
Heterogeneous fibring of deductive

systems via abstract proof systems
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Abstract

Fibring is a meta-logical constructor that applied to two logics produces a new logic whose formulas
allow the mixing of symbols. Homogeneous fibring assumes that the original logics are presented
in the same way (e.g via Hilbert calculi). Heterogeneous fibring, allowing the original logics to
have different presentations (e.g. one presented by a Hilbert calculus and the other by a sequent
calculus), has been an open problem. Herein, consequence systems are shown to be a good solution for
heterogeneous fibring when one of the logics is presented in a semantic way and the other by a calculus
and also a solution for the heterogeneous fibring of calculi. The new notion of abstract proof system
is shown to provide a better solution to heterogeneous fibring of calculi namely because derivations
in the fibring keep the constructive nature of derivations in the original logics. Preservation of
compactness and semi-decidability is investigated.
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1 Introduction

A mechanism for combining logics is an operation on a (sub)class of logics in the sense
that it provides the means for obtaining a new logic from a finite number of logics
(for instance, fusion is an operation on the subclass of modal logics while fibring is an
operation on the class of logics). For a nice and gentle motivation of the topic see [3],
and for an early example of the combination of tense and modality see [24]. The
different methods for combination depend upon and impose different presentations of
the original logics ranging, on one hand, from very abstract to more concrete ones
and, on the other hand, from deductive-based to semantic-based. In general, it is
assumed that the logics to be combined are presented in the same way. For instance,
the logics to be combined are endowed with a Hilbert calculus.

In this paper, we address the problem of combining logics presented in different
styles (e.g. a Hilbert calculus and a sequent calculus). This is an open problem of
great practical interest, since the requirement that the two logics to be combined be
presented in the same way is often not met in practice.

A very abstract presentation of a logic is via consequence systems (with no deductive
or semantic connotation). A consequence system is a pair composed by a set (of
formulas, usually with no details on the construction) and a binary (consequence)
relation (the pairs 〈Γ, ϕ〉 indicate that formula ϕ is a consequence of set of formulas
Γ). Some properties are required for this consequence relation. The presentation of
logics via consequence systems allows the definition of some simple forms of combining
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2 Heterogeneous fibring of deductive systems via abstract proof systems

logics like, for example, union of logics (the set of formulas in the union is the union
of the sets of formulas of the components and the consequence relation is also the
union of the original consequence relations).

More interesting combination mechanisms can be defined when describing logics in
a more concrete way. In the case of fibring (see [11, 12]), it is necessary to indicate the
signatures (set of symbols) of the (usually two) original logics. The set of formulas is
the free algebra generated by the set of symbols in the signature and a set of (schema)
variables. A signature of the fibring is the union of original signatures (but the set of
formulas is not the union of the set of formulas of the components since in the same
formula we can have symbols from both signatures). Signatures are also needed for
the fusion of modal logics, see [24], as well as when combining temporal logic systems,
see [9].

Also the consequence relation can be more concrete, for instance, when it is gen-
erated from a Hilbert calculus (with axioms and rules). The induced consequence
relation is then defined in a constructive way. Another possibility for defining the
consequence system is via semantics by giving pairs composed by a class of models
and a satisfaction (binary) relation (a pair 〈m,ϕ〉 means that model m satisfies for-
mula ϕ). In the induced consequence system, the consequence relation is then the
semantic entailment.

Fusion of two normal modal logics presented by Hilbert calculi is a bi-modal logic
presented by an Hilbert calculus whose axioms and rules are the union of the axioms
and rules for both of them. But fusion of modal logics can also be explained in
semantic terms. The models of the fusion are bi-Kripke structures with the same set
of worlds but different accessibility relations. Similar examples can be given for fibring.
For example, the fibring of logics presented by Hilbert calculi is a logic presented by
a Hilbert calculus having the axioms and the rules of the component Hilbert calculi.
Also some results on the fibring of tableau systems can be found in [8, 1].

In the examples above, we are implicitly thinking of combining logics in a homo-
geneous scenario: both logics are presented in the same way either by Hilbert calculi
or by Kripke structures. However, this is not usually the case. Heterogeneous com-
bination of logics, in particular heterogeneous fibring, is an open problem identified
by Gabbay in [11]. That is, we would like to be able to combine logics presented
in a different way, for instance, to define the combination of two modal logics, one
deductively presented by a Hilbert calculus and the other semantically presented by
Kripke structures. Note that heterogeneous combination was never dealt with any of
the existing combination mechanisms.

The heterogeneous scenario was dealt with in [21] for fibring logics presented seman-
tically but with different semantic domains, for instance fibring modal logic presented
by Kripke structures with first-order logic with the usual first-order structures. The
solution was to introduce an algebraic structure as the main semantic primitive and to
define fibring of such algebraic structures. Hence when we are given a logic presented
semantically, the first step is to determine how to extract an algebraic structure from
each model. A criterion for the correction of the extraction mechanism is to prove
that the entailment of the original logics is preserved.

However, so far, there was no solution for the problems of combining two logics
when: (i) one is presented in a semantic way and the other is presented by a calculus
(Hilbert, sequent, tableau, etc); (ii) both are presented by calculi but these are of
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different kinds, say one Hilbert and the other sequent. This situation may arise in
practice: an example would be the study of the behavior through time of a system
whose state logic is presented via a Hilbert calculus and where the temporal logic
is given as a sequent calculus. Applying the current-day fibring techniques would
require changing the presentation of one (or both) of the logics, which is neither easy
nor convenient. This is the problem we address in this paper.

A very important issue in combination of logics is preservation of properties. That
is, assuming that the original logics have a given property (say decidability), we want
to know whether the combination still has this property (of being decidable). In
several cases, preservation holds provided that we restrict the logics at hand: that is,
only when we work in a particular subclass of the class of logics.

Among the methods for combining logics, fusion of modalities (logics presented by
Hilbert calculi at the deductive level and Kripke structures at the semantic level) [24]
is the best understood in what concerns preservation of properties as soundness,
weak completeness, uniform Craig interpolation (for theoremhood) and decidability
via finite model property (see [26, 19, 13]). Further results on preservation of weak
completeness can be seen in [10]. Preservation results were also obtained in the context
of temporalization (adding a temporal dimension to an original logic) as in [27, 18].
Some interesting preservation properties can also be found for the product of (modal)
logics, see [13, 14, 15, 16].

Fibring is a more general mechanism since it goes beyond modal logic. For instance,
we can think of fibring relevance logic with intuitionistic logic, or modal logic and
first-order logic. Although preservation of soundness, completeness and interpolation
has been already investigated in the context of propositional-based logics [28, 23, 5],
first-order quantification [22], higher-order quantification [7], non truth-functional
semantics [4], sequent calculus and other deductive systems [17, 20], other forms of
preservation are still to be fully understood, namely the ones related to compactness,
decidability and complexity.

The main objective of this paper is to provide solutions to open problems in het-
erogeneous fibring. The solution to (i), which is also a solution to (ii), is to define
fibring of consequence systems (observe that our notion of consequence system differs
slightly from the usual one because we need to include the signature as a component).
However, the constructive nature of derivations is lost. Hence we provide another so-
lution to (ii) introducing the new concept of abstract proof system. We define fibring
of proof systems and keep, in the fibring, the constructive nature of derivations. Ex-
amples are provided for modal logic. Preservation of compactness, semi-decidability
and effectiveness is investigated.

The paper is organized as follows. Section 2 concentrates on consequence systems
as a possible solution to heterogeneous fibring. Fibring of consequence systems is
defined as a (Tarski) fixed point operator. Section 3 focuses on the new notion of
(abstract) proof system. We introduce the proof systems induced by Hilbert, sequent
and tableau calculi and define fibring of proof systems. In both settings several
preservation results are proved. Section 4 introduces some auxiliary notions for those
not so familiar with computability issues.
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2 Consequence systems

We start by defining consequence system and identifying several classes of conse-
quence systems (e.g. closed for substitution, compact or finitary and (strongly) semi-
decidable). We prove some results about the relationship between these classes. Then
we show how different kinds of calculi generate consequence systems. The last sub-
section is dedicated to fibring consequence systems.

When discussing decidability results, we will rely heavily on the Church–Markov–
Turing postulate and work with the intuitive concepts.

2.1 Basics

We are interested in dealing with propositional-based logics in order to investigate
the issue of heterogeneous fibring in a simple context.

A signature C is a family of sets indexed by the natural numbers. The elements
of each Ck are called constructors or connectives of arity k. We say that C ⊆ C ′ if
Ck ⊆ C ′k for every k ∈ N.

Let L(C, Ξ) be the free algebra over C generated by Ξ = {ξn : n ∈ N}. In the sequel
we will write L(C) instead of L(C, Ξ). The elements of L(C) are called formulas and
L(C) is the language. The elements of Ξ are schema variables that will allow the
definition of schematic derivations. A derivation can be obtained from a schematic
derivation by using a substitution.

A substitution is any map σ : Ξ → L(C). Substitutions can be inductively extended
to formulas and to sets of formulas: σ(γ) is the formula where each ξ ∈ Ξ is replaced
by σ(ξ); σ(Γ) = {σ(γ) : γ ∈ Γ}.

A consequence system is a tuple 〈C,`〉 where C is a signature and `: ℘L → ℘L is
a map with the following properties:

• Extensivity: Γ ⊆ Γ`;
• Monotonicity: If Γ1 ⊆ Γ2 then Γ`1 ⊆ Γ`2 ;
• Idempotence: (Γ`)` ⊆ Γ`;
• Closure for renaming substitutions: ρ(Γ`) ⊆ (ρ(Γ))` for every renaming substitu-

tion ρ (that is, a map such that ρ(ξ) ∈ Ξ for every ξ ∈ Ξ).

We say that Γ` is the closure of Γ. Note that (Γ`)` = Γ` is a trivial consequence of
the properties above.

A pair 〈C,`〉 is a quasi consequence system if ` has all the above properties with
the possible exception of idempotence. A very simple though not so interesting case is
the one where Γ` = Γ for every Γ ⊆ L(C). Such a consequence system is a topological
(Kuratowski) closure operator since it also satisfies ∅` = ∅ and (Γ1 ∪ Γ2)` = Γ`1 ∪ Γ`2
for every Γ1,Γ2 ⊆ L(C). But the really interesting consequence systems do not satisfy
empty and union properties although they can enjoy other properties.

A consequence system is said to be non-trivial if ξ /∈ Π` for every ξ ∈ Ξ \ Π and
Π ⊆ Ξ. A consequence system is closed for substitution if σ(Γ`) ⊆ (σ(Γ))` for any
substitution σ. A consequence system is compact or finitary if Γ` =

⋃
Φ∈℘finΓ Φ` for

every Γ ⊆ L(C), where ℘finΓ is the set of all finite subsets of Γ.
A consequence system 〈C,`〉 is semi-decidable if Γ` is recursively enumerable1

1A set X is recursive if there is an algorithm that decides whether x ∈ X or not; a set X is recursively enumerable
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whenever Γ is recursive. A consequence system is strongly semi-decidable if Γ` is a
recursively enumerable set for every recursively enumerable set Γ ⊆ L(C). A natural
question is whether there is a consequence system where the closure of a recursive set
is not always a recursively enumerable set. We provide the following illustration.

Example 2.1
Consider the consequence system 〈N,`〉 such that Γ` = Γ ∪ A where A is any non
recursively enumerable set. Then ∅` is not a recursively enumerable set even though
∅ is recursive. /

The relationship between semi-decidable and strongly semi-decidable consequence
systems can be investigated. We observe that a strongly semi-decidable consequence
system is semi-decidable, which is a consequence of the fact that every recursive set
is a recursively enumerable set.

Proposition 2.2
A compact and semi-decidable consequence system is strongly semi-decidable.

Proof. Let C be a compact and semi-decidable consequence system
and Γ ⊆ L(C) be a recursively enumerable set. Then either Γ is the empty set or

there is a total recursive function f : N → L(C) such that f(N) = Γ. If Γ = ∅ then
Γ is recursive, and so by hypothesis Γ` is recursively enumerable. In the other case
consider an enumeration {Γn : n ∈ N} of ℘finΓ. (For example, given n ∈ N, write n
as a sum of powers of two

n =
blog2(n)c∑

i=0

ai2i

and let Γn = {f(i) : ai = 1}. If Φ = {ϕ0, . . . , ϕm} ⊆ Γ, then there are numbers
i0, . . . , im such that f(ik) = ϕk, and then

Γ∑m
k=0 2ik = Φ.)

For all n, Γn is recursive (since it is finite), so Γ`n is a recursively enumerable set.
Therefore, ⋃

n∈N
Γ`n

is a recursively enumerable set (it is a recursive union of recursively enumerable sets),
and since C is compact this set coincides with Γ`.

Consequence systems can be related. We say that consequence system 〈C,`〉 is
weaker than consequence system 〈C ′,`′〉, indicated by

〈C,`〉 ≤ 〈C ′,`′〉,

if C ⊆ C ′ and Γ` ⊆ Γ`
′

for every Γ ⊆ L(C). The relation ≤ introduced in the class
of consequence systems is reflexive, transitive and anti-symmetric.

if there is a procedure that answers affirmatively to the question of whether x ∈ X whenever that is the case, but

may never answer otherwise.
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2.2 Induced consequence systems

We now show that different kinds of (general) calculi, as well as logics presented via
their semantics, induce consequence systems. We stress that the notion of consequence
system also covers calculi having infinitary rules like some versions of linear temporal
logic where the rule

Xnξ : n ∈ N
Gξ

is included. This rule means that if ξ holds now (X0ξ) and in each subsequent instant
(Xnξ) then it always holds in the future (Gξ). Later on we discuss a non-compact
situation.

2.2.1 Hilbert calculi
A Hilbert calculus is a pair H = 〈C,R〉 where C is a signature and R is a set of (Hilbert)
rules, i.e. pairs 〈Θ, η〉 with Θ ∪ {η} ⊆ L(C) and Θ finite. Rules are schematic in the
sense that the elements of Ξ can be instantiated. A rule where Θ = ∅ is said to be an
axiom.

The formula ϕ is Hilbert-derived from the set of formulas Γ, indicated by Γ `H ϕ,
iff there is a finite sequence (a derivation) ϕ1 . . . ϕn of formulas such that ϕn is ϕ and
for each i = 1, . . . , n one of the following holds.

• ϕi is an element of Γ (justified by Hyp);
• there exist a rule r = 〈Θ, η〉 and a substitution σ such that ϕi = σ(η) and σ(Θ) ⊆
{ϕ1, . . . , ϕi−1} (justified by r).

The following result is easy to prove observing that the pair 〈σ(Θ), σ(η)〉 is an
instance of the rule 〈Θ, η〉.
Proposition 2.3
A Hilbert calculus H induces a consequence system C(H) = 〈C,`H〉 such that Γ`H =
{ϕ : Γ `H ϕ}. Furthermore, C(H) is compact and closed for substitution.

Example 2.4
A Hilbert calculus HB = 〈C, R〉 for modal logic with the B axiom (sound with respect
to symmetric frames) is as follows:

• C0 = Π, C1 = {¬, ¤}, C2 = {⇒};
• R = {〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉,

〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉,
〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉,
〈∅, ((¤(ξ1 ⇒ ξ2))⇒ ((¤ξ1)⇒ (¤ξ2)))〉,
〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉,
〈{ξ1}, (¤ξ1)〉
〈∅, (ξ1 ⇒ (¤(♦(ξ1))))〉}.

Observe that the rules are schematic: the elements of Ξ can be instantiated by any
formulas. The last rule is usually known as the B axiom. All the other rules are the
usual ones for normal modal logic K. /
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2.2.2 Sequent calculi
A sequent over a signature C is a pair 〈∆1, ∆2〉, denoted by ∆1 → ∆2, where ∆1 (the
antecedent) and ∆2 (the consequent) are multi-sets of formulas in L(C). A (sequent)
rule is a pair 〈{Θ1, . . . , Θn},Ω〉, indicated by

Θ1 . . . Θn

Ω
,

where Θ1, . . . , Θn (the premises) and Ω (the conclusion) are sequents. A sequent
calculus is a pair 〈C,R〉, where C is a signature and R is a set of rules including
structural rules and specific rules for the connectives.

• Structural rules:

ξ1, ∆1 → ∆2 ∆1 → ∆2, ξ1

∆1 → ∆2
Cut

∆1 → ∆2

∆1 → ∆2, ξ1
RW

∆1 → ∆2

ξ1, ∆1 → ∆2
LW

∆1 → ξ1, ξ1, ∆2

∆1 → ξ1,∆2
RC

∆1, ξ1, ξ1 → ∆2

∆1, ξ1 → ∆2
LC

• Left rules: the conclusion has the form c(ϕ1, . . . , ϕn), ∆1 → ∆2 for some n-ary
connective c.

• Right rules: the conclusion has the form ∆1 → ∆2, c(ϕ1, . . . , ϕn) for some n-ary
connective c.

A sequent s is derivable from a set of sequents H, denoted by H `G s, if there is a
finite sequence (a derivation) of sequents ∆1,1 → ∆2,1 . . . ∆1,n → ∆2,n such that:

• ∆1,1 → ∆2,1 is s;
• for each i = 1, . . . , n, one of the following holds:

– ∆1,i → ∆2,i is an axiom (justified by Ax), that is ∆1,i ∩∆2,i 6= ∅;
– ∆1,i → ∆2,i ∈ H (justified by Hyp);
– there exist a rule r = 〈{Θ1, . . . , Θk},Ω〉 and a substitution σ such that ∆1,i →

∆2,i = σ(Ω) and σ(Θj) ∈ {∆1,i+1 → ∆2,i+1, . . . ∆1,n → ∆2,n} for j = 1, . . . , k
(justified by r and the indexes of σ(Θj)).

We say that a formula ϕ is sequent-derivable from the set of formulas Γ, indicated by
Γ `G ϕ, if `G Γ → ϕ. The following result is easy to prove.

Proposition 2.5
A sequent calculus G induces a consequence system C(G) = 〈C,`G〉 such that Γ`G =
{ϕ : Γ `G ϕ}. Furthermore, C(G) is compact and closed for substitution.

Example 2.6
A sequent calculus GS4 for modal logic S4 (characterized by reflexive and transitive
frames) has the following specific rules, as presented in page 287 of [25], where (¤∆)
is {(¤δ) : δ ∈ ∆} and (♦∆) is {(♦δ) : δ ∈ ∆}:

∆1, ξ1 → ξ2, ∆2

∆1 → (ξ1 ⇒ ξ2), ∆2
R⇒ ∆1 → ξ1, ∆2 ∆1, ξ2 → ∆2

∆1, (ξ1 ⇒ ξ2) → ∆2
L⇒
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∆1, ξ1 → ∆2

∆1 → (¬ ξ1),∆2
R¬ ∆1 → ξ1,∆2

∆1, (¬ ξ1) → ∆2
L¬

(¤∆1) → ξ1, (♦∆2)
∆′

1, (¤∆1) → (¤ξ1), (♦∆2), ∆′
2

R¤ ∆1, ξ1, (¤ξ1) → ∆2

∆1, (¤ξ1) → ∆2
L¤

Observe that weakening and contraction can be derived from these rules. As an ex-
ample, we can derive {→ ξ1} `GS4 → (¤ξ1). Note that we can extract a sequent
calculus for propositional logic by eliminating rules R¤ and L¤. It is also easy to get
the right and left rules for ♦ using the abbreviation (♦ϕ) is (¬(¤(¬ϕ))). /

2.2.3 Tableau calculi
Most of the tableau calculi rely on the existence of a negation in the logic at hand.
To be able to deal with as many logics as possible we avoid this assumption by
considering tableau calculi over labelled formulas. Herein we only consider a very
simple case for the labels. A labelled formula is a pair 〈ϕ, i〉, indicated by i :ϕ, where
i is either 0 or 1. Intuitively speaking, 1 :ϕ states that we want ϕ to be true and 0:ϕ
means that we want ϕ to be false. We denote by Lλ the set of pairs i : ϕ such that
i = 0, 1 and ϕ ∈ L(C). A (tableau) rule is a pair 〈Υ, µ〉 where Υ ∈ ℘fin℘finLλ(C) and
µ ∈ Lλ(C). The formula µ is the conclusion of the rule and each set in Υ is said to
be an alternative. We can look at Υ as alternatives to µ. A tableau calculus is a pair
〈C,R〉 where C is a signature and R is a set including the following rules:

• EM (excluded middle): 〈{{ϕ, 1:ξ}, {ϕ, 0:ξ}}, ϕ〉;
• for each connective c, a positive rule with conclusion 1:c(ϕ1, . . . , ϕk) and a negative

rule with conclusion 0:c(ϕ1, . . . , ϕk).

Rule EM is not always included in the definition of a tableau calculus, but it can
easily be shown to be admissible (see [2] for details) if the tableau system is known
to be complete, otherwise the proof of admissibility is not straightforward (coinciding
with cut-elimination in sequent calculi). We chose to include it in our definition as it
makes the work further on easier.

A tableau-derivation of a set of labelled formulas Θ from a set H of sets of labelled
formulas is a sequence Ψ1 . . . Ψn of finite sets of labelled formulas such that:

• Ψ1 is Θ;
• for each i = 1, . . . , n, one of the following holds:

– there is a ψ ∈ L(C) such that 1:ψ, 0:ψ ∈ Ψi (justified by Abs);
– Ψi ∈ H (justified by Hyp);
– there exist a substitution σ and a rule r = 〈Υ, µ〉 such that σ(µ) ∈ Ψi and for

each υ ∈ Υ, σ(υ) ∪ (Ψi \ σ(µ)) ∈ {Ψi+1, . . . , Ψn} (justified by r).

We say that a formula ϕ is tableau-derivable from the finite set of formulas ∆, indicated
by ∆ `S ϕ, if `S {(1 : δ) : δ ∈ ∆} ∪ {0 : ϕ}. We say that ϕ is derivable from Γ (not
necessarily finite), Γ `S ϕ, if ∆ `S ϕ for some finite ∆ ⊆ Γ. The following result is
easy to prove.

Proposition 2.7
A tableau calculus S induces a consequence system C(S) = 〈C,`S〉 such that Γ`S =
{ϕ : Γ `S ϕ}. Furthermore, C(S) is compact and closed for substitution.
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Example 2.8
A tableau calculus SP∧,⇒ for the propositional connectives ∧ and ⇒ has the following
specific rules:

{1:ξ1, 1:ξ2}
1:(ξ1 ∧ ξ2)

1 ∧ {0:ξ1} {0:ξ2}
0:(ξ1 ∧ ξ2)

0∧

{0:ξ1} {1:ξ2}
1:(ξ1 ⇒ ξ2)

1⇒ {1:ξ1, 0:ξ2}
0:(ξ1 ⇒ ξ2)

0⇒

Observe that the rule 0∧ states that there are two alternatives for a conjunction to be
false. /

2.2.4 Interpretation structures
Now we show that semantic structures also induce consequence systems. An inter-
pretation structure is a triple S = 〈C, M, °〉 where C is a signature, M is a class
and °⊆ M × L(C). The elements of the class are called models and ° is the
satisfaction relation. We denote by Mod(ϕ) the set {m ∈ M : m ° ϕ} and by
Mod(Γ) =

⋂

γ∈Γ

Mod(γ).

Proposition 2.9
The interpretation structure S induces a system C(S) = 〈C, ²〉 where Γ² = {ϕ ∈
L(C) : Mod(Γ) ⊆ Mod(ϕ)} that has all the properties of a consequence system with
the possible exception of the closure under renaming substitutions.

An interpretation system S is sensible-to-renaming if for each renaming substitution
ρ there is a map βρ : M → M such that m ° ρ(ϕ) iff βρ(m) ° ϕ.

Proposition 2.10
Let S be a sensible-to-renaming interpretation structure. Then C(S) = 〈C, ²〉 is a
consequence system.

Proof. Let ρ be a renaming substitution and ϕ ∈ Γ². Then Mod(Γ) ⊆ Mod(ϕ).
Assume that m ∈ Mod(ρ(Γ)). Then βρ(m) ∈ Mod(Γ), hence βρ(m) ∈ Mod(ϕ) and so
m ∈ Mod(ρ(ϕ)).

Example 2.11
The (Kripke) interpretation system SB for modal logic with axiom B (sound with
respect to symmetric frames) is as follows:

• C is the same as in Example 2.4;
• each model is a tuple (Kripke structure) 〈W,R, V 〉 where W is a non-empty set,

R ⊆ W ×W is a binary relation symmetric and transitive and V : Ξ → ℘W is a
map;

• m ° ϕ if m, w ° ϕ for every w ∈ W , where:
– m, w ° ξ if w ∈ V (ξ);
– m, w ° (¬ϕ) if not m,w ° ϕ;
– m, w ° (ϕ1 ∧ ϕ2) if m,w ° ϕ1 and m, w ° ϕ2;
– m, w ° (¤ϕ) if m, u ° ϕ for every u ∈ W such that wRu.
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The induced C(SB) is a consequence system. Indeed SB is sensible-to-renaming. Let ρ
be a renaming substitution and let βρ(〈W,R, V 〉) = 〈W,R, V ′〉 where V ′ = V ◦ ρ. It is
easy to prove by induction on the structure of the formula ϕ that 〈W,R, V 〉, w ° ρ(ϕ)
iff 〈W,R, V ′〉, w ° ϕ. /

2.3 Fibring

The language of the fibring of two consequence systems will be generated by the union
of the connectives in both signatures. An essential ingredient for the definition of the
consequence relation will be the ability to translate formulas of the fibring to either
component. We achieve this by renaming the schema variables and coding formulas
by fresh variables.

Assume that C ⊆ C ′ and let g : L(C ′) → N be a bijection. The translation

τg : L(C ′) → L(C)

is a map defined inductively as follows:

• τg(ξi) = ξ2i+1 for ξi ∈ Ξ;
• τg(c) = c for c ∈ C0;
• τg(c(γ′1, . . . , γ

′
k)) = c(τg(γ′1), . . . , τg(γ′k)) for c ∈ Ck and γ′1, . . . , γ

′
k ∈ L(C ′);

• τg(c′(γ′1, . . . , γ
′
k)) = ξ2g(c′(γ′1,...,γ′k)) for c′ ∈ C ′k \ Ck and γ′1, . . . , γ

′
k ∈ L(C ′).

Observe that looking at the index of a variable in τ(L(C ′)) we can decide whether it
comes from a variable or a formula starting with a connective in C ′ \ C.

On the other hand, let τ−1
g : Ξ → L(C ′) be the following substitution:

• τ−1
g (ξ2i+1) = ξi for ξi ∈ Ξ;

• τ−1
g (ξ2i) = g−1(i).

In the sequel, we fix a bijective map g and omit the reference to g and just write τ .
The following lemma is proved using a straightforward induction.

Lemma 2.12
If C ⊆ C ′, then τ−1 ◦ τ = id and τ ◦ τ−1 = id.

We are ready to define fibring of consequence systems. We start with some notation.
Assume that C ⊆ C ′ and 〈C,`〉 is a consequence system. For each Γ′ ⊆ L(C ′) we
define its closure as follows: Γ′` = τ−1(τ(Γ′)`), where τ is the translation map from
L(C ′) to L(C). We assume given a bijective map g : L(C ′) ∪ L(C ′′) → N and denote
by τ ′g : L(C ′) ∪ L(C ′′) → L(C ′) and τ ′′g : L(C ′) ∪ L(C ′′) → L(C ′′) the corresponding
translation maps. We use τ ′ and τ ′′ instead of τ ′g and τ ′′g .

The fibring of consequence systems C′ = 〈C ′,`′〉 and C′′ = 〈C ′′,`′′〉 is a pair C′ ]
C′′ = 〈C,`〉 where

• C = C ′ ∪ C ′′;
• `: ℘L(C) → ℘L(C) where, for each Γ ⊆ L(C), Γ` is inductively defined as follows:
1. Γ ⊆ Γ`;
2. If ∆ ⊆ Γ` then ∆`′ ∪∆`′′ ⊆ Γ`;
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using the translation maps τ ′ and τ ′′.

The fibring is said to be unconstrained when C ′ ∩ C ′′ = ∅; otherwise is constrained.
Fibring can be seen as a “limit” construction over the class of quasi consequence
systems.

Proposition 2.13
Consider the following transfinite sequence of quasi consequence systems:

• C0 = 〈C ′ ∪ C ′′,`0〉 where Γ`0 = Γ for every Γ ⊆ L(C);
• Cβ+1 = 〈C ′ ∪ C ′′,`β+1〉 where Γ`β+1 = τ ′−1(τ ′(Γ`β )`

′
) ∪ τ ′′−1(τ ′′(Γ`β )`

′′
) for

every Γ ⊆ L(C);
• Cα = 〈C ′ ∪ C ′′,`α〉 where Γ`α =

⋃
β<α Γ`β if α is a limit ordinal.

Then C′ ] C′′ = Cα for some ordinal α.

Proof. The operator Υ : ℘L(C) → ℘L(C) such that Υ(∆) = ∆`′∪∆`′′ is monotonic
and extensive, that is, Γ ⊆ Υ(Γ), over the complete lattice 〈℘L(C),⊆〉. Hence Υ
satisfies Tarski’s fixed point theorem and so, for each Γ, there is a least fixed point
Γ`α . It is easy to see that Γ`α = Γ`.

A sufficient condition can be given stating when this construction is finite.

Proposition 2.14
Let C′ and C′′ be compact consequence systems. Then

C′ ] C′′ =
⋃

i∈N
Ci.

Proof. It is enough to show that the operator Υ : ℘L(C) → ℘L(C) defined in
Proposition 2.13 is continuous w.r.t. the same order as before, and so Kleene’s fixed
point theorem can be applied. The operator Υ is continuous if it preserves directed
unions. Let {∆a}a∈A be a family of sets in L(C) with A a directed set. Monotonicity
implies that ⋃

a∈A

Υ(∆a) ⊆ Υ(
⋃

a∈A

∆a).

It remains to show the other inclusion. Let ϕ ∈ Υ(
⋃

a∈A ∆a). Assume, with no loss
of generality, that ϕ ∈ (

⋃
a∈A ∆a)`

′
. Then ϕ ∈ τ ′−1(τ ′(

⋃
a∈A ∆a)`

′
) and so there

is ϕ′ ∈ (τ ′(
⋃

a∈A ∆a))`
′

such that τ ′−1(ϕ′) is ϕ. Since 〈C ′ `′〉 is compact there is
B ⊆ A finite such that ϕ′ ∈ (τ ′(

⋃
b∈B ∆b))`

′
. Since A is a directed set, there is d ∈ A

such that ∆b ⊆ ∆d for every b ∈ B, and so ϕ′ ∈ τ ′(∆d). Therefore ϕ ∈ τ ′−1(τ ′(∆d)).
Applying Kleene’s fixed point theorem, we conclude that Γ` =

⋃
n∈NΥn(Γ).

In general, we can still place an upper bound on the cardinality of α.

Proposition 2.15
With the notation of Proposition 2.13, α is countable.

Proof. The sequence Γ`0 , Γ`1 , . . . , Γ`α is strictly increasing, hence |Γ`β | ≥ |β| for
each β = 0, . . . , α. Since Γ` ⊆ L(C) and L(C) is countable, it follows that α must
also be countable.
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We now show that the fibring of two consequence systems is a consequence system
and moreover that the consequence operator is related with the consequence operators
of the original consequence systems.

Proposition 2.16
Fibring C′ ] C′′ is a consequence system. Moreover

C′ ≤ C′ ] C′′ and C′′ ≤ C′ ] C′′.

Proof. (a) C′ ] C′′ is a consequence system.

(1) Extensivity: Γ ⊆ Γ`. Let γ ∈ Γ. Then τ ′(γ) ∈ τ ′(Γ). By extensivity of `′,
τ ′(γ) ∈ (τ ′(Γ))`

′
; thus τ ′−1(τ ′(γ)) ∈ τ ′−1((τ ′(Γ))`

′
), hence γ ∈ τ ′−1((τ ′(Γ))`

′
)

using Lemma 2.12. Therefore γ ∈ Γ`
′
and so γ ∈ Γ`.

(2) Monotonicity. Let Γ1 ⊆ Γ2. Then τ ′(Γ1) ⊆ τ ′(Γ2) and τ ′′(Γ1) ⊆ τ ′′(Γ2), and by
monotonicity of `′ and `′′, (τ ′(Γ1))`

′ ⊆ (τ ′(Γ2))`
′
and (τ ′′(Γ1))`

′′ ⊆ (τ ′′(Γ2))`
′′
.

Hence Γ`1 ⊆ Γ`2 .
(3) Idempotence. By definition of ` there is α such that (Γ`)` = (Γ`)`α . We show

by induction that (Γ`)`α ⊆ Γ` for every α. (i) α = 0. Obvious. (ii) α =
β + 1. By induction hypothesis (Γ`)`β ⊆ Γ` and so, by definition of Γ`, we have
(((Γ`)`β )`

′ ∪ ((Γ`)`β )`
′′
) ⊆ Γ` which leads, by definition of `, to (Γ`)`α ⊆ Γ`.

(iii) α is a limit ordinal. Straightforward.
(4) Closure for renaming substitutions. Let ρ be a renaming substitution. For each

Γ ⊆ L(C ′ ∪C ′′) there is α such that Γ` = Γ`α . It is enough to prove by induction
on α that ρ(Γ`α) ⊆ (ρ(Γ))`. (i) α = 0. Then ρ(Γ) ⊆ (ρ(Γ))` by extensivity.
(ii) α = β + 1. Then ρ(Γ`α) = ρ((Γ`β )`

′ ∪ (Γ`β )`
′′
) ⊆ (ρ(Γ`β ))`

′ ∪ (ρ(Γ`β ))`
′′

since C′ and C′′ are closed for renaming substitutions. By induction hypothesis,
ρ(Γ`β ) ⊆ (ρ(Γ))` and so both (ρ(Γ`β ))`

′ ⊆ (ρ(Γ))` and (ρ(Γ`β ))`
′′ ⊆ (ρ(Γ))`.

(iii) α is a limit ordinal. Straightforward.

(b) Since C ′ ⊆ C ′∪C ′′, it remains to show that Γ′`
′ ⊆ Γ′` for Γ′ ⊆ L(C ′), and similarly

for C′′. Assume that ϕ′ ∈ Γ′`
′
. Let ρ : Ξ → L(C ′) be a renaming substitution such

that ρ(ξi) = ξ2i+1 for every ξi ∈ Ξ. Since C′ is closed for renaming substitutions,
ρ(ϕ′) ∈ (ρ(Γ′))`

′
. Observing that ρ coincides with τ ′ for formulas in L(C ′), we have

τ ′(ϕ′) ∈ (τ ′(Γ′))`
′
, hence ϕ′ ∈ τ ′−1((τ ′(Γ′))`

′
) and so ϕ′ ∈ Γ`.

The following result shows that the closure in C′ ] C′′ of a set of formulas Γ′ in
L(C ′) is the same as the closure in C′ of Γ′. The same applies to C′′. As pointed out
by Gabbay in [12], this is a key requirement for a good definition of fibring.

Proposition 2.17
Unconstrained fibring C′ ] C′′ of non-trivial consequence systems closed under substi-
tution is conservative, that is Γ′` = Γ′`

′
for every Γ′ ⊆ L(C ′) and Γ′′` = Γ′′`

′′
for

every Γ′′ ⊆ L(C ′′).

Proof. There is α such that Γ′` = Γ′`α . We show by induction that Γ′`α ⊆ Γ′`
′
for

every α. (i) α = 0. Then Γ′ ⊆ Γ′`
′

by extensivity of `′. (ii) α = β + 1. We have
two cases. (1) ϕ′ ∈ τ ′−1((τ ′(Γ′`β ))`

′
). Since C′ is closed under substitution, it follows

that τ ′−1((τ ′(Γ′`β ))`
′
) ⊆ (τ ′−1((τ ′(Γ′`β ))))`

′
, hence ϕ′ ∈ (τ ′−1((τ ′(Γ′`β ))))`

′
and by

Lemma 2.12, ϕ′ ∈ (Γ′`β )`
′
. On the other hand, by the induction hypothesis, Γ′`β ⊆
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Γ`
′
and so monotonicity and idempotence of `′, ϕ ∈ Γ′`

′
. (2) ϕ′ ∈ τ ′′−1((τ ′′(Γ′))`

′′
).

Then there is ϕ′′ ∈ (τ ′′(Γ′))`
′′

such that τ ′′−1(ϕ′′) is ϕ′. Observe that, since C ′∩C ′′ =
∅, ϕ′′ must be a variable. Since C′′ is non-trivial, the only variables in τ ′′−1((τ ′′(Γ′))`

′′
)

are those already in τ ′′(Γ′), so ϕ′′ ∈ τ ′′(Γ′) and hence ϕ′ ∈ Γ′.

Fibring plays a special in the class of consequence systems as stated in below. We
need before an auxiliary result.

Proposition 2.18
The fibring of consequence systems that are closed for substitution is also closed for
substitution.

Proof. The basic step is to show by induction that σ(Γ`α) ⊆ (σ(Γ))`.

Proposition 2.19
Fibring is the supremum in the class of consequence systems closed for substitution.

Proof. By Propositions 2.16 and 2.18, one only has to prove that C′ ] C′′ ≤ C′′′
whenever C′ ≤ C′′′ and C′′ ≤ C′′′. Let C′′′ be such a system; we have to show
that Γ` ⊆ Γ`

′′′
. Since there is α such that Γ` = Γ`α we show by induction that

Γ`α ⊆ Γ`
′′′

for every α. (i) α = 0. Then Γ ⊆ Γ`
′′′

, by extensivity of `′′′. (ii) α =
β+1. We have to show that τ ′−1(τ ′(Γ`β ))`

′ ⊆ Γ`
′′′

and similarly τ ′′−1(τ ′′(Γ`β ))`
′′ ⊆

Γ`
′′′

. By the induction hypothesis Γ`β ⊆ Γ`
′′′

, hence τ ′(Γ`β ) ⊆ τ ′(Γ`
′′′

) and so, by
monotonicity of `′, (τ ′(Γ`β ))`

′ ⊆ (τ ′(Γ`
′′′

))`
′
. But C′ ≤ C′′′ by hypothesis hence

(τ ′(Γ`
′′′

))`
′ ⊆ (τ ′(Γ`

′′′
))`

′′′
and therefore (τ ′(Γ`β ))`

′ ⊆ (τ ′(Γ`
′′′

))`
′′′

. Moreover
τ ′−1((τ ′(Γ`β ))`

′
) ⊆ τ ′−1((τ ′(Γ`

′′′
))`

′′′
), then, since C′′′ is closed for substitution,

τ ′−1((τ ′(Γ`β ))`
′
) ⊆ (τ ′−1(τ ′(Γ`

′′′
)))`

′′′
, hence τ ′−1((τ ′(Γ`β ))`

′
) ⊆ (Γ`

′′′
)`
′′′

and so
τ ′−1(τ ′(Γ`β ))`

′ ⊆ Γ`
′′′

, by idempotence of `′′′. (iii) The case where α is a limit
ordinal is straightforward.

Now we can give a first attempt to solve the problem of heterogeneous fibring at
the deductive level. The basic idea is that once we are given two calculi, of the same
kind or not, we extract the induced consequence systems thus getting a homogeneous
scenario. Afterwards we obtain the consequence system that represents the fibring of
the induced consequence systems.

Example 2.20
Assume that we start with a Hilbert calculus H ′ and a sequent calculus G′′. Their
fibring is the consequence system

C(H ′) ] C(G′′).
Note that the notion of derivation (finite sequence of either formulas or sequents) does
not play a role in the construction. /

From a deductive point of view this solution to heterogeneous fibring is not entirely
acceptable because the central notion of derivation as a finite sequence is lost. We
do not have the notion of derivation in the fibring. Therefore we prefer to introduce,
in the next section, the new notion of proof system to solve the problem of fibring
heterogeneous proof system.

However, fibring of consequence systems is a good abstraction if we want to combine
a semantic system with a deductive calculus as in the following example.
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Example 2.21
Let GS4 be the sequent calculus for modal logic S4 as presented in Example 2.6 with
C ′1 = {¬, ¤′}, C ′2 = {⇒} and C(GS4) = 〈C ′,`′〉 be the induced consequence system.
Let SB be interpretation system over C ′′, where C ′′1 = {¬, ¤′′}, C ′′2 = {⇒} as intro-
duced in Example 2.11. Observe that the propositional connectives are the same but
we have two different necessitation operators. Let C(SB) = 〈C ′′,²〉 be the induced
consequence system. The fibring of GS4 and SB is the consequence system

C(GS4) ] C(SB) = 〈C ′ ∪ C ′′,`〉.

For instance (¤′(¤′′(¤′′(♦′′(♦′(ξ1 ⇒ (¤′ξ1))))))) ∈ ∅`. Indeed:

• (♦′(ξ1 ⇒ (¤′ξ1))) ∈ ∅`′ and so (♦′(ξ1 ⇒ (¤′ξ1))) ∈ ∅`1 ;
• (¤′′(¤′′(♦′′(ξi)))) ∈ {ξi}² and so (¤′′(¤′′(♦′′(♦′(ξ1 ⇒ (¤′ξ1)))))) ∈ ∅`2 ;
• (¤′ξj) ∈ {ξj}`′ and so (¤′(¤′′(¤′′(♦′′(♦′(ξ1 ⇒ (¤′ξ1))))))) ∈ ∅`3 ;
• (¤′(¤′′(¤′′(♦′′(♦′(ξ1 ⇒ (¤′ξ1))))))) ∈ ∅` since ∅`3 ⊆ ∅`;

with ξi = τ ′′((♦′(ξ1 ⇒ (¤′ξ1)))) and ξj = τ ′((¤′′(¤′′(♦′′(♦′(ξ1 ⇒ (¤′ξ1))))))).

Of course one may ask if fibring the consequence systems induced by two interpre-
tation structures is the best solution for solving the problem of heterogeneous fibring
at the semantic level. The answer is that there are better ways, namely following an
algebraic semantic approach as in [21].

Finally we discuss some preservation results such as preservation of compactness
and semi-decidability.

Theorem 2.22
The fibring of compact consequence systems is also a compact consequence system.

Proof. We have to show that Γ` =
⋃

Φ∈℘finΓ Φ`. (1) The inclusion from right to left
follows directly by extensivity and monotonicity. It remains to prove the inclusion
from left to right. (2) Let ϕ ∈ Γ`. We prove by induction on α that if ϕ ∈ Γ`α

then there is Φ ⊆ Γ finite such that ϕ ∈ Φ`. (i) α = 0. Then ϕ ∈ Γ`0 , hence
ϕ ∈ Γ and so we can take Φ = {ϕ}. (ii) α = β + 1. Then we have two cases.
Without loss of generality, let ϕ ∈ (Γ`β )`

′
. Since `′ is compact there is Ψ ⊆ Γ`β

finite such that ϕ ∈ Ψ`
′

and moreover by definition of ` also ϕ ∈ Ψ`. But, by the
induction hypothesis, for each ψ ∈ Ψ there is Φψ ⊆ Γ finite such that ψ ∈ Φ`ψ. Take
Φ =

⋃
ψ∈Ψ Φψ. Then Φ is a finite set such that Φ ⊆ Γ and ϕ ∈ Φ`. (iii) The case

where α is a limit ordinal is straightforward.

We cannot prove preservation of semi-decidability in general. However, we can
assume a very generic hypothesis satisfied by any “reasonable” consequence system;
in other words, counter-examples will be very strange looking systems.

Theorem 2.23
Let 〈C ′,`′〉 and 〈C ′′,`′′〉 be strongly semi-decidable consequence systems and let C =
〈C,`〉 be their fibring. Assume that, for each recursively enumerable Γ ⊆ L(C),
Γ` = Γ`α for some α < ωCT

1 , where ωCT
1 is the Church–Kleene ordinal [6] (in other

words, α is recursively enumerable). Then C is a strongly semi-decidable consequence
system.
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Proof. Let Γ ⊆ L(C ′)∪L(C ′′) be a recursively enumerable set. By hypothesis there
is a recursively enumerable α such that Γ` = Γ`α ; we show that Γ`β is recursively
enumerable for every β ≤ α by induction. (i) α = 0. Then Γ0 = Γ, which is by
hypothesis a recursively enumerable set. (ii) Assume Γ`β is a recursively enumerable
set. Since τ ′ is recursive, τ ′(Γ`β ) is also recursively enumerable, and so τ ′(Γ`β )`

′
is

recursively enumerable, since 〈C ′,`′〉 is strongly semi-decidable. Finally τ ′−1 is again
recursive, so τ ′−1(τ ′(Γ`β )`

′
) is recursively enumerable. The same reasoning shows

that τ ′′−1(τ ′′(Γ`β )`
′′
) is recursively enumerable, and since the union of two recur-

sively enumerable sets is recursively enumerable we conclude that Γ`β+1 is recursively
enumerable. Finally, let ε ≤ α be a limit ordinal. Then Γ`ε =

⋃
β<ε Γ`β . Since ε is

recursively enumerable, there is a recursive enumeration of {β : β < ε}, and hence
Γ`ε is a recursive union of recursively enumerable sets and therefore is a recursively
enumerable set.

Corollary 2.24
The fibring of semi-decidable compact consequence systems is a semi-decidable conse-
quence system.

Proof. By Proposition 2.2, if C′ and C′′ are semi-decidable and compact, then they
are both strongly semi-decidable. By Theorem 2.23 (which we can apply since in
this case α = ω by Proposition 2.14), their fibring C = C′ ] C′′ is also strongly semi-
decidable, hence in particular semi-decidable.

3 Abstract proof systems

The section is dedicated to (abstract) proof systems, which abstract from the usual
syntactic presentations of logics keeping the notion of derivation or certificate.

The notion we present is intentionally very abstract. A proof system (defined below)
is simply a set of formulas together with a set of derivations about which very little is
assumed. Thus, derivations can be sequences of formulas with some internal structure
(as is the case, for example, in Hilbert calculi) or bear little or no relationship with
the language. We show two examples of the latter, one where derivations are natural
numbers and another where there is just one derivation.

A consequence of having such a general definition is that we cannot state in general
properties of the (eventual) structure of the derivations and analyze their preservation
through fibring. We do not feel this to be a problem at this stage, however, since we
are dealing with a more basic question – namely, how to construct a heterogeneous
fibring of two logics. Other properties (for example, size of the derivations) can also be
studied by looking at subclasses of proof systems generated by specific mechanisms;
we intend to do this in future work on this topic.

3.1 Basics

Given a binary relation S ⊆ A× B, we will use the notation S(a, b) to indicate that
(a, b) ∈ S or to say that S(a, b) = 1 when viewing the relation as a map 1S : A×B →
{0, 1}.

A proof system is a tuple P = 〈C, D, ◦, P 〉 where C is a signature, D is a set,
◦ : ℘(D)×D → D is a map and P = {PΓ}Γ⊆L(C) is a family of relations PΓ ⊆ D×L(C)
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satisfying the following properties, where PΓ(E, Ψ) holds if for every ψ ∈ Ψ there is
e ∈ E such that PΓ(e, ψ) holds:

• Right reflexivity: PΓ(D, Γ) for every Γ ⊆ L(C);
• Monotonicity: PΓ1 ⊆ PΓ2 for every Γ1 ⊆ Γ2 ⊆ L(C);
• Compositionality: Let Γ ∪ {ϕ} ⊆ L(C):

– ∅ ◦ d = d for every d ∈ D;
– If E ⊆ D is a non-empty set and there is Ψ ∈ ℘L(C) such that PΓ(E, Ψ) and

PΨ(d, ϕ) hold then PΓ(E ◦ d, ϕ) also holds;
• Variable exchange: PΓ(D, ϕ) = Pρ(Γ)(D, ρ(ϕ)) for any (renaming) substitution ρ,

that is, a substitution such that ρ(ξ) ∈ Ξ for every ξ ∈ Ξ.

The set D can be seen as the set of possible derivations, ◦ is a constructor that returns
a derivation given a set of derivations and a derivation and, PΓ(d, ψ) holds when d
is a derivation of ψ from the set of formulas Γ. A tuple P = 〈C, D, ◦, P 〉 is a quasi-
proof system if all the properties of a proof system hold with the possible exception
of compositionality.

A particular (though not so interesting) proof system is the one where D = L(C)
and P∅(ϕ,ϕ) for every ϕ ∈ L(C). Another example is when we consider D = L(C)∗

(that is, D is the set of all finite sequences of formulas), PΓ(w, γ) if γ ∈ Γ and is the
last element of w. We stress that D does not need to be related to C and to the
formulas in L(C); for instance, D can be the set of natural numbers. Other examples
will be discussed below.

Proposition 3.1
The following properties hold in a proof system:

• Falsehood: PΓ(∅, ϕ) = 0 for every ϕ ∈ L(C);
• Monotonicity on the first argument: PΓ(E1,Ψ) ≤ PΓ(E2, Ψ) for all E1 ⊆ E2 ⊆ D

and Γ, Ψ ⊆ L(C);
• Anti-monotonicity on the second argument: PΓ(E, Ψ2) ≤ PΓ(E, Ψ1) for all E ⊆ D

and Ψ1 ⊆ Ψ2 ⊆ L(C);
• Union: PΓ(E, Ψ1 ∪Ψ2) = PΓ(E, Ψ1)× PΓ(E, Ψ2).

Proof. All the properties follow directly from the definitions.

Proof systems sometimes have more properties. A proof system is said to be non-
trivial if PΠ(D, ξ) = 0 for any Π ⊆ Ξ and ξ ∈ Ξ \ Π. A proof system is closed for
substitution if PΓ(D, ϕ) ≤ Pσ(Γ)(D,σ(ϕ)) for each substitution σ. A proof system
is said to be compact or finitary if for every Γ and ψ there is Φ ⊆ Γ finite such
that PΓ(D,ψ) ≤ PΦ(D, ψ). A proof system is said to be effective or decidable if PΓ

is recursive for each recursive set Γ ⊆ L(C). It is said to be strongly effective or
strongly decidable if PΓ is recursively enumerable for each recursively enumerable set
Γ ⊆ L(C).

At this stage, we will not consider the question of whether the set of theorems of a
given proof system is recursive. Although this is an interesting aspect, our motivation
is applications in automated reasoning, where the most important question is whether
a proof can be checked. This is the concept we capture with the notion of effective
proof system.



Heterogeneous fibring of deductive systems via abstract proof systems 17

Proof systems can be related. We say that P = 〈C,D, ◦, P 〉 is weaker than P ′ =
〈C ′, D′, ◦′, P ′〉, indicated by P ≤ P ′, if C ⊆ C ′ and PΓ(D, ϕ) ≤ P ′Γ(D′, ϕ) for every
Γ ∪ {ϕ} ⊆ L(C). Hence a proof system is weaker than another when it proves less
formulas from the same set of formulas.

3.2 Induced proof systems

As in the previous section, we now show that many of the usual syntactic presentations
of deductive systems can be seen to induce proof systems. The semantic presentations
of logics cannot in general be presented as proof systems because they lack the notion
of derivation.

3.2.1 Hilbert calculus
Recall that a Hilbert calculus is a pair 〈C, R〉 such that C is a signature and R is
a set of finitary rules (pairs whose first component is a finite set of formulas and
whose second component is a formula). We need some auxiliary notation. Let π(e)
denote the last element of sequence e ∈ L(C)∗, by π(E) the set {π(e) : e ∈ E} where
E ⊆ L(C)∗ and by d

π(E)
E the sequence obtained by replacing in d ∈ L(C)∗ the last

element of sequence e by sequence e, for every e ∈ E2.
As an illustration assume that d is ϕ1 . . . ϕiψkϕi+1 . . . ϕn and E = {ψ1 . . . ψk}.

Then d
π(E)
E is the sequence ϕ1 . . . ϕiψ1 . . . ψkϕi+1 . . . ϕn.

Proposition 3.2
A Hilbert calculus H = 〈C, R〉 induces a compact proof system P(H) = 〈C,D, ◦, P 〉
as follows:

• D = L(C)∗;

• E ◦ d = d
π(E)
E ;

• PΓ(d, ψ) holds iff d is a Hilbert-derivation for ψ from Γ.

Proof. (a) Right reflexivity. It follows from the fact that the sequence γ is a deriva-
tion of γ from set Γ whenever γ ∈ Γ. (b) Monotonicity. Assume that d is a derivation
of ϕ from Γ1 and that Γ1 ⊆ Γ2. Then d is also a derivation of ϕ from Γ2. (c) Com-
positionality. Assume that PΓ(E, Ψ) and PΨ(d, ϕ) hold for some set Ψ. Then dΨ

EΨ
,

where EΨ ⊆ E is the set of derivations in E of each ψ ∈ Ψ from Γ, is a derivation of
ϕ from Γ. Observe that only a finite number of elements of Ψ are used, so dΨ

EΨ
is still

a finite sequence. (d) Variable exchange. Assume that d is a derivation of ϕ from Γ
and that ρ is a renaming substitution. Then ρ(d) is a derivation of ρ(ϕ) from ρ(Γ).

It is easy to see that P(H) is also closed for substitution translating each derivation
with the given substitution.

We give a necessary and sufficient condition for P(H) to be effective.

Theorem 3.3
The proof system P(H) induced by a Hilbert system H = 〈C,R〉 such that 〈L(C), g〉
is a Gödel domain is effective iff the following relations are recursive:

2This is, strictly speaking, not well-defined, since there may be several e with the same last element. This is not

a problem as long as one assumes that e is chosen uniformly, e.g. choosing the first derivation in a lexicographical

ordering.
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• ax ⊆ L(C), such that ax(α) iff α is an instance of an axiom;
• irk+1 ⊆ L(C)k+1 such that irk+1(α1, . . . , αk, β) iff α1, . . . , αk, β is an instance of

a k + 1-ary inference rule.

Proof. Let hypΓ ⊆ L(C) be such that hypΓ(γ) iff γ ∈ Γ.
(1) Assume that PΓ is recursive whenever Γ is a recursive set. In particular, PΦ is
recursive for every finite set Φ.
(a) The relation ax is recursive since ax(α) = P∅(〈α〉, α).
(b) Let 〈Θ, η〉 be a k-ary rule. The relation irk+1 is recursive since

irk+1(α1, . . . , αk, β) = PΘ(〈α1, . . . , αk, β〉, β)

where Θ = {α1, . . . , αk}.
(2) Let Γ ⊆ L(C) be a recursive set. The relation PΓ such that:

PΓ(ω, β) = (((ω = 〈β〉) ∧ (ax(β) ∨ hypΓ(β)))
∨

|ω|∨

k=1

(∃ω′vω(∃i1≤|ω′|(. . . (∃ik≤|ω′|

(PΓ(ω′, last(ω′)) ∧ (ω = ω′ · β) ∧ irk+1((ω′)i1 , . . . , (ω
′)ik

, β))))))),

where |ω| denotes the length of ω, ω′ v ω stands for “ω′ is a prefix of ω” and ·
denotes concatenation, is recursive since the relations ax, ir, hyp, length and last are
recursive, being a prefix is decidable, and the conjunction, disjunction and bounded
quantification of recursive relations is a recursive relation.

This is not the only proof system that can be generated from a Hilbert calculus.
By construction any initial segment of a Hilbert derivation is itself a valid derivation,
which motivates the following definition.

Example 3.4
Let H = 〈C, R〉 be a Hilbert calculus. Then P ′(H) is defined as above, except that
P ′Γ(d, ϕ) now holds iff d is a valid derivation from Γ and ϕ occurs in d.

The same example can be used to induce a proof system where the set of derivations
bears no (apparent) relationship to the language.

Example 3.5
Let H = 〈C,R〉 be a Hilbert calculus and let g be a Gödelization of L(C), that is,
g : N→ L(C) is recursive. Define P ′′(H) as follows:

• D is {g(w) : w ∈ L(C)∗};
• PΓ(n, ϕ) if n is the Gödel number of a sequence w ∈ L(C)∗ and w is a Hilbert-

derivation of ϕ from Γ. /

3.2.2 Sequent calculus
Recall that a sequent calculus is a pair 〈C,R〉 where C is a signature and R is a
set of rules (pairs whose first component is a finite set of sequents and whose second
component is a sequent): structural rules and, for each connective, a right and a left
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rule. We need some auxiliary notation. Assume that d is a sequence of sequents with
initial sequent ∆1 → ∆2. When the initial sequent is important we can use d∆1→∆2

to refer to d.

Proposition 3.6
A sequent calculus G = 〈C,R〉 induces a proof system P(G) = 〈C, D, ◦, P 〉 defined as
follows:

• D = Seq(C)∗ where Seq(C) is the set of all sequents defined with formulas in
L(C);

• Let E ∪{dΘ→ϕ} ⊆ D where E 6= ∅. Let {θ1, . . . , θn} ⊆ Θ be the set of all sequents
such that dΓi→θi ∈ E for every i = 1, . . . , n. Let Θ̄ = Θ \ {θ1, . . . , θn}. Then
E ◦ dΘ→ϕ is the following sequence3:

Θ̄, Γ1, . . . , Γn → ϕ Cut 1a,1b
1a Θ̄, Γ1, . . . , Γn → ϕ, θ1 LW∗, RW

dΓ1→θ1

1b θ1, Θ̄,Γ1, . . . , Γn → ϕ Cut 2a,2b
...
θ1, . . . , θn−1, Θ̄, Γ1, . . . , Γn → ϕ Cut na,nb

na θ1, . . . , θn−1, Θ̄, Γ1, . . . , Γn → ϕ, θn LW∗, RW
dΓn→θn

nb Θ, Γ1, . . . , Γn → ϕ LW∗

dΘ→ϕ

where LW∗,RW indicate several applications of left weakening followed by right
weakening;

• ∅ ◦ d = d;

• PΓ(d, ϕ) holds if d is a sequent-derivation of ϕ from Γ.

Proof. (a) Right reflexivity. Just consider the derivation Γ → γ justified as an axiom
whenever γ ∈ Γ. (b) Monotonicity. Consider a derivation dΓ1→ϕ and Γ1 ⊆ Γ2. Then
the following is a derivation for Γ2 → ϕ:

1 Γ2 → ϕ LW∗ 2
2 dΓ1→ϕ

(c) Compositionality. Direct from the definition of ◦. (d) Variable exchange. If d is
a derivation for Γ → ϕ and ρ is a renaming substitution then ρ(d) is a derivation for
ρ(Γ) → ρ(ϕ).

Remark 3.7
Observe that in the case of sequents we can define binary relations P̄H ⊆ D× Seq(C)
where H is a set of sequents over L(C) (hence in Seq(C)) but stating that PH(d, s) = 1
whenever H `G s with sequent-derivation d. Of course PΓ(d, ϕ) is P̄∅(d, Γ → ϕ).

3See the footnote on page 17
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3.2.3 Tableau calculus
Recall that a tableau calculus is a pair 〈C,R〉 where C is a signature and R is a set
of rules (pairs whose first component is a set of finite sets of labelled formulas and
whose second element is a labelled formula): excluded middle and for each connective
a positive and a negative rule. We need some notation: if d1 . . . dn is a finite sequence
of sets and Ψ is a set of labelled formulas, then Ψd1 . . . dn is the finite sequence
d1 ∪ Ψ . . . dn ∪ Ψ. Observe that if d1 . . . dn is a tableau-derivation for Γ `S ϕ then
Ψd1 . . . dn is a tableau-derivation for Γ ∪ Ψ `S ϕ. We use 1 : A to refer to the set
{(1 :a) : a ∈ A}.

Proposition 3.8
A tableau calculus G = 〈C, R〉 induces a proof system P(G) = 〈C,D, ◦, P 〉 defined as
follows:

• D = (℘Lλ(C))∗ is the set of all finite sequences of sets of labelled formulas;

• Let E ∪ {d} ⊆ D be such that the first set in d is 1 : Θ ∪ {0 : ϕ} and, for θi ∈
Θ, with i = 1, . . . , n, there are ei ∈ E whose first set is 1 : Γi ∪ {0 : θi}. Let
Θ̄ = Θ \ {θ1, . . . , θn} and Γ =

⋃n
i=1 Γi. Define E ◦ d as follows, where Ψ1 is

1:Θ̄∪(1 :Γ\1:Γ1)∪{0:ϕ} and Ψn is 1:Θ̄∪(1 :Γ\1:Γn)∪{1:θ1, . . . , 1:θn−1, 0:ϕ}:

1:Θ̄, 1:Γ, 0:ϕ EM 1a,1b
1a 0:θ1, 1:Θ̄, 1:Γ, 0:ϕ

Ψ1e1

1b 1:θ1, 1:Γ, 0:ϕ EM 2a,2b
...
1:θ1, . . . , 1:θn−1, 1:Γ, 0:ϕ EM na,nb

na 1:θ1, . . . , 0:θn, 1:Γ, 0:ϕ
Ψn

nb 1:Θ, 0:ϕ
1:Γd

• PΓ(d, ϕ) holds iff d is a tableau derivation for ϕ from Γ.

Proof. (a) Right reflexivity. The set 1 : Γ ∪ {0 : γ} is an absurd when γ ∈ Γ.
(b) Monotonicity. Let Γ1 ⊆ Γ2 and d be a tableau-derivation of ϕ from Γ1. Then
(Γ2 \ Γ1)d is a tableau-derivation of ϕ from Γ2. (c) Compositionality. Follows from
the fact that E ◦ d is a tableau-derivation of ϕ from Θ̄ ∩ Γ whenever d is a tableau-
derivation from Θ and there is a tableau-derivation in E of θi from Γi for every
i = 1, . . . , n. (d) Variable exchange. If d is a tableau-derivation of ϕ from Γ then ρ(d)
is a tableau-derivation of ρ(ϕ) from ρ(Γ) for every renaming substitution ρ.

Remark 3.9
Observe that in the case of tableau calculi we can define binary relations P̄H ⊆ D ×
℘Lλ(C) where H is a set of sets of labelled formulas over L(C) (hence in ℘Lλ(C))
but stating that PH(d, s) = 1 whenever H `S s with tableau-derivation d. Of course
PΓ(d, ϕ) is P̄∅(d, 1:Γ ∪ {0:ϕ}).
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3.3 Fibring

The fibring of two proof systems P ′ = 〈C ′, D′, ◦′, P ′〉 and P ′′ = 〈C ′′, D′′, ◦′′, P ′′〉 is
the tuple P ′ ] P ′′ = 〈C,D, ◦, P 〉 defined as follows:

• C = C ′ ∪ C ′′;
• D is a set inductively defined as follows:

– D′ ∪D′′ ⊆ D;
– If E ⊆ D then ℘E × (D′ ∪D′′) ⊆ D;

• E ◦ d = 〈E, d〉 if E 6= ∅ and d otherwise;
• PΓ(d′, ϕ) holds if P ′τ ′(Γ)(d

′, τ ′(ϕ)) holds for d′ ∈ D′ ;

• PΓ(d′′, ϕ) holds if P ′′τ ′′(Γ)(d
′′, τ ′′(ϕ)) holds for d′′ ∈ D′′;

• PΓ(〈E, d〉, ϕ) holds iff there is a set Ψ ∈ L(C) for which both PΨ(d, ϕ) and
PΓ(E, Ψ) hold.

Notice that the second- and third-to-last cases are not mutually exclusive since D′

and D′′ need not be disjoint.
Before showing that the fibring of proof systems is a proof system we give the

intuition behind the construction of the set of derivations and some examples. Take
as an example 〈{d′}, d′′〉; this is a derivation provided that d′ is a derivation in D′ and
d′′ is a derivation in D′′. Such a derivation is only relevant when we use the relation
P . Saying that

P∅(〈{d′}, d′′〉, c′′(c′(ξ1)))

holds means:

• that d′′ is a derivation of c′′(ξk) where ξk = τ ′′(c′(ξ1)), assuming that we take the
singleton {ξk} as the set of hypotheses, in other words provided that P ′′{ξk}(d

′′, c′′(ξk))
holds;

• and that d′ is a derivation of c′(ξ1) taking the empty set as the set of hypotheses,
in other words provided that P ′∅(d

′, c′(ξ1)) holds.

We now give some examples of fibring involving logics presented with different
calculi.
Example 3.10
Consider the proof system P(GS4) = 〈C ′, R′〉 induced by the sequent calculus for modal
logic S4 as presented in Example 2.6 and the proof system P(HB) = 〈C ′′, R′′〉 induced
by the Hilbert calculus for modal logic with axiom B as in Example 2.4. They share
the propositional connectives, but in the fibring we have two necessitations: an S4 ¤′
(and consequently an S4 diamond ♦′) and a B ¤′′ (and consequently a B diamond
♦′′). We can prove in P(GS4) ] P(HB) that

P∅(〈{〈{d′1}, d′′〉}, d′2〉, (¤′(¤′′(♦′′(¤′′(♦′(ξ1 ⇒ (¤′ξ1))))))))

holds. Indeed

• P ′{ξi}(d
′
2, (¤′ξi)) holds in P(GS4) with derivation d′2 as follows:

1 → (¤′ξi) R¤′ 2
2 → ξi Hyp
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where ξi is τ ′(¤′′(♦′′(¤′′(♦′(ξ1 ⇒ (¤′ξ1))))));
• and we have to show that P∅(〈{d′1}, d′′〉, ¤′′(♦′′(¤′′(♦′(ξ1 ⇒ (¤′ξ1)))))) holds;

But
P∅(〈{d′1}, d′′〉, (¤′′(♦′′(¤′′(♦′(ξ1 ⇒ (¤′ξ1)))))))

holds since

• P ′′{ξj}(d
′′, (¤′′(♦′′(¤′′(ξj))))) holds in P(HB) with derivation d′′ as follows:

1 ξj Hyp
2 (¤′′ξj) Nec 1
3 ((¤′′ξj)⇒ (¤′′(♦′′(¤′′ξj)))) B
4 (¤′′(♦′′(¤′′ξj))) MP 2,3

where ξj is τ ′′(♦′(ξ1 ⇒ (¤′ξ1)));
• and P∅(d′1, ♦′(ξ1 ⇒ (¤′ξ1))) holds in P(GS4) with derivation d′1 as follows:

1 → (♦′(ξ1 ⇒ (¤′ξ1))) R♦′ 2
2 → (ξ1 ⇒ (¤′ξ1)), (♦′(ξ1 ⇒ (¤′ξ1))) R⇒ 3
3 ξ1 → (¤′ξ1), (♦′(ξ1 ⇒ (¤′ξ1))) R¤′ 4
4 → ξ1, (♦′(ξ1 ⇒ (¤′ξ1))) R♦′ 5
5 → ξ1, (ξ1 ⇒ (¤′ξ1)), (♦′(ξ1 ⇒ (¤′ξ1))) R⇒ 6
6 ξ1 → ξ1, (¤′ξ1), (♦′(ξ1 ⇒ (¤′ξ1))) Ax

Hence d′2, d
′′, d′1 provide a derivation for (¤′(¤′′(♦′′(¤′′(♦′(ξ1 ⇒ (¤′ξ1))))))) without

any hypotheses. Observe that the number of pairings in the derivation indicates the
way we have to use the component proof systems. In the example above we have three
pairings and we had to use the component proof systems three times. /

Example 3.11
Consider the propositional part of the proof system P(GS4) = 〈C ′, R′〉 in Example 2.6
(with negation and implication as connectives) and the proof system C(SP∧,⇒) =
〈C ′′, R′′〉 presented in Example 2.8. We prove in P(GS4) ] P(SP∧,⇒) that

P∅(〈{d′1, d′2}, d′′〉, ((¬(ξ1 ⇒ ξ2))⇒ (ξ1 ∧ (¬ ξ2))))

holds. Indeed, taking ξi = τ ′′(¬(ξ1 ⇒ ξ2)) and ξj = τ ′′(¬ ξ2), we have:

• P ′′{(ξi⇒ξ1),(ξi⇒ξj)}(d
′′, (ξi⇒(ξ1∧ξj))) holds in SP∧,⇒ with derivation d′′ as follows:

1. 1:(ξi ⇒ ξ1), 1:(ξi ⇒ ξj), 0:(ξi ⇒ (ξ1 ∧ ξj)) 0⇒ 2
2. 1:(ξi ⇒ ξ1), 1:(ξi ⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) 1⇒ 3,4
3. 0:ξi, 1:(ξi ⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) Ax
4. 1:ξ1, 1:(ξi ⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) 1⇒ 5,6
5. 1:ξ1, 0:ξi, 1:ξi, 0:(ξ1 ∧ ξj) Ax
6. 1:ξ1, 1:ξj , 1:ξi, 0:(ξ1 ∧ ξj) 0∧ 7,8
7. 1:ξ1, 1:ξj , 1:ξi, 0:ξ1 Ax
8. 1:ξ1, 1:ξj , 1:ξi, 0:ξj Ax

• P∅(d′1, ((¬(ξ1 ⇒ ξ2))⇒ ξ1)) holds in GS4 with derivation d′1 as follows:
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1. → ((¬(ξ1 ⇒ ξ2))⇒ ξ1) R⇒ 2
2. (¬(ξ1 ⇒ ξ2)) → ξ1 L¬ 3
3. → (ξ1 ⇒ ξ2), ξ1 R⇒ 4
4. ξ1 → ξ2, ξ1 Ax

• P∅(d′2, (¬(ξ1 ⇒ ξ2))⇒ (¬ ξ2)) holds in GS4 with derivation d′2 as follows:

1. → (((¬(ξ1 ⇒ ξ2))⇒ (¬ ξ2)) R⇒ 2
2. (¬(ξ1 ⇒ ξ2)) → (¬ ξ2) L¬ 3
3. → (ξ1 ⇒ ξ2), (¬ ξ2) R⇒ 4
4. ξ1 → ξ2, (¬ ξ2) R¬ 5
5. ξ1, ξ2 → ξ2 Ax

Hence d′′, d′1, d
′
2 constitutes a derivation of (¬(ξ1 ⇒ ξ2))⇒ (ξ1 ∧ (¬ ξ2))) with no hy-

potheses. We have two pairings but in one of them we have to produce two derivations
because the corresponding set has two elements. /

The following result shows that the set D in the fibring comes out, as expected, as
a fixed point construction.

Proposition 3.12
Consider the transfinite sequence of quasi proof systems where D is replaced by Dα.

• D0 = D′ ∪D′′;
• Dβ+1 = Dβ ∪ (℘(Dβ)× (D′ ∪D′′));

• Dα =
⋃

β≤α

Dβ where α is a limit ordinal.

Then D = Dα for some ordinal α.

Proof. The operator Υ : L(C) → L(C) such that Υ(∆) = ∆ ∪ (℘∆× (D′ ∪D′′)) is
monotonic over the complete lattice 〈℘L(C),⊆〉 and (D′ ∪D′′) ⊆ Υ(D′ ∪D′′). Hence
Υ satisfies Tarski’s fixed point theorem and so it has a least fixed point. It is easy to
see that this fixed point is D.

The question that arises at this point is when can we obtain each element of D with
a finite number of iterations. We give a sufficient condition for that. For this purpose
we need to work with a special kind of fibring. The finite derivation fibring of proof
systems P ′ and P ′′ is the fibring proof system P ′ ] P ′′ where D is a set inductively
defined as follows:

• D′ ∪D′′ ⊆ D;
• If E ⊆ D then (℘finE)× (D′ ∪D′′) ⊆ D;

Proposition 3.13
Let P ′ ] P ′′ be the finite derivation fibring of P ′ and P ′′. Then

D =
⋃

i∈N
Di.

Proof. The operator Υ′ : L(C) → L(C) such that Υ′(∆) = ∆∪ (℘fin∆× (D′ ∪D′′)),
analogous to Υ defined in Proposition 3.12, is continuous and so Kleene’s fixed point
theorem can be applied.



24 Heterogeneous fibring of deductive systems via abstract proof systems

We now provide an example of fibring of two proof systems where we need to
compute a transfinite fixed point for obtaining the set of derivations and that is
supported by our definition of proof system. This example is admittedly artificial,
but it shows that, whenever infinitary rules are allowed, Dω may not suffice.
Example 3.14
Consider proof systems P ′ and P ′′ defined as follows:

• P ′ is induced by the Hilbert system 〈C,R′〉, where C0 = {ϕ}, C1 = {X,G} and R′

contains the rules rk = 〈{X2kϕ}, X2k+1ϕ〉;
• P ′′ is the proof system with the same signature C and whose derivations are either

Hilbert derivations from the single rule rk = 〈{X2k−1ϕ}, X2kϕ〉 or a derivation ∗
proving Gϕ from {X2n−1ϕ : n ∈ N}. We define E ◦ d = (E \ {∗}) ◦ d whenever
d 6= ∗ and E ◦ ∗ = ∗. Note that this is well defined since there are no (non-trivial)
derivations of the hypotheses needed for to apply ∗.

Intuitively, we can see ϕ as some property of a system we want to model; in P ′ we
are given that that property holds at time moment 2k + 1 if it holds as time moment
2k; in P ′′ we state that it holds at moment 2k given that it holds at moment 2k − 1.
The proposition Gϕ states that ϕ holds at all odd time instants.

We now show that, in the fibring P = P ′ ] P ′′, P{ϕ}(d,Gϕ) holds, where the
derivation d is built in two steps. First we define derivations s′2k and s′′2k+1 by

s′2k: 1 X2kϕ Hyp s′′2k+1: 1 X2k+1ϕ Hyp
2 X2k+1ϕ rk 1 2 X2k+2ϕ rk+1 1

noticing that P ′{x2kϕ}(s
′
2k, X2k+1ϕ) and P ′′{x2k+1ϕ}(s

′′
2k+1, X

2k+2ϕ) hold.
We now define

d0 = ϕ (as a sequence)
d2k+1 = 〈{d2k}, s′2k〉
d2k+2 = 〈{d2n+1}, s′′2k+1〉

d = 〈{d2k−1 : k ∈ N}, ∗〉
and show by induction that P{ϕ}(dn, Xnϕ) holds. Indeed:

• P ′{ϕ}(ϕ,ϕ) holds.

• Assuming that P{ϕ}(dn, Xnϕ) holds, there are two cases. Suppose that n + 1 =
2k + 1; then the thesis holds because d = 〈{d2k}, s′2k〉, P{ϕ}(d2k, X2kϕ) holds by
induction hypothesis and P ′{X2kϕ}(s

′
2k, ϕX2k+1) holds as remarked above. Sup-

pose that n + 1 = 2k + 2; then the thesis holds because d = 〈{d2k+1}, s′′2k+1〉,
P{ϕ}(d2k+1, X

2k+1ϕ) holds by induction hypothesis and P ′′{X2k+1ϕ}(s
′′
2k+1, X

2k+2ϕ)
holds.

Finally, from P{ϕ}({d2k−1 : k ∈ N}, {X2k−1ϕ : k ∈ N}) and P ′′{X2k−1ϕ:k∈N}(∗, Gϕ) we
conclude that P{ϕ}(d,Gϕ). It is easy to see that no finite number of steps will suffice
to derive Gϕ from {ϕ}. /

We investigate the relationship between the fibring and the original proof systems
showing that the latter are weaker than the former. Also of interest is to analyze how
the fibring relates with proof systems that are stronger than the components.
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Proposition 3.15
Fibring P ′ ] P ′′ of two proof systems is a proof system and moreover

P ′ ≤ P ′ ] P ′′ and P ′′ ≤ P ′ ] P ′′.

Proof. (1) We start by proving that P ′ ] P ′′ is a proof system.
(i) Right reflexivity. If ϕ ∈ Γ, then τ ′(ϕ) ∈ τ ′(Γ), hence P ′τ ′(Γ)(d

′, τ ′(ϕ)) holds for
some d′ ∈ D′. Therefore PΓ(d′, ϕ) also holds, so PΓ(D,ϕ) holds.
(ii) Monotonicity. Suppose Γ1 ⊆ Γ2 and suppose that PΓ1(D,ϕ) holds. Then there
is α such that PΓ1(Dα, ϕ) holds. We show by induction on α that PΓ2(Dα, ϕ) holds.
(a) α = 0. Without loss of generality, assume that there is d′ ∈ D′ such that
P ′τ ′(Γ1)

(d′, τ ′(ϕ)) holds and, by monotonicity of P ′, also P ′τ ′(Γ2)
(d′, τ ′(ϕ)) holds, thus

PΓ2(d
′, ϕ) holds and so PΓ2(D0, ϕ). (b) α = β+1. Assume PΓ1(Dβ+1, ϕ) holds. Hence

there is Ψ such that PΓ1(Dβ , Ψ) and PΨ(D,ϕ). Using the induction hypothesis we
have PΓ2(Dβ ,Ψ) and by definition of D we get PΓ2(Dα, ϕ). (c) α is a limit ordinal.
This case is simple.
(iii) Compositionality. Immediate by definition of ◦.
(iv) Variable exchange. Let ρ be a renaming substitution and suppose that PΓ(D,ϕ)
holds. Then there is α such that PΓ(Dα, ϕ) holds. We prove by induction on α that
Pρ(Γ)(Dα, ρ(ϕ)) holds. (a) α = 0. Suppose that d is d′ ∈ D′; then P ′τ ′(Γ)(d

′, τ ′(ϕ))
holds. We have to show that there is e′ ∈ D′ such that P ′τ ′(ρ(Γ))(e

′, τ ′(ρ(ϕ))) holds.

Let ρ′ : Ξ → L(C ′) be the renaming substitution such that ρ′(ξ) = τ ′(ρ(τ ′−1(ξ))).
The variable exchange property for P ′ leads to the existence of e′ ∈ D such that
P ′ρ′(τ ′(Γ))(e

′, ρ′(τ ′(ϕ))) holds. Since ρ′(τ ′(ψ)) = τ ′(ρ(ψ)) for every ψ ∈ L(C) we
conclude that P ′τ ′(ρ(Γ))(e

′, τ ′(ρ(ϕ))) holds. If d is d′′ ∈ D′′ the proof is similar.
(b) α = β +1. Since PΓ(Dβ+1, ϕ) then there is Ψ such that PΓ(Dβ , Ψ) and PΨ(D, ϕ).
For each ψ ∈ Ψ there exists e ∈ Dβ for which PΓ(e, ψ) holds, and by induction
hypothesis, there is some e′(ψ) ∈ Dβ for which Pρ(Γ)(e′(ψ), ρ(ψ)) holds. Thus
Pρ(Γ)(Dβ , ρ(Ψ)) for E′ = {e′(ψ) : ψ ∈ Ψ}. Using a reasoning similar to the one
for the basis we conclude that Pρ(Ψ)(D, ρ(ϕ)), and so Pρ(Γ)(Dα, ρ(ϕ)) holds. (c) α is
a limit ordinal. Straightforward.
(2) It remains to show that P ′ ≤ P ′]P ′′ and P ′′ ≤ P ′]P ′′. Since both situations are
similar, we show the first one, which amounts to showing that P ′Γ′(D

′, ϕ′) ≤ PΓ′(D, ϕ′)
for Γ′ ∪ {ϕ′} ⊆ L(C ′). Suppose that P ′Γ′(d

′, ϕ′) holds. Then, since τ ′ is a renaming
substitution on L(C ′), there is a derivation d ∈ D′ such that P ′τ ′(Γ)(d, τ ′(ϕ)) holds,
and therefore PΓ(d, ϕ) holds.

We need an auxiliary result before characterizing fibring in the class of proof systems
that are stronger than the components.

Lemma 3.16
Fibring of proof systems closed for substitution is also closed for substitution.

The proof of this result is similar to the one showing that the fibring satisfies variable
exchange, and for this reason we omit it.

Proposition 3.17
Fibring is the supremum in the class of proof systems closed for substitution.
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Proof. By Propositions 3.15 and 3.16, one only has to prove that P ′ ] P ′′ ≤ P ′′′
whenever P ′ ≤ P ′′′ and P ′′ ≤ P ′′′. Let P ′′′ be such a system; we have to show that
PΓ(D, ϕ) ≤ P ′′′Γ (D′′′, ϕ). Assume that PΓ(D, ϕ) holds. Then there is d ∈ D such that
PΓ(d, ϕ). We prove by induction on d that there is d′′′ such that P ′′′Γ (d′′′, ϕ).
(i) Assume that d is d′ ∈ D′. Then Pτ ′(Γ)(d′, τ ′(ϕ)) holds and so by the hypothesis
on P ′′′ there is e′′′ ∈ D′′′ such that P ′′′τ ′(Γ)(e

′′′, τ ′(ϕ)) also holds. Since P ′′′ is closed
for substitution there is d′′′ ∈ D′′′ such that P ′′′τ ′−1(τ ′(Γ))(d

′′′, τ−1(τ ′(ϕ))) holds and
so there is d′′′ ∈ D′′′ such that P ′′′Γ (d′′′, ϕ) holds. If d is d′′ ∈ D′′, the situation is
analogous.
(ii) Assume that d is 〈E, f〉. Then there is Ψ ⊆ L(C) such that PΨ(f, ϕ) and PΓ(E, Ψ)
hold. By induction hypothesis there is E′′′ such that P ′′′Γ (E′′′,Ψ) holds. Using a
reasoning similar to the one above, there is d′′′ ∈ D′′′ such that P ′′′Ψ (d′′′, ϕ) holds.
Hence P ′′′Γ (E′′′ ◦ d′′′, ϕ) holds.

Now we turn our attention toward preservation of properties by fibring starting
with compactness.

Theorem 3.18
The fibring of compact proof systems is compact.

Proof. We prove that there is Φ ⊆ Γ finite such that PΦ(d, ϕ) whenever PΓ(d, ϕ) by
induction on d.
(i) Let d ∈ D′. Then P ′τ ′(Γ)(d, τ ′(ϕ)), so there are Φ′ ⊆ τ ′(Γ) and d′ ∈ D′ such that
P ′Φ′(d

′, τ ′(ϕ)) and so Pτ ′−1(Φ′)(d′, ϕ) where τ ′−1(Φ′) ⊆ Γ is finite. The case d ∈ D′′ is
analogous.
(ii) Let d = 〈E, d′〉. Then there is Ψ such that PΓ(E, Ψ) and PΨ(d′, ϕ) hold. Using a
reasoning similar to the one in the basis, we can conclude that there are Φ ⊆ Ψ finite
and f ∈ D such that PΦ(f, ϕ) holds. On the other hand, since PΓ(E, Φ) holds, then
by induction hypothesis there are Ω ⊆ Γ finite and F ⊆ D such that PΩ(F, Φ), and
so PΩ(〈F, f〉, ϕ).

As a consequence, the finite-derivation fibring of compact proof systems has the same
deductive power as their fibring, i.e. the value of PΓ(D, ϕ) is independent on whether
D is obtained by fibring or by finite-derivation fibring.

3.4 Abduction

Preservation of effectiveness in the fibring can be investigated. We make use in our
reasoning of the Church-Turing postulate. Before that, we make a detour because we
have to assume a further requirement concerning compositionality of derivations. We
need to be able to “calculate” a set Ψ in the definition of compositionality. Sometimes
we can easily find the set Ψ referred to in the definition of compositionality, e.g. when
we are dealing with proof systems induced by known calculi. This motivates the
following definition of hypothesis-abductible proof system.

Let P = 〈C, D, ◦, P 〉 be a proof system. An abduction function for P is a com-
putable function Abd : D → ℘fin℘finL(C) such that for any Γ ⊆ L(C), if PΓ(d, ϕ)
holds then there is ∆ ∈ Abd(d) such that P∆(d, ϕ) and ∆ ⊆ Γ.

A proof system P is said to be hypothesis-abductible if there is an abduction function
for P.
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The intuition is as follows: for d ∈ D, Abd(d) contains sets of hypotheses that
make d a valid derivation in proof system P. It is discussible whether this function
should also depend on the formula ϕ one wants to derive. In all examples shown the
construction will independent of this formula, supporting the claim that in general
that is also the case; however, it would be straightforward to extend our results to
abduction functions depending on a derivation and a formula.

Proposition 3.19
Every hypothesis-abductible proof system is compact.

Proof. Straightforward from the definition.

Hilbert calculi, sequent calculi and tableau systems all induce hypothesis-abductible
proof systems.

Example 3.20
Let H be a Hilbert calculus and P(H) the corresponding induced proof system. Then
AbdH is an abduction function for P(H), where

AbdH(d) = {{ϕ : ϕ occurs in d justified by Hyp}}.
Example 3.21
Let G be a sequent calculus and P(G) the corresponding induced proof system. Then
AbdG is an abduction function for P(G), where

AbdG(dΓ→∆) = {Γ}.
Example 3.22
Let S be a tableau calculus and P(S) the corresponding induced proof system. Then
AbdS is an abduction function for P(S), where

AbdS(d) = {{∆} if the first set in d is (1 :∆) ∪ (0 :Φ)}.

Notice that in all these examples there can be spurrious formulas in the only set
in Abd(d); this is because we do not analyze the derivations except in a syntactical
way. In other words, the set of hypotheses generated makes d a valid derivation, but
nothing forbids that there be another derivation equivalent (in some sense) to d that
depends on a smaller set of formulas.

The examples above suggest that Abd(d) might have been defined to return simply
a finite set of formulas. However, the fibring of hypothesis-abductible proof systems
would then not be necessarily be hypothesis-abductible. This is illustrated by Exam-
ple 3.24.

Theorem 3.23
The finite-derivation fibring of hypothesis-abductible proof systems is hypothesis-abductible.

Proof. Let P ′ and P ′′ be proof systems with abduction functions Abd′ and Abd′′

respectively and let P be their finite-derivation fibring.
Define Abd(d) by recursion on d as follows.

• If d ∈ D′ ∩D′′, then Abd(d) = τ ′−1(Abd′(d)) ∪ τ ′′−1(Abd′′(d)).
• If d ∈ D′, then Abd(d) = τ ′−1(Abd′(d)).
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• If d ∈ D′′, then Abd(d) = τ ′′−1(Abd′′(d)).
• If d = 〈E, d0〉, then Abd(d) contains all sets generated as follows. For each E′ =
{e1, . . . , en} ⊆ E, let Abd(ei) = {Ψi,1, . . . , Ψi,ki}. Then Ψ1,i1∪Ψ2,i2∪. . .∪Ψn,in ∈
Abd(d) for all values of i1, . . . , in such that the previous expression makes sense.

Notice that this definition is not really recursive, since the apparent recursive call in
the last case always reduces to a call of Abd′ or Abd′′. Also, since E is finite, the
resulting set is also finite (though possibly very large).

We now show that Abd thus defined is an abduction function. Suppose that
PΓ(d, ϕ) holds. If d ∈ D′ or d ∈ D′′ then the result follows because Abd′ and
Abd′′ are both abduction functions. Suppose that d = 〈E, d0〉. Then there is ∆ such
that PΓ(E, ∆) and P∆(d0, ϕ) both hold. By Theorem 3.18 we may assume that ∆ is
finite.

Let E′ ⊆ E be a minimal set such that PΓ(E′,∆) still holds. Since E′ is finite, let
d1, . . . , dn be its elements; by minimality ∆ = {ϕ1, . . . , ϕn} with PΓ(di, ϕi) holding
for i = 1, . . . , n. Then for each i there is Ψi ∈ Abd(di) such that PΨi

(di, ϕi) holds and
Ψi ⊆ Γ. Take Ψ = Ψ1 ∪ . . . Ψn ∈ Abd(d); trivially Ψ ⊆ Γ; furthermore, PΨ(E′, ∆)
holds by construction, hence PΨ(E, ∆) also holds, and since we assumed P∆(d0, ϕ)
we conclude that PΨ(d, ϕ).

We illustrate the abduction function defined above with a simple example that also
makes clear the need for the complex type of its output.
Example 3.24
Consider the systems P ′ = P(HB) introduced in Example 2.4 and P ′′ = P(G∨,⇒,¬),
induced by the sequent calculus with connectives ∨, ⇒ and ¬ and the rules R⇒, L⇒,
R¬ and L¬ from Example 2.6 together with the two following rules for ∨.

∆1 → ξ1, ξ2, ∆2

∆1 → (ξ1 ∨ ξ2), ∆2
R ∨ ∆1, ξ1 → ∆2 ∆1, ξ2 → ∆2

∆1, (ξ1 ∨ ξ2) → ∆2
L∨

In P ′, we have the following derivation d1.

1 ξ1 ⇒ (ξ2 ⇒ ξ1) Ax
2 ξ1 Hyp
3 ξ2 ⇒ ξ1 MP 1,2

According to the definition above, AbdP′(d1) = {{ξ1}}.
In the same system, we can also build d2 as follows.

1 (¬ξ2)⇒ ((¬ξ1)⇒ (¬ξ2)) Ax
2 (¬ξ2) Hyp
3 (¬ξ1)⇒ (¬ξ2) MP 1,2
4 ((¬ξ1)⇒ (¬ξ2))⇒ (ξ2 ⇒ ξ1) Ax
5 ξ2 ⇒ ξ1 MP 4,3

In this case, AbdP′(d2) = {{¬ξ2}}.
Turning now to P ′′, we can build the following derivation d.

1 ξ2 ⇒ ξ1 → ξ1 ∨ (¬ξ2) R∨ 2
2 ξ2 ⇒ ξ1 → ξ1, (¬ξ2) L⇒ 3,4
3 → ξ2, ξ1, (¬ξ2) R¬ 5
4 ξ1 → ξ1, (¬ξ2) Ax
5 ξ2 → ξ2, ξ1 Ax
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By the definition above, AbdP′′(d) = {{ξ2 ⇒ ξ1}}.
Consider now the fibring P = P ′ ] P ′′ and the derivation d∗ = 〈{d1, d2}, d〉 in this

system. The construction in the proof of Theorem 3.23 yields

AbdP(d∗) = {∅, {ξ1}, {¬ξ2}, {ξ1,¬ξ2}}.
It is easy to see that PΓ(d∗, ϕ) holds iff ϕ coincides with ξ1 ∨ (¬ξ2) and Γ contains

either ξ1 or ¬ξ2.

Theorem 3.25
Let P ′ and P ′′ be hypothesis-abductible and decidable proof systems. Then their fibring
is a decidable proof system.

Proof. Assume that P ′ and P ′′ are decidable proof systems and let Abd′ and Abd′′

be abduction functions for them. Let Abd be an abduction function for P = P ′ ]P ′′
(in particular, Abd may be the function defined in the proof of Theorem 3.23). The
following recursive algorithm allows us to decide whether PΓ(d, ϕ) holds.

1. If d ∈ D′ and Pτ ′(Γ)(d, τ ′(ϕ)) holds, then output 1.
2. If d ∈ D′′ and Pτ ′′(Γ)(d, τ ′′(ϕ)) holds, then output 1.
3. If d is not of the form 〈E, d0〉 then output 0.
4. Let d = 〈E, d0〉 and let Abdd = {Ψ1, . . . , Ψn}.
5. For i = 1, . . . , n do
(a) If PΨi(d0, ϕ) holds and PΓ(E, Ψi) holds, output 1.
(b) Otherwise, increment i.

6. Return 0.

Termination of the algorithm follows from the fact that the abduction function only
returns a finite number of sets and that P ′, P ′′ and the recursive call to P always
terminate.

For correctness, suppose first that PΓ(d, ϕ) holds. If d ∈ D′ or d ∈ D′′, then either
the first or the second steps will return answer 1. Otherwise, let d = 〈E, d0〉 and
suppose that PΓ(E, Ψ) and PΨ(d, ϕ) hold. By definition of abduction, P∆(d, ϕ) also
holds for some ∆ ∈ Abd(d) with ∆ ⊆ Ψ; this guarantees that ∆ will be one of the Ψis
in the cycle of the previous algorithm and that the check in the first step of the cycle
will succeed (using the induction hypothesis). Hence the algorithm always returns 1
in this case.

Conversely, suppost that the algorithm returns 1 to the question PΓ(d, ϕ). If d ∈ D′

or d ∈ D′′, then one of the first two steps must have been used, so PΓ(d, ϕ) holds.
Otherwise, d must be of the form 〈E, d0〉 and there is some Ψi ∈ Abd(d0) such that
PΨi(d0, ϕ) and PΓ(E, Ψi) both hold; but this implies that PΓ(d, ϕ) holds.

For illustration, we show how this algorithm works in the previous example.

Example 3.26
Consider again the proof system P presented in the previous example. For sim-
plicity we omit the translation steps (which would change only variable indices, ir-
relevant since proof systems are closed under renaming substitutions). To decide
whether PΓ(d∗, ξ1∨(¬ξ2)) holds, the previous algorithm will first compute AbdP′′(d) =
{{(ξ2⇒ ξ1)}}, then check whether P{(ξ2⇒ξ1)}(d, ξ1∨ (¬ξ2)) holds (it does), and finally
check whether PΓ({d1, d2}, (ξ2 ⇒ ξ1)) holds.
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We now return briefly to the question of whether recursiveness of the set of theorems
is preserved by fibring. Notice that, in general, a derivation with no hypotheses in
the fibring of two proof systems requires derivations with hypotheses in the original
systems, therefore an affirmative answer is unlikely. Even if the systems are finitary
and some version of the Deduction Theorem is available, some form of abduction
will be needed to find the intermediary hypotheses, and since (unlike in the previous
case) no derivation is available to start with, it is not at all obvious how such an
abduction mechanism would work. For this reason, we conjecture that recursiveness
of theoremhood is not preserved by fibring, and do not address that question further
in the present paper.

3.5 Proof systems vs consequence systems

The subsection is dedicated to the investigation of the relationship between proof
systems and consequence systems. We start by discussing the generation of a conse-
quence system out of a proof system.

Proposition 3.27
A proof system P = 〈C,D, ◦, P 〉 induces a consequence system C(P) = 〈C,`〉 where
Γ` = {ϕ ∈ L(C) : PΓ(D,ϕ)}.
Proof. (i) Extensivity. Follows directly from the right reflexivity of PΓ. (ii) Mo-
notonicity. Suppose that Γ1 ⊆ Γ2 and that ϕ ∈ Γ1. Then PΓ1(D, ϕ) holds. By
the monotonicity of P we have PΓ1(D, ϕ) ≤ PΓ2(D, ϕ) hence PΓ2(D, ϕ) holds and
so ϕ ∈ Γ`2 . (iii) Idempotence. Suppose that ϕ ∈ (Γ`)`. Then there is d ∈ D such
that PΓ`(d, ϕ). On the other hand, there is E ⊆ D such that PΓ(E, Γ`). Hence by
compositionality in P we have PΓ(E ◦ d, ϕ) and so ϕ ∈ Γ`. (iv) Closure for renaming
substitution. Assume that ρ is a renaming substitution and ϕ ∈ Γ`. Then PΓ(D,ϕ)
holds and so, by variable exchange in P, Pρ(Γ)(D, ρ(ϕ)) holds and so ρ(ϕ) ∈ ρ(Γ)`.

We will now investigate how properties of the proof system are propagated to
the induced consequence system. It is very simple (similar to closure for renaming
substitution in the proof of the result above) to prove the following result:

Proposition 3.28
If P is closed for substitution, then so is C(P).

It is worthwhile to detail compactness, effectiveness and strong effectiveness.

Proposition 3.29
If P is compact, then so is C(P).

Proof. Suppose that P is compact and ϕ ∈ Γ`. Then PΓ(D,ϕ) holds and so by,
compactness of P, there is Φ ⊆ Γ finite such that PΦ(D,ϕ) also holds and so ϕ ∈ Φ`.

The following result is very easy to prove.

Proposition 3.30
If P is an effective proof system, then C(P) is semi-decidable.
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Proof. Assume that P is an effective proof system and Γ ⊆ L(C) is a recursive set.
Then ϕ ∈ Γ` iff there is d ∈ D such that PΓ(d, ϕ) where PΓ is a recursive relation.
By the projection theorem, Γ` is a recursively enumerable set.

Proposition 3.31
The consequence system C(P) is strongly semi-decidable when P is a strongly effective
proof system.

Proof. Assume that P is a strongly effective proof system. Let Γ ⊆ L(C) be a
recursively enumerable set. Then PΓ is recursively enumerable, so either PΓ = ∅ or
there is a partial recursive function f : N → D × L(C) such that f(N) = PΓ. If
PΓ = ∅ then Γ` = ∅, which is a recursively enumerable set (in this case Γ itself
must be empty). Otherwise, define f∗ : N → L(C) such that f∗(n) is the second
component of f(n). Clearly f∗ is recursive. Furthermore, ϕ ∈ Γ` iff PΓ(d, ϕ) holds
for some d ∈ D iff f(n) = 〈d, ϕ〉 for some n iff f∗(n) = ϕ. Hence the co-domain of f∗

is precisely Γ` and Γ` is recursively enumerable.

Also of interest is the relationship between a calculus and the proof system it
induces. We do a parametric proof of the following result.

Proposition 3.32
Let Calc be a (Hilbert, sequent, tableau) calculus. Then C(P(Calc)) = C(Calc).

Proof. Since both C(P(Calc)) and C(Calc) share the same signature C, all one needs
to show is that the closure of a set Γ ⊆ L(C) is the same in both cases. Let
C(P(Calc)) = 〈C,`1〉 and C(Calc) = 〈C,`2〉. Then ϕ ∈ Γ`1 iff PΓ(D, ϕ) holds in
P(H) iff there is a Calc-derivation of ϕ from Γ in D iff ϕ ∈ Γ`2 .

The following result indicates that relationships between proof systems are pre-
served by the induced consequence systems.

Proposition 3.33
Let P and P ′ be proof systems such that P ≤ P ′. Then C(P ) ≤ C(P ′).
Proof. Let P ≤ P ′ and Γ ⊆ L(C). Then C ⊆ C ′; suppose that ϕ ∈ Γ`. Then
PΓ(D, ϕ) holds, whence P ′Γ(D′, ϕ) also holds since P ≤ P ′ and so ϕ ∈ Γ`

′
.

As a special case we conclude C(P ′) ≤ C(P ′ ] P ′′) and C(P ′′) ≤ C(P ′ ] P ′′).
Now we show how to generate a proof system out of a consequence system.

Proposition 3.34
A consequence system C induces a proof system P(C) with the same signature as
follows: D = {∗}; E ◦ ∗ = ∗; PΓ(∗, ϕ) holds iff ϕ ∈ Γ`.

Proof. (i) Right reflexivity. Since ` is extensive, Γ ⊆ Γ` for every Γ ⊆ L(C),
so PΓ(D, Γ) holds. (ii) Monotonicity. Assume that Γ1 ⊆ Γ2 and PΓ1(D,ϕ) holds.
Then ϕ ∈ Γ`1 ; by monotonicity of C, Γ`1 ⊆ Γ`2 , hence ϕ ∈ Γ`2 , and so PΓ2(D, ϕ).
(iii) Idempotence. Suppose that PΓ(E, Ψ) and PΨ(d, ϕ) hold. Then Ψ ⊆ Γ` and
ϕ ∈ Ψ`, hence, by monotonicity of C, ϕ ∈ (Γ`)` and so, by idempotence of `, ϕ ∈ Γ`.
Therefore PΓ(E ◦ d, ϕ) holds. (iv) Variable exchange. Assume that ρ is a renaming
substitution and that that PΓ(D, ϕ) holds. Then ϕ ∈ Γ`, hence ρ(ϕ) ∈ ρ(Γ)` and so
Pρ(Γ)(D, ρ(ϕ)).



32 Heterogeneous fibring of deductive systems via abstract proof systems

We can show easily that the induced proof system is closed for substitution and
compact whenever the consequence system has the same properties. A proof system P
can be compared with the proof system generated by the consequence system induced
by P as the following result states.

Proposition 3.35
For any proof system P, P ≤ P(C(P)).

Proof. Straightforward. Since in both constructions the signature does not change,
all that is left to show is that, if PΓ(D, ϕ) holds in P, then PΓ(∗, ϕ) holds in P(C(P)).
Assume that PΓ(D,ϕ) holds in P. Then ϕ ∈ Γ` and so PΓ({∗}, ϕ) holds in P(C(P)).

The opposite relation also holds: for every consequence system: C = C(P(C)).
Finally, we relate the consequence system induced by the fibring of proof systems

with the fibring of the consequence systems induced by the proof systems.

Proposition 3.36
The fibring of proof systems has the following property.

C(P ′ ] P ′′) = C(P ′) ] C(P ′′)

Proof. The signature of both C(P ′]P ′′) and C(P ′)]C(P ′′) is C = C ′∪C ′′. Denoting
C(P ′ ] P ′′) by 〈C,`a〉 and C(P ′) ] C(P ′′) by 〈C,`b〉, all that is left to show is that
Γ`a = Γ`b for all Γ ⊆ L(C).
(i) We start by showing that Γ`a ⊆ Γ`b . Suppose ϕ ∈ Γ`a . Then PΓ(D, ϕ) holds,
hence PΓ(d, ϕ) holds for some d ∈ D. We prove that ϕ ∈ Γ`b by induction on d. (a) If
d is d′ ∈ D′, then P ′τ ′(Γ)(d

′, τ ′(ϕ)), hence τ ′(ϕ) ∈ τ ′(Γ)`
′

and therefore ϕ ∈ Γ`b by
definition of fibring of consequence systems. The case where d is d′′ ∈ D′′ is analogous.
(b) If d is 〈E, d′′′〉 with E ∪ {d′′′} ⊆ D, then there is a set Ψ such that PΓ(E, Ψ) and
PΨ(d′′′, ϕ) both hold, that is, Ψ ⊆ Γ`a and ϕ ∈ Ψ`a . By induction hypothesis,
Ψ ⊆ Γ`b and ϕ ∈ Ψ`b and, by idempotence of `b, it follows that ϕ ∈ (Γ`b)`b ⊆ Γ`b .
(ii) Now we show that Γ`b ⊆ Γ`a . Suppose now that ϕ ∈ Γ`b . Then ϕ ∈ Γ`β for some
ordinal β in the fixed point construction of Proposition 2.13. We prove that ϕ ∈ Γ`a

by induction on β. (a) β = 0. Straightforward, since Γ ⊆ Γ`a . (b) If ϕ ∈ Γ`β+1 , then
either ϕ ∈ τ ′−1(τ ′(Γ`β )`

′
) or ϕ ∈ τ ′′−1(τ ′′(Γ`β )`

′′
); both cases are similar, so assume

the first one holds. By induction hypothesis Γ`β ⊆ Γ`a , so PΓ(D, Γ`β ) holds. Also,
from ϕ ∈ τ ′−1(τ ′(Γ`β )`

′
) we conclude that τ ′(ϕ) ∈ τ ′(Γ`β )`

′
, so P ′

τ ′(Γ`β )
(d′, τ ′(ϕ))

holds for some d′ ∈ D′. Therefore, P
Γ`β (d′, ϕ) also holds and hence PΓ(D ◦ d′, ϕ)

holds, which means that ϕ ∈ Γ`a . (c) β is a limit ordinal: straightforward.

4 Conclusions

In this paper we addressed the problem of heterogenous fibring of logics. In the first
place, we studied the well-known notion of consequence system, showed how several
kinds of presentations of logics define consequence systems and defined fibring of
consequence systems. As a consequence, we showed how we could combine a logic
presented syntactically with another presented semantically. We showed that this
combination is conservative assuming the original logics are closed under substitution,
as well as several results on semi-decidability.
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However, this solution is unsatisfactory because no trace is kept of proofs that may
exist in the original calculi. For this reason, we introduced the notion of abstract
proof system, which intends to abstract the essential properties of logics presented
syntactically via some notion of derivation. In particular, this covers Hilbert calculi,
sequent calculi and tableau calculi. We showed how to define fibring in this context,
and gave some examples illustrating this construction and its advantages over the
analogous one obtained by regarding the logics as consequence systems. Finally we
defined the property of hypothesis-abduction for an abstract proof system and showed
how it could be used to prove preservation of semi-decidability by fibring of proof
systems.

Finally we showed how every proof system can be seen as a consequence system and
vice-versa, so that even semantically presented logics can be seen to induce abstract
proof systems (albeit not-so-interesting ones), and showed that fibring commutes with
these views for all the concrete calculi considered.

4.1 Future Work

There are some issues raised in this paper that were not fully explored for lack of
space.

First-order case Throughout this paper we only considered propositional signatures
for two reasons: they are clearly easier to combine in a natural way, and they suffice for
many practical applications. Generalizing the notion of proof system to encompass
first- (and higher-) order logics presents different challenges already at that level.
Furthermore, since derivations in first-order logic already require the use of rules with
provisos, the mechanism of combination itself has to be revised.

Theoremhood As explained at the end of Section 3.4, the question of whether re-
cursiveness of theoremhood is preserved by fibring is far from trivial. Deciding this
question will likely require stating the Deduction Theorem in general for proof sys-
tems and analyzing how it behaves through fibring, as well as some more work on
abduction of hypotheses.

Structural properties of derivations Since we work with proof systems induced from
specific calculi, it would be worthwhile to explore properties of derivations that can
be abstracted to families of proof systems, and whether they are preserved through
fibring. Examples of such properties are the relationship of the size of a formula to
the size of its derivation, or invertibility of rules in the case of derivations produced
from rules. Another example, with obvious implications in the question discussed in
the previous paragraph, is whether a derivation can be generated simply from the
structure of a given formula.

Complexity The abduction algorithm for the fibring of two hypothesis-abductible
proof systems is very simple and, as such, terribly inefficient. It would be interesting to
examine how efficient it can be made and whether good bounds on the time complexity
of abduction in the fibring can be proved, based on bounds on the time complexity of
the abduction in the components. At the very least, it would be good to know that
fibring preserves polynomial-time abduction.
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