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Lúıs Cruz-Filipe João Rasga Amı́lcar Sernadas Cristina Sernadas
SQIG - IT and IST, Portugal

{lcf,jfr,acs,css}@math.ist.utl.pt

June 9, 2006

Abstract

Following recent developments in the topic of generalized quantifiers, and also
having in mind applications in the areas of security and artificial intelligence, a
conservative enrichment of (two-sorted) first-order logic with almost-everywhere
quantification is proposed. The completeness of the axiomatization against the
measure-theoretic semantics is carried out using a variant of the Lindenbaum–
Henkin technique. The independence of the axioms is analyzed, and the almost-
everywhere quantifier is compared with related notions of generalized quantification.

Keywords: generalized quantification, almost-everywhere logic, probabilistic logic,
measure-theoretic semantics, complete axiomatization.

1 Introduction

The study of generalized quantifiers [7, 17, 14, 18, 20] has attracted attention in the
last decades, mainly motivated by applications, such as in natural language [5], artificial
intelligence [19, 12, 15, 10], and philosophy [21]. Applications in security suggest adopting
a probabilistic interpretation of “for almost all” of the type considered in [12]. Such a
type of quantification is also studied in [3, 6] but in the more general setting of a measure-
theoretic semantics.

An important trend in the area of kleistic logic1 is directed at developing formal
calculi for reasoning about the probabilistic universe of security protocols, for instance
in the context of encryption [2, 1, 16, 4, 9], but with no linguistic constructs denoting
probabilities: these only appear at the semantic level.

Having in mind such applications in security, our aim was to develop a purely qual-
itative extension of first-order logic (FOL) with a quantifier AE corresponding to the
measure-theoretic notion of “almost everywhere”. By purely qualitative we mean that
there should be no language constructions denoting measure values. The key idea was
to endow each first-order structure with a measure over some σ-algebra of subsets of the
domain. This semantic approach had already been pursued to some extent in [3, 6], and

1Kleistic logic is the logic of security, from the Greek kleisis.
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also in [12, 10]. However, the former allows only one almost-everywhere quantification
applied to a FOL implication and does not provide a calculus, while the latter includes
terms denoting probabilities or measures in the language.

The resulting logic FOL+AE, as described in Section 2, does not enjoy the downward
Lowenheim–Skölem property, which strongly suggests that it will not be axiomatizable.
In Section 3 we overcome this difficulty by adding quantification over unary predicates
and adopting two-sorted first-order interpretation structures. In Section 4 we present
an axiomatization for the enriched logic 2-FOL+AE, shown in Section 5 to be strongly
complete over the class of interpretation structures with supported measures. The notion
of supported measure generalizes that of discrete measure.

In Section 2, besides presenting the language and the semantics of FOL+AE, we clas-
sify the proposed AE quantifier following the taxonomy in [8]. In Section 3, after present-
ing the language and the semantics of 2-FOL+AE, we introduce the notion of supported
measure that will be crucial in the proof of completeness. The axiomatization presented
in Section 4 includes axioms for dealing with the two-sorted FOL fragment, axioms for
dealing with AE, axioms for the interplay between the two classical quantifiers and AE,
and the axiom characterizing supported measures (SE), plus the usual rules Modus Po-
nens (MP), ∀-generalization (∀Gen) and ∀1-generalization (∀1Gen). The axioms for AE
make clear the similarities (normality) and the differences (instantiation) between AE
and ∀. We conclude Section 4 with the meta-theorem of deduction and by proving the
independence of some axioms. In Section 5 we prove the strong completeness of the
axiomatization using a suitable revamp of the Lindenbaum–Henkin technique [13]. The
usual ∃-witnesses are enough to provide SE-witnesses (for the existential counterpart of
AE). Furthermore, although AE-instantiation is weaker than ∀-instantiation, things work
out thanks to the SE axiom. We conclude Section 5 with some obvious but important
corollaries of the completeness theorem. In particular, if a 2-FOL+AE theory has a (sup-
ported) model then it has a discrete model, implying the downward Lowenheim–Skölem
theorem. Further developments of 2-FOL+AE, namely towards security applications, are
discussed in Section 6.

2 First-order language and semantics

In this section we present first-order logic (FOL) enriched with a modulated quantifier
(in the sense of [8]) denoted AE, where the intended meaning of AExϕ is “for almost all x,
ϕ holds”. To this end, we enrich the notion of first-order structure by adding a measure
space on the domain; intuitively, a formula AExϕ will be satisfied if the set of values in
the domain that can be assigned to x whilst falsifying ϕ has zero measure. By duality we
obtain a quantifier SE, where SExϕ is read “there exist significantly many x such that ϕ
holds” and is satisfied if the set of values that can be assigned to x whilst making ϕ true
has non-zero measure. We assume that the reader is familiar with the basics of measure
theory (at the level of the initial chapters of a textbook on the subject, for instance [11]).

We begin by defining terms and formulas of the logic FOL+AE.

Definition 2.1 Assume a given first-order signature Σ = 〈F, P 〉 and a countable set
X = {xi | i ∈ N} of variables. Terms are generated in the usual way from X and
F . Formulas are built inductively applying elements of P to terms or by using (some)
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propositional connectives, first-order quantifiers or the modulated quantifier AE.

ϕ = p(t) | ff | ϕ⇒ ϕ | ∀xϕ | AExϕ

The remaining propositional connectives and the existential quantifier are defined as
abbreviations in the usual way. Furthermore, the quantifier SE is defined by abbreviation
by SExϕ ≡ ¬AEx¬ϕ.

It is convenient to introduce some notation that will be needed throughout the paper.

Notation 2.2 The notation var(t) and var(ϕ) refers to the variables that occur in a
term t or in a formula ϕ. In the latter case, var(ϕ) includes not only variables that occur
in terms in ϕ (free or bound) but also variables being quantified upon (e.g. the y in ∀yψ).

For example, var(f(x, a)) = {x} and var(AExp(y, b)) = {x, y}.

Notation 2.3 The notation t . x : ϕ stands for “term t is free for variable x in formula
ϕ”, with the usual meaning in FOL – namely, that if x is replaced by t in ϕ then no
variables in t become bound.

In particular, y . x : ϕ holds for any variable y that does not occur in ϕ (although
this condition is by no means necessary).

Definition 2.4 An interpretation structure is a tuple M = 〈D, [[·]],B, µ〉 where:

• D is a non-empty set;

• 〈D, [[·]]〉 is a first-order interpretation structure, that is:

– for each f ∈ Fn, [[f ]] : Dn → D;

– for each p ∈ Pn, [[p]] : Dn → {0, 1}.

• 〈D,B, µ〉 is a measure space, that is:

– B is a σ-algebra over D;

– µ is a measure on B.

• µ(D) 6= 0.

Definition 2.5 Satisfaction in a structure M given a variable assignment ρ is defined
in the usual way as for FOL, with the following extra clause2:

Mρ  AExϕ if there is B ∈ B such that
(
|ϕ|xMρ

)c ⊆ B and µ(B) = 0

where |ϕ|xMρ (the extent of ϕ relative to x in M with assignment ρ) is defined by3

|ϕ|xMρ = {d | M ρxd  ϕ}.

Validity and entailment are defined as expected.

2As usual, (A)c denotes the complement of A.
3Throughout this paper, ρx

d denotes the assignment that takes x to d and behaves as ρ elsewhere.
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Proposition 2.6 The logic FOL+AE is a conservative extension of FOL.

Proof. Formulas that do not use the modulated quantifier are satisfied in a structure
with a given assignment iff they are satisfied in the corresponding FOL structure (i.e. the
structure obtained by forgetting the measure on the domain). Since any FOL structure
can be made into a structure of FOL+AE by adding e.g. the counting measure on its
domain, it follows that the valid FOL-formulas in the extended logic are precisely the
valid formulas of FOL. �

Proposition 2.7 If 〈D,B, µ〉 is a complete measure space and Mρ  AExϕ, then(
|ϕ|xMρ

)c
is measurable with measure 0.

Proof. In a complete measure space, any subset of a zero-measure set is itself a zero-
measure set. �

Remark 2.8 In view of Proposition 2.7, we could instead define Mρ  AExϕ to hold
if µ(

(
|ϕ|xMρ

)c
) = 0. However, besides requiring the measure space to be complete (a

constraint that may not be desirable), this definition is not suitable to generalization in
the sense we will now discuss. If we replace µ(B) = 0 with µ(B) < ε for some previously
fixed ε we obtain a different notion of “almost everywhere”, which can be relevant in some
contexts (e.g. when 〈D,B, µ〉 is a probability space, the meaning of AExϕ then becoming
“except with negligible probability”). This alternative notion will be discussed in the
concluding section.

Dealing with this more general notion is the reason for introducing the set B in the
definition above: while it is true that any subset of a zero-measure set is measurable in
a complete measure space, it is not true in general that |ϕ|xMρ is measurable even if we
assume that [[f ]] and [[p]] are measurable for all f ∈ F and p ∈ P , as the following example
shows.

Example 2.9 Let Σ = 〈F, P 〉 be a first-order signature with Fn = ∅ for all n ∈ N,
P2 = {p} and Pn = ∅ for n 6= 2. Let M be a first-order structure for Σ with domain R
endowed with the usual measure such that

[[p]](x, y) =

{
1 if x ∈ U or x 6= y
0 otherwise

where U ⊆ R is any non-measurable set. Notice that [[p]] is a measurable function:
[[p]]−1(0) is a zero-measure set (it is contained in the line x = y), hence [[p]]−1(1) is also
measurable, since the union of these is R2. However, regardless of ρ, |∀y(p(x, y))|xMρ = U
is not measurable by hypothesis.

The following proposition gives some examples of formulas that hold in all structures.

Proposition 2.10 The following formulas are valid.

1. (∀xϕ) ⇒ (AExϕ)

2. (AExϕ) ⇒ (∃xϕ)
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3. (AExϕ) ⇒ (AEy[ϕ]xy) whenever y 6∈ var(ϕ)

4. AEy((AExϕ) ⇒ [ϕ]xy) whenever y . x : ϕ and y does not occur free in ϕ

5. (∀x(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))

6. (∀x(ϕ⇔ ψ)) ⇒ ((AExϕ) ⇔ (AExψ))

7. (AEx(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))

8. ((AExϕ) ∧ (AExψ)) ⇔ AEx(ϕ ∧ ψ)

9. AExtt

10. (AExϕ) ⇒ ¬(AEx(¬ϕ))

11. (AExϕ) ⇒ (SExϕ)

12. ((AExϕ) ∧ (AExψ)) ⇒ ∃x(ϕ ∧ ψ)

Proof. These properties are direct consequences of the properties of measure functions,
as we show. Let M be an interpretation structure and ρ be some assignment.

1. Suppose that Mρ  ∀xϕ; then Mρxd  ϕ for any d ∈ D, hence
(
|ϕ|xMρ

)c
= ∅ and

µ(∅) = 0, and thus Mρ  AExϕ.

2. If Mρ  AExϕ, then |ϕ|xMρ cannot be empty (otherwise it would have zero measure
while its complement would be contained in a zero-measure set, implying µ(D) = 0).
Therefore Mρ  ∃xϕ.

3. From the hypothesis that y does not occur in ϕ it follows trivially that |ϕ|xMρ = |[ϕ]xy |
y
Mρ.

4. Suppose that Mρ 6 AEy((AExϕ) ⇒ [ϕ]xy), that y does not occur free in ϕ, and that

y . x : ϕ. Then the set
(
|((AExϕ) ⇒ [ϕ]xy)|

y
Mρ

)c
is not contained in any set of measure

zero, hence it cannot be empty. For any d in that set, Mρyd  AExϕ and Mρyd 6 [ϕ]xy ;
but then the hypotheses on y imply that Mρ  AExϕ and Mρxd 6 ϕ. It follows that(
|((AExϕ) ⇒ [ϕ]xy)|

y
Mρ

)c
=

(
|[ϕ]xy |

y
Mρ

)c
=

(
|ϕ|xMρ

)c
, taking advantage of the fact that y

does not occur free in ϕ. But this set is contained in a set with measure zero (since
Mρ  AExϕ), contradiction.

5. If Mρ  ∀x(ϕ⇒ ψ), then |ϕ|xMρ ⊆ |ψ|xMρ. Suppose that Mρ  AExϕ; then
(
|ψ|xMρ

)c ⊆(
|ϕ|xMρ

)c ⊆ B for some measurable B with µ(B) = 0, hence Mρ  AExψ.

6. Applying the reasoning in the previous proof twice it follows that Mρ  (∀x(ϕ ⇔
ψ)) ⇒ ((AExϕ) ⇔ (AExψ)).

7. Suppose that Mρ  AEx(ϕ⇒ ψ) and Mρ  AExϕ. Then(
|ψ|xMρ

)c
= {d | Mρ 6 [ψ]xd}
= {d | Mρ 6 [ψ]xd and Mρ  [ϕ]xd} ∪ {d | Mρ 6 [ψ]xd and Mρ 6 [ϕ]xd}
⊆ {d | Mρ 6 [ϕ⇒ ψ]xd} ∪ {d | Mρ 6 [ϕ]xd}
=

(
|ϕ⇒ ψ|xMρ

)c ∪
(
|ϕ|xMρ

)c
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and by hypothesis each of these two sets is contained in a set of measure zero. Since
the union of zero-measure sets still has measure zero, it follows that Mρ  AExψ.

8. Notice that
(
|ϕ ∧ ψ|xMρ

)c
=

(
|ϕ|xMρ ∩ |ψ|xMρ

)c
=

(
|ϕ|xMρ

)c∪
(
|ψ|xMρ

)c
. If

(
|ϕ ∧ ψ|xMρ

)c ⊆
B then B contains both

(
|ϕ|xMρ

)c
and

(
|ψ|xMρ

)c
, which proves the converse implication

supposing µ(B) = 0. For the direct implication just consider the intersection of two
sets Bϕ ⊇

(
|ϕ|xMρ

)c
and Bψ ⊇

(
|ψ|xMρ

)c
.

9. The set
(
|tt|xMρ

)c
= ∅ always has zero measure.

10. Suppose that Mρ  AExϕ. Then
(
|ϕ|xMρ

)c ⊆ B for some set B such that µ(B) = 0.

Then (B)c is measurable and µ((B)c) = µ(D)− µ(B) = µ(D) 6= 0. But
(
|¬ϕ|xMρ

)c
=((

|ϕ|xMρ

)c)c
= |ϕ|xMρ, and any set containing this must contain (B)c, hence its measure

must also be µ(D). Therefore Mρ 6 AEx¬ϕ, hence Mρ  ¬(AE(¬ϕ)).

11. By definition of SE, the previous formula is precisely (AExϕ) ⇒ (SExϕ).

12. Suppose that Mρ  ((AExϕ) ∧ (AExψ)); then there are sets Bϕ ⊇
(
|ϕ|xMρ

)c
and

Bψ ⊇
(
|ψ|xMρ

)c
with µ(Bϕ) = µ(Bψ) = 0. It follows that µ(Bϕ ∪ Bψ) = 0, hence

its complementary has positive measure and is contained in |ϕ∧ψ|xMρ, thus the latter
is not empty, whence ∃x(ϕ ∧ ψ) holds.

Notice that removing the requirement µ(D) 6= 0 only affects the proofs of validity of 2,
10, 11 and 12. Conversely, if either of these formulas holds in a structure for any ϕ, then
in that structure necessarily µ(D) 6= 0 (just take ϕ = ff). �

Remark 2.11 The requirement that y not occur free in ϕ in formula AEy((AExϕ) ⇒ [ϕ]xy)
is essential, as the following example shows. Let ϕ to be x 6= y and M = 〈R, [[·]],B, µ〉
with 〈R,B, µ〉 the usual measure on the real line and [[6=]] inequality.

Given an arbitrary ρ, Mρ  AExϕ, since
(
|ϕ|xMρ

)c
= {ρ(y)}, which has zero measure.

On the other hand, Mρ 6 [ϕ]xy , since ρ(y) = ρ(y). Therefore Mρ 6 (AExϕ) ⇒ [ϕ]xy . Since
ρ is arbitrary, this implies that |(AExϕ) ⇒ [ϕ]xy |

y
M = ∅, so M 6 AEy((AExϕ) ⇒ [ϕ]xy), even

though y is free for x in ϕ.

Proposition 2.12 The following entailments hold.

1. ϕ, ϕ⇒ ψ |= ψ

2. ϕ |= ∀xϕ

3. ϕ |= AExϕ

Proof. The first two are immediate consequences of the fact that interpretation struc-
tures of FOL+AE are first-order structures. The third follows from the fact that, if
M  ϕ, then |ϕ|xMρ = D for any ρ, hence

(
|ϕ|xMρ

)c
= ∅, and this set has measure zero.

Thus Mρ  AExϕ, and arbitrariness of ρ proves that M  AExϕ. �

The authors of [8] classify quantifiers in several categories. According to Proposi-
tion 2.10, the quantifier AE is:
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• a modulated quantifier, since it satisfies 1, 2, 6 and 3;

• a “most” quantifier, since it satisfies 5, 10 and 2;

• a “ubiquity” quantifier, consequence of 8 and 5.

Interestingly, AE is not an “almost all” quantifier in their sense, since such a quantifier
∇ must satisfy (∇xϕ) ∨ (∇x¬ϕ). This corresponds in our setting to the semantical
requirements µ(|ϕ|xMρ) = 0 or µ(

(
|ϕ|xMρ

)c
) = 0. One can easily see that this is not

necessarily valid by taking ϕ to be p(x) in a structure where D = N, [[p]](n) = 1 iff n
is even and µ is the counting measure on the natural numbers. A way of getting AE
to behave in such a way is to follow the alternative definition suggested in Remark 2.8
taking ε > 1/2 and 〈D,B, µ〉 a probability space (so µ(D) = 1). On the other hand,
property 7 of the same Proposition states that AE as defined is a normal quantifier, so
many of the previous properties are consequences of this fact (as will be shown in more
detail in Section 4).

We conclude this section with a significant result.

Proposition 2.13 The logic FOL+AE does not satisfy the downward Lowenheim–Skölem
theorem.

Proof. Without loss of generality, assume that = denotes equality and let ϕ be the
formula ∀x(AEy¬(x = y)), intuitively representing the semantic condition “singleton sets
have measure zero”. Clearly ϕ is satisfiable, since the usual measure on the real line has
this property. However, it has no countable models: if M = 〈D, [[·]],B, µ〉 is a model of ϕ
and D is countable, then for any assignment ρ we have that

D =
⋃
d∈D

{d} ⊆
⋃
d∈D

|x = y|yMρx
d
,

hence D is included in a countable union of sets of measure zero (since by hypothesis
Mρxd  x = y for each d) and must be a zero-measure set itself.

Now observe that the only property of equality used above was reflexivity. The rea-
soning above works just as well if we take ϕ to be (∀x(AEy¬p(x, y))) ∧ (∀x(p(x, x))) and
assume nothing at all about the interpretation of p. �

This result indicates that the usual (Henkin-style) completeness techniques for FOL
cannot be applied to FOL+AE, since they always yield the downward Lowenheim–Skölem
theorem as a corollary.

With this in mind, we considered a restricted class of interpretation structures (those
with supported measures), which in turn required the availability of quantification over
unary predicates when we came to the axiomatization stage. This second conservative
extension of FOL is presented in the next section.

3 Extending the language

The language and the semantics of 2-FOL+AE are those of FOL+AE plus a (generalized)
second-order quantifier.
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Definition 3.1 The formulas of 2-FOL+AE over a given first-order signature are gen-
erated by the following grammar.

ϕ = p(t) | r(t) | ff | ϕ⇒ ϕ | ∀xϕ | AExϕ | ∀1rϕ

Here, r stands for the unary predicate variables. As before, the remaining propositional
connectives and the existential quantifiers ∃ and SE are defined by abbreviation; likewise,
we abbreviate ¬(∀1r(¬ϕ)) to ∃1rϕ.

Notice that we now have two kinds of variables. Henceforth, by closed we will mean
closed for both. When we refer to a formula with one free first-order variable we will
implicitly assume that no second-order variables are free in the formula, and likewise for
formulas with one free second-order variable.

As mentioned before, we need to consider structures with measure functions satisfying
some extra properties.

Definition 3.2 A measure space 〈D,B, µ〉 is discrete if there are countable sets {di |
i ∈ N} ⊆ D and {ωi | i ∈ N} ⊆ R+ such that4 µ(A) =

∑
di∈A ωi for any A ∈ B.

Discrete probability spaces are examples of discrete measure spaces. Another example
is the counting measure on any countable set. A less obvious example is the measure
space 〈R,B, µ〉 where a set is measurable iff it is the union of intervals [n, n + 1] with
n ∈ Z and µ is the restriction to B of the usual Lebesgue measure. It is easy to see that
µ(A) = |{n | n ∈ Z and n+ 1/2 ∈ A}| (so ωi = 1 for all i).

Definition 3.3 A measure space 〈D,B, µ〉 is supported if arbitrary unions of zero-
measure sets are contained in a zero-measure set.

When the measure space is supported, we have: (i) there is a largest zero-measure set Z;
(ii) for any set A ∈ B, µ(A) = µ(A \Z). It can be shown that all discrete measure spaces
are supported; the reverse implication does not hold, however: the counting measure is
always supported, but it is discrete iff the domain is countable.

Definition 3.4 An interpretation structure for 2-FOL+AE is a tuple 〈D,D1, [[·]],B, µ〉
such that:

1. 〈D, [[·]],B, µ〉 is an interpretation structure for FOL+AE;

2. 〈D,B, µ〉 is a supported measure space;

3. D1 ⊆ ℘(D) containing the extents of all formulas with a single free first-order
variable.

Assignments now take first-order variables to elements of D and second-order variables
to elements of D1. Satisfaction of formulas is defined inductively as before, with the
following extra clauses for the second-order variables and quantifier.

Mρ  r(t) iff [[t]]Mρ ∈ ρ(r)
Mρ  ∀1rϕ iff MρrB  ϕ for any B ∈ D1

4The ωis are seen as weights associated to the xis.
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Observe that we do not require any relationship between D1 and B because it is
not needed. Note also that ∀1 is endowed with a Henkin-style generalized second-order
semantics. Therefore, 2-FOL+AE is equivalent to two-sorted first-order logic plus AE,
which justifies its name.

Remark 3.5 Since structures of 2-FOL+AE are enriched structures of monadic second-
order logic, we have: ϕ |= ∀1rϕ.

Proposition 3.6 The logic 2-FOL+AE is a conservative extension of FOL.

Proof. Analogous to Proposition 2.6. �

Observe that 2-FOL+AE is not a conservative extension of FOL+AE since the former
assumes that the measures are supported.

4 Axiomatization

In this section we define a Hilbert calculus for 2-FOL+AE. This calculus is sound, as
Theorem 4.2 shows; in Section 5 we will show that it is also complete w.r.t. the supported-
measure semantics given above.

Definition 4.1 The axiom system for 2-FOL+AE contains the following axioms.

Taut All instances of propositional tautologies.

K∀ (∀x(ϕ⇒ ψ)) ⇒ ((∀xϕ) ⇒ (∀xψ))

I∀ (∀xϕ) ⇒ [ϕ]xt whenever t . x : ϕ

IAE AEy((AExϕ) ⇒ [ϕ]xy) whenever y . x : ϕ and y is not free in ϕ

K∀1 (∀1r(ϕ⇒ ψ)) ⇒ ((∀1rϕ) ⇒ (∀1rψ))

I∀1 (∀1rϕ) ⇒ [ϕ]rψ whenever ψ is a formula with a single first-order free variable and
ψ . r : ϕ

Comp ∃1r(∀x(r(x) ⇔ ϕ)) whenever ϕ is a formula with a single first-order free variable
x and r is not free in ϕ

SE (SExϕ) ⇒ ∃x(ϕ ∧ ∀1r((AEy(r(y))) ⇒ r(x)))

The inference rules are generalization for the universal quantifiers (∀Gen) and (∀1Gen)
plus Modus Ponens (MP).

Some comments are in order at this stage. Axioms Taut, K∀ (normality) and I∀
(instantiation) are as in FOL. Indeed, the usual FOL axiom

K∀′ (∀x(ϕ⇒ ψ)) ⇒ (ϕ⇒ (∀xψ)) if x does not occur free in ϕ

and K∀ above are inter-derivable in the presence of I∀.
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• In FOL we can derive K∀. . .

1. (∀x(ϕ⇒ ψ)) ⇒ (ϕ⇒ (∀xψ)) K∀′
2. ∀x(ϕ⇒ ψ) Hyp
3. ϕ⇒ (∀xψ) MP 1, 2
4. ∀xϕ Hyp
5. (∀xϕ) ⇒ ϕ I∀
6. ϕ MP 5, 4
7. ∀xψ MP 3, 6

• . . . and in FOL without K∀′ we can derive it from K∀.

1. (∀x(ϕ⇒ ψ)) ⇒ (∀xϕ⇒ ∀xψ) K∀
2. ∀x(ϕ⇒ ψ) Hyp
3. ∀xϕ⇒ ∀xψ MP 1, 2
4. ϕ Hyp
5. ∀xϕ ∀Gen 4
6. ∀xψ MP 3, 5

In both cases we use the Deduction Theorem for FOL.
We adopted K∀ instead of K∀′ because we want to make as clear as possible the

similarities and the differences between ∀ and AE: if we replace ∀ by AE, the two resulting
formulas

[KAE] (AEx(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))
[KAE′] (AEx(ϕ⇒ ψ)) ⇒ (ϕ⇒ (AExψ)) where x does not occur free in ϕ

are not inter-derivable, because AE does not enjoy full instantiation; only the second of
the above derivations remains valid (so normality is stronger). Also, axiom K∀ is simpler
since it makes no requirements on ϕ.

Formulas KAE and IAE are counterparts to K∀ and I∀. The latter was taken as an
axiom, while the former is derivable as will be shown at the end of this section. Note
that IAE is a much weaker form of instantiation, reflecting the weaker quantification
made by AE. This fact is the source of the impossibility of deriving KAE from KAE′.
In Proposition 4.9 we will show that generalization for the modulated quantifier can be
derived and does not need to be added as an inference rule.

Axioms K∀1 and I∀1 should pose no questions after the discussion above, while ax-
iom Comp is simply the unary second-order comprehension scheme.

Axiom SE states that, whenever ϕ holds significantly, there is a single point where it
holds that is contained in no set of measure zero. This is equivalent to the semantic re-
quirement that the measure be supported, as we show below. It also provides a restricted
instantiation scheme for AE comparable to I∀. Also note that the interplay formulas

[∀AE] (∀xϕ) ⇒ (AExϕ)
[AE∃] (AExϕ) ⇒ (∃xϕ)

are easily derivable from SE.
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Soundness and axiom independence results

Theorem 4.2 (Soundness of 2-FOL+AE) Let Γ ∪ {ϕ} be a set of formulas. If Γ ` ϕ
then Γ |= ϕ.

Proof. By soundness of FOL, since all structures are first-order structures every instance
of Taut, K∀ and I∀ is valid; by Proposition 2.10, all instances of axiom IAE are valid as
well. Furthermore, since structures of 2-FOL+AE are enriched structures of monadic
second-order logic, axioms K∀1, I∀1 and Comp hold.

The crucial step is to check the soundness of axiom SE. Assume that for some formula
ϕ there exist a structure M and an assignment ρ such that Mρ  SExϕ and Mρ 6
∃x(ϕ∧∀1r((AEy(r(y))) ⇒ r(x))). From the latter it follows that, for any d ∈ |ϕ|xMρ, there
exists a set Xd ∈ D1 such that µ(Xd

c) = 0 and d 6∈ Xd. But then

|ϕ|xMρ ⊆
⋃

d∈|ϕ|xMρ

Xd
c,

and hence µ(|ϕ|xMρ) = 0 (since µ(Xd
c) = 0 for all d, the union of all these sets is still

contained in a zero-measure set by the fact that µ is supported), from which follows that
Mρ  AEx¬ϕ. This contradicts Mρ  SExϕ, hence the existence of such an M and ρ is
absurd. This shows that axiom SE is sound.

Finally, Proposition 2.12 and Remark 3.5 guarantee that the inference rules are sound.
�

Observe that we obtain a seemingly incomplete but still useful sound calculus for
FOL+AE by dropping the axioms and rules about ∀1 and replacing axiom SE by KAE,
∀AE and AE∃.

Proposition 4.3 (Soundness within FOL+AE) The calculus composed of axioms Taut,
K∀, I∀, KAE, IAE, ∀AE and AE∃ plus inference rules MP and ∀Gen is sound with respect
to the class of FOL+AE interpretation structures.

Proof. Analogous to the previous proof, observing that the soundness of the FOL+AE
components of the calculus does not depend on the measures being supported. �

Proposition 4.4 (Independence of AE∃ within FOL+AE) Axiom AE∃ is not derivable
from the remaining FOL+AE axioms.

Proof. As discussed in the proof of Proposition 2.10, this axiom is equivalent to the
property µ(D) 6= 0 in the definition of structure for FOL+AE (Definition 2.5). If this re-
quirement is removed all other axioms and inference rules remain sound w.r.t. the (larger)
class of structures, which in turn does not satisfy AE∃. Hence this axiom is independent
from the others. �

Proposition 4.5 (Independence of KAE within FOL+AE) Axiom KAE is not derivable
from the remaining FOL+AE axioms.

11



Proof. Replacing AE everywhere by ∃ in the calculus yields valid FOL formulas except
in the case of KAE, since (∃x(ϕ ⇒ ψ)) ⇒ ((∃xϕ) ⇒ (∃xψ)) does not hold, as is easily
seen by taking ψ to be ff. This means that replacing AE by ∃ in any formula that can
be derived in FOL+AE without using axiom KAE yields a valid FOL formula. Since this
does not hold for KAE itself, this axiom cannot be derived from the others. �

Observe that Propositions 4.4 and 4.5 still hold if we enrich FOL+AE with the unary
second-order semantic features and adopt the usual axioms K∀1, I∀1 and Comp. There-
fore, we can establish the following result.

Proposition 4.6 (Independence of SE within 2-FOL+AE) Axiom SE is not derivable
from the remaining axioms.

Proof. Within 2-FOL+AE we can infer AE∃ and KAE from SE, as mentioned above. �

Meta-theorems and rule admissibility

Let ϕ1, . . . , ϕn be a derivation from a set of hypothesis Γ. Recall that ϕi is said to depend
from the hypothesis γ ∈ Γ if: either ϕi is γ; or ϕi is obtained by applying generalization
to ϕj, which depends on γ; or ϕi is obtained by applying MP to ϕj and ϕk, and at least
one of these depends on γ.

An application of generalization to ϕ in a derivation is said to be an essential gen-
eralization over a dependent of γ if ϕ depends on γ and the variable being generalized
occurs free in γ.

Proposition 4.7 (Deduction Theorem for 2-FOL+AE) Let Γ be a set of formulas and
ϕ, ψ be formulas. Suppose that Γ ∪ {ϕ} ` ψ and that in the derivation of ψ no essential
generalizations were made over dependents of ϕ. Then Γ ` ϕ⇒ ψ.

Proof. The proof of the Deduction Theorem for FOL applies here, since no new infer-
ence rules were added. �

Corollary 4.8 Let Γ be a set of formulas and ϕ, ψ be formulas with ϕ closed. If
Γ ∪ {ϕ} ` ψ, then Γ ` ϕ⇒ ψ.

Proof. If ϕ is closed, no essential generalizations over dependents of ϕ are possible,
hence the Deduction Theorem applies. �

We now turn our attention the rule concerning the introduction of the AE quantifier.

Proposition 4.9 (Admissibility of AEGen within 2-FOL+AE) The following rule of gen-
eralization for the almost-everywhere quantifier is admissible.

(AEGen) from ϕ infer AExϕ
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Proof. Suppose that ϕ1, . . . , ϕn is a derivation where ϕ occurs at step n. Then we can
proceed as follows.

n. ϕ
n+ 1. ∀xϕ ∀Gen n
n+ 2. (∀xϕ) ⇒ (AExϕ) ∀AE
n+ 3. AExϕ MP n+ 2, n+ 1

�

From this point onwards, we will use AEGen whenever helpful. Notice that, in applying
the Deduction Theorem, care must be taken to verify that no essential generalizations
over dependents of the hypothesis are implicitly made through the use of AEGen.

Useful theorems and alternative axiomatizations

As mentioned before, KAE is derivable in 2-FOL+AE. Consider the following derivation:

1. ∀1r((AEy(r(y))) ⇒ r(x)) Hyp
2. (∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ((AEy(ϕ⇒ ψ)) ⇒ (ϕyx ⇒ ψyx)) I∀1

3. (AEy(ϕ⇒ ψ)) ⇒ (ϕyx ⇒ ψyx) MP 1, 2
4. AEy(ϕ⇒ ψ) Hyp
5. ϕyx ⇒ ψyx MP 3, 4
6. (∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ((AEyϕ) ⇒ ϕyx) I∀1

7. (AEyϕ) ⇒ ϕyx MP 1, 6
8. AEyϕ Hyp
9. ϕyx MP 7, 8

10. ψyx MP 5, 9

By the Deduction Theorem we conclude that {AEy(ϕ⇒ ψ),AEyϕ} ` (∀1r(AEy(r(y))) ⇒
r(x)) ⇒ ψyx. Notice that axiom SE can be rewritten equivalently as

[SE′] (∀x((∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ϕ)) ⇒ (AExϕ)

using de Morgan laws. We proceed towards KAE as follows:

1. (∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ψyx Hyp
2. ∀x((∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ψyx) ∀Gen 1
3. (∀x((∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ψyx)) ⇒ (AExψ) SE′

4. AExψyx MP 2, 3

Finally, by applying MP twice and using axiom IAE we obtain KAE.
The interplay between ∀ and AE can be axiomatized in different ways within FOL+AE.

An interesting possibility is replacing AE∃ by the following formula.

(AESE) (AExϕ) ⇒ (SExϕ)

This formula is a counterpart to the FOL theorem (∀xϕ) ⇒ (∃xϕ). It is easily deriv-
able within FOL+AE, recalling that negation and significant existence are defined by
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abbreviation. The first lemma we use in the following derivation will be proved in the
next proposition (its proof does not require AE∃), while the second one is a simple FOL
theorem.

1. AExϕ Hyp
2. AEx(¬ϕ) Hyp
3. ((AExϕ) ∧ (AEx(¬ϕ))) ⇒ AEx(ϕ ∧ (¬ϕ)) Lemma
4. (AExϕ) ⇒ ((AEx(¬ϕ)) ⇒ ((AExϕ) ∧ (AEx(¬ϕ)))) Taut
5. (AEx(¬ϕ)) ⇒ ((AExϕ) ∧ (AEx(¬ϕ))) MP 4, 1
6. (AExϕ) ∧ (AEx(¬ϕ)) MP 5, 2
7. AEx(ϕ ∧ (¬ϕ)) MP 3, 6
8. (AEx(ϕ ∧ (¬ϕ))) ⇒ (∃x(ϕ ∧ (¬ϕ))) AE∃
9. ∃x(ϕ ∧ (¬ϕ)) MP 8, 7

10. (∃x(ϕ ∧ (¬ϕ))) ⇒ ff Lemma
11. ff MP 10, 9

Applying the Deduction Theorem twice yields the conclusion.
Conversely, from AESE we can derive AE∃.

1. AExϕ Hyp
2. (AExϕ) ⇒ ¬(AEx(¬ϕ)) AESE
3. ¬(AEx(¬ϕ)) MP 2, 1
4. (∀x(¬ϕ)) ⇒ (AEx(¬ϕ)) ∀AE
5. ((∀x(¬ϕ)) ⇒ (AEx(¬ϕ))) ⇒ ((¬AEx(¬ϕ)) ⇒ (¬∀x(¬ϕ))) Taut
6. (¬AEx(¬ϕ)) ⇒ ¬∀x(¬ϕ) MP 5, 4
7. ¬∀x(¬ϕ) MP 6, 3

The last formula abbreviates to ∃xϕ; the Deduction Theorem establishes AE∃.

Proposition 4.10 All the statements in Proposition 2.10 are derivable in FOL+AE.
Furthermore, the following dependencies hold.

• 8 requires KAE and ∀AE;

• 10, 11 and 12 require AE∃ and 6 (and hence also KAE and ∀AE).

Proof. We first show that all formulas are derivable. The numbering is the same as in
Proposition 2.10.

1., 2., 4. and 7. These formulas are all axioms.

3. The second step is to show that (AExϕ) ⇒ (AEy[ϕ]xy) holds whenever y does not occur
in ϕ. We invoke the Deduction Theorem.

1. AExϕ Hyp
2. AEy((AExϕ) ⇒ [ϕ]xy) IAE
3. (AEy((AExϕ) ⇒ [ϕ]xy)) ⇒ ((AEyAExϕ) ⇒ (AEy[ϕ]xy)) KAE
4. (AEyAExϕ) ⇒ (AEy[ϕ]xy) MP 3, 2
5. AEyAExϕ AEGen 1
6. AEy[ϕ]xy MP 4, 5

Notice that the Deduction Theorem applies since the generalization in step 5 is over
y, which is not free in AExϕ.
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5. For (∀x(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ)) we again invoke the Deduction Theorem.

1. ∀x(ϕ⇒ ψ) Hyp
2. (∀x(ϕ⇒ ψ)) ⇒ (AEx(ϕ⇒ ψ)) ∀AE
3. AEx(ϕ⇒ ψ) MP 2, 1
4. (AEx(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ)) KAE
5. (AExϕ) ⇒ (AExψ) MP 4, 3

6. We now show (∀x(ϕ ⇔ ψ)) ⇒ ((AExϕ) ⇔ (AExψ)). Let z stand for a variable not
occurring in either ϕ or ψ, so that z . x : ϕ and z . x : ψ.

1. (ϕ⇔ ψ) ⇒ (ϕ⇒ ψ) Taut
2. ∀x((ϕ⇔ ψ) ⇒ (ϕ⇒ ψ)) ∀Gen 1
3. (∀x((ϕ⇔ ψ) ⇒ (ϕ⇒ ψ))) ⇒ ((∀x(ϕ⇔ ψ)) ⇒ (∀x(ϕ⇒ ψ))) K∀
4. (∀x(ϕ⇔ ψ)) ⇒ (∀x(ϕ⇒ ψ)) MP 3, 2
5. ∀x(ϕ⇔ ψ) Hyp
6. ∀x(ϕ⇒ ψ) MP 4, 5
7. (∀x(ϕ⇒ ψ)) ⇒ (AEx(ϕ⇒ ψ)) ∀AE
8. AEx(ϕ⇒ ψ) MP 7, 6
9. (AEx(ϕ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ)) KAE

10. (AExϕ) ⇒ (AExψ) MP 9, 8

Repeating this proof with ϕ and ψ interchanged (except in the premisse of 1) we ob-
tain the converse implication, from which the bi-implication follows by propositional
reasoning; the desired formula is then a consequence of the Deduction Theorem.

8. The proof of ((AExϕ) ∧ (AExψ)) ⇔ AEx(ϕ ∧ ψ) is done in several steps. We first show
each of the implications separately, using the Deduction Theorem, and then invoke
propositional reasoning to show the bi-implication.

The right-to-left implication is proved as follows.

1. AEx(ϕ ∧ ψ) Hyp
2. ϕ ∧ ψ ⇒ ϕ Taut
3. AEx(ϕ ∧ ψ ⇒ ϕ) AEGen 2
4. (AEx(ϕ ∧ ψ ⇒ ϕ)) ⇒ ((AEx(ϕ ∧ ψ)) ⇒ (AExϕ)) KAE
5. (AEx(ϕ ∧ ψ)) ⇒ (AExϕ) MP 4, 3
6. AExϕ MP 5, 1

Reasoning in a similar way we derive AExψ, whence we get by propositional rea-
soning and the Deduction Theorem that (AEx(ϕ ∧ ψ)) ⇒ ((AExϕ) ∧ (AExψ)).
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For the converse we proceed as follows.

1. AExϕ Hyp
2. AExψ Hyp
3. (AEx(ϕ⇒ (ψ ⇒ (ϕ ∧ ψ)))) ⇒ ((AExϕ) ⇒ (AEx(ψ ⇒ (ϕ ∧ ψ)))) KAE
4. ϕ⇒ (ψ ⇒ (ϕ ∧ ψ)) Taut
5. AEx(ϕ⇒ (ψ ⇒ (ϕ ∧ ψ))) AEGen 4
6. (AExϕ) ⇒ (AEx(ψ ⇒ (ϕ ∧ ψ))) MP 3, 5
7. AEx(ψ ⇒ (ϕ ∧ ψ)) MP 6, 1
8. (AEx(ψ ⇒ (ϕ ∧ ψ))) ⇒ ((AExψ) ⇒ (AEx(ϕ ∧ ψ))) KAE
9. (AExψ) ⇒ (AEx(ϕ ∧ ψ)) MP 8, 7

10. AEx(ϕ ∧ ψ) MP 9, 2

By applying the Deduction Theorem we obtain ((AExϕ)∧ (AExψ)) ⇒ (AEx(ϕ∧ψ)),
from which the conclusion again follows by propositional reasoning.

9. The proof that AExtt is derivable is straightforward.

1. tt Taut
2. AExtt AEGen 1

10. and 11. These two formulas are the same since SE is defined as an abbreviation; they
were shown above to be derivable.

12. Finally, we show that ((AExϕ) ∧ (AExψ)) ⇒ ∃x(ϕ ∧ ψ). We use as lemma a formula
already derived in the proof of (6).

1. (AExϕ) ∧ (AExψ) Hyp
2. ((AExϕ) ∧ (AExψ)) ⇒ AEx(ϕ ∧ ψ) Lemma
3. AEx(ϕ ∧ ψ) MP 2, 1
4. (AEx(ϕ ∧ ψ)) ⇒ (∃x(ϕ ∧ ψ)) AE∃
5. ∃x(ϕ ∧ ψ) MP 4, 3

The result once again follows from the Deduction Theorem.

As for the dependencies, using the last three formulas and the remaining axioms one
can easily derive AE∃ (part of this fact was shown above), so the dependency is really
essential.

Also, according to the proof of Proposition 4.5, it is enough to verify that ((∃xϕ) ∧
(∃xψ)) ⇔ ∃x(ϕ ∧ ψ) is not a theorem of FOL (which it is not) to establish that
((AExϕ) ∧ (AExψ)) ⇔ AEx(ϕ ∧ ψ) cannot be proved without using axiom KAE, so this
dependency is also essential. �

5 Completeness

The completeness proof for 2-FOL+AE follows the structure of the usual completeness
proof for FOL: we reduce the problem to showing that any consistent set of closed formulas
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has a model and focus on constructing a term model for a given set of closed formulas
whose domain is the set of closed terms over a defined extension of the language. First
we show that any consistent set of formulas has a maximal consistent extension, using
the usual Lindenbaum construction. Afterwards, we add existential (Henkin) witnesses
for formulas of the form ¬∀xϕ (equivalent to ∃x¬ϕ) and ¬∀1rϕ (equivalent to ∃1r¬ϕ)
while preserving consistency. From this extended signature we build a term model, to
which we assign a measure function by looking at the syntactic extent of formulas.

Definition 5.1 A set Γ is said to be consistent if there is a formula ϕ such that Γ 6` ϕ.

Lemma 5.2 Suppose ϕ is closed. If Γ 6` ¬ϕ then Γ ∪ {ϕ} is consistent.

Proof. Assume that Γ∪{ϕ} is inconsistent; then Γ∪{ϕ} ` ψ for any formula ψ, hence
in particular Γ ∪ {ϕ} ` ¬ϕ. Since ϕ is closed, the corollary to the Deduction Theorem
applies and we conclude that Γ ` ϕ ⇒ ¬ϕ. But Γ ` (ϕ ⇒ ¬ϕ) ⇒ ¬ϕ, since the latter
formula is an instance of a propositional tautology. By MP it follows that Γ ` ¬ϕ, from
which our lemma follows by counter-reciprocal. �

This result allows us to prove completeness in the following way. To show that if
Γ |= ϕ then Γ ` ϕ, we assume that ϕ is closed and that Γ 6` ϕ; by the previous lemma,
Γ ∪ {¬ϕ} is consistent. Then we will build a model for Γ ∪ {¬ϕ}, contradicting the
assumption that Γ |= ϕ. If ϕ is not closed we simply take its universal closure ∀ϕ.

Definition 5.3 A set Γ is said to be maximal consistent if it is consistent and, for every
closed formula ϕ, either ϕ ∈ Γ or Γ ∪ {ϕ} is inconsistent.

Definition 5.4 A set Γ is exhaustive if it is consistent and, for every closed formula ϕ,
either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 5.5 A set Γ is maximal consistent iff it is exhaustive.

Proof. If Γ is not consistent the result is trivial, so suppose Γ is consistent.
Assume Γ is exhaustive. Then Γ is maximal consistent: given ψ closed, either ψ ∈ Γ

or ¬ψ ∈ Γ, and in the latter case Γ ∪ {ψ} is inconsistent.
Assume Γ is not exhaustive, and suppose without loss of generality that it is deduc-

tively closed (if it were not closed, then any ψ ∈ (Γ` \ Γ) would contradict maximality
of Γ). Then there is some closed formula ϕ such that ϕ 6∈ Γ and ¬ϕ 6∈ Γ; equivalently,
since Γ is closed, ϕ 6∈ Γ and Γ 6` ¬ϕ. By Lemma 5.2, Γ∪ {ϕ} is a consistent extension of
Γ, hence Γ is not maximal consistent. �

Proposition 5.6 Suppose Γ is consistent. Then there is an exhaustive extension of Γ,
which we will denote by Γ.

Proof. Let ϕ0, . . . , ϕn, . . . be an enumeration of the closed formulas over Σ and consider
the following sequence of sets of formulas.

Γ0 = Γ

Γn+1 =

{
(Γn ∪ {ϕn})` if Γn 6` ¬ϕn
Γn otherwise
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By Lemma 5.2, induction proves that each Γn is consistent. Take their union Γ = ∪n∈NΓn.
Then:

• Γ is consistent: otherwise there is some closed ϕ for which ϕ ∈ Γ and ¬ϕ ∈ Γ,
whence by definition of Γ there are i and j for which ϕ ∈ Γi and ¬ϕ ∈ Γj, and then
Γmax(i,j) would be inconsistent;

• Γ is exhaustive: we already showed that Γ is consistent; furthermore, any closed ψ
is ϕn for some n, so either Γn 6` ¬ψ, from which ψ ∈ Γn+1 and therefore ψ ∈ Γ,
or Γn ` ¬ψ, from which follows (since Γn is closed) that ¬ψ ∈ Γn and therefore
¬ψ ∈ Γ.

�

From this point onwards we fix a signature Σ0. Let {cn | n ∈ N} be a set of constants
such that no cn occurs in Σ0, {pn | n ∈ N} be a set of unary predicate symbols with
the same property, and denote by Σ+ the signature obtained by adding the cns and the
pns to Σ0. Let {ψ+

n | n ∈ N} be an enumeration of the formulas over Σ+ with one free
first-order variable and {θ+

n | n ∈ N} be an enumeration of the formulas over Σ+ with
one free second-order variable. Let yn stand for the free variable in formula ψ+

n and sn
for the free variable in formula θ+

n . Let Γ0 be consistent over Σ0.

Lemma 5.7 Let γn and δn denote the following formulas, for each n ∈ N.

γn = (¬(∀ynψ+
n )) ⇒ ¬[ψ+

n ]yn
cn

δn = (¬(∀1snθ
+
n )) ⇒ ¬[θ+

n ]sn
pn

Consider the following sequence of sets of formulas.

Γ′
0 = Γ0

Γ′
2n+1 = (Γ′

2n ∪ {γn})
`

Γ′
2n+2 =

(
Γ′

2n+1 ∪ {δn}
)`

Then Γ′ = ∪n∈NΓ′
n is consistent.

Proof. Suppose that Γ′ is not consistent. Then there is some n for which Γ′
n is not

consistent; consider now the minimal such n. There are two cases to consider.

(i) If n = 0, then Γ0 is inconsistent, which is absurd: the usual proof for FOL that
consistent sets over a signature are consistent over a larger signature can be applied
in this setting.

(ii) Take now n > 0. The proof is very similar according to whether n is even or odd,
so suppose without loss of generality that n = 2k+1. Then Γ′

2k∪{γk} ` ¬γk. Since
(γk ⇒ ¬γk) ⇒ ¬γk is an instance of a propositional tautology and γk is closed,
the corollary to the Deduction Theorem and propositional reasoning imply that
Γ′

2k ` ¬γk. Hence we conclude that Γ′
2k ` ¬∀ykψ+

k and Γ′
2k ` [ψ+

k ]yk
ck

. By induction on
the length of the derivation of [ψ+

k ]yk
ck

it is easy to check that Γ′
2k ` [ψ+

k ]yk
z , where z is
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some fresh variable not appearing in the original derivation. Applying generalization
and α-equivalence for ∀ (which is a (meta-)theorem in FOL) we conclude that
Γ′

2k ` ∀ykψ+
k , so Γ′

2k is also inconsistent. This contradicts the assumption that n
was the minimal n for which Γ′

n was inconsistent.

If n = 2k + 2 the reasoning is analogous replacing γ+
k by θ+

k , yk by sk and ck by pk
everywhere.

�

By the last result and Proposition 5.6, there is an exhaustive extension of Γ′, which
is also an exhaustive extension of Γ0 w.r.t. the signature Σ+. We denote this extension
Γ′ by Γ+. We use Γ+ to build a canonical model for Γ0 in a way that deviates little from
the standard first-order techniques.

Definition 5.8 Let Γ+ be an exhaustive set of formulas. The set HΓ+ is the set {t |
[ψ+
n ]yn
t ∈ Γ+ whenever (AEynψ

+
n ) ∈ Γ+}.

In other words, HΓ+ is the set of terms that are relevant from the point of view of AE
(“heavy” terms). This set will be relevant to define a measure on the canonical model.

Definition 5.9 The structure M+ = 〈D, [[·]]+,B, µ〉 is defined as follows.

• D is the set of closed Σ+-terms.

• D1 contains all sets of the form {t | p(t) ∈ Γ+} for some predicate symbol p in Σ+.

• The interpretation of any constant or function symbol is itself.

• For any values d1, . . . , dn ∈ D, [[p(d1, . . . , dn)]]
+ holds if p(d1, . . . , dn) ∈ Γ+.

• B = ℘(D).

• For A ⊆ D, µ(A) is defined as the number of heavy terms in A, that is, µ(A) =
|A ∩HΓ+|.

The structure M0 = 〈D, [[·]]0,B, µ〉 is obtained by taking [[c]]0 = [[c]]+, [[f ]]0 = [[f ]]+ and
[[p]]0 = [[p]]+ for constants c, function symbols f and predicate symbols p in Σ0. Notice
that M0 is an interpretation structure for Σ0.

It is straightforward to check that M+ and M0 are well-defined structures. In particular,
µ is a supported measure.

Proposition 5.10 Let ϕ+ be a closed formula over Σ+. Then M+  ϕ+ iff ϕ+ ∈ Γ+.

Proof. First, observe that a simple proof by structural induction shows that [[t]]+ = t
for any closed term t. We now prove the thesis by induction on the structure of closed
formula ϕ+.

If ϕ+ is p(t1, . . . , tn) or r(d), then the thesis holds by definition of M+.
If ϕ+ is ¬ψ+, then M+  ϕ+ iff M+ 6 ψ+ (by definition of satisfaction) iff ψ+ 6∈ Γ+

(by induction hypothesis) iff ¬ψ+ ∈ Γ+ (since Γ+ is exhaustive).
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If ϕ+ is ψ+ ⇒ γ+, then M+  ϕ+ iff (1) M+ 6 ψ+ or (2) M+  γ+. If (1) holds then
ψ+ 6∈ Γ+ (by induction hypothesis) hence ¬ψ+ ∈ Γ+ (since Γ+ is exhaustive) and thus
ψ+ ⇒ γ+ ∈ Γ+ (since Γ+ is closed). If (2) holds then γ+ ∈ Γ+ (by induction hypothesis)
and again ψ+ ⇒ γ+ ∈ Γ+ (since Γ+ is closed). If neither (1) nor (2) holds then ψ+ ∈ Γ+

and γ+ 6∈ Γ+ (by induction hypothesis) hence ¬γ+ ∈ Γ+ (since Γ+ is exhaustive) and thus
¬(ψ+ ⇒ γ+) ∈ Γ+ (since Γ+ is closed) whence ψ+ ⇒ γ+ 6∈ Γ+ (since Γ+ is consistent).

If ϕ+ is ∀xψ+ then there are two cases. If ψ+ is itself closed the result follows trivially
from the induction hypothesis. Otherwise, ψ+ has one free variable and hence ϕ+ is
(α-equivalent to) ∀ynψ+

n for some n. There are two cases to consider.

• Suppose that M+ 6 ∀ynψ+
n . Then M+ 6 [ψ+

n ]yn

d for some d ∈ D. By definition
of D, d must be a closed term over Σ+, so by induction hypothesis [ψ+

n ]yn

d 6∈ Γ+.
By exhaustiveness of Γ+ it follows that ¬[ψ+

n ]yn

d ∈ Γ+ and therefore Γ+ ` ¬[ψ+
n ]yn

d ;
but Γ+ ` (∀ynψ+

n ) ⇒ [ψ+
n ]yn

d , hence by propositional reasoning it follows that Γ+ `
¬(∀ynψ+

n ). Since Γ+ is consistent we conclude that (∀ynψ+
n ) 6∈ Γ+.

• Suppose now that ∀ynψ+
n 6∈ Γ+. By exhaustiveness of Γ+, it follows that ¬(∀ynψ+

n ) ∈
Γ+. By construction, (¬(∀ynψ+

n ) ⇒ ¬[ψ+
n ]yn
cn ) ∈ Γ+, hence by MP we conclude that

¬[ψ+
n ]yn
cn ∈ Γ+. But Γ+ is consistent, hence [ψ+

n ]yn
cn 6∈ Γ+ and therefore M+ 6 [ψ+

n ]yn
cn

by induction hypothesis, hence M+ 6 ∀ynψ+
n .

The case when ϕ+ is ∀1xψ+ is analogous to the previous.
Finally suppose that ϕ+ is AExψ+. Again the case where ψ+ is closed follows trivially

from the induction hypothesis. Otherwise, ψ+ has one free variable and hence ϕ+ is again
(α-equivalent to) AEynψ

+
n for some n, using axiom IAE. There are two cases to consider.

• Suppose that M+ 6 AEynψ
+
n . Then

(
|ψ+
n |
yn

M+

)c ⊆ B implies µ(B) > 0. Since in this

structure all sets are measurable, this implies that in particular µ(
(
|ψ+
n |
yn

M+

)c
) > 0,

hence there is some heavy term t for which M+ 6 [ψ+
n ]yn
t . By induction hypothesis

[ψ+
n ]yn
t 6∈ Γ+. By exhaustiveness of Γ+ it follows that ¬[ψ+

n ]yn
t ∈ Γ+. But by

definition of heavy term this implies that (AEynψ
+
n ) 6∈ Γ+.

• Suppose now that AEynψ
+
n 6∈ Γ+. By exhaustiveness of Γ+, it follows that ¬(AEynψ

+
n )

is in Γ+ and, therefore, so is (SEyn¬ψ+
n ). By axiom SE and exhaustiveness, also

∃yn((¬ψ+
n ) ∧ ∀1r((AEy(r(y))) ⇒ r(yn))) ∈ Γ+. Since the formula inside the exis-

tential quantifier has one free first-order variable, it must be ψk for some k, and
hence we conclude that [(¬ψ+

n ) ∧ ∀1r((AEy(r(y))) ⇒ r(yn))]
yn
ck
∈ Γ+, whence from

exhaustiveness [¬ψ+
n ]yn
ck
∈ Γ+ and [∀1r((AEy(r(y))) ⇒ r(yn))]

yn
ck
∈ Γ+. By induc-

tion hypothesis M+  [¬ψ+
n ]yn
ck

; again by exhaustiveness, if AEyjψ
+
j ∈ Γ+ then also

[ψ+
j ]
yj
ck ∈ Γ+, hence ck is heavy. Then µ({ck}) = 1 and {ck} ⊆

(
|ψ+
n |
yn

M+

)c
, hence by

monotonicity of measures we conclude that M+ 6|= AEynψ
+
n .

This concludes the proof. �

Corollary 5.11 Let ϕ0 be a closed formula over Σ0. Then M0  ϕ0 iff ϕ0 ∈ Γ0.

Proof. A proof by induction on the construction of Γ+ shows that, for ϕ0 over Σ0, it
is the case that ϕ0 ∈ Γ0 iff ϕ0 ∈ Γ+, since Γ0 is maximal consistent over Σ0. By the
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previous proposition, the latter is equivalent to M+  ϕ0. A simple proof by induction
again shows that this happens iff M0  ϕ0. �

Proposition 5.12 Γ0 has a model.

Proof. By Corollary 5.11 the canonical model M0 (Definition 5.9) is a model of Γ0. �

Furthermore, we know a lot about the nature of this model.

Proposition 5.13

1. Γ0 has a model with a countable domain.

2. Γ0 has a discrete model.

Proof. The model constructed above has a countable domain, and hence a discrete
measure. �

The construction shown above leads to a model with a counting measure. Thus,
since the set of heavy constants may be denumerable, the measure of the domain can be
infinite. However, it is straightforward to adapt the construction in order to get a finite
measure: enumerating HΓ+ and assigning µ(tk) = 1/2k+1 will yield a probability measure
if this set is infinite.

Theorem 5.14 (Completeness)

1. The deductive system for 2-FOL+AE is complete w.r.t. the class of supported in-
terpretation structures.

2. The deductive system for 2-FOL+AE is complete w.r.t. the class of discrete inter-
pretation structures.

Proof.

1. The proof is by counter-reciprocal. Let Γ be a set of formulas and ϕ be a formula,
and suppose that Γ 6` ϕ. Then Γ 6` ∀ϕ, where ∀ϕ denotes the universal closure of
ϕ. By Lemma 5.2, Γ∪{¬∀ϕ} is consistent. By Proposition 5.12 there is a model of
Γ ∪ {¬∀ϕ}; in particular, it is a model of Γ that does not satisfy ∀ϕ and therefore
neither does it satisfy ϕ. Hence Γ 6|= ϕ.

2. Analogous using Proposition 5.13.

�

Corollary 5.15 (Compactness) The logic 2-FOL+AE is compact, i.e. if Γ |= ϕ then
there is a finite subset Ψ ⊆ Γ such that Ψ |= ϕ.
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Proof. Assume that Γ |= ϕ. By completeness it follows that Γ ` ϕ. Since derivations
are finite, in any given derivation of ϕ from Γ only a finite number of formulas in Γ can
be used. Pick a derivation, and take Ψ to be the set of these formulas. Then Ψ ` ϕ, and
by soundness Ψ |= ϕ. �

Corollary 5.16 (Semi-decidability) The logics FOL+AE and 2-FOL+AE are both semi-
decidable, that is, the set of valid formulas is recursively enumerable but not recursive.

Proof. In both logics, the set of all derivations is recursively enumerable, since the set
of sequences of formulas is recursively enumerable and deciding whether a given sequence
is a valid derivation is recursive. This immediately yields a recursive enumeration of the
set of valid formulas: they are the last formulas in valid derivations.

On the other hand, if this set were recursive then FOL would be decidable, since both
logics have been shown to be conservative extensions of FOL (Propositions 2.6 and 3.6):
given a FOL formula it would be enough to check whether it were valid in FOL+AE or
2-FOL+AE. Since FOL is not decidable, neither can any of the latter be. �

6 Concluding remarks

Motivated by current concerns in the logics of security, we enriched FOL with a measure-
theoretic “for almost all” quantifier AE. This quantifier turned out to be, according
to the taxonomy in [8], a modulated quantifier, a “most” quantifier, and a “ubiquity”
quantifier, but, interestingly, not an “almost all” quantifier. Nevertheless, we feel justified
to say that AE is an “almost everywhere” quantifier given its measure-theoretic semantics.
We established a sound calculus for FOL+AE and argued that it could not be made
complete. By slightly restricting the class of structures and adding restricted second-
order quantification to the language, we defined a new logic 2-FOL+AE endowed with
a complete axiomatization. The proof of completeness uses a revamped version of the
Lindenbaum–Henkin technique.

Towards further development of the idea of enriching FOL towards a full-fledged
kleistic logic for applications in security, we now consider some variants of 2-FOL+AE
and discuss how their study might be pursued.

A very simple generalization is obtained by replacing in the definition of satisfaction
the clause for Mρ  AExϕ by the following.

Mρ  AExϕ if there is B ∈ B such that
(
|ϕ|xMρ

)c ⊆ B and µ(B) < ε

(In measure theory, this is sometimes referred to as “the interior measure of
(
|ϕ|xMρ

)c
is

at least ε”.)
The motivation for this can be seen as relaxing the condition for a set (of values that

do not satisfy a given formula) to be considered insignificant. Instead of requiring that
it have zero measure, we only insist that its measure be smaller than a given quantity ε
(but the logic remains qualitative).
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Unfortunately, this small change makes the resulting logic non-normal, since the class
of sets whose measure is bounded by ε is no longer necessarily closed under union. Fur-
thermore, if the total measure of the domain is finite (for example, if 〈D,B, µ〉 is a
probability space) other properties like (AExϕ) ∨ (AEx¬ϕ) may hold instead.

In the case where no restrictions are placed on µ(D) other than it be positive, there
is hope that a complete axiomatization can be found for which a similar proof technique
will establish completeness. Unfortunately, if µ(D) is finite the technique itself is not a
priori applicable: there will be no way to have more than bµ(D)/εc significant existential
witnesses in the canonical model, since they form disjoint measurable sets; and it is easy
to produce a sequence of formulas that requires an infinite number of existential witnesses
from just one unary predicate symbol p as shown by the following sequence ϕ1, . . . , ϕn, . . .,
where ti1 , . . . , tin , . . . are heavy terms in the canonical model and ik is such that ϕk is
¬(AExψ+

ik
).

ϕ1 ≡ SExp(x)

ϕ2 ≡ SEx(p(x) ∧ ¬p(ti1))
...

ϕn+1 ≡ SEx(p(x) ∧ ¬p(ti1) ∧ . . . ∧ ¬p(tin))
...

With the standard semantics, the set {ϕn | n ∈ N} is consistent, and its canonical model
will require an infinite number of witnesses.

In this context, another generalization that arises naturally is allowing different modu-
lated quantifiers to be interpreted by constraints involving different values of ε. The most
interesting scenario is when µ(D) is finite; without loss of generality, we may suppose
that µ(D) = 1, so that 〈D,B, µ〉 is in fact a probability space. A possible setting that
still keeps the language countable is to allow a countable set of modulated quantifiers
AEε, with ε ∈ Q, satisfying properties like the following.

(AEεxϕ) ⇒ (AEδxϕ) if ε ≤ δ
((AEεxϕ) ∧ (AEδxϕ)) ⇒ (AEε+δxϕ)

¬(SE1+εxϕ)

For security applications, this line of research will lead naturally to a “securely every-
where” quantifier with the following intended meaning: Sxϕ holds iff the probability of
an attacker falsifying ϕ by an appropriate choice of the value of x is negligible. The rela-
tionship between S and AEε would require an inference rule, given the implicit universal
quantification over ε in one direction.

Notice that this variant yields a logic that includes quantitative features, yet still has
a qualitative flavor and retains the usual FOL terms. The study of such a kleistic logic
will be the object of future research.

In a different direction, it seems worthwhile to study the relationship between the
proposed model-theoretic quantifiers and those based on topology-theoretic semantics,
such as a “densely everywhere” quantifier or the “ubiquity” quantifier in [8].
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