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Abstract: Originally proposed in the mid-90s, design patterns for software development played a key role in object-
oriented programming not only in increasing software quality, but also by giving a better understanding of
the power and limitations of this paradigm. Since then, several authors have endorsed a similar task for other
programming paradigms, in the hope of achieving similar benefits.
In this paper we discuss design patterns for hybrid semantic web systems combining several description logic
knowledge bases via a logic program. We introduce eight design patterns, grouped in three categories: three
elementary patterns, which are the basic building blocks; four derived patterns, built from these; and a more
complex pattern, the study of which can shed some insight in future syntactic developments of the underlying
framework. These patterns are extensively applied in a natural way in a large-scale example that illustrates
how their usage greatly simplifies some programming tasks, at the level of both development and extension.
We work in a generalization of dl-programs that supports several (possibly different) description logics, but
the results presented are easily adaptable to other existing frameworks such as multi-context systems.

1 Introduction

In the mid-nineties, the Gang of Four’s work on
software design patterns (Gamma et al., 1995) paved
the way for important advances in software qual-
ity; presently, many valuable experienced designers’
“best practices” are not only published but effectively
used by the software development community. From
very basic, abstract, patterns that can be used as build-
ing blocks of several more complex ones, to business-
specific patterns and frameworks, dozens of design
patterns have been proposed, e.g. (Adams et al., 1996;
Meyer, 1997; Schmidt et al., 2000; Fowler, 2002; Lar-
man, 2004; Mattson et al., 2005; Erl, 2009), establish-
ing a kind of common language between development
teams, which substantially enriches their communica-
tion, and hence the whole design process.

Most of the work around design patterns has been
focused in the object-oriented paradigm, although
some of the patterns are fundamental enough to be
independent of the used modeling and programming
paradigms. Some effort has also been made in adapt-
ing some of these best practices to other paradigms

and in finding new paradigm-specific patterns (An-
toy and Hanus, 2002; Sterling, 2002; Oliveira and
Gibbons, 2005; Gibbons, 2006). In this spirit,
we carried the task of identifying several basic and
other, more complex, patterns in the paradigm of dl-
programs (Eiter et al., 2008) – which join description
logics with rules (expressed as a Datalog-like logic
program) –, a powerful and expressive approach to
reasoning over general knowledge bases or ontolo-
gies.

To the best of our knowledge, design patterns have
not been studied in the framework of dl-programs, in
spite of their importance. That is the goal of this pa-
per. In order to enhance both the modular nature of
dl-programs and the relevance of some important de-
sign principles, we resort to multi description logic
programs (Mdl-programs), a straightforward general-
ization of dl-programs to accommodate for several de-
scription logics.

This work should be seen as quite distinct from
that on ontology design patterns (Gangemi and Pre-
sutti, 2009), a catalogue of which is maintained
at http://ontologydesignpatterns.org/. As



their name suggests, ontology design patterns are
used in ontology development, both to build new on-
tologies from scratch or from other ontologies, and to
update existing ones. In the setting of Mdl-programs,
the ontologies are seen as immutable, being used and
not changed; therefore, our patterns focus almost ex-
clusively on the rule part of the Mdl-program, which
is the entity responsible for coordinating the ontolo-
gies. Thus, ontology design patterns and design pat-
terns for Mdl-programs should in general be seen as
two complementary techniques, and not as alterna-
tives.

The remainder of the paper is structured as fol-
lows. Section 2 explains the context and goals of this
work in more detail. Section 4 presents seven dif-
ferent design patterns, and Section 5 illustrates their
combined use by means of a larger example. Sec-
tion 6 explores limitations and future directions of re-
search, and Section 7 summarizes the contributions
presented earlier.

2 Motivation

The usefulness of combining description logics
with rule-based reasoning systems led to the introduc-
tion of dl-programs (Eiter et al., 2008; Eiter et al.,
2011), that couple a description logic knowledge
base with a generalized logic program, interacting by
means of special atoms, the dl-atoms.

Although the two components of a dl-program are
kept independent, giving dl-programs nice modularity
properties, there is a bidirectional flow of information
via dl-atoms.

The purpose of this paper is to study design pat-
terns in dl-programs, as was previously done for other
programming paradigms – object-oriented (Gamma
et al., 1995), service-oriented (Erl, 2009), func-
tional (Norvig, 1996; Antoy and Hanus, 2002; Gib-
bons, 2006), logic (Sterling, 2002) and others. As
several of these authors observed, studying design
patterns in different programming paradigms is far
from being a trivial task: each paradigm has its spe-
cific features, meaning that patterns that are very
straightforward in one paradigm can be very complex
in another, and vice-versa.

Looking at dl-programs, it is clear that they rep-
resent a completely different programming paradigm
– not only are they closely related to the logic pro-
gramming paradigm, but they involve description
logic knowledge bases, in the presence of which the
study of design patterns attains a different quality: on
the one hand, some patterns become trivial (such as
FAÇADE) or meaningless (such as DYNAMIC BIND-

ING or SINGLETON), on the other hand some pat-
terns pose totally new problems that have not been
addressed in other paradigms where they do not arise
(such as PROXY, which we will discuss in Section 6).

We claim that dl-programs, being a dual-
component system, with a description logic and a
logic-based rule language, provide the adequate set-
ting for the study of design patterns for the Seman-
tic Web. We will work with a straightforward gen-
eralization that we will define precisely in the next
section: Mdl-programs (for Multi Description Logic
programs), which incorporate not one, but a finite set
of description logic knowledge bases. Mdl-programs
are, therefore, multi-component systems connected
by a logic program. This makes perfect sense when
we consider some of the more elaborate design pat-
terns, whose real power can only be appreciated in
this more general setting. Furthermore, most theoret-
ical results known for dl-programs immediately trans-
late to similar results about Mdl-programs, fully jus-
tifying the use of the latter.

There are two questions that immediately come
to mind, though. In the first place, if one wishes to
consider several ontologies, what are the advantages
of using Mdl-programs instead of merging all the de-
sired ontologies and use the result in a standard dl-
program? Also, why work within the framework of
Mdl-programs instead of within other existing frame-
works, such as the more general HEX-programs (Eiter
et al., 2006a) or multi-context systems (Brewka and
Eiter, 2007)? We feel it is important to provide sat-
isfactory answers to these two pertinent issues before
proceeding.

As regards the first point, there are a number of ad-
vantages to keeping ontologies separate, which essen-
tially coincide with the reasons universally invoked to
defend modularity of large-scale systems. Not only is
it much more convenient to have independent knowl-
edge bases (which might even be physically sepa-
rated, or independently managed) than a single, gi-
gantic one, but merging ontologies is in itself a mighty
task with its own specific problems (Grau et al., 2005;
Bruijn et al., 2006).

Furthermore, ontologies are typically very wide-
spectrum, and in practice one does not need to work
with each of them in its entirety. Therefore, keeping
them separate also reduces the number of compatibil-
ity issues one has to deal with to the essential mini-
mum. Clearly, if there are two concepts in two differ-
ent ontologies that should be identified (from a par-
ticular application’s perspective) but are logically in-
consistent, this will always be a problem. However, if
that particular inconsistency is irrelevant for the goal
at hand (because the concepts involved are not used),



then not merging the ontologies will simply not raise
that question – and our approach allows us to bypass
it altogether.

Also, the separation of the knowledge bases al-
lows us to make the most of the positive aspects of
each knowledge base – which is relevant if, say, one
of them is very efficient at performing specific reason-
ing tasks, while another features richer concept and
role constructions.

For these reasons, we feel that a setting that keeps
all relevant knowledge bases separate (where their
interaction is externally controlled) is preferable not
only for the purposes of this paper, but also as a gen-
eral principle.

As regards the second point, dl-programs (and
Mdl-programs) limit heterogeneity to two different
frameworks: description logics for the knowledge
bases part and logic programming for the rule part; the
latter somehow represents the “conductor” that “coor-
dinates” the other parts. However, they fully support
non-monotonicity (even at the level of the description
logic knowledge bases as will be seen later by ap-
plication of a specific basic pattern). Mdl-programs
are therefore a simpler framework than other, more
powerful, alternatives – which is an advantage for
our purpose; still, description logics are at the core
of the Semantic Web, with a huge effort being cur-
rently invested in the interchange between OWL –
an extension of the description logic SROIQ and a
W3C recommendation – and a diversity of rule lan-
guages (Kifer and Boley (eds.), 2010).

Furthermore, as we will discuss, Mdl-programs
inherit all the good properties of dl-programs, which
made them interesting in the first place, while simul-
taneously keeping enough key ingredients of multi-
context systems and HEX-programs to make the study
of design patterns general.

3 Mdl-programs

Multi-description logic programs, the framework
we will use to introduce our design patterns in, gen-
eralize the definition of dl-programs in (Eiter et al.,
2008) to accommodate for several description logic
knowledge bases. This is in line with (Wang et al.,
2005), although we will stick to the original operators
] and ∪- in dl-atoms.

A dl-atom relative to a set of knowledge bases
{L1, . . . ,Ln}1 is

DLi [S1 op1 p1, . . . ,Sm opm pm;Q] (t) ,

1The description logics underlying the Lis need not be
the same.

often abbreviated to DLi[χ;Q](t), where: (1) 1 ≤ i ≤
n; (2) each Sk, with 1≤ k≤m, is either a concept or a
role from Li or a special symbol in {=, 6=}; (3) opk ∈
{],∪- }; (4) pk are the input predicate symbols, which
are unary or binary predicate symbols depending on
the corresponding Sk being a concept or a role; and
(5) Q(t) is a dl-query in the language of Li, that is, it
is either a concept inclusion axiom F or its negation
¬F , or of the form C(t1), ¬C(t1), R(t1, t2), ¬R(t1, t2),
= (t1, t2), 6= (t1, t2), where C is a concept, R is a role,
t, t1 and t2 are terms (variables or constants).

The operators ] and ∪- are used to extend the
knowledge base Li locally, with Sk ] pk (resp.,
Sk∪- pk) increasing Sk (resp., ¬Sk) by the extension
of pk. Intuitively, the dl-atom above adds this infor-
mation to Li and then asks this knowledge base for
the set of terms satisfying Q(t).2

A Multi Description Logic program (Mdl-
program) is a pair 〈{L1, . . . ,Ln},P 〉 where: (1) each
Li is a description logic knowledge base; (2) P is a
set of (normal) Mdl-rules, i.e. rules of the form

a← b1, . . . ,bk,not bk+1, . . . ,not bp

where a is a logic program atom and each b j, for
1 ≤ j ≤ p, is either a logic program atom or a dl-
atom relative to {L1, . . . ,Ln}. Note that P is a gener-
alized logic program, so negation is the usual, closed-
world, negation-as-failure. This is in contrast with the
Li, which (being description logic knowledge bases)
come with an open-world semantics.

The semantics of Mdl-programs is a straight-
forward generalization of the semantics for dl-
programs (Eiter et al., 2008) and will not be discussed
here, since it will not be needed explicitly. In partic-
ular, dl-programs can be seen as Mdl-programs with
only one knowledge base.

On top of Mdl-programs, we de-
fine a useful syntactic construction. An
Mdl-program with observers is a tuple
〈{L1, . . . ,Ln},P ,{Λ1, . . . ,Λn},{Ψ1, . . . ,Ψn}〉 where:
(1) 〈{L1, . . . ,Ln},P 〉 is an Mdl-program; (2) for
1 ≤ i ≤ n, Λi is a finite set of pairs 〈S, p〉 where S is
a concept, a role, or a negation of either, from Li and
p is a predicate from P ; (3) for 1 ≤ i ≤ n, Ψi is a
finite set of pairs 〈p,S〉 where p is a predicate from
P and S is a concept, a role, or a negation of either,
from Li. For each pair in Ψi or Λi, the arities of S
and p must coincide. The sets Λ1, . . . ,Λn,Ψ1, . . . ,Ψn
will occasionally be referred to as the observers of

2The precise semantics is a straightforward adaptation
of (Eiter et al., 2008); the third operator therein introduced
can be defined in terms of ∪- , but not including it simpli-
fies the semantics of Mdl-programs, as discussed in (Wang
et al., 2005).



〈{L1, . . . ,Ln},P 〉. Intuitively, Λi contains concepts
and roles in Li that P needs to observe, in the
sense that P should be able to detect whenever new
facts about them are derived, whereas Ψi contains
the predicates in P that Li wants to observe. For
simplicity, when we consider Mdl-programs with
observers that only have one knowledge base, we will
omit the braces and refer to them as dl-programs with
observers.

The above Mdl-program with observers implicitly
defines the Mdl-program

〈
{L1, . . . ,Ln},P Ψ1,...,Ψn

Λ1,...,Λn

〉
where P Ψ1,...,Ψn

Λ1,...,Λn
is obtained from P by: (1) adding

rule p(X)← DLi[;S](X) for each 〈S, p〉 ∈ Λi, if S is
a concept (and its binary counterpart, if S is a role);
and (2) in each dl-atom DLi[χ;Q](t) (including those
added in the previous step), adding S] p to χ for each
〈p,S〉 ∈Ψi and S∪- p to χ for each 〈p,¬S〉 ∈Ψi.

The next sections will discuss examples of Mdl-
programs in detail.

We are currently working on implementing Mdl-
programs with observers, using the dlvhex tool (Eiter
et al., 2006b), with the goal of experimenting with the
design patterns proposed herein.

We end this section with two remarks. The first
one concerns the asymetry in the generalization from
dl-programs to Mdl-programs. The reader might be
wondering why we do not take this construction a step
further, and define a system with several description
logic knowledge bases and several logic programs.
The answer lies in the asymetry already present in
dl-programs themselves: the logic program is not
only a component of the system, it is also the com-
ponent responsible for interaction with the outside
world. In particular, the dl-program’s view of L is
the view from each dl-atom – all changes made by
P to the knowledge base only affect the logic pro-
gram’s view of it. Therefore, it is natural to consider
several knowledge bases with a single logic program
as the orchestrator (and where the outside world only
“sees” that program’s view of each knowledge base)
rather than a more democratic system with several
logic programs and several knowledge bases freely in-
teracting with each other. This does not exclude that,
in the future, it might be worth to study connecting
patterns between two or more Mdl-programs (for in-
stance, using a Mdl-program as a module of another
Mdl-program, as a way to protect and restrict the ac-
cess to certain knowledge bases).

A second aspect concerns the similarities and dif-
ferences between Mdl-programs and multi-context
systems. In both cases, we are faced with several in-
dependent components connected by a set of rules – a
logic program, in the case of Mdl-programs, and the

sets of bridge rules, in multi-context systems. How-
ever, all components of multi-context systems are
observable from the outside world, since models of
multi-context systems contain models of each individ-
ual component. It is also interesting to observe that
the flavor of bridge rules is pretty much captured by
the generalization to Mdl-programs with observers:
the pairs in the observer sets achieve the effect of sys-
tematically extending a predicate, concept or role in
one component with information from another com-
ponent, in the same way bridge rules control the in-
formation flow within a multi-context system (Cruz-
Filipe et al., 2013).

4 Design patterns for Mdl-programs

In this section, we present seven design patterns
for Mdl-programs. These are divided in two cate-
gories: the three elementary design patterns are the
building blocks for the four more complex ones. To-
gether, these seven patterns form a powerful set from
which quite complex programs can be designed in a
more structured way, simplifying the programmer’s
task while at the same time yielding more flexible pro-
grams that are easier to maintain.

The presentation of each design pattern follows a
similar scheme: we motivate the pattern by means of a
simple scenario leading to the development of a well-
designed program; from these we abstract a general
design pattern, presented as a pair problem/solution
within the context of an Mdl-program with observers
〈{L1, . . . ,Ln},P ,{Λ1, . . . ,Λn},{Ψ1, . . . ,Ψn}〉. In the
next section, we develop a larger application, illus-
trating how the seven patterns work together, comple-
menting each other.

4.1 Elementary design patterns

We now introduce the three basic design patterns for
Mdl-programs.

4.1.1 Observing a knowledge base

We first consider the case when the logic program
component systematically wants to import informa-
tion from a knowledge base in order to define a pred-
icate, keeping track of changes made to the relevant
concept or role in its defining component.

Scenario. The National Zoo keeps an ontology con-
taining information about all the animals currently
living in its premises, as well as several rules per-
taining to the characteristics of the different species.



This ontology L is used also by the company that pro-
vides food for all the zoo’s feline inhabitants, coupled
with a rule-based program P in a dl-program 〈L ,P 〉.
In this program, it is necessary that P be constantly
updated with the information about the current feline
population of the zoo, hence the following rule was
included.

feline(X)← DL[;Feline](X) (1)

Note that feline in the head of the rule is a predicate
from P whereas the Feline in the body is a concept
from L . No confusion can arise from this, since the
only place where concepts or roles from L may occur
in P is within dl-atoms.

The same program can be written as a dl-program
with observers, namely 〈L ,P ′,{〈Feline, feline〉}, /0〉,
where P ′ is P without rule (1). In both cases, any
changes made to Feline in the zoo’s ontology will be
automatically reproduced in P or P ′. Although the
effect is the same, the latter option makes it very clear
that feline in P ′ is an observer of its homonym from
L , making the global dl-program with observers eas-
ier to understand and maintain.

Pattern Observer Down.
Problem. A predicate p from P needs to be updated

every time the extent (set of named individuals) of
a concept or role S (of the same arity as p) in Li is
changed.

Solution. Add the pair 〈S, p〉 to Λi.

4.1.2 Dynamically modifying the view of a
knowledge base

A second scenario occurs when one of the descrip-
tion logics’ functionality relies on the observation of
a predicate from P . Consider the following example.

Scenario. A sweets distributor provides the shops
selling its products containing general information
and reasoning about the different types of sweets on
sale. Being a generic knowledge base, this ontol-
ogy has no concrete facts: in particular, the extent
of the predicate Sweet is empty. Each shop interacts
with the central ontology by means of a particular dl-
program K B = 〈L ,P 〉, where L is the central ontol-
ogy and P contains facts detailing the specific brands
of sweets being sold in that particular location. In or-
der for the program to function appropriately, Sweet
(in L) needs to be automatically updated whenever a
new fact is added to the relevant predicate in P , so
that this fact can be taken into account.

The shop Sweets In Heaven uses a predicate
forSale in P to store the information about the brands
available at their shop. In order to use L to reason
about these products, they need to replace all dl-atoms
DL[χ;Q](t) in P with DL[Sweet ] forSale,χ;Q](t)
meaning that L behaves as though its predicate Sweet
was actually extended with all sweets for sale at
Sweets In Heaven. This is exactly the same as
replacing K B by the dl-program with observers
〈L ,P , /0,{〈forSale,Sweet〉}〉.

Pattern Observer Up.

Problem. A concept or role S from Li needs to be up-
dated every time the extent of a predicate p (of the
same arity as S) in P is changed.

Solution. Add the pair 〈p,S〉 to Ψi.

4.1.3 Closing the world

The third building block addresses a very typical situ-
ation in ontology usage: in order for a concept or role
to work as expected, it should be given closed-world
semantics.

Scenario. A digital library has an ontology with in-
formation about all the titles it contains. One of the
concepts it defines is ForSale, applicable to electronic
books that are available for download for a price.
However, description logics are not able to perform
closed-world reasoning, so a query to the ontology
about ¬ForSale is not sufficient to inform a user that
a given title is not for sale.

With this in mind, the software developers work-
ing for the digital library integrated the ontology L
in the framework of a dl-program 〈L ,P 〉, where P is
a very simple program containing only the following
rules.

forSale(X)← DL[;ForSale](X)

notForSale(X)← not forSale(X)

The information about titles that are not for
sale is now directly available in the predicate
notForSale of P . Furthermore, if the library later
wants to extend P further, then all dl-atoms must
be of the form DL[ForSale∪- notForSale,χ;Q](t)
– thus querying L extended with the desired
closed-world interpretation of ForSale. For
this reason, it is much safer to write the re-
sulting program as the dl-program with observers
〈L ,P ,{〈ForSale, forSale〉},{〈notForSale,¬ForSale〉}〉,
where P contains only the second of the above rules.



Pattern Closed-world.
Problem. The concept (or role) S from Li should fol-

low closed-world semantics.

Solution.
Choose predicate symbols s+,s− not used in P .
Add 〈S,s+〉 to Λi, 〈s−,¬S〉 to Ψi, and s−(X)←
not s+(X) to P .

4.2 Derived design patterns

The examples presented thus far should suffice at this
stage to give the user a feel for dl-programs. We now
present a second set of general-purpose design pat-
terns that can be seen as organized combinations of
the previous ones, but are also useful as components
of more complex patterns. The usage of this design
patterns is exemplified in the next section.

4.2.1 Flexible definitions

The next design pattern allows one to define a predi-
cate in P abstracting from how it is represented in the
knowledge bases.

Scenario. Vineyards are a major tourist atraction of
Wineland. Knowing this, the country’s Tourist In-
formation Office has decided to combine information
from the three major regional wine producers’ asso-
ciations in an Mdl-program K B = 〈{L1,L2,L3},P 〉,
where the Lis are the knowledge bases containing in-
formation about the wines produced in each region,
by means of which tourists can access the informa-
tion present in all three.

Since the three knowledge bases were developed
independently, the need arose for a predicate unify-
ing the concept of wine, which is distributed among
them. Therefore, P needs to import all the informa-
tion from the corresponding predicates wine from L1,
wineBrand from L2 and product from L3.

To unify these three concepts in a single predicate
in P , the Tourist Information Office included the three
following rules in its program.

wine(X)← DL1[;wine](X)

wine(X)← DL2[;wineBrand](X)

wine(X)← DL3[;product](X)

This amounts to rewriting the Mdl-program
K B as the Mdl-program with observers
〈{L1,L2,L3},P ,{Λ1,Λ2,Λ3},{ /0, /0, /0}〉 where:

Λ1 = {〈wine,wine〉}

Λ2 = {〈wineBrand,wine〉}
Λ3 = {〈product,wine〉}

Pattern Polymorphic Entities.

Problem. In P there is a predicate p whose instances
are inherited from concepts or roles S1, . . . ,Sk
where each S j comes from the knowledge base
Lϕ( j), for 1≤ j ≤ n.

Solution. For each 1 ≤ j ≤ n, add the pair 〈S j, p〉 to
Λϕ( j).

Note that POLYMORPHIC ENTITIES consists of a
combined application of several OBSERVER DOWN,
all with the same observer predicate in P .

This pattern captures the essences of the Polymor-
phism and Dynamic Binding patterns from object-
oriented programming (Larman, 2004): these patterns
deal (at different levels) with definitions that are kept
separate from their usage. In POLYMORPHIC ENTI-
TIES, we deal with a predicate that is kept as indepen-
dent as possible from its definition. Instead of defin-
ing clauses, the instances are plugged in through the
use of Mdl-programs with observers, thus external-
izing the definition of the predicate – in the spirit of
Dynamic Binding. The possibility of using different
concepts or roles (possibly even from different knowl-
edge bases) captures the essence of Polymorphism.

4.2.2 Interconnecting description logics

Another variant of the Observer design pattern occurs
when a description logic’s functionality relies on the
observation of a predicate in a different description
logic; this can be achieved by combining both the
OBSERVER UP and OBSERVER DOWN patterns, thus
making the logic program P a mediator. A particu-
lar case arises when an ontology designed primarily
for reasoning interacts with a knowledge base that is
mostly about particular instances. In practice, this de-
sign pattern appears mostly in combination with DEF-
INITIONS WITH HOLES, so we will postpone the pre-
sentation of a concrete scenario to the next step.

Pattern Transversal Observer.

Problem. A concept (or role) S from Li needs to be
updated every time the extent of a concept (resp.
role) R from L j is changed (with i 6= j).

Solution. Choose a predicate symbol p not used in P .
Add 〈R, p〉 to Λ j and 〈p,S〉 to Ψi.



Note that TRANSVERSAL OBSERVER consists of
a combined application of OBSERVER UP together
with OBSERVER DOWN, relative to two different de-
scription logics.

4.2.3 Underspecification

In a modular system, it makes perfect sense to use
concepts whose definition is left to other components.
This is the motivation for the next design pattern.

Scenario. A company is designing an ontology to
help with school management. One of the rules in-
cluded in the ontology is

canAskDiplommav graduatedu¬onHold ,

stating that a student can ask for his diplomma af-
ter graduating if he has no pending issues with the
school. Although graduated is a predicate defined in
this ontology, the company has no way of knowing a
priori which criteria to use to decide whether a stu-
dent still has pending issues with the school, as this
varies from school to school.

Therefore, the ontology will not have any infor-
mation about instances of onHold – the definition
of this concept will be left to other components that
will be integrated with the ontology through an Mdl-
program via OBSERVER or POLYMORPHIC ENTI-
TIES.

Pattern Definitions with Holes.

Problem. In Li there is a concept or role S needed
for reasoning but its definition will be in L j (with
i 6= j) or P .

Solution.
Use S in Li without defining it (so the extent of S
is empty).
Later, connect S to its definition using OBSERVER
UP, OBSERVER DOWN or TRANSVERSAL OB-
SERVER, possibly coupled with POLYMORPHIC
ENTITIES.

In our example, suppose the company’s ontology
L1 is integrated in an Mdl-program 〈{L1,L2},P 〉,
where L2 is the school’s own knowledge base (es-
sentially a database containing information about the
school’s students) and P contains rules connecting
both and performing other reasoning tasks. In that
school, a student is onHold if he is owing money
to the school (stored in L2 by means of the concept
inDebt); hence, one can apply TRANSVERSAL OB-
SERVER to define onHold as an observer of inDebt.

In a different, elite, school, the same concept is im-
plemented differently, since the school forces its stu-
dents to get extra credit by attending at least five
seminars; so here onHold is an OBSERVER of (≤4
attendedSeminar)t inDebt. Note that, in this situa-
tion, the school’s knowledge base would need to pro-
vide an auxiliary concept equivalent to this condition
due to the restrictions on the syntax of dl-queries.

This pattern corresponds to the Template Method
pattern of object-oriented programs (Gamma et al.,
1995), and to the Programming with Holes technique
of (Meyer, 1997).

In the next section we will show an example where
the holes are filled in by resorting to POLYMORPHIC
ENTITIES.

4.2.4 Distributed definitions

The last design pattern in this section applies when a
predicate’s definition is split between different com-
ponents of the Mdl-program.

Scenario. A company sells cars in several dealers
across town. Each dealer has access to the company’s
car knowledge base L , which specifies several prop-
erties of the available models and the dealers which
sell them. One of the dealers with the company has
his own information stored as a rule-based program
P . To integrate both systems, he uses a dl-program;
however, he still needs to share some concepts be-
tween both components. For example, the concept
car, whose instances include all cars centrally avail-
able for sale, is defined in L , but P has information
about second-hand cars that occasionally go through
the store, stored in a predicate secondHandCar and
which the dealer wants to reason about in his view of
L ; P also has information about motor bikes, that also
occasionally go through the store, stored in a predi-
cate motorBike, and which should be considered dis-
tinct from cars, when reasoning in P ’s view of L . In
order to achieve full integration between the two com-
ponents, he added two new predicates car+ and car−

to P , connecting them to his predicates by means of
the two rules

car+(X)← secondHandCar(X)

car−(X)←motorBike(X)

and with car from L via the two rules

car+(X)← DL[;car](X)

car−(X)← DL[;¬car](X) .

Furthermore, every dl-atom DL[χ;Q](t) needs to be
replaced by DL[car]car+,car∪- car−,χ;Q](t). In this



way, one can use positive and negative facts about
cars both in L and in P .

Using Mdl-programs with observers, the same
construction can be designed in a simpler way: the
only rules one needs to include in P are the two
first ones (relating car+ with secondHandCar and
car− with motorBike), while the rest is achieved
by taking Λ = {〈car,car+〉,〈¬car,car−〉} and Ψ =
{〈car+,car〉,〈car−,¬car〉}.

Pattern (Named) Lifting.

Problem. The definition of a predicate should be dis-
tributed among some of the Lis (in the form of
concepts or roles Si) and P (in the form of two
predicates p+ and p−, corresponding to the pred-
icate and its negation).

Solution.

For each i, add 〈Si, p+〉 and 〈¬Si, p−〉 to Λi.

For each i, add 〈p+,Si〉 and 〈p−,¬Si〉 to Ψi.

Note that LIFTING is essentially different from
OBSERVER: in OBSERVER, a predicate is defined in
one component and used in others; in LIFTING, not
only the usage, but also the definition of the predi-
cate is split among several components, so that one
must look at the whole Mdl-program to understand it.
This is also part of the reason to include the negations
of the predicates involved in the observers: the dis-
tributed predicate must end up with the same seman-
tics, both in P and in all the involved Lis – at least
regarding named individuals.

It is possible to apply LIFTING when P does not
participate in the predicate’s definition. In this case,
P is simply a mediator, and p+ and p− can be any
fresh predicate names.

Note that the application of each of the patterns
proposed in this section yields localized changes to
the Mdl-program: they consist of either changing dl-
atoms (by means of adding pairs to Ψi) or adding
rules to P (either directly, as in the case of CLOSED-
WORLD, or by adding pairs to Λi). In all cases, these
changes are only reflected in P , and they can be di-
vided into two or three distinct types. This is in line
with the whole philosophy of dl-programs: there is an
asymmetry between their components where the logic
program is the orchestrator between all components
as well as its façade: it is the only entity interacting
with the outside world.

5 A comprehensive example

We now illustrate the usage of the different design
patterns introduced so far by means of a more com-
plex example.

Scenario. The software developers at WISHYOU-
WERETHERE travel agency decided to develop an
Mdl-program to manage several of the agency’s day-
to-day tasks. Currently, WISHYOUWERETHERE has
two active partnerships, one with an aviation com-
pany, another with a hotel chain. Thus, the Mdl-
program to be developed uses three ontologies:
• LA is a generic accounting ontology for travel

agencies, which is commercially available, and
which contains all sorts of rules relating concepts
relevant for the business. This ontology is strictly
terminological, containing no specific instances of
its concepts and roles.

• LF is the aviation partner’s knowledge base,
containing information not only about available
flights between different destinations, but also
about clients who have already booked flights
with that company.

• LH is a similar knowledge base pertaining to the
hotels owned by the partner hotel chain.

One of the points to take into consideration is
that the resulting Mdl-program with observers
〈{LA,LF ,LH},P ,{ΛA,ΛF ,ΛH},{ΨA,ΨF ,ΨH}〉
should be easily extended so that the travel agency
can establish new partnerships, in particular with
other aviation companies and hotel chains, as long
as those provide their own knowledge bases. At the
end of this section, we will show how the systematic
use of design patterns and observers helps towards
achieving this goal.

By establishing partnerships, WISHYOUWERE-
THERE’s client basis is extended with all the clients
who have booked services of its partners. In this way,
promotions made available by either partner are au-
tomatically offered to every partner’s clients, as long
as the bookings are made through the travel agency.
In return, the partners get publicity and more clients,
since a person may be tempted to fly with their com-
pany or book their hotel due to these promotions,
thereby becoming also their client.

Updating the client database. Ensuring that each
partner’s clients automatically become WISHYOU-
WERETHERE’s clients can be achieved by noting that
this is exactly the problem underlying OBSERVER
DOWN. Assuming LF and LH have concepts Flyer
and Guest, respectively, identifying their clients, and



that the agency’s clients will be stored as a predicate
client in P , all that needs to be done is to register
client as an observer of Flyer and Guest, which, ac-
cording to the pattern, is achieved by ensuring that
〈Flyer,client〉 ∈ ΛF and 〈Guest,client〉 ∈ ΛH .

Identifying pending payments. The designers of
LA resorted intensively to DEFINITIONS WITH
HOLES, since many of the concepts they use can
only be defined in the presence of a concrete client
database. In particular, LA contains a role toPay,
about which it contains no membership axioms. The
information about the specific purchases a client has
made and not paid so far must be collected from the
partners’ knowledge bases, LF and LH .

There are two ways of completing this definition.
The more direct one stems from noting that toPay
should be an observer of adequate roles in LF and
LH . We will assume that these roles are payFlight
and payHotel. Applying twice TRANSVERSAL OB-
SERVER (which is the adequate pattern), one needs to
ensure that

〈payFlight, toPayF〉 ∈ ΛF 〈toPayF, toPay〉 ∈ΨA

〈payHotel, toPayH〉 ∈ ΛH 〈toPayH, toPay〉 ∈ΨA .

The major drawback of this solution is that it requires
adding two dummy predicates to P whose only pur-
pose is to serve as go-between from both knowledge
bases to LA. An alternative solution is to create a sin-
gle auxiliary predicate toPay in P and make toPay
from LA an observer of this predicate applying OB-
SERVER UP. In turn, we use the POLYMORPHIC
ENTITY pattern to connect toPay to payFlight and
payHotel. The resulting Mdl-program with observers
is such that:

〈payFlight, toPay〉 ∈ ΛF

〈payHotel, toPay〉 ∈ ΛH 〈toPay, toPay〉 ∈ΨA .

As we will discuss later, this solution will also sim-
plify the process of adding new partners to the agency.

Offering promotions. WISHYOUWERETHERE
offers a number of promotions to its special clients.
For example, in February the agency offers them
a 20% discount on all purchases. Because of the
partnership, the concept of special client is distributed
among all partners: a client is a special client if it
fulfills one of the partners’ requirements – e.g. having
traveled some number of miles with the airline
partner, or booked a family holiday in one of the
partner’s hotels, or bought one of the agency’s pricey
packages. The partnership protocol requires that
each knowledge base provide a concept identifying

which clients are eligible for promotions, so that the
partners can change these criteria without requiring
WISHYOUWERETHERE to change its program.

This is a situation where the LIFTING design pat-
tern applies. Assuming that LF uses TopClient for its
special clients, LH uses Gold and P defines special,
these three predicates are given the same semantics
through LIFTING. Intuitively, this means that, in the
Mdl-program’s view, all three concepts equally de-
note all special clients, regardless of where they orig-
inate. The application of the pattern translates to

〈TopClient,special〉 ∈ ΛF

〈special,TopClient〉 ∈ΨF

〈¬TopClient,notSpecial〉 ∈ ΛF

〈notSpecial,¬TopClient〉 ∈ΨF

and four similar observers in ΛH and ΨH , with Gold
in place of TopClient.

Furthermore, in order to determine whether a par-
ticular client is entitled to promotions, it is useful
to give closed-world semantics to these predicates.
Since they are all equivalent, we can do this very sim-
ply in P by adding the rule

notSpecial(X)← not special(X) .

Note that we did not need to apply the CLOSED-
WORLD pattern because special is a predicate from P ,
where the semantics is closed-world: the application
of LIFTING ensures that Gold and TopClient, being
equivalent, also have closed-world semantics.

In order for one of the partner companies
to make its clients eligible for special promo-
tions, its ontology just needs to contain in-
clusion axioms partially characterizing special
clients. For example, LF might contain the rule
∃flies.10000OrMore v TopClient, or LH might
specify that ∃hasCompleted.FamilyBooking v Gold,
or special(X) ← booked(X ,Y ),expensive(Y ) might
be a rule in P .

A subtle issue now appears regarding the consis-
tency problems that may arise from the use of the
LIFTING pattern. Since this pattern identifies con-
cepts from different knowledge bases, it does not a
priori guarantee that the resulting knowledge bases
are consistent. In particular, if one of the partners
grants special status to a client and another denies this
status to the same client, an inconsistency will arise.
More sophisticated variations of the LIFTING pattern
can be developed to detect and avoid this kind of sit-
uation, but such a discussion is beyond the scope of
this presentation.

An example of a promotion offered by WISH-
YOUWERETHERE to special clients would be

20%Discount(X)← special(X) .



All special clients will benefit from this discount, re-
gardless of who (the travel agency, the hotel partner
or the aviation company) decided that they should be
special clients. However, in some cases partners may
want to deny their promotions to particular clients.
For example, the aviation company is offering 100
bonus miles to special costumers booking a flight on
a Tuesday, but this promotion does not apply to its
workers. In order to allow this kind of situation, part-
ners may define a dedicated concept identifying the
non-eligible clients. Since all clients external to that
partner are automatically eligible, this concept needs
to have closed-world semantics so that (in our exam-
ple) LF can include the rules

100BonusMilesWinner v TopClientu¬Blocked

Worker v Blocked

still giving the promotion to all clients from the other
partners. Although each knowledge base can enforce
this semantics in its domain, in order to extend it to
other clients the CLOSED-WORLD pattern must be
applied, so we will have

〈Blocked,blockedF〉 ∈ ΛF

〈nonBlockedF,¬Blocked〉 ∈ΨF

nonBlockedF(X)← not blockedF(X) ∈ P
Suppose that airline employee Ann qualifies

for WISHYOUWERETHERE promotions because she
spent three weeks in Jamaica with her husband
and their five children, hence Gold(Ann) holds in
LH and therefore Ann is a special client. She
is therefore eligible for WISHYOUWERETHERE’s
promotions, but she will still not earn the bonus
miles because it is LF who decides whether some-
one gets that particular promotion, and even though
TopClient(Ann) holds that knowledge base will not
return 100BonusMilesWinner(Ann). However, she
will earn the 20%Discount, since it is offered directly
by WISHYOUWERETHERE.

Adding new partnerships. We now discuss briefly
how new partners can be easily added to the system
later on, as this illustrates quite well the advantages of
working both with design patterns and in the context
of Mdl-programs with observers.

Summing up what we have so far relating to the
partnerships, the sets ΛF ,ΛH ,ΨF and ΨH are:

ΛF : 〈Flyer,client〉 ΛH : 〈Guest,client〉
〈payFlight, toPay〉 〈payHotel, toPay〉
〈TopClient,special〉 〈Gold,special〉
〈¬TopClient,notSpecial〉 〈¬Gold,notSpecial〉
〈Blocked,blockedF〉 〈Blocked,blockedH〉

ΨF :〈special,TopClient〉
〈notSpecial,¬TopClient〉
〈nonBlockedF,¬Blocked〉

ΨH :〈special,Gold〉
〈notSpecial,¬Gold〉
〈nonBlockedH,¬Blocked〉

Also, the application of the design patterns added
the following rules to P .

nonBlockedF(X)← not blockedF(X)

nonBlockedH(X)← not blockedH(X)

notSpecial(X)← not special(X)

The similarity between ΛF and ΛH , and between ΨF
and ΨH , is a clear illustration of the changes required
when future partners of WISHYOUWERETHERE are
added to the system. Furthermore, the names they use
for each concept or role are not relevant – they just
need to indicate how they identify their clients, their
clients’ debts, their special clients, and the clients they
wish to exclude from their promotions.

6 Beyond these patterns: limitations
and future work

We have shown so far how the ideas of design pat-
terns can be applied to Mdl-programs, yielding gen-
eral principles for this programming paradigm. In this
section we explore some limitations and discuss fu-
ture directions for our work.

In many contexts, a component of a system may
not be known or available at the time of implementa-
tion of others, yet it is necessary to query it. A way to
get around this is to use a prototype knowledge base
that will later on be connected to the concrete compo-
nent in a straightforward way. The same problem also
arises if one wishes to be able to replace a knowledge
base with another with a similar purpose, but whose
concept and role names may be different. This can be
achieved by means of the following pattern.

Pattern (Straight) Adapter.
Problem. One wants to work with Lk independently

of its particular syntax.

Solution. Add an empty interface knowledge base LI
to K B using the desired concept and role names.
Connect each concept and role in LI with its coun-
terpart in Lk by means of an application of the
TRANSVERSAL OBSERVER pattern.



There is one important characteristic of this imple-
mentation that distinguishes it from the usual Adapter
design pattern: the dl-program syntax for local exten-
sions to dl-queries only works in the particular case
where the query is over a concept or role being di-
rectly extended. Because all queries go through the
interface knowledge base, where no axioms exist, any
other extensions are lost.

Consider a simple example where the interface LI
specifies two concepts P and Q, which are made con-
crete in LC as A and B. Furthermore, LC also contains
the inclusion axiom A v B. Finally, P contains the
single fact thisIsTrue(ofMe). In P , the direct query
DLC[A ] thisIsTrue;B](X) would return the answer
X = ofMe, since LC is extended with A(ofMe) in the
context of this query. However, the corresponding in-
direct query (i.e. the same query, but passing through
the adapter)

DLI [P] p+,P∪- p−,Q]q+,Q∪- q−,P] thisIsTrue;Q](X)

after extending P with the rules

p+(X)← DLC[;A](X) q+(X)← DLC[;B](X)

p−(X)← DLC[;¬A](X) q−(X)← DLC[;¬B](X)

as introduced by the concretization of the observer
sets would still return no answer, since LI only
knows the facts about B that are directly given by LC
through q+.

Note, however, that the dl-atom DLC[A ]
thisIsTrue;A](X) is equivalent to

DLI [P] p+,P∪- p−,Q]q+,Q∪- q−,P] thisIsTrue;P](X) ,

since the query is directly on the concept whose ex-
tent was altered. In practice, this is a common enough
situation that this issue is less restrictive than it may
seem. This is a restriction with respect to the full
power of dl-programs; but the authors see this as a
feature of the STRAIGHT ADAPTER design pattern.
Should a context arise where such flexibility is essen-
tial, then this is not the right design pattern to apply.

A more complex problem arises with the PROXY
design pattern. This pattern is used when one wants
to control or restrict access to a resource, for exam-
ple a database containing sensitive information. In
practice, this is not very different from the ADAPTER
design pattern – but ADAPTER is an algorithm-free
pattern that just defines interfaces, whereas an entity
implementing PROXY is expected to do some process-
ing before passing on the information it receives.

If we attempt an implementation along the lines
we have followed so far, it would be natural to ex-
plore the possibility of a proxy knowledge base to
serve as a mediator between two components. In the
setting of dl-programs, this is actually not possible to

achieve directly, since all queries must go through the
logical program. The only other option is to encode
the proxy in the logic program itself, forcing every
dl-query to the protected resource to be immediately
preceded by some atoms implementing the proxy –
which from the PROXY design pattern perspective is
not completely satisfactory. There would be ways to
go around this problem, namely by defining appropri-
ate syntactic constructions, which we intend to pursue
in future extensions of this work.

7 Conclusions

We proposed Mdl-programs as a generalization of
dl-programs to systems that connect several descrip-
tion logics by means of a logic program. On top of
these, we defined a syntactic construction (observers)
that supports communication between the logic pro-
gram and the different knowledge bases in a struc-
tured way, allowing one to externalize several com-
munication aspects and focus on the development of
the algorithmic parts of the program.

The original motivation for defining Mdl-
programs with observers was to achieve global
changes to the knowledge bases in the logic pro-
gram’s view of them, by guaranteeing that all
dl-queries were appropriately extended, even the ones
that were written after deciding that a concept or role
should be observing a predicate. As we showed, this
construction is powerful enough to allow for elegant
and straightforward implementations of several well-
known design patterns. By defining other adequate
syntactic constructions, other design patterns may
become easily accessible. In fact, it has been argued
that the study of design patterns can be a key ingre-
dient in deciding what syntactic extensions should be
added to specific programming languages (Gibbons,
2006). In this spirit, we believe that we have more
than justified the inclusion of observers as a syntactic
tool in the context of Mdl-programs.

Another aspect that will have to be discussed re-
lates to the practical issues of the usage of design
patterns. Ad hoc solutions to specific problems may
be more efficient than the application of systematic
methods, but they tend to yield less generalizable and
less extensible software applications. On the other
hand, the use of observers introduces higher complex-
ity, especially when non-stratified negation (which
occurs in the examples discussed earlier) is involved.
It is important to have a precise understanding of the
compromise between efficiency and quality obtained
by a systematic use of design patterns. We are work-
ing on building a prototype implementation of Mdl-



programs within dlvhex tool (Eiter et al., 2006b) as a
first step towards this study.

The purpose of the present study, at this stage, is
to show that design patterns also have a place in the
world of the Semantic Web. One can foresee a future
where there is a widespread usage of systems combin-
ing description logics with rules, and the availability
of systematic design methodologies is a key ingredi-
ent to making this future a reality. This paper is by
necessity limited in its scope, and it is the authors’
intent to explore how more sophisticated design pat-
terns could be applied to Mdl-programs.

It would also be interesting to explore how the
mechanisms herein discussed can be applied to multi-
context systems, in view of the similarities between
these and Mdl-programs. A preliminary study of this
connection has been undertaken in (Cruz-Filipe et al.,
2013).
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