
Description logics, rules and multi-context
systems

Lúıs Cruz-Filipe1,2,4, Rita Henriques3, and Isabel Nunes3,4

1 Escola Superior Náutica Infante D. Henrique, Portugal
2 CMAF, Lisboa, Portugal

3 Faculdade de Ciências, Universidade de Lisboa
4 LabMag, Lisboa, Portugal

Abstract. The combination of rules and ontologies has been a fertile
topic of research in the last years, with the proposal of several differ-
ent systems that achieve this goal. In this paper, we look at two of these
formalisms, Mdl-programs and multi-context systems, which address dif-
ferent aspects of this combination, and include different, incomparable
programming constructs. Despite this, we show that every Mdl-program
can be transformed in a multi-context system, and this transformation
relates the different semantics for each paradigm in a natural way. As
an application, we show how a set of design patterns for multi-context
systems can be obtained from previous work on Mdl-programs.

1 Introduction

Several approaches combining rules and ontologies have been proposed in the last
years for semantic web reasoning, e.g. [2, 8–10, 12, 16] among others. Ontologies
are typically expressed through decidable fragments of function-free first-order
logic with equality, offering a very good ratio of expressiveness/complexity of
reasoning [1]. The addition of some kind of rule capability in order to be able to
express more powerful queries together with non-monotonic features (in particu-
lar, the negation-as-failure operator not) achieved by joining ontologies and logic
programming result in a very powerful framework for semantic web reasoning.

In this paper, we look at two of these systems: Mdl-programs [7], which are a
straightforward generalization of the well-known dl-programs [9, 10], and multi-
context systems (MCSs) [2], which address different aspects of this combination,
and include incomparable programming constructs. One of the main differences
is the structure of programs – an Mdl-program is essentially a logic program
that can query description logic knowledge bases, “feeding” its view of the latter
with newly inferred facts; MCSs, on the other hand, consist of several knowledge
bases, possibly expressed in different languages, each declaring additional rules
that allow communication with the others.

Despite their differences, we show that every Mdl-program can be trans-
formed in a multi-context system in such a way that different semantics for each
paradigm are naturally related: answer-set semantics become grounded equi-
libria, whereas well-founded semantics correspond to well-founded belief sets.

As a consequence, any useful constructions developed within the framework of
Mdl-programs may be automatically translated to equivalent constructions in
the setting of MCSs. Although the idea behind the syntactic translation is sug-
gested in [3] to justify that MCSs generalize the original dl-programs, even this
claim is not substantiated beyond an intuitive perspective. Here, we will not only
make this syntactic correspondence precise, but discuss in detail the semantic
correspondences it entails, and apply it to obtain a set of design patterns for
MCSs based on such a set for Mdl-programs.

The structure of the paper is as follows. Section 2 recalls the syntax and
semantics of Mdl-programs. Section 3 introduces the syntax of MCSs and the
translation of Mdl-programs into these. Section 4 summarizes the different se-
mantics of MCSs and relates the semantics of an Mdl-program and those of the
MCS it generates. Section 5 applies this correspondence to design patterns for
Mdl-programs. Section 6 concludes the paper.

2 Mdl-programs

This section presents multi-description logic programs [7], Mdl-programs for
short, which are a straightforward generalization of dl-programs, an already
established framework for coupling description logic knowledge bases with rule-
based reasoning [9, 10]. The main advantage of Mdl-programs, as we will see, is
their simplicity. Although they do not possess the level of generality other sys-
tems such as Hex-programs [11] or multi-context systems [2] have, Mdl-programs
are quite adequate for reasoning within the semantic web, where a lot of effort
is being put into developing ontologies, which for the main part are description
logic knowledge bases.

2.1 Syntax

The purpose of Mdl-programs is to generalize logic programs with special atoms
that communicate with external description logic knowledge bases, which we
will refer to henceforth simply as “knowledge bases”. The key ingredient of
Mdl-programs is the notion of dl-atom. A dl-atom relative to a set of knowl-
edge bases Σ = {Σ1, . . . , Σn} and a function-free first-order signature Φ is
DLi [S1 op1 p1, . . . , Sm opm pm;Q] (t), where 1 ≤ i ≤ n, each Sk is either a con-
cept or role of Σi, or a special symbol in {=, 6=}; opi ∈ {],∪- }; each pk is a
unary or binary predicate symbol of Φ, according to whether the corresponding
Sk is a concept or a role; and Q(t) is a dl-query, that is, it is either a concept
inclusion axiom F or its negation ¬F , or of the form C(t), ¬C(t), R(t1, t2),
¬R(t1, t2), =(t1, t2), 6=(t1, t2), where C is a concept from Σi, R is a role from
Σi, and t, t1 and t2 are terms – constants from any Σj or Φ, or variables. The
sequence S1 op1 p1, . . . , Sm opm pm is the input context of the dl-atom; we will
use the greek letter χ to denote generic input contexts.

Note that no requirement is made about any relations between the different
knowledge bases; in particular, the description logics underlying the Σis need
not be the same.

A dl-rule over Σ and Φ is a Horn clause that may contain dl-atoms, i.e. it
has the form a ← b1, . . . , bk,not bk+1, . . . ,not bm where a is a logical atom
and b1, . . . , bm are either logical atoms or dl-atoms – where the logical atoms
are again built using terms from Φ and constants from any Σi. The head of
r is a and the body of r is b1, . . . , bk,not bk+1, . . . ,not bm. An Mdl-program
over Φ is a pair KB = 〈Σ,P〉 where Σ is as before, each Σi is a description logic
knowledge base and P is a finite set of dl-rules over Σ and Φ (also referred to as a
generalized logic program). As usual, we will omit referring to Φ explicitly. Note
that negation in P is the usual, closed-world, negation-as-failure, in contrast
with the knowledge bases Σi, which (being description logic knowledge bases)
come with an open-world semantics. An Mdl-program with only one knowledge
base (n = 1) is a dl-program – and this definition coincides with that in [9].

The operators] and ∪- extend Σi in the context of the current dl-query. In-
tuitively, Sk] pk (resp., Sk ∪- pk) adds to Sk (resp., ¬Sk) all instances of (pairs
of) terms for which pk holds – the extent of pk –, before evaluating the query.
This only affects P’s current view of Σi without changing Σi. The components
of an Mdl-program are thus kept independent, communicating only through
dl-atoms; so, although they function separately, giving Mdl-programs nice mod-
ularity properties, there is a bidirectional flow of information via dl-atoms.1

We will adopt some notational conventions throughout this paper. Vari-
ables are capital letters in math font (e.g. X), while constants and terms are
in sans serif. Predicate symbols (from the generalized logic program) begin with
a lowercase letter, while concepts and roles (from the knowledge base) are writ-
ten exactly as they are defined in the source ontologies. We will not use different
fonts for objects of P and objects of the Σis, since these sets are not necessarily
disjoint (the constants of all Σis may be used in P); we will however abstain
from using the same name for a predicate in P and a concept or role in Σi.

Example 1. We illustrate the syntax of Mdl-programs with a simple example.
This program uses two external knowledge bases: Σ1 is the Travel Ontology
travel.owl [13], freely available online, which defines a series of travel-related
concepts, including that of (tourist) Destination; and Σ2 is a freely accessible
wine ontology wine.rdf [15], which compiles a substantial amount of informa-
tion about wines, including the locations of several important wineries around
the world; in particular, this ontology contains a concept Region identifying
some major wine regions throughout the world. These are combined in an Mdl-
program by means of the following generalized logic program P.

wineDest(Tasmania)← (r1)

wineDest(Sydney)← (r2)

wineDest(X)← DL2[;Region](X) (r3)

overnight(X)← DL1[; hasAccommodation](X,Y) (r4)

oneDayTrip(X)← DL1[Destination] wineDest;Destination](X),

not overnight(X) (r5)

1 The original definition of dl-programs included a third operator, but it can be defined
as an abbreviation of the other two [9], and we follow this methodology.

This program defines a predicate wineDest with two instances, corresponding
to two wine regions that are interesting tourist destinations, and a rule (r3)
extending the definition of wineDest with a query to Σ2, importing all instances
of Region in Σ2. Informally, the goal is that wineDest should be a new subconcept
of Destination, but Σ1 is left unchanged.

Rules (r4, r5) identify the destinations only suitable for one-day trips. The
possible destinations are selected via (r5) not only from the information origi-
nally in Σ1, but by (i) extending the concept Destination of Σ1 with all instances
of wineDest in P and then (ii) querying this extended view of Σ1 for all instances
of Destination. The result is then filtered using the auxiliary predicate overnight
defined in (r4) as the set of destinations for which some accommodation is known.
This uses the role hasAccommodation of Σ1, where hasAccommodation(t1,t2)
holds whenever t1 is a Destination and t2 an accommodation facility located
in t1. The reason for resorting to (r4) at all is the usual one in logic program-
ming: the operational semantics of negation-as-failure requires all variables in a
negated atom to appear in non-negated atoms in the body of the same rule.2

An interesting aspect of this example is that Sydney is already an individual
ofΣ1 – one of the characteristics of Mdl-programs is precisely that the atoms of P
may use constants of Σ1 as terms. This is relevant: rule (r1) adds new constants
to the domain of KB, but rule (r2) adds information about an individual already
in Σ1. Note the relevance of the extended query in (r5): if Destination were not
updated with the information from wineDest, we would not be able to infer
e.g. oneDayTrip(Tasmania). In the next section we will introduce semantics for
dl-programs and show that this is indeed a consequence of KB.

2.2 Semantics

In order to provide semantics for Mdl-programs, we first recall the notion of
Herbrand base of a logic program P over Φ, denoted HBP – the set of all ground
atoms consisting of predicate symbols and terms from Φ. The Herbrand base of
an Mdl-program KB = 〈Σ,P〉, denoted HBKB, is similarly defined, except that
constant symbols may also come from the vocabulary of the Σis. An interpre-
tation is a subset I of HBKB. We say that I is a model of a ground atom or
dl-atom a under Σ, or I satisfies a under Σ, denoted I |=Σ a, in the following
cases:

– if a ∈ HBKB, then I |=Σ a iff a ∈ I;
– if a is a ground dl-atom DLi[χ;Q](t) with χ = S1 op1 p1, . . . , Sm opm pm,

then I |=Σ a iff Σi(I;χ) |= Q(t), where Σi(I;χ) = Σi ∪
⋃j=1
m Aj(I) and, for

1 ≤ j ≤ m,

Aj(I) =

{
{Sj(e) | pj(e) ∈ I}, opj =]
{¬Sj(e) | pj(e) ∈ I}, opj = ∪-

2 We do not need to extend Destination in this dl-rule because of the structure of
Σ1: the role hasAccommodation is defined as the set of its instances (without any
axioms), so changing other concepts or roles has no effect on its semantics.

An interpretation I is a model of a ground dl-rule r if I |=Σ H(r) whenever
I |=Σ B(r), where H(r) and B(r) are the head and body of rule r, respectively.
I is a model of KB if I is a model of all ground instances of all rules of P.

Example 2. Given the dl-program KB of Example 1, its Herbrand base contains
all ground atoms built from applying wineDest, overnight and oneDayTrip not
only to the constants of P – Tasmania and Sydney – but also to all individuals
of Σ1, which include (among others), Canberra and FourSeasons (which is not an
instance of Destination), and of Σ2, which includes e.g. AustralianRegion. Thus,
HBKB contains e.g.

wineDest(AustralianRegion) overnight(Tasmania) oneDayTrip(Canberra)

wineDest(FourSeasons) overnight(Sydney) oneDayTrip(Sydney), . . .

This may seem a bit strange, since e.g. wineDest(FourSeasons) does not fit well
with our intended interpretation of wineDest; but this is a well-known side-effect
of the absence of types in logic programming.

This program has only one model. To analyze it, one has to know that
the only instance of hasAccommodation in Σ1 has Sydney as its first argument.
Thus, this model contains overnight(Sydney), as well as wineDest(Tasmania) and
wineDest(Sydney); furthermore, it includes wineDest(t) for every t such that
Σ2 |= Region(t). Finally, for every individual t other than Sydney such that
Σ1 |= Destination(t) or Σ2 |= Region(t), the model contains oneDayTrip(t).

This model may not seem like a very realistic view of the world, but this is
a limitation of the current state of the underlying ontologies.

An Mdl-program KB = 〈Σ,P〉 is positive if the rules in P do not contain
negations. Positive Mdl-programs enjoy the usual properties of positive logic
programs, namely they have a unique least model MKB that can be constructed
by computing the least fixed-point of the Herbrand transformation TKB, which
is defined as the usual Herbrand transformation for logic programs, resorting to
the Σis to evaluate dl-atoms. The Mdl-program in Example 1 is not a positive
program because of the negation in rule (r4).

Answer-set semantics. The answer set semantics of (not necessarily positive)
Mdl-programs is defined again in analogy to that of logic programs. Given an
Mdl-program KB = 〈Σ,P〉, we can obtain a positive dl-program by replacing P
with its dl-transform sPI

Σ
relative to Σ and an interpretation I. This is obtained

by grounding every rule in P and then (i) deleting every dl-rule r such that
I |=Σ a for some default negated a in the body of r, and (ii) deleting from each
remaining dl-rule the negative body. The informed reader will recognize this to
be a generalization of the Gelfond–Lifschitz reduct. Since KBI = 〈Σ, sPI

Σ
〉 is a

positive Mdl-program, it has a unique least model MKBI . An answer set of KB
is an interpretation I that coincides with MKBI .

The model of the Mdl-program in the previous example is also an answer set
of that program.

Well-founded semantics. Another semantics for Mdl-programs is well-founded
semantics, which again generalizes well-founded semantics for logic programs.
There are several equivalent ways to define this semantics; for the purpose of
this paper, we define the well-founded semantics of an Mdl-program KB = 〈Σ,P〉
by means of the operator γKB such that γKB(I) is the least model of the posi-
tive dl-program KBI defined earlier. This operator is anti-monotonic, so γ2KB is
monotonic and therefore it has a least and greatest fixpoint, denoted lfp

(
γ2KB

)
and gfp

(
γ2KB

)
, respectively. An atom a ∈ HBP is well-founded if a ∈ lfp

(
γ2KB

)
and unfounded if a 6∈ gfp

(
γ2KB

)
; the well-founded semantics of KB is the set

containing all well-founded atoms and the negations of all unfounded atoms. In-
tuitively, well-founded atoms are true in every model of P, whereas unfounded
atoms are always false. Note that, unlike answer sets, the well-founded semantics
of KB may not be a model of KB.

The well-founded semantics of the previous example contains all atoms in its
models and the negations of all remaining atoms. This is a consequence of there
being only one answer set for that Mdl-program (see [9] for details).

2.3 Mdl-programs with observers

On top of Mdl-programs, we defined a syntactic construction [7] to extend a
concept or role from one of the Σis (in P’s view of Σi) with all instances of a
predicate in P, or reciprocally. An Mdl-program with observers is a pair 〈KB,O〉,
where KB = 〈Σ,P〉 is an Mdl-program, O = 〈{Λ1, . . . , Λn}, {Ψ1, . . . , Ψn}〉, the
observer sets, where Λi is a finite set of pairs 〈S, p〉 and Ψi is a finite set of pairs
〈p, S〉, in both cases with S a (negated) concept from Σi and p a unary predicate
from P, or S a (negated) role from Σi and p a binary predicate from P.

Intuitively, Λi contains the concepts and roles in Σi that P needs to observe,
in the sense that P should be able to detect whenever new facts about them are
derived, whereas Ψi contains the predicates in P that Σi needs to observe. Note
that a specific symbol (be it a predicate, concept or role) may occur in different
Ψis or Λis. An Mdl-program with observers can be transformed in a (standard)
Mdl-program by replacing P with PO, obtained from P by:

– adding rule p(X)← DLi[;S](X) for each 〈S, p〉 ∈ Λi, if S is a concept (and
its binary counterpart, if S is a role); and

– in each dl-atom DLi[χ;Q](t) (including those added in the previous step),
adding S] p to χ for each 〈p, S〉 ∈ Ψi and S ∪- p to χ for each 〈p,¬S〉 ∈ Ψi.

Example 3. We can rewrite the previous Mdl-program as an Mdl-program with
observers by omitting rule (r3) and taking Λ2 = {〈Region,wineDest〉}.

Having in mind the structure of Σ1 (see footnote on page 4), we can go a
step further, take Ψ1 = {〈wineDest,Destination〉} and replace (r5) with

oneDayTrip(X)← DL1[;Destination](X),not overnight(X) (r′5)

Unfolding this observer now yields a program with the same semantics but where
rule (r4) has been replaced by

overnight(X)← DL1[Destination] wineDest; hasAccommodation](X,Y) (r′4)

3 From Mdl-programs to multi-context systems

There are other approaches to combining different reasoning and programming
paradigms; in particular, rules and ontologies can also be combined within AL-
log [8], Hex-programs [11], MKNF [14] and multi-context systems [2, 4]. Some of
these systems even allow for more general combinations; however, Mdl-programs,
being less general, are easier to manipulate and understand.

In this section, we show that Mdl-programs (with observers) can be translated
to MCSs. The converse is trivially not true – MCSs are far more general, as their
definition shows. Besides being an interesting result by itself, this translation will
be used in Section 5 to guide the development of an elementary set of design
patterns for MCSs – another useful contribution, since the latter framework is
more general than most other existing approaches [4].

Instead of presenting MCSs on their own, this section is organized as follows.
We begin by defining their syntax and immediately follow with the definition of
the (syntactic) translation from Mdl-programs to MCSs. Then, we introduce the
several semantics for MCSs together with the correspondence results that relate
the semantics of an Mdl-program and the corresponding MCS. In this way, the
constructions and results are more easily appreciated.

Multi-context systems were originally proposed [2] as a way of combining
different reasoning paradigms, where information flows among the different logics
within the system through bridge rules.

The notion of multi-context system is defined in several layers.

1. A logic is as a triple L = (KBL,BSL,ACCL) where KBL is the set of well-
formed knowledge bases of L; BSL is the set of possible belief sets; and
ACCL : KBL → 2BSL is a function describing the semantics of the logic by
assigning to each element of KBL a set of acceptable sets of beliefs.
Note that nothing is said about what knowledge bases or belief sets are; the
former are part of the syntax of the language, their precise definition being
left to L, while the latter intuitively represent the sets of syntactical elements
representing the beliefs an agent may adopt. Still, this definition is meant to
be abstract and general, so part of the purpose of KBL and BSL is defining
these notions for each logic L.

2. Given a set of logics {L1, . . . , Ln}, an Lk-bridge rule, with 1 ≤ k ≤ n, has
the form

s← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm)

where 1 ≤ ri ≤ n; each pi is an element of some belief set of Lri ; and
kb ∪ {s} ∈ KBk for each kb ∈ KBk.

3. A multi-context system (MCS) M = 〈C1, . . . , Cn〉 is a collection of contexts
Ci = (Li, kbi, br i), where Li = (KB i,BS i,ACC i) is a logic, kbi ∈ KB i is a
knowledge base, and br i is a set of Li-bridge rules over {L1, . . . , Ln}.

Given an Mdl-program KB = 〈Σ,P〉, there are two steps in the process of
generating an MCS from KB.

1. We split P in its purely logical part and its communication part, translating
rules that contain dl-atoms into bridge rules.

2. For each distinct input context χ appearing in P, we create a different copy
of the knowledge base, corresponding to the view of the knowledge base
within the dl-atoms containing χ.

Although the idea behind this syntactic construction is suggested in [4], it is
not defined precisely, neither are the semantic implications discussed. Here, we
will formalize this syntactic correspondence and analyze its implications at the
semantic level.

Definition 1. Let KB = 〈Σ,P〉 be an Mdl-program. For each i = 1, . . . , n, let
χi1, . . . , χ

i
mi

be the input contexts in dl-atoms querying Σi. Let ψ be a sequential
enumeration of all input contexts in P, i.e. ψ(i, j) is the position of χij in the
sequence of all input contexts in P.

1. The translation σKB of literals and dl-atoms is defined by

σKB(a) =

(0 : L) if a is a literal L

(ψ(i, j) : Q(t)) if a = DLi[χ
i
j ;Q](t)

not(ψ(i, j) : Q(t)) if a = notDLi[χ
i
j ;Q](t)

2. The translation of P is the context C0 = 〈L0, kb0, br0〉 where:
– L0 = 〈KB0,BS 0,ACC 0〉 is the logic underlying P, where KB0 is the set

of all logic programs over P’s signature, BS 0 is the power set of HBP ,
and ACC 0 assigns each program to the set of its models;

– kb0 is P−, the set of rules of P that do not contain any dl-atoms;
– br0 contains p ← σKB(l1), . . . , σKB(lm) for each rule p ← l1, . . . , lm in
P \ P−.

3. For each input context χij = P1 op1 p1, . . . , Pk opk pk, the context Cψ(i,j) =
〈Li, kbi, brψ(i,j)〉 is defined as follows.
– Li = 〈KB i,BS i,ACC i〉 is the description logic underlying Σi, with KB i

the set of all knowledge bases over Σi’s signature; BS i contains all sets
of dl-queries to Σi; and ACC i assigns to each knowledge base the set of
dl-queries it satisfies.3

– kbi is Σi.
– For j = 1, . . . , k, brψ(i,j) contains Pj ← (0 : pj), if opj =], or ¬Pj ←

(0 : pj), if opj = ∪- .
Note that Li and kbi are the same for all contexts originating from Σi.

4. The MCS generated by KB, M(KB), contains C0 and all the Cψ(i,j).

The first context in M(KB) is a logic program with the same underlying
language of P. This implies that any interpretation I of P is an element of BS 0,
and vice-versa. We will use this fact hereafter without mention.

3 Formally, we can define ACC i as computing the set of logical consequences of the
knowledge base and restricting it to those formulas that are dl-queries.

Example 4. Recall the Mdl-program KB from Example 1. For the purpose of
generating an MCS from KB, observe that there are two different input contexts
associated with Σ1, χ1 = ε and χ2 = Destination]wineDest, and one associated
with Σ2, χ3 = ε. Rules (r1) and (r2) do not include dl-atoms, so they belong
to P−. Rules (r3), (r4) and (r5), which contain dl-atoms, are translated as the
following L0-bridge rules.

wineDest(X)← (3 : Region(X)) (r′3)

overnight(X)← (1 : hasAccommodation(X,Y)) (r′4)

oneDayTrip(X)← (2 : Destination(X)),not overnight(X) (r′5)

The generated multi-context system M(KB) is thus 〈C0, C1, C2, C3〉, where:

C0 = 〈L0, {r1, r2}, {r′3, r′4, r′5}〉 C1 = 〈L1, Σ1, ∅〉
C2 = 〈L1, Σ1, {Destination(X)← (0 : wineDest(X))}〉 C3 = 〈L2, Σ2, ∅〉

Note that, formally, the syntax of MCSs does not allow variables, so M(KB)
should instead include the ground versions of these rules. However, it is usual to
write MCSs with variables for readability and succinctness [4].

An interesting aspect is that we can translate an Mdl-program with observers
directly to an MCS (without first “unfolding” the observers) as follows.

Definition 2. Let 〈KB,O〉 be an Mdl-program with observers. The MCS it gen-
erates is M(KB,O), defined as follows.

1. Construct M = M(KB).
2. Without loss of generality, assume that M contains contexts Ci∗ correspond-

ing to the empty input context for each Σi.
3. For each (S, p) ∈ Λi, add the bridge rule p← (i∗ : S) to br0.
4. For each (p, S) ∈ Ψi, add the bridge rule S ← (0 : p) to each brψ(i,j), with

j = 1, . . . , ni, and to br i∗ .

This construction captures the intended meaning of the observers.4

Theorem 1. Let KB = 〈Σ,P〉 be an Mdl-program and O be observer sets for
KB. Then M(KB,O) = M

(〈
Σ,PO

〉)
.

4 Semantics of multi-context systems

There are several different semantics for MCSs, all of which are defined in terms
of the semantics for the logics in the individual contexts.

Let M = 〈C1, . . . , Cn〉 be a multi-context system, with Ci = (Li, kbi, br i) for
each 1 ≤ i ≤ n. A belief state for M is a collection S = 〈S1, . . . , Sn〉 of belief sets
for each context, i.e. Si ∈ BS i for each 1 ≤ i ≤ n.

4 The proofs of all results can be found in [6].

A bridge rule s ← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm)
is applicable in belief state S = 〈S1, . . . , Sn〉 iff pi ∈ Sri for 1 ≤ i ≤ j and pk 6∈ Srk
for j + 1 ≤ k ≤ m. A belief state S = 〈S1, . . . , Sn〉 of M is an equilibrium if
the condition Si ∈ ACC i(kbi ∪ {H(r) | r ∈ br i is applicable in S}) holds for
1 ≤ i ≤ n, where H(r) denotes the head of rule r as usual.

In other words, belief states are simply “candidate” models, in the sense
that they are acceptable as potential models of each context. Information is
transported between different contexts by means of bridge rules, since a bridge
rule in one context may refer to other contexts, and the notion of equilibrium
guarantees that all belief states are not only models of the local information at
each context, but also reflect the relationships imposed by the bridge rules.

Just as we can generate a multi-context system M(KB) from an Mdl-program
KB, we can generate a belief state for M(KB) from any interpretation of KB.

Definition 3. Let KB = 〈Σ,P〉 be an Mdl-program and I be an interpretation
of KB. The belief state generated by I is SKB(I) = 〈SI0 , SI1 , . . . , SIm〉 of M(KB),
where SI0 = I and SIψ(i,j) is the only element of

ACC i

(
Σi ∪ {P (t) | I |= p(t), P] p ∈ χij} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χij}

)
.

It is straightforward to verify that SKB(I) is a belief state of M(KB). When there
is only one Mdl-program under consideration, we omit the subscript in SKB.

In the example from the previous section, one can check that its model gener-
ates a belief state that is also an equilibrium of M(KB). This suggests that there
are very close connections between I and S(I), which we now prove formally.

Theorem 2. Let KB = 〈Σ,P〉 be an Mdl-program.

1. If I is a model of KB, then S(I) is an equilibrium of M(KB).
2. If S = 〈S0, . . . , Sm〉 is an equilibrium of M(KB), then S0 is a model of KB.

Furthermore, since ACC i always yields a singleton set, equilibria for MCSs
generated from an Mdl-program can be uniquely derived from their first com-
ponent, as expressed by the following corollary.

Corollary 1. If S = 〈S0, . . . , Sm〉 is an equilibrium of M(KB), then S(S0) = S.

This result allows us to state all future equivalences in terms of models of P.

Minimal equilibria. As is the case in logic programming, there can be too many
equilibria for a given multi-context system; for this reason, several particular
kinds of equilibria are defined in [2], reflecting different kinds of preferences one
may adopt to choose among them. These categories closely follow the usual hier-
archy for models of logic programs, as well as of Mdl-programs. The basic concept
is that of minimal equilibrium. This is a relative notion, since (as discussed in [2])
it may not make sense to minimize the belief sets for all contexts.

Let M = 〈C1, . . . , Cn〉 be a multi-context system and C∗ ⊆ {C1, . . . , Cn}
be the set of contexts of M whose models should be minimized. An equilibrium

S = 〈S1, . . . , Sn〉 of M is C∗-minimal if there is no equilibrium S′ = 〈S′1, . . . , S′n〉
of M such that: (1) S′i ⊆ Si for all Ci ∈ C∗; (2) S′i (Si for some Ci ∈ C∗; and
(3) S′i = Si for all Ci 6∈ C∗. In this paper, we will always use C∗ = M and
simply refer to minimal equilibria, which the reader should understand to mean
M -minimal equilibria.

Since the transformation S from interpretations of Mdl-programs to belief
states preserves inclusions, we also have the following relationship.

Theorem 3. Let KB = 〈Σ,P〉 be an Mdl-program. Then I is the least model of
KB iff S(I) is a minimal equilibrium of M(KB).

Minimal equilibria (or even C∗-equilibria) do not necessarily exist. In logic
programming, it is shown that least models always exist for positive programs, a
result that holds also for dl-programs [9] and Mdl-programs. In MCSs, this class
corresponds to that of definite multi-context systems.

A logic L is monotonic if ACCL(kb) is always a singleton set, and kb ⊆ kb′

implies that the only element of ACCL(kb) is a subset of the only element of
ACCL(kb′). This coincides with the usual notion of monotonic logic. A logic
L = (KBL,BSL,ACCL) is reducible if (1) there is KB∗L ⊆ KBL such that
the restriction of L to KB∗L is monotonic; and (2) there is a reduction function
redL : KBL × BSL → KB∗L such that, for each k ∈ KBL and S, S′ ∈ BSL,
(2a) redL(k, S) = k whenever k ∈ KB∗L; (2b) redL is anti-monotonic in the second
argument; and (2c) S ∈ ACCL(k) iff ACCL(redL(k, S)) = {S}. A context C =
(L, kb, br) is reducible if (1) L is reducible; and (2) for all H ⊆ {H(r) | r ∈ br}
and belief sets S, redL(kb ∪H,S) = redL(kb, S) ∪H. A multi-context system is
reducible if all of its contexts are reducible.

A definite MCS is a reducible MCS in which bridge rules are monotonic (that
is, they do not contain not) and knowledge bases are in reduced form (that is,
kbi = redLi(kbi, S) for all i and every S ∈ BS i). Every definite MCS has a unique
minimal equilibrium [2], which we will denote by Eq(M).

Grounded equilibria. The semantics of non-definite MCSs is defined via a gen-
eralization of the Gelfond–Lifschitz reduct to the multi-context case. If M =
〈C1, . . . , Cn〉 is a reducible MCS and S = 〈S1, . . . , Sn〉 is a belief state of M , then
the S-reduct of M is MS = 〈CS1 , . . . , CSn 〉, where CSi = (Li, redLi

(kbi, Si), brSi)
and, for each i, brSi is obtained from br i by (1) deleting every rule with some
not (k : p) in the body such that p ∈ Sk, and (2) deleting all not literals from
the bodies of remaining rules. If S = Eq(MS), then S is a grounded equilibrium
of M .

Note that this definition only makes sense if MS is definite; indeed, it has
been shown [2] that this is always the case. In particular, if M is a definite MCS,
then its minimal equilibrium is its only grounded equilibrium. In other cases,
several grounded equilibria (or none) may exist. It is also easy to verify that
grounded equilibria of M are indeed equilibria of M .

Answer sets for Mdl-programs correspond to grounded equilibria for MCSs.
This should not come as a big surprise: both the dl-transform of Mdl-programs

and the reduct of an MCS are generalizations of the Gelfond–Lifschitz transform
of ordinary logic programs.

Theorem 4. I is an answer set for KB iff S(I) is a grounded equilibrium of
M(KB).

Well-founded semantics. The well-founded semantics for reducible MCSs is also
defined in [2], based on the operator γM (S) = Eq(MS). Since γM is anti-
monotonic, γ2M is monotonic as usual. However, one can only guarantee the
existence of its least fixpoint by the Knaster–Tarski theorem if BS i has a least
element for each logic Σi in any of M ’s contexts. If this is the case, then the
well-founded semantics of M is WFS (M) = lfp

(
γ2M
)
.

As with models of logic programs (and of Mdl-programs), WFS (M) is not
necessarily an equilibrium: it contains the knowledge that is common to all
equilibria, but being an equilibrium is not preserved by intersection.5

This definition is very similar to that of well-founded semantics for Mdl-
programs. Therefore, the following result should not come as a surprise.

Theorem 5. I is the well-founded semantics of KB iff S(I) is the well-founded
equilibrium of M(KB).

5 Design patterns in multi-context systems

In real life, a substantial amount of the time required in software development
is spent in finding and implementing design solutions for recurrent problems al-
ready addressed and for which good solutions already exist. For this reason, an
important field in research is that of identifying common scenarios and propos-
ing mechanisms to deal with these scenarios – the so-called design patterns for
software development. With this in mind, the authors proposed an elementary
set of design patterns for Mdl-programs [7].

In this section, we apply the translation from Mdl-programs to MCSs to
obtain an initial set of design patterns for MCSs, and discuss how adequate the
resulting patterns are. This discussion focuses on the potential usefulness of the
translation: we capitalize on the mapping previously defined to port interesting
constructions from one formalism to another automatically. As it turns out, we
can overcome some of the problems that affected the set described in [7], thereby
obtaining a more expressive set of design patterns for MCSs. Also, we take
advantage of the intrinsic structure of MCSs to optimize some of the resulting
design patterns, a simpler process than developing efficient ones from scratch.

The simplest design pattern is the Observer Down pattern, applicable when
there is a predicate in P that should include all instances of a concept or role
S in some Σi. This pattern is implemented in an Mdl-program with observers
simply by adding the pair (S, p) to the appropriate observer set Λi. According

5 In view of the following result, to obtain an example, pick a dl-program whose well-
founded semantics is not a model (see [5]) and apply the translation defined above.

to Definition 2, this corresponds to adding a bridge rule p ← (i∗ : S) to br0.
Reciprocally, the pattern Observer Up allows S to include all instances of p,
and is implemented by adding S ← (0 : p) to all contexts generated from Σi.

Looking at these constructions from the perspective of MCSs, their imple-
mentation follows the same structure: a bridge rule with exactly one literal in its
body is added to a context Ci, thereby updating some Si in Ci’s language using
input from some Sj in Cj . This mechanism makes sense in general, regardless
of whether the MCS is generated from an Mdl-program or not. We thus obtain
a general Observer design pattern that we can apply in any MCS whenever we
want to ensure that some Si in context Ci is updated every time another Sj in
context Cj is changed: simply add the rule Si ← (j : Sj) to br i.

This pattern also captures the Transversal Observer pattern of Mdl-
programs, applicable when one knowledge base needs to observe another; how-
ever, this implementation is simpler than translating this pattern directly, since
in MCSs there is in general no need to use an intermediate context. This type
of simplification will also be used in other patterns.

A more interesting example arises when one looks at the Polymorphic En-
tities design pattern. The setting is the following: in P, there is a predicate p
whose instances are inherited from Q1, . . . , Qk, where each Qj is a concept or
role from Σj . This pattern is again implemented by adding a number of ob-
servers, namely (Qj , p) to each Λj . In the generated MCS, this corresponds to
adding bridge rules p← (j∗ : Qj) for each j to br0. This pattern can be applied
in a generic MCS whenever we want predicate P from context Ci to inherit all
instances of predicates Q1, . . . , Qk where each Qj is a predicate from a context
Cj . This is achieved by adding bridge rules P ← (j : Qj) for each j to br i.

An example where we can substantially simplify the design pattern obtained
is adding closed world semantics to a predicate in some context. In the setting
of Mdl-programs, where each description logic knowledge base has open-world
semantics and the logic program has default negation, this is achieved by the
Closed World design pattern. To give closed-world semantics to a concept (or
role) S in Σi, we choose fresh predicate symbols s+ and s− in P and add (S, s+)
to Λi, (s−,¬S) to Ψi and the rule s−(X) ← not s+(X) to P. In the generated
MCS, this corresponds to adding s+ ← (i∗ : S) to br0, ¬S ← (0 : s−) to br i∗ ,
and the rule s−(X)← not s+(X) to kb0.

To generalize this pattern, we first observe that adding s−(X)← not s+(X)
to kb0 is equivalent to adding the bridge rule s− ← not(0 : s+) to br0, since
the semantics of bridge rules is that of logic programs. As before, the context
C0 is now being used solely as an intermediate for a construction that can be
made directly in Ci; therefore, we can implement Closed-World in an MCS,
giving closed-world semantics to a predicate Si in context Ci by adding the
bridge rule ¬Si ← not(i : Si) to br i. Once again, this pattern makes sense in
any MCS, regardless of the nature of its components – as long as the context Ci
has negation.

The last design pattern we discuss here is Adapter, which is applied when-
ever a component Σk is not known or available at the time of implementation of

others, yet it is necessary to query it. In an Mdl-program, one adds an empty in-
terface knowledge base ΣI whose language includes the desired concept and role
names, and later connect each concept and role in ΣI with its counterpart in Σk
by means of Transversal Observer. This pattern works without any changes
in any MCS; however, the resulting program will be simpler because the appli-
cation of Observer yields a simpler MCS than the application of Transversal
Observer in an Mdl-program.

Furthermore, as was observed in [7], in Mdl-programs this pattern does not
work well if one needs dl-atoms querying ΣI which locally extend this knowl-
edge base. In MCSs, this problem does not arise, and thus this implementation
of Adapter is closer to the spirit of this pattern in e.g. object-oriented program-
ming. It is also interesting to notice that this pattern can be modified in a very
simple way to implement a proxy: simply add side-conditions to the body of the
bridge rules connecting CI with Ck that restrict the communication between
these two contexts. As was observed in [7], it is not clear whether a proxy can
be implemented in Mdl-programs.

The ideas in this section constitute an initial approach to the study of design
patterns in multi-context systems. We point out that we obtained for free a set of
design patterns including all design patterns for Mdl-programs in [7], applicable
in a more general setting. Furthermore, several of these patterns were simplified
in a systematic way, removing indirections resulting from the need, in Mdl-
programs, to go through the logic program in order to establish communication
between two different knowledge bases.

6 Conclusions

The basic constructs of Mdl-programs and multi-context systems are based upon
different motivations, and are therefore fundamentally different. In this paper,
we showed how, even so, an arbitrary Mdl-program can be translated into an
MCS, which is equivalent to it in a very precise way – namely, the interpretations
of the Mdl-program naturally give rise to belief states for the generated MCS,
taking this correspondence to the semantic level. Thus, (minimal) models become
(minimal) equilibria, answer sets become grounded equilibria, and well-founded
semantics (for Mdl-programs) become well-founded semantics (for MCSs).

An important aspect of this construction is that we can compute minimal
equilibria and well-founded semantics for MCSs generated from Mdl-programs
efficiently, which is not true in general (the definition of minimal equilibrium
is a characterization that is not computational, and minimal equilibria cannot
usually be constructed in a practical way, except by brute-force testing of all
candidates). Also, there is an algorithmic procedure to check whether an equi-
librium for an MCS generated from a Mdl-program is grounded, which again is
not true in general.

Finally, we showed how this technique can be applied to obtain a start set of
design patterns for MCSs. This set was obtained by translating a pre-existing set
of design patterns for Mdl-programs and simplifying the result following some

general principles motivated by the specificities of MCSs. In some cases, the
resulting patterns turned out to be more encompassing than the original ones.
We intend to use this work as a first step in a more comprehensive study of
design patterns for multi-context systems.

Acknowledgments

The authors wish to thank Graça Gaspar for the fruitful discussions and her
insightful comments on a first version of the manuscript.

This work was partially supported by Fundação para a Ciência e Tecnologia
under contracts PEst-OE/MAT/UI0209/2011 and PEst-OE/EEI/UI0434/2011.

References

1. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. 2nd Edition. Cambridge University Press, 2007.

2. G. Brewka and T. Eiter. Equilibria in heterogeneous nonmonotonic multi-context
systems. In AAAI2007, pages 385–390. AAAI Press, 2007.

3. G. Brewka, T. Eiter, and M. Fink. Nonmonotonic multi-context systems: A flexible
approach for integrating heterogeneous knowledge sources. In M. Balduccini and
T.C. Son, editors, Logic Programming, Knowledge Representation, and Nonmono-
tonic Reasoning, volume 6565 of LNCS, pages 233–258. Springer, 2011.

4. G. Brewka, T. Eiter, M. Fink, and A. Weinzierl. Managed multi-context systems.
In T. Walsh, editor, IJCAI, pages 786–791. IJCAI/AAAI, 2011.

5. L. Cruz-Filipe, P. Engrácia, G. Gaspar, and I. Nunes. Achieving tightness in
dl-programs. Technical Report 2012;03, Faculty of Sciences of the University of
Lisbon, July 2012. Available at http://hdl.handle.net/10455/6872.

6. L. Cruz-Filipe, R. Henriques, and I. Nunes. Viewing dl-programs as multi-context
systems. Technical Report 2013;05, Faculty of Sciences of the University of Lisbon,
April 2013. Available at http://hdl.handle.net/10455/6895.

7. L. Cruz-Filipe, I. Nunes, and G. Gaspar. Patterns for interfacing between logic pro-
grams and multiple ontologies. To appear in Proceedings of KEOD’2013 ; available
at http://tinyurl.com/itsweb2013-09, 2013.

8. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and description logics. Int. Inf. Systems, 1998.

9. T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics
for description logic programs in the semantic Web. ACM Transactions on Com-
putational Logic, 12(2), 2011. Article Nr 11.

10. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12–13):1495–1539, 2008.

11. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming. In
L.P. Kaelbling and A. Saffiotti, editors, IJCAI2005, pages 90–96. Professional Book
Center, 2005.

12. S. Heymans, T. Eiter, and G. Xiao. Tractable reasoning with DL-programs over
Datalog-rewritable description logics. In H. Coelho, R. Studer, and M. Wooldridge,
editors, ECAI2010, volume 215 of Frontiers in Artificial Intelligence and Applica-
tions, pages 35–40. IOS Press, 2010.

13. H. Knublauch. Travel ontology 1.0. Available at http://protege.cim3.net/file/
pub/ontologies/travel/travel.owl.

14. B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the
ACM, 57, June 2010. Article Nr 30.

15. The OWL Working Group. Wine ontology. Available at http://www.w3.org/TR/

2004/REC-owl-guide-20040210/wine.rdf.
16. R. Rosati. DL+log: Tight integration of description logics and disjunctive Datalog.

In P. Doherty, J. Mylopoulos, and C.A. Welty, editors, KR2006, pages 67–78. AAAI
Press, 2006.

A Proof from Section 3

Proof (Theorem 1). The construction of
〈
Σ,PO

〉
consists of two steps.

The first step adds dl-atoms to P with the empty context, thereby ensuring
that this context occurs in P, and adds a rule to P that is translated to the
bridge rule added in step 3 of the construction of M(KB,O).

The second step adds S]p to χij for each 〈p, S〉 ∈ Ψi and S ∪- p to χij for each
〈p,¬S〉 ∈ Ψi, for every j = 1, . . . , ni (and the empty context in dl-atoms querying
Σi, if it was only added in the previous step). When computing the generated
MCS, this extra input information will yield new bridge rules in brψ(i,j) and in
the context eventually added in the first step; these are precisely the bridge rules
added in step 4 of the construction of M(KB,O). ut

B Proofs from Section 4

For legibility, we will prove all results assuming there is only one description
logic, i.e. KB = 〈Σ,P〉 is a dl-program. This allows us to choose ψ(1, i) =
i and significantly simplifies notation. The generalization to Mdl-programs is
straightforward, since each knowledge base is processed independently.

Theorem 2

This result relies on the following lemma.

Lemma 1. Let KB = 〈Σ,P〉 be a dl-program and DL[χi;Q](t) be a ground
dl-atom in P.

1. For any interpretation I, I |= DL[χi;Q](t) iff Q(t) ∈ SIi .
2. If S = 〈S0, S1, . . . , Sn〉 is an equilibrium of M(KB) and 1 ≤ i ≤ n, then

Q(t) ∈ Si iff S0 |= DL[χi;Q](t).

Proof. The first equivalence is straightforward, since the construction of SIi mim-
ics the definition of the semantics of KB. The second equivalence is a matter of
checking that semantics of dl-programs and the definition of equilibrium are
compatible. ut

Proof (Theorem 2).

1. Suppose that I is a model of KB and let S(I) = 〈SI0 , SI1 , . . . , SIn〉 be the belief
state generated by I. For each i, we need to show that SIi is a belief set of
kbi and that s ∈ SIi whenever the bridge rule s ← σ(l1), . . . , σ(lk) ∈ br i is
applicable in M(KB).
Consider first the case i = 0. Since SI0 = I is a model of all the rules in P, it
follows that I satisfies every rule in kb0 = P−. Let s← σKB(l1), . . . , σKB(lk)
be a bridge rule in br0; this must originate from a rule s ← l1, . . . , lk in
P \ P−. Assume that the bridge rule is applicable in S(I); for each lj , there
are three possibilities: (1) lj is a regular literal, and then I |= lj ; (2) lj is

DL[χm;Q](t) and Q(t) ∈ SIm, whence I = SI0 |= lj by Lemma ??; (3) lj
is notDL[χm;Q](t) and Q(t) 6∈ SIm, whence I = SI0 6|= DL[χm;Q](t) by
Lemma ??, and therefore I |= lj . Thus, I satisfies the body of the rule,
hence SI0 = I |= s.
Suppose now that i 6= 0. By construction, SIi is the only element of ACC (Σ∪
{P (t) | I |= p(t), P] p ∈ χi} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χi}), which is
precisely the (unique) model of Σ together with the heads of the bridge rules
applicable in S(I).
Therefore S(I) is an equilibrium of M(KB).

2. Suppose that S = 〈S0, S1, . . . , Sn〉 is an equilibrium of M(KB). Since S0 is
a model of kb0 extended with the heads of bridge rules in br0 which are
applicable in S, it follows that S0 satisfies all the rules of kb0 = P−.
Let p ← l1, . . . , lk be a rule in P \ P−. Then p ← σKB(l1), . . . , σKB(lk)
is a bridge rule in br0. Again, if S0 satisfies the body of the rule, then
the corresponding bridge rule is applicable in S: for regular literals this is
immediate (the condition is the same), while for dl-atoms and their negations
this is again Lemma ??. Hence S0 is also a model of the remaining rules in
P.
Therefore S0 is a model of KB. ut

In case 1 of the previous proof, nothing is said about the case when a bridge
rule is not applicable: in this situation, the definition of equilibrium poses no
restrictions on whether or not its head is part of the corresponding belief set.

Theorem 3

Proof.

(⇒) Suppose that I is a least model of KB, and let S′ = 〈S′0, S′1, . . . , S′n〉 be
an equilibrium of M(KB). By Theorem 2, S′0 is a model of P, and since I
is minimal, it follows that I ⊆ S′0. Suppose also that S(I) is not minimal;
then S′0 ⊆ I; hence S′0 = I. By the corollary proved above, it follows that
S′ = S(I), which is a contradiction. Hence S(I) is minimal.

(⇐) Suppose that S(I) = 〈SI0 , SI1 , . . . , SIn〉 is a minimal equilibrium of M(KB),
and let I ′ be a model of KB. Let S(I ′) be the corresponding equilibrium of
M(KB); then I = SI0 ⊆ SI

′

0 = I ′ by minimality of S, hence I is a least model
of P. ut

Theorem 4

This proof proceeds in several steps. Throughout this proof, let KB = 〈Σ,P〉 be
a dl-program and M(KB) be the multi-context system generated by KB, where
M(KB) = 〈C0, C1, . . . , Cn〉 and Ci = 〈Li, kbi, br i〉 for i = 0, . . . , n.

Proposition 1. M(KB) is reducible, with KB∗0 the set of positive programs,
red0(k, S) = kS, computing the Gelfond–Lifschitz transform of k relative to S,
KB∗i = KB i and redi(k, S) = k a projection function.

Proof. 1. The logic L0 is reducible, with KB∗0 the set of positive programs
and reduction function red0(k, S) = kS , computing the Gelfond–Lifschitz
transform.
We need to show that the conditions for being a reducible logic hold. These
are just well-known facts in logic programming, namely:
– positive logic programs are monotonic;
– the Gelfond–Lifschitz transform of a positive logic program is itself;
– if S ⊆ S′, then kS

′ ⊆ kS ;
– S is a model of a (general) logic program k iff it is a model of kS .

2. The context C0 is reducible.
We need to show that red0(kb ∪H, I) = red0(kb, I) ∪H, for every interpre-
tation I and any set H of heads of rules in br0. But H consists solely of
facts (rules with empty body), which are unaltered by the Gelfond–Lifschitz
transform, hence this equality holds.

3. For i = 1, . . . , n, the context Ci is reducible via the identity function.
Since description logics are monotonic, we can take KB∗i = KB i, and the
identity function trivially satisfies all the reducibility conditions. ut

The dl-transform of P generates a subsystem of the reduction of M(KB) in
the following sense.

Definition 4. Consider two multi-context systems M = 〈C1, . . . , Cn〉 and M ′ =
〈C ′1, . . . , C ′m〉. We say that M ′ is a subsystem of M , M ′ ⊆M , if there exists an
injective function ϕ : {1, . . . ,m} → {1, . . . , n} such that C ′i is Cϕ(i) with every
index j in brϕ(i) replaced by ϕ(j) for 1 ≤ i ≤ m.

In particular, if M ′ ⊆M , then m ≤ n.

Let I be an interpretation of KB, MS(I) =
〈
C

S(I)
0 , C

S(I)
1 , . . . , C

S(I)
n

〉
be the

S(I)-reduct of M(KB), and KB′ = 〈Σ, sP IΣ〉 be the dl-transform of P relative
to Σ and I, with M ′ = M(KB′) = 〈C ′0, C ′1, . . . , C ′m〉 the corresponding multi-
context system.

Proposition 2. M ′ is a subsystem of MS(I); also, it is a definite context.

Proof. To see that M ′ is a subsystem of MS(I), we first characterize M ′. Since
the set of input contexts χ′i in sP IΣ is, in general, a subset of the χj in P
(the removal of some dl-atoms and some dl-rules may have caused some input
contexts to cease to occur), the indices in M(KB) and M ′ will not coincide. Let
ϕ : {1, . . . ,m} → {1, . . . , n} be the appropriate renaming function, i.e. such that
χ′i = χϕ(i).

1. C ′0 is C
S(I)
0 , with every index i 6= 0 in br0 replaced by ϕ(i).

This can be seen by observing that the rules removed from P in the construc-
tion of sP IΣ correspond precisely to the rules removed from C0 in the con-

struction of C
S(I)
0 . Consider a ground rule r obtained from grounding a rule in

P. If r does not contain dl-atoms, then r ∈ sP IΣ iff r ∈ (P−)I = red0(kb0, I).

Suppose that r contains dl-atoms. Then r will not be included in sP IΣ if r
contains a negative literal l such that I 6|= l. There are two cases: if l is a
regular literal ¬p, this means simply that I |= p, hence p ∈ SI0 = I; if l is
¬DL[χi;Q](t), then by Lemma ?? Q(t) ∈ SIi . In either case, the correspond-
ing bridge rule will be removed from br0. This reasoning is reversible, so the
converse implication also holds. If those conditions do not hold, then r is
included in sP IΣ by removing its negative literals – and since σKB transforms
negative literals into negative literals, the bridge rule obtained is the same
as removing all negative literals from the bridge rule derived from r.

2. C ′i = C
S(I)
ϕ(i) .

The only non-trivial part of this equality regards the bridge rules. But all
bridge rules in C ′i are of the form (¬)P ← (0 : p), which do not contain
negations in their body, so they are never removed.

This shows that M ′ is a subsystem of MS(I). The fact that it is a definite
MCS is a straightforward consequence of the definition of sP IΣ . ut

From an interpretation J of KB, we can generate belief states for M and M ′;
to distinguish them, we will write the subscripts in S explicitly.

Proposition 3. For any interpretation J of KB, SKB(J) is a minimal equilib-
rium of MSKB(I) iff SKB′(J) is a minimal equilibrium of M ′.

Proof. The direct implication is straightforward.
For the converse implication, note that from an equilibrium S = 〈S0, S1, . . . , Sn〉

of MSKB(I) we can construct an equilibrium S′ = 〈S0, Sϕ(1), . . . , Sϕ(m)〉 of M ′.

By minimality of SKB′(J), J = S′
J
0 ⊆ S0; therefore, if S0 ⊆ SJ0 = J , we would

again have S0 = J , whence S = SKB(J). ut

Corollary 2. Let S = 〈S0, S1, . . . , Sn〉 be a minimal equilibrium of MSKB(I) .
Then S = SKB(S0).

Proof. Suppose S = 〈S0, S1, . . . , Sn〉 is a minimal equilibrium of MSKB(I) . From
S, we can construct a minimal equilibrium S′ =

〈
S0, Sϕ(1), . . . , Sϕ(m)

〉
as in

Proposition ??, which is a minimal equilibrium of M ′. By Corollary 1, S′ =
SKB′(S0), whence by Proposition ??, it follows that SKB(S0) is also a minimal
equilibrium of MSKB(I) . But MSKB(I) is a definite multi-context system, so it only
has one minimal equilibrium. Hence S = SKB(S0). ut

Proof (Theorem 4). I is an answer set for KB iff I is the least model of KB′ iff
SKB′(I) is a minimal equilibrium of M ′ iff SKB(I) is a minimal equilibrium of
MSKB(I) iff SKB(I) is a grounded equilibrium of M(KB). ut

Theorem 5

This proof relies on the following result.

Proposition 4. For every interpretation I of KB,

γM (S(I)) = S (γKB(I)) .

Proof. Let I be an interpretation of KB. By definition, γM (S(I)) is the minimal
equilibrium of MS(I), the reduct of M relative to S(I), hence γM (S(I)) may
be written as SKB(J) for some J . By Proposition ??, SKB′(J) is a minimal
equilibrium of M(KB′), with KB′ = 〈Σ, sP IΣ〉, and by Theorem 3 J is the least
model of KB′, hence J = γKB(I) as we wanted to show. ut

Proof (Theorem 5). The proof of this result amounts to showing that lfp
(
γ2M
)

=

S(lfp
(
γ2KB

)
).

1. For every interpretation I of KB and every n > 0,

γnM (S(I)) = S (γnKB(I)) .

For n = 1 this is simply Proposition ??. Assume the equality holds for n;
then

γn+1
M (S(I)) = γM (γnM (S(I))) = γM (S (γnKB(I)))

= S (γKB (γnKB(I))) = S
(
γn+1
KB (I)

)
,

where the second equality holds by induction hypothesis and the third by
Lemma ??.

2. Let ⊥ = 〈∅, ∅, . . . , ∅〉 be the least belief state of M . Note that it is not true,
in general, that S(∅) = ⊥, hence we cannot invoke the previous result.
However, ⊥ v S(∅), where v is pointwise set inclusion. By monotonicity of
γ2M , it follows that γ2nM (⊥) v γ2nM (S(∅)) = S

(
γ2nKB(∅)

)
by the previous result.

Therefore, lfp
(
γ2M
)
v S

(
lfp
(
γ2KB

))
.

From Corollary ??, we can write lfp
(
γ2M
)

as S(J) for some interpretation J ,
since γM is defined as the minimal equilibrium of a reduct of M . It follows
that S(J) = γ2M (S(J)) = S

(
γ2KB(J)

)
, and hence J is a fixpoint of γ2KB (since

S is injective). Therefore lfp
(
γ2KB

)
v J , and by monotonicity of S it follows

that S
(
lfp
(
γ2KB

))
v S(J) = lfp

(
γ2M
)
. ut

