation

v elsewhere.

Lemma 5.1 (Substitution Lemma for classical valuations) For any val-
uation v ∈ V, any classical state formula γ, any memory cell m (xm or bm) and
a term e of the same type (t or γ′, respectively),

vm
[[e]]v

c γ iff v c γ
m
e .

Proof. The proof is by induction on the structure of γ and is similar to the
one for deterministic sequential programs. 4

We now extend the substitution lemma for classical valuations to a substitu-
tion lemma for probabilistic terms and formulas, which will imply the soundness
of ASGB and ASGR. Recall that δm

e : V → V is the map that takes each val-
uation v to vm

[[e]]v
.

14

Lemma 5.2 (Substitution Lemma for assignment) Let (K, µ) be a gen-
eralized probabilistic structure and ρ be a K-assignment. Given a memory cell
m and a term e of the same type, let µ′ = µ ◦ (δm

e)−1. Then

[[(
∫
γ)]]ρ

(K,µ′)
= [[(

∫
γm

e)]]ρ
(K,µ)

for any classical state formula γ. Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[pm
e]]ρ(K,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K, µ)ρ ηm
e .

Proof. As a consequence of Lemma 5.1,

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫
γ)]]ρ

(K,µ′)
= µ ◦ (δm

e)−1(|γ|V) = µ(|γm
e |V) = [[(

∫
γm

e)]]ρ
(K,µ)

.

The result is extended to probabilistic terms and formulas by induction. 4

The soundness of the axiom for probabilistic toss, TOSS, is an easy conse-
quence of the following lemma.

Lemma 5.3 (Substitution Lemma for probabilistic tosses) Let (K,µ) be
a generalized probabilistic structure, ρ be a K-assignment, r ∈ A be a constant
and µ′ = r̃ µ◦ (δbm

tt)−1 +(1− r̃)µ◦ (δbm
ff)−1. Then, for any classical state formula

γ,
[[(

∫
γ)]]ρ

(K,µ′)
= r̃ [[(

∫
γbm

tt)]]ρ
(K,µ)

+ (1− r̃) [[(
∫
γbm

ff)]]ρ
(K,µ)

.

Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[toss(bm, r; p)]]ρ(K,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K,µ)ρ toss(bm, r; η).

Proof. Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫
γ)]]ρ

(K,µ′)
= r̃[[(

∫
γ)]]ρ

(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ

(K,µ2)

by definition; by Lemma 5.2

[[(
∫
γ)]]ρ

(K,µ1)
= [[(

∫
γbm

tt)]]ρ
(K,µ)

and [[(
∫
γ)]]ρ

(K,µ2)
= [[(

∫
γbm

ff)]]ρ
(K,µ)

.

The claim for probabilistic terms and probabilistic formulas then follows by
induction. 4

The following proposition asserts the soundness of the axiom
∫
FREE.

15

Proposition 5.4 (Soundness of
∫
FREE) For any statement s, any analyt-

ical formula κ, any generalized state (K, µ) and K assignment ρ,

([[s]](K, µ))ρ κ iff (K, µ)ρ κ.

Proof. The claim follows from the fact that interpretation of analytical depends
only on the assignment ρ. 4

Proposition 5.5 For any generalized state (K, µ), K-assignment ρ and classical
state formulas γ and γ′,

[[(
∫
γ′)/γ]]ρ

(K,µ)
= [[(

∫
γ′)]]ρ

(K,µγ)
.

Furthermore, for any probability term p,

[[p/γ]]ρ(K,µ) = [[p]]ρ(K,µγ),

and, for any probabilistic formula η,

(K, µ)ρ η/γ iff (K, µγ)ρ η.

Proof. By definition,

[[(
∫
γ′)]]ρ

(K,µγ)
= µγ(|γ′|V) = µ(|γ′|V ∩ |γ|V) = µ(|γ′ ∧ γ|V) = [[(

∫
γ′)/γ]]ρ

(K,µ)
.

The claims for probabilistic terms and formulas now follow by induction. 4

We can now establish the soundness of the inference rule IF.

Lemma 5.6 (Soundness of IF) Given probabilistic state formulas η1 and η2,
programs s1 and s2, variables y1 ∈ Y and y2 ∈ Y and a classical state formula
γ,

�h {η1} s1 {y1 = (
∫
γ)} and �h {η2} s2 {y2 = (

∫
γ)}

iff, for any classical state formula γ0,

�h {η1gγ0η2} if γ0 then s1 else s2 {y1 + y2 = (
∫
γ)}.

Proof. Let (K, µ) be a generalized probabilistic state and ρ be a K-assignment
such that (K, µ)ρ η1gγ0η2. Then (K, µ)ρ η1/γ0 and (K, µ)ρ η2/(¬ γ0).
Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2 by Proposition 5.5.

Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and µ′ = µ1 + µ2. We
need to show that (K, µ′)ρ (y1 + y2 = (

∫
γ)).

Since h {η1} s1 {y1 = (
∫
γ)} and (K, µγ0)ρ η1, it follows that (K, µ1) h

y1 = (
∫
γ). Thus, by definition ρ(y1) = µ1(|γ|V). Similarly, ρ(y2) = µ2(|γ|V).

Hence, µ′(|γ|V) = µ1(|γ|V)+µ2(|γ|V) = ρ(y1)+ρ(y2) = ρ(y1+y2). Therefore,
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required. 4

We now show that the inference rule ELIMV is sound. In order to do this,
we shall first establish a substitution result for variables y ∈ Y. For rest of
the paper, given a K-assignment ρ, a variable y ∈ Y and an element k ∈ K,
the K-assignment ρy

k denotes the assignment that assigns the value k to y and
coincides with ρ elsewhere.

16

Proposition 5.7 Let y ∈ Y be a variable and p be a probabilistic term. Given
a general probabilistic structure (K, µ) and a K-assignment ρ, let k = [[p]]ρ(K,µ)

and ρ1 = ρy
k. Then:

• for any probabilistic term p0, [[p0]]
ρ1
(K,µ) = [[p0

y
p]]ρ

(K,µ)
;

• for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof. The first part of the proposition is proved by induction on the structure
of p0. We consider the case when p0 is a variable y0, the other cases being
straightforward. If y0 is y, then by definition [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[yy
p]]ρ

(K,µ)
.

Otherwise, [[y0]]
ρ1
(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]

ρ
(K,µ) = [[y0y

p]]ρ
(K,µ)

.
The second part of the proposition follows by induction. 4

We make one more observation before we prove the soundness of ELIMV.
Let y ∈ Y be a variable and η be a probabilistic formula such that η does not
contain any occurrence of y. For any general probabilistic structure (K, µ) and
K-assignments ρ1 and ρ2 such that ρ1(y′) = ρ2(y′) for any y′ distinct from y, a
straightforward induction shows that

(K, µ)ρ1 η iff (K, µ)ρ2 η.

Lemma 5.8 (Soundness of ELIMV) Given a probabilistic formula η, a prob-
abilistic term p, a probabilistic formula η, a variable y ∈ Y that does not occur
either in p or in η and a statement s,

if h {η ∩ (y = p)} s {η} then h {ηy
p} s {η}.

Proof. Assume that h {η ∩ (y = p)} s {η} and let (K, µ) be a generalized
state and ρ be a K-assignment such that (K, µ)ρ ηy

p . We need to show that
([[s]](K, µ))ρ η.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k. By Proposition 5.7, (K, µ)ρ1 η.

By definition, [[y]]ρ1
(K,µ) = k. By Proposition 5.7, [[p]]ρ1

(K,µ) = [[py
p]]ρ

(K,µ)
; since

y does not occur in p, py
p is p itself, hence [[p]]ρ1

(K,µ) = [[p]]ρ(K,µ) = k. Therefore,
(K, µ)ρ1 (y = p).

Since h {η ∩ (y = p)} s {η}, it follows that ([[s]](K, µ))ρ1 η. Since ρ1

and ρ differ only in the value assigned to y and y does not occur in η, also
([[s]](K, µ))ρ η as required. 4

We are ready to prove the soundness of Hoare calculus.

Theorem 5.9 (Soundness of Hoare calculus) For any Hoare assertion Ψ,
if ` Ψ then � Ψ.

Proof. The proof is by induction on the length of the derivation of ` Ψ; it
suffices to show that each of the axioms and inference rules is sound.

The soundness of axioms TAUT and SKIP and of the inference rules SEQ,
AND, OR and CONS is straightforward.

The soundness of axioms ASGR and ASGB follows from Lemma 5.2 and
that of axiom TOSS from Lemma 5.3. The soundness of the axiom

∫
FREE

follows from Proposition 5.4, while Lemmas 5.6 and 5.8 establish the soundness
of inference rules IF and ELIMV respectively. 4

17

6 Completeness and decidability of the Hoare
calculus

We now show that the Hoare calculus provided in Section 4 is complete, i.e., if
h Ψ then ` Ψ. Furthermore, there is an algorithm that given a probabilistic
Hoare formula Ψ determines whether h Ψ or 6h Ψ. The proof of completeness
and decidability of the Hoare logic uses the completeness and decidability of
EPPL (see Theorem 2.2).

The proof of completeness of the Hoare logic employs the standard tech-
nique [10] of defining the weakest precondition operator. Intuitively, the weakest
precondition operator wp(·, ·) assigns to each statement s ∈ S and each formula
η ∈ PForms a new state formula wp(s, η) that corresponds to the weakest logi-
cal property that a state must satisfy to ensure that η holds after execution of
s. The weakest precondition itself uses the preterm operator. Intuitively, the
preterm operator pt(·, ·) assigns to each statement s ∈ S and each probabilistic
term p ∈ PTerms a new term pt(s, p) whose denotation in a given initial state
is the same as the the denotation of p after the execution of s.

We then show that for any program s and EPPL formula η the Hoare calculus
derives the judgment ` {wp(s, η)} s {η}, establishing that wp(s, η) is a sufficient
precondition for s and η. Furthermore, (K, µ)ρ wp(s, η) iff [[s]](K, µ)ρ η,
implying that if �h {η′} s {η} then � (η′ ⊃ η). The completeness of EPPL will
allow us to conclude that (η′⊃η) is an EPPL theorem, and we can then use the
Hoare inference rule CONS to conclude that ` {η′} s {η}. The decidability of
the Hoare calculus follows from the fact that the weakest precondition can be
computed algorithmically and decidability of EPPL.

6.1 Preterms

The preterm pt(s, p) is defined recursively on the structure of the statement s
and the the probability term p.

Recall that, given a memory cell bm, a constant r ∈ A and a probabilistic
term p, the term toss(bm, r; p) is the term obtained from p by replacing every
occurrence of each measure term (

∫
γ) by r̃(

∫
γbm

tt) + (1− r̃)(
∫
γbm

ff) and, given a
classical state formula γ and a probabilistic term p, the term (p/γ) is the term
obtained from p by replacing every occurrence of each measure term (

∫
γ′) by

(
∫
(γ′ ∧ γ)). The definition of pt(s, p) is shown in Table 8.
The preterm operator acts as the identity on the constants and the variables.

Furthermore, the set of variables occurring in the term is unchanged.

Proposition 6.1 For any statement s, the following hold:

• pt(s, r) = r for all r ∈ A;

• pt(s, y) = y for all y ∈ Y;

• PVar(p) = PVar(pt(s, p)) for all probabilistic terms p.

Proof. By induction on the structure of s and p. 4

Lemma 6.2 For any probabilistic term p, statement s, any generalized struc-
ture (K, µ) and K-assignment ρ,

[[pt(s, p)]]ρ(K,µ) = [[p]]ρ[[s]](K,µ).

18

pt(skip, p) = p
pt(bm← γ, p) = pbm

γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r; p)
pt(s1; s2, p) = pt(s1, pt(s2, p))
pt(if γ then s1 else s2, r) = r
pt(if γ then s1 else s2, y) = y
pt(if γ then s1 else s2, (

∫
γ0)) = (pt(s1, (

∫
γ0))/γ+

pt(s2, (
∫
γ0))/(¬ γ))

pt(if γ then s1 else s2, (p1 + p2)) = (pt(if γ then s1 else s2, p1)+
pt(if γ then s1 else s2, p2))

pt(if γ then s1 else s2, (p1 p2)) = (pt(if γ then s1 else s2, p1)×
pt(if γ then s1 else s2, p2))

Table 8: Preterms

Proof. By induction on the structure of s. The case when s is skip follows
from the definition. The cases when s is an assignment to a memory cell or a
probabilistic toss follow respectively from Lemmas 5.2 and 5.3.

If s is s1; s2, then applying the induction hypothesis twice to a given a
probabilistic term p yields

[[pt(s1, pt(s2, p))]]
ρ
(K,µ) = [[pt(s2, p)]]

ρ
[[s1]](K,µ) = [[p]]ρ[[s1;s2]](K,µ)

as required.
If s is if γ then s1 else s2, we proceed by induction on p. The case when p

is a constant r ∈ A is immediate from the definition; the case when p is the
variable y follows from the fact that the interpretation of a variable depends
only on the K-assignment ρ.

If p is the term (
∫
γ0) then by definition

[[(
∫
γ0)]]

ρ

[[s]](K,µ)
= κ1 + κ2

where
κ1 = [[(

∫
γ0)]]

ρ

[[s1]](K,µγ)
and κ2 = [[(

∫
γ0)]]

ρ

[[s2]](K,µ(¬ γ))
.

Applying the induction hypothesis to s1 and s2 yields respectively

κ1 = [[pt(s1, (
∫
γ0))]]

ρ

(K,µγ)
and κ2 = [[pt(s2, (

∫
γ0))]]

ρ

(K,µ(¬ γ))
.

By Proposition 5.5,

κ1 = [[pt(s1, (
∫
γ0))]]

ρ

(K,µγ)
= [[pt(s1, (

∫
γ0))/γ]]

ρ

(K,µ)

and
κ2 = [[pt(s2, (

∫
γ0))]]

ρ

(K,µ(¬ γ))
= [[pt(s2, (

∫
γ0))/(¬ γ)]]

ρ

(K,µ)
;

the result now follows.
If p is (p1 + p2) or (p1p2), then by induction hypothesis

[[pt(s, pi)]]
ρ
(K,µ) = [[pi]]

ρ
[[s]](K,µ)

for i = 1, 2 and the result follows immediately. 4

19

6.2 Weakest preconditions

The weakest precondition operator wp : S× PForms→ PForms is defined using
the preterm operator. The weakest precondition wp(s, η) is obtained by replac-
ing each comparison formula (p1 ≤ p2) occurring in wp(s, η) by (pt(s, p1) ≤
pt(s, p2)). The formal definition can be found in Table 9.

wp(s,fff) = fff
wp(s, (p1 ≤ p2)) = (pt(s, p1) ≤ pt(s, p2))
wp(s, (η1 ⊃ η2)) = (wp(s, η1)⊃ wp(s, η2))

Table 9: Weakest preconditions

It follows from the definition and Lemma 6.2 that wp(s, η) is indeed the
weakest precondition for η to hold after execution of s.

Theorem 6.3 For any statement s, probabilistic formula η, generalized struc-
ture (K, µ) and K-assignment ρ,

(K, µ)ρ h wp(s, η) iff ([[s]](K, µ))ρ h η.

Proof. The proof is by induction on the structure of η. The base case where η
is fff is immediate. The other base is when η is (p1 ≤ p2); by Lemma 6.2,

[[pt(s, pi)]]
ρ
(K,µ) = [[pi]]

ρ
[[s]](K,µ)

for i = 1, 2, and the result follows.
Finally, if η is (η1 ⊃ η2) then by induction hypothesis

(K, µ)ρ h wp(s, ηi) iff ([[s]](K, µ))ρ h ηi

for i = 1, 2, and the result follows. 4

The following corollary is straightforward.

Corollary 6.4 For any statement s and probabilistic formulas η and η′,

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof. (⇒) Suppose �h {η′} s {η}. Consider an arbitrary generalized prob-
abilistic state (K, µ) and an arbitrary K-assignment ρ such that (K, µ)ρ η′;
then ([[s]](K, µ))ρ η, since �h {η′} s {η}. By Theorem 6.3, (K, µ)ρ wp(s, η);
since (K, µ) and ρ are arbitrary, � (η′ ⊃ wp(s, η)).

(⇐) Suppose � (η′⊃wp(s, η)). Consider an arbitrary generalized probabilis-
tic state (K, µ) and an arbitrary K-assignment ρ such that (K, µ)ρ η′. Then
(K, µ)ρ wp(s, η), since � (η′ ⊃ wp(s, η)); by Theorem 6.3, ([[s]](K, µ))ρ η.
Since (K, µ) and ρ are arbitrary, �h {η′} s {η}. 4

The next step is to show that the Hoare axiomatization allows us to derive
the judgment

` {wp(s, η)} s {η}.
We start by showing this the special case when η is y = p for some variable
y ∈ Y and probabilistic term p.

20

Lemma 6.5 For any probabilistic term p, statement s and variable y ∈ Y,

` {y = pt(s, p)} s {y = p}.

Proof. By induction on the structure of s. If s is skip, an assignment to a
memory cell or a probabilistic toss, then the required judgment can be derived
by axioms SKIP, ASGB, ASGR or TOSS.

If s is s1; s2, then pt(s1; s2, p) = pt(s1, pt(s2, p)) by definition, and the
induction hypothesis applied to the programs s1 and s2 gives

` {y = pt(s1, pt(s2, p))} s1 {y = pt(s2, p)}

and
` {y = pt(s2, p)} s2 {y = p}

respectively. By SEQ it follows that

` {y = pt(s1; s2, p)} s1; s2 {y = p}.

If s is the alternative if γ then s1 else s2 we proceed by induction on p. If p
is a constant or a variable, then ` {y = p} s {y = p} by axiom

∫
FREE and the

result follows by observing that in these cases pt(s, p) = p by Proposition 6.1.
Suppose p is (

∫
γ0) for some classical state formula γ0 and pick two distinct

variables y1, y2 ∈ Y different from y. Let η1 be (y1 = pt(s1, (
∫
γ0))), η2 be

(y2 = pt(s2, (
∫
γ0))) and η† be

(y = y1 + y2) ∩ (y1 = pt(s1, (
∫
γ0))/γ) ∩ (y2 = pt(s2, (

∫
γ0))/(¬ γ)).

By induction hypothesis,

` {yi = pt(si, (
∫
γ0))} si {yi = (

∫
γ0)}

for i = 1, 2. Since pt(s, p) = pt(s1, (
∫
γ0))/γ+pt(s2, (

∫
γ0))/(¬ γ), we can derive

{y = pt(s, p)} s {y = p} as follows.

1. {y1 = pt(s1, (
R

γ0))} s1 {y1 = (
R

γ0)} Lemma

2. {y2 = pt(s2, (
R

γ0))} s2 {y2 = (
R

γ0)} Lemma

3. {η1gγη2} if γ then s1 else s2 {y1 + y2 = (
R

γ0)} IF 1,2

4. η† ⊃ (η1gγη2) TAUT

5. {η†} if γ then s1 else s2 {y1 + y2 = (
R

γ0)} CONS 3,4

6. {y = y1 + y2} if γ then s1 else s2 {y = y1 + y2}
R
FREE

7. η† ⊃ (y = y1 + y2) TAUT

8. {η†} if γ then s1 else s2 {y = y1 + y2} CONS 6,7

9. {η†} if γ then s1 else s2 {(y = y1 + y2) ∩ (y1 + y2 = (
R

γ0))} AND 5,8

10. ((y = y1 + y2) ∩ (y1 + y2 = (
R

γ0)))⊃ (y = (
R

γ0))
R
FREE

11. {η†} if γ then s1 else s2 {y = (
R

γ0)} CONS 9,10

12. {(y = y1 + pt(s2, (
R

γ0))) ∩ (y1 = pt(s1, (
R

γ0))/γ)}

if γ then s1 else s2 {y = (
R

γ0)} ELIMV 11

13. {y = pt(s1, (
R

γ0))/γ + pt(s2, (
R

γ0))/(¬ γ)}

if γ then s1 else s2 {y = (
R

γ0)} ELIMV12

21

If p is (p1 + p2), pick y1, y2 ∈ Y different from y such that y1 and y2 do not
occur in either p1 or p2. Let η† be

(y = y1 + y2) ∩ (y1 = p1) ∩ (y2 = p2)

and define η‡ as

(y = y1 + y2) ∩ (y1 = pt(s, p1)) ∩ (y2 = pt(s, p2)).

By induction hypothesis, ` {yi = pt(s, pi)} s {yi = pi} for i = 1, 2. Then the
judgment {y = pt(s, p)} s {y = p} can be derived as follows.

1. {y1 = pt(s, p1)} s {y1 = p1} Lemma

2. η‡ ⊃ (y1 = pt(s, p1)) TAUT

3. {η‡} s {y1 = p1} CONS 1,2

4. {y2 = pt(s, p2)} s {y2 = p2} Lemma

5. η‡ ⊃ (y2 = pt(s, p2)) TAUT

6. {η‡} s {y2 = p2} CONS 4,5

7. {η‡} s {(y1 = p1) ∩ (y2 = p2)} AND 3,6

8. {y = y1 + y2} s {y = y1 + y2}
R
FREE

9. η‡ ⊃ (y = y1 + y2) TAUT

10. {η‡} s {y = y1 + y2} CONS 8,9

11. {η‡} s {η†} AND 7,10

12. η† ⊃ (y = (p1 + p2))
R
FREE

13. {η‡} s {y = (p1 + p2)} CONS 11,12

14. {(y = y1 + pt(s, p2)) ∩ (y1 = pt(s, p1))} s {y = (p1 + p2)} ELIMV 13

15. {y = pt(s, p1) + pt(s, p2)} s {y = (p1 + p2)} ELIMV 14

The case where p is (p1p2) is similar. 4

We are now ready to show that the judgment {wp(s, η)} s {η} is derivable in
the Hoare logic for any η. Given a probabilistic formula η and a probabilistic
term p we say that p occurs as a comparison term in η if there is some probabilis-
tic term q such that either the comparison formula (p ≤ q) or the comparison
formula (q ≤ p) occurs in η.

Theorem 6.6 For any statement s and any conditional free formula η,

` {wp(s, η)} s {η}.

Proof. Let p1, p2, . . . , pn be all the comparison terms occurring in η. Pick n
distinct variables y1, y2, . . . , yn ∈ Y that do not occur in η. Let p′1, p

′
2, . . . , p

′
n be

the terms pt(s, p1), pt(s, p2), . . . , pt(s, pn) respectively and let η† be the formula
obtained from η by replacing each occurrence of a comparison formula (pi ≤ pj)
by (yi ≤ yj). Finally, take

ηa ≡ η† ∩ (
⋂
i

(yi = pi)) and ηb ≡ η† ∩ (
⋂
i

(yi = p′i)).

Clearly, the following hold:

22

• η† is an analytical formula;

• η†y1y2...yn

p1p2...pn
is η;

• (ηa ⊃ η†) and (ηb ⊃ η†) are EPPL theorems;

• (ηb ⊃ (y = p′i)) are EPPL theorems for all 1 ≤ i ≤ n;

• wp(s, η) is η†y1y2...yn

p′1p′2...p′n
.

By axiom
∫
FREE, ` {η†} s {η†}; by Lemma 6.5, ` {yi = p′i} s {y = pi} for

all 1 ≤ i ≤ n. Since (ηb ⊃ η†) and (ηb ⊃ (y = p′i)) are EPPL theorems for all
1 ≤ i ≤ n, by application of CONS it follows that

` {ηb} s {η†} and ` {ηb} s {y = pi}

for all 1 ≤ i ≤ n. Several applications of the inference rule AND then give
` {ηb} s {ηa}; since (ηa⊃η) is an EPPL theorem, another application of CONS
yields ` {ηb} s {η}. Finally, several applications of ELIMV show that

` {η†y1y2...yn

p′1p′2...p′n
} s {η}

as required. 4

We are ready to show the Hoare calculus is complete and decidable.

Theorem 6.7 (Completeness and decidability) Let s be a probabilistic se-
quential program and η be an EPPL formula. If �h {η′} s {η}, then ` {η′} s {η}.
Moreover, the set of theorems of the Hoare calculus is recursive.

Proof.
Completeness. Suppose that �h {η′} s {η}. By Corollary 6.4, � (η′ ⊃

wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)). Theorem 6.6 implies
that ` {wp(s, η)} s {η}, whence ` {η′} s {η} by CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff �h {η′} s {η}.
By Corollary 6.4 and completeness of EPPL, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the decidability of
EPPL and the fact that wp(s, η) can be computed algorithmically. 4

7 Examples

We now present two examples and compute the weakest pre-condition of two
programs.

One-time pad. A one-time pad is a provably secure way of encrypting a bit-
string. Given a plain-text message m and a key k of same length, the cipher-text
c is computed as the bitwise xor of m and k, where k is a key that will be used
only once.

We model this via the following program Senc, which generates a random
1-bit key bmk and encrypts the 1-bit plain-text bmp

4.

toss(bmk,
1
2);

bmc←¬(bmk⇔ bmp)

4Observe that ¬(bmk ⇔ bmp) is a way of computing (bmk xor bmp).

23

The security of this one-time pad is equivalent to requiring that the probabil-
ity of the cipher-text xmc being tt be 1

2 regardless of the probability distribution
on the possible values of the plain-text xmp. This can be expressed by the fol-
lowing Hoare assertion:

Ψ ≡ {(
∫

tt) = 1}Senc {(
∫

bmc) = 1
2}.

The pre-condition (
∫

tt) = 1 means that the total measure of the space of valu-
ations is 1. Although Ψ is derivable in our Hoare calculus, as shown in [8], we
shall prove that there exists a derivation by using weakest preconditions.

By definition,(
wp(Senc, (

∫
bmc) = 1

2)
)
≡

(
pt(Senc, (

∫
bmc)) = pt(Senc, 1

2)
)
.

Now, pt(Senc, 1
2) is 1

2 by Proposition 6.1. On the other hand,

pt(Senc, (
∫

bmc))
= pt(toss(bmk,

1
2), pt(bmc←¬(bmk⇔ bmp), (

∫
bmc)))

= pt(toss(bmk,
1
2), (

∫
¬(bmk⇔ bmp)))

= 1̃
2 (

∫
¬(bmk⇔ tt)) + (1− 1̃

2)(
∫
¬(bmk⇔ ff)).

Hence,(
wp(Senc, (

∫
bmc) = 1

2)
)
≡

(
1̃
2 (

∫
¬(bmk⇔ tt)) + (1− 1̃

2)(
∫
¬(bmk⇔ ff)) = 1

2

)
.

The derivability of Ψ now follows from the fact that

((
∫

tt) = 1)≈ (1̃
2 (

∫
¬(bmk⇔ tt)) + (1− 1̃

2)(
∫
¬(bmk⇔ ff)) = 1

2)

is an EPPL theorem.

Quantum one-time pad. We now present a quantum variation of the pre-
vious example. A qubit is the basic memory unit in quantum computation,
just as a bit is the basic memory unit in classical computation. The state of a
qubit is a pair (α, β) of complex numbers such that |α|2 + |β|2 = 1. A quantum
one-time pad [2] encrypts a qubit using two key (classical) bits in a secure way:
observing the encrypted qubit yields two results, both with equal probability.
In the special case that α and β are real numbers, a one-bit key bmk suffices;
we restrict our attention to this special case.

If the key bmk is 1, then the qubit is (unitarily) encrypted as the pair (β,−α),
otherwise it remains the same. The following program Sqenc simulates this pro-
cess by first generating a random key and then encrypting the qubit (xm1, xm2).

toss(bmk,
1
2); if bmk then PauliXZ else skip

Here, PauliXZ is xm3← xm1; xm1← xm2; xm2←−xm3; the name PauliXZ has
its roots in quantum mechanics.

Assume that the initial values of xm1 and xm2 are c1 and c2 respectively, with
c1 6= c2. It follows from quantum information theory that the quantum one-
time pad is secure if the probability of xm1 being c1 after encryption is 1

2 (and

24

hence that of xm1 being c2 is also 1
2). Assuming ηI is �((xm1 = c1) ∧ (xm2 =

c2) ∧ (c1 < c2)), this can be expressed by the following Hoare assertion.

Ψ ≡ {((
∫

tt) = 1) ∩ ηI}Sqenc {(
∫
(xm1 = c1)) = 1

2}.

This Hoare assertion can be shown to hold by the method of weakest precondi-
tions.

By definition of preterm, pt(PauliXZ , (
∫
(xm1 = c1))) is (

∫
(xm2 = c1)) and

pt(skip, (
∫
(xm1 = c1))) is (

∫
(xm1 = c1). Hence,

pt(if bmk then PauliXZ else skip, (
∫
(xm1 = c1)))

= (
∫
((xm2 = c1) ∧ bmk)) + (

∫
((xm1 = c1) ∧ ¬ bmk))

Therefore,

pt(Sqenc, (
∫
(xm1 = c1)))

= ((1̃
2 (

∫
((xm2 = c1) ∧ tt)) + (1− 1̃

2)(
∫
((xm2 = c1) ∧ ff))) +

(1̃
2 (

∫
((xm1 = c1) ∧ ¬ tt)) + (1− 1̃

2)(
∫
((xm1 = c1) ∧ ¬ff)))).

Also, pt(Sqenc, 1
2) is 1

2 by Proposition 6.1. The Hoare assertion Ψ now follows
from the fact that

(((
∫

tt) = 1) ∩ ηI)⊃ (pt(Sqenc, (
∫
(xm1 = c1))) = 1

2)

is an EPPL theorem.

8 Related Work

The area of formal methods in probabilistic programs has attracted a lot of
work ranging from semantics [20, 19, 33, 26] to logic-based reasoning [13, 21,
31, 14, 17, 25, 27, 10].

This work is in the field of probabilistic dynamic logics. Dynamic logic is a
modal logic in which the modalities are of the form 〈s〉ϕ, where s is a program
and ϕ is a state assertion formula. For probabilistic programs, there are two
distinct approaches to dynamic logic. The main difference in the two approaches
is that one uses truth-functional state logic while the other one uses state logic
with arithmetical connectives.

The first works based on truth-functional probabilistic state logic appeared
in the context of dynamic logic [32, 22, 30, 13, 12]. In the context of probabilis-
tic truth-functional dynamic logics, the state language has terms representing
probabilities (e.g., (

∫
γ) represents the probability of γ being true). An infinitary

complete axiom system for probabilistic dynamic logic is given in [22]. Later, a
complete finitary axiomatization of probabilistic dynamic logic was given in [13].
However, the state logic is second-order (to deal with iteration) and undecidable.
In [12], decidability of a less expressive dynamic logic is achieved.

Hoare logic can be viewed as a fragment of dynamic logic, and the first
probabilistic Hoare logic with truth-functional propositional state logic appears
in [31]. However, as discussed in Section 1, even simple assertions in this logic

25

may not be provable. For instance, the valid Hoare assertion (adapting some-
what the syntax)

{(
∫

tt) = 1} if x = 0 then skip else skip {(
∫

tt) = 1}

is not provable in the logic. As noted in [31, 21], the reason for incomplete-
ness is the Hoare rule for the alternative if-then-else, which tries to combine
absolute information of the two alternatives truth-functionally. The Hoare logic
in [10] circumvents the problem of the alternative by defining the probabilistic
sum connective as already discussed in Section 1. Although this logic is more
expressive than the one in [31] and completeness is achieved for a fragment of
the Hoare logic, it is not clear how to axiomatize the test construct and the
probabilistic sum connective [10].

The other approach to dynamic logic uses arithmetical state logic instead
of truth-functional state logic [21, 19, 18, 25]. For example, instead of the if-
then-else construct, the programming language in [21] has the construct γ?s1 +
(¬ γ)?s2 which is closely bound to the forward denotational semantics proposed
in [20]. This leads to a probabilistic dynamic logic in which measurable functions
are used as state formulas and the connectives are interpreted as arithmetical
operations.

In the context of Hoare logics, the approach of arithmetical connectives is the
one that has attracted more research. The Hoare triple in this context naturally
leads to the definition of weakest pre-condition for a measurable function g and
a program s: the weakest pre-condition wp(g, s) is the function that has the
greatest expected value amongst all functions f such that {f} s {g} is a valid
Hoare triple. The weakest pre-condition can thus be thought of as a backward
semantics which transforms a post-state g in the context of a program s to a
pre-state wp(g, s). The important result in this area is the duality between the
forward semantics and the backwards semantics [18].

Later, [25] extended this framework to address non-determinism and proved
the duality between forward semantics and backward semantics. Instead of just
using functions f and g as pre-conditions and post-conditions, [25] also allows
a rudimentary state language with basic classical state formulas α, negation,
disjunction and conjunction. The classical state formula α is interpreted as
the function that takes the value 1 in the memory valuations where α is true
and 0 otherwise. Conjunction and disjunction are interpreted as minimum and
maximum, respectively, and negation as subtraction from the constant function
1. For example, the following Hoare assertion is valid in this logic.

{r} toss(bm, r) {bm}

In the pre-condition, r is the constant function r, and bm is the function that
takes value 1 when bm is true and 0 otherwise. The above Hoare assertion
states that the probability of bm being true after the probabilistic toss is at
least r. The Hoare rule for probabilistic tosses in the context of arithmetical
Hoare logics takes the form

wp(toss(bm, r), α) = r × wp(bm← tt, α) + (1− r)× wp(bm← ff, α).

The problem of alternative of if-then-else construct is tackled in [8] by mark-
ing the choices at the end of the execution. However, our proof of completeness

26

shows that this is not needed and variables in the state logic are sufficient to
account for individual contributions to the measure terms (

∫
γ).

Our state logic itself is the probabilistic logic in [11] extended with variables
that aid in the proof of completeness of the Hoare logic. The logic is designed
by the exogenous semantics approach to probabilistic logics [28, 29, 11, 1, 24].
A second difference is that we also allow products in terms. The probability
logic in [11] does not have general product terms and allows only products with
constants. The constants are rational numbers and this makes the logic NP-
complete. We can also keep this restriction in our state assertion language.

The main distinction between the state logic herein and the logic in [8] is
that we do not distinguish between possibility and probability. The semantic
structure in [24] also contains a set of possible valuations along with a proba-
bility measure with the restriction that impossible valuations are improbable.
The formula �γ is an atomic formula of the state logic in [8] and is true of a
semantic structure if γ holds for all possible valuations. The conditional formula
η/γ also appears as an atomic formula in [8]. It was then shown as a lemma
that the conditional construct could be removed from the language without loss
of expressivity (in other words, for each formula η there was a provably equiv-
alent conditional-free formula η′). However, as we do not distinguish between
probability and possibility, the conditional construct can be easily defined by
recursion and is hence removed from the primitives of the state language.

9 Concluding remarks

Our main contribution is a complete and decidable probabilistic Hoare calculus
with a truth-functional state assertion logic that enjoys recursive axiomatiza-
tion.

The truth-functional state assertion logic is essentially the probability logic
in [11] extended with variables that aid in the proof of the completeness of the
Hoare logic. For the sake of convenience, we also assumed that the measures
take values from an arbitrary real closed field instead of the set of real numbers.
The first-order theory of real closed fields is complete for real numbers [16, 4]
and hence the results in this paper will still hold if we work only with real
numbers.

The proof of completeness of the Hoare logic employs the standard tech-
nique of defining weakest preconditions. The algorithmic definition of weakest
preconditions uses an auxiliary preterm operator. The decidability of the Hoare
logic then follows from the decidability of the state logic.

There are several directions in which this work can be extended. First, the
complexity analysis of both the state logic and Hoare logic needs to be carried
out. This will entail the complexity analysis of the first-order theory of real
closed fields5. We also plan to include the iteration construct and demonic
non-determinism in future work. For iteration, we will investigate completeness
using an oracle for arithmetical reasoning.

5Some earlier results [5] claimed that the complexity of the decision procedure of satisfi-
ability of first-order theory of real closed fields is PSPACE complete. However, in personal
communication, Michael Ben-Or (one of the authors of [5]) informed us that the proof of this
result has been called into question.

27

Our long-term interests are in reasoning about quantum programs and pro-
tocols. Probabilities are inevitable in quantum programs because measurements
of quantum states yield probabilistic mixtures of quantum states. We aim to in-
vestigate Hoare-style reasoning and dynamic logics for quantum programming.
Towards this end, we have already designed logics for reasoning about individ-
ual quantum states [23, 9], a sound Hoare logic for basic quantum imperative
programs [7] and a sound quantum temporal logic [3].

References

[1] M. Abadi and J.Y. Halpern. Decidability and expressiveness for first-order
logics of probability. Information and Computation, 112(1):1–36, 1994.

[2] A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf. Private quantum chan-
nels. In FOCS’00: Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science, page 547. IEEE Computer Society, 2000.

[3] P. Baltazar, R. Chadha, P. Mateus, and A. Sernadas. Towards model-
checking quantum security protocols. Technical report, CLC, Department
of Mathematics, Instituto Superior Técnico, Lisboa, Portugal, 2006. Sub-
mitted for publication.

[4] S. Basu, R. Pollack, and R. Marie-Françoise. Algorithms in Real Algebraic
Geometry. Springer Verlag, 2003.

[5] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra
and geometry. Journal of Computer and System Sciences, (18):251–264,
1986.

[6] C. Caleiro, P. Mateus, A. Sernadas, and C. Sernadas. Quantum institu-
tions. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra,
Meaning, and Computation – Essays Dedicated to Joseph A. Goguen on the
Occasion of His 65th Birthday, volume 4060 of Lecture Notes in Computer
Science, pages 50–64. Springer Verlag, 2006.

[7] R. Chadha, P. Mateus, and A. Sernadas. Reasoning about quantum imper-
ative programs. Electronic Notes in Theoretical Computer Science, 158:19–
40, 2006. Invited talk at the Twenty-second Conference on the Mathemat-
ical Foundations of Programming Semantics.

[8] R. Chadha, P. Mateus, and A. Sernadas. Reasoning about states of prob-
abilistic sequential programs. In Computer Science Logic 2006 (CSL06),
Lecture Notes in Computer Science. Springer Verlag, in print.

[9] R. Chadha, P. Mateus, A. Sernadas, and C. Sernadas. Extending classical
logic for reasoning about quantum systems. Preprint, CLC, Department of
Mathematics, Instituto Superior Técnico, 2005. Invited submission to the
Handbook of Quantum Logic.

[10] J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs using a
Hoare like logic. International Journal of Foundations of Computer Science,
13(3):315–340, 2002.

28

[11] R. Fagin, J.Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1–2):78–128, 1990.

[12] Y.A. Feldman. A decidable propositional dynamic logic with explicit prob-
abilities. Information and Control, 63(1/2):11–38, 1984.

[13] Y.A. Feldman and D. Harel. A probabilistic dynamic logic. Journal of
Computer and System Sciences, 28:193–215, 1984.

[14] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512–535, 1995.

[15] C. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–583, 1969.

[16] W. Hodges. Model Theory. Cambridge University Press, 1993.

[17] M. Huth and M. Kwiatkowska. Quantitative analysis and model checking.
In 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97),
pages 111–122, 1997.

[18] C. Jones. Probabilistic Non-Determinism. PhD thesis, U. Edinburgh, 1990.

[19] C. Jones and G.D. Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science, pages 186–195. IEEE Computer Society, 1989.

[20] D. Kozen. Semantics of probabilistic programs. Journal of Computer Sys-
tem Science, 22:328–350, 1981.

[21] D. Kozen. A probabilistic PDL. Journal of Computer System Science,
30:162–178, 1985.

[22] J.A. Makowsky and M.L. Tiomkin. Probabilistic propositional dynamic
logic, 1980. Manuscript.

[23] P. Mateus and A. Sernadas. Weakly complete axiomatization of exogenous
quantum propositional logic. Information and Computation, 204(5):771–
794, 2006. ArXiv math.LO/0503453.

[24] P. Mateus, A. Sernadas, and C. Sernadas. In G. Sica, editor, Essays on the
Foundations of Mathematics and Logic.

[25] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–
353, 1996.

[26] M.A. Moshier and A. Jung. A logic for probabilities in semantics. In Com-
puter Science Logic, volume 2471 of Lecture Notes in Computer Science,
pages 216–231. Springer Verlag, 2002.

[27] M. Narasimha, R. Cleaveland, and P. Iyer. Probabilistic temporal logics via
the modal mu-calculus. In Foundations of Software Science and Computa-
tion Structures (FOSSACS 99), volume 1578 of Lecture Notes in Computer
Science, pages 288–305. Springer Verlag, 1999.

29

[28] N.J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

[29] N.J. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59(1–
2):39–42, 1993.

[30] R. Parikh and A. Mahoney. A theory of probabilistic programs. In Proceed-
ings of the Carnegie Mellon Workshop on Logic of Programs, volume 64 of
Lecture Notes in Computer Science, pages 396–402. Springer Verlag, 1983.

[31] L.H. Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis, Stan-
ford University, 1979.

[32] J.H. Reif. Logics for probabilistic programming (extended abstract). In
STOC ’80: Proceedings of the Twelfth Annual ACM Symposium on Theory
of Computing, pages 8–13, 1980.

[33] R. Tix, K. Keimel, and G.D. Plotkin. Semantic domains for combining
probability and non-determinism. Electronic Notes in Theoretical Com-
puter Science, 129:1–104, 2005.

30

