
Optimizing Computation of Repairs from Active
Integrity Constraints

Lúıs Cruz-Filipe?

Dept. of Mathematics and Computer Science, University of Southern Denmark,
Denmark

LabMag, Lisboa, Portugal

Abstract. Active integrity constraints (AICs) are a form of integrity
constraints for databases that not only identify inconsistencies, but also
suggest how these can be overcome. The semantics for AICs defines dif-
ferent types of repairs, but deciding whether an inconsistent database
can be repaired is a NP- or Σ2

p-complete problem, depending on the
type of repairs one has in mind. In this paper, we introduce two differ-
ent relations on AICs: an equivalence relation of independence, allowing
the search to be parallelized among the equivalence classes, and a prece-
dence relation, inducing a stratification that allows repairs to be built
progressively. Although these relations have no impact on the worst-case
scenario, they can make significant difference in the practical computa-
tion of repairs for inconsistent databases.

1 Introduction

Maintaining and guaranteeing database consistency is one of the major problems
in knowledge management. Database dependencies have been since long a main
tool in the fields of relational and deductive databases [2, 3], used to express
integrity constraints on databases. They formalize relationships between data
in the database that need to be satisfied so that the database conforms to its
intended meaning.

Whenever an integrity constraint is violated, the database must be repaired
in order to regain consistency. Typically there are several sets of update actions
that achieve this goal, leading to different revised consistent databases. Restrict-
ing the set of database repairs to those considered most adequate is therefore
an important task. Minimality of change is commonly accepted as an essential
characteristic of a repair [6, 8, 18], but it is not enough to narrow down the set
of possible repairs sufficiently.

The most common approach to processing integrity constraints in database
management systems is to use active rules (a kind of event-condition-action
rules, or ECAs [17]), for which rule processing algorithms have been proposed
and a procedural semantics has been defined. However, their lack of declarative

? Supported by the Danish Council for Independent Research, Natural Sciences and by
Fundação para a Ciência e Tecnologia under contract PEst-OE/EEI/UI0434/2011.

semantics makes it difficult to understand the behaviour of multiple ECAs acting
together and to evaluate rule-processing algorithms in a principled way.

Active integrity constraints (AICs) [9] are special forms of production rules
that encode both an integrity constraint and preferred update actions to be per-
formed whenever the former is violated. The declarative semantics for AICs [4,
5] is based on the concept of founded and justified repairs. Informally, justified
repairs are the repairs that are the most strongly grounded in the given database
and the given set of AICs, that is, those resulting strictly from combinations of
the preferences expressed by the database designer for each of the integrity con-
straints and from the principle of minimal change. The operational semantics
for AICs [7] allows direct computation of justified repairs by means of intuitive
tree algorithms. Interaction between different AICs in a set that must be col-
lectively satisfied makes the problem of repairing a database highly non-trivial,
however, and in the worst case deciding whether a database can be repaired
is NP-complete or Σ2

P -complete on the number of AICs [5], depending on the
criteria used to choose possible repairs. For this reason, it is important to be
able to control the number of AICs being considered simultaneously.

In this paper we first present parallelization results that allow a set of AICs
to be split in smaller, independent sets such that repairs for each smaller set
can be computed independently and the results straightforwardly combined into
a repair for the original set. Afterwards, we introduce a hierarchization mech-
anism on AICs that allows repairs to be computed progressively, starting with
a small set of AICs and extending this set while simultaneously extending the
computed repair. With these techniques, it is possible to speed up the problem
of finding repairs significantly; and, although they do not help in the worst-case
scenario, the typical structure of real-life databases indicates that parallelization
and hierarchization should be widely applicable.

1.1 Related work

When a database needs to be changed, it is necessary to find a way to make
the relevant modifications while maintaining the consistency of the data. This
problem, which has been the focus of intensive research for over thirty years, was
extensively discussed in [1], where three main change operations were identified:
insertion of new facts, deletion of existing facts, and modification of information,
and the concept of “good” update was characterized.

There are two distinct scenarios where database change is required, leading to
the distinction between update and revision [8, 11]. An update occurs whenever
the world changes and the knowledge bases needs to be changed to reflect this
fact; a revision happens when new knowledge is obtained about a world that did
not change. This distinction is especially relevant in deductive databases and
open-world knowledge bases, where the known information is not assumed to be
complete.

In spite of their differences, there are obvious similarities between updates
and revisions, and in both cases one has to consider the problems that arise
when the intended semantics of the database is taken into account. Typically,

the changes that have to be made conflict with the integrity constraints associ-
ated with the database, and the database must be repaired in order to regain
consistency. The ways in which this can be done are many, and several propos-
als have been around for years. One possibility is to read integrity constraints
as rules that suggest possible actions to repair inconsistencies [1]; another is to
express database dependencies through logic programming, namely in the set-
ting of deductive databases [12, 14, 15]. A more algorithmic approach uses event-
condition-action rules [16, 17], where actions are triggered by specific events,
and for which rule processing algorithms have been proposed and a procedural
semantics has been defined.

Several algorithms for computing repairs of inconsistent databases have been
proposed and studied throughout the years, focusing on the different ways in-
tegrity constraints are specified and on the different types of databases under
consideration [10, 12, 14, 15]. This multitude of approaches is not an accident:
deciding whether an inconsistent database can be repaired is typically a Π2

p - or
co-Σ2

p- complete problem, and it has been observed [8] that there is no reason
to believe in the existence of general-purpose algorithms for this problem, but
one should rather focus on developing more specific algorithms for particular
interesting cases.

Regardless of the approach taken, when an inconsistent database can be
repaired there are typically several sets of update actions that achieve this goal,
leading to different revised consistent databases. Restricting the set of database
repairs to those considered most adequate is therefore an important task. Among
the criteria that have been proposed to obtain this restriction are minimality of
change [6, 8, 18] – one should change as little as possible – and the common sense
law of inertia [15] – one should only change something if there is a reason for it –,
but these are not enough to narrow down the set of possible repairs sufficiently.
Ultimately, it is usually assumed that some human interaction will be required
to choose the “best” possible repair [16].

Because of the intrinsic complexity involved in the computation of repairs,
techniques to split a problem in several smaller problems are of particular inter-
est. As far as we know, this problem has received little consideration over the
years. There is a reference to semantic independency in [14] that is not explored
further, and syntactic precedence is used in that same paper in order to compute
models – but within a scenario that is far more powerful than that of active in-
tegrity constraints. More recently, syntactic precedence between constraints was
also discussed with the explicit goal of making the search for repairs more effi-
cient [13], but the authors did not allow for cyclic dependencies. The results we
prove are therefore a significant extension of previous work, and we believe they
can be easily extended to different formalisms of integrity constraints.

2 Background

Active integrity constraints were originally introduced in [9] as a special type of
integrity constraints, specifying not only the consistency requirements imposed

upon a database, but also actions that can be taken to correct the database
when such requirements are not met.

Within this framework, a database is a subset of a finite set of propositional
atoms At. An active integrity constraint (AIC) is a rule of the form

L1, . . . , Ln ⊃ α1 | . . . | αm

where L1, . . . , Ln are literals in the language generated by At; α1, . . . , αm are
update actions of the form +a or −a, where a is an atom in the same language;
and every update action must contradict some literal, i.e. if +a (resp. −a) occurs
among the αi, then not a (resp. a) must occur among the Li. The set {L1, . . . , Ln}
is the body of the rule and {α1, . . . , αm} is its head.

The close connection between literals and actions is made precise by means of
two operators. The atom underlying an action α is lit(α), defined by lit(+a) = a
and lit(−a) = not a, whereas the update action corresponding to L is ua(L), de-
fined by ua(a) = +a and ua(not a) = −a. The dual of a literal L, LD, is defined as
usual by aD = not a and (not a)D = a. Using this notation, the requirement that
valid AICs must satisfy can be stated as {lit(α1), . . . , lit(αm)}D ⊆ {L1, . . . , Ln}.

Being a set of propositional atoms, any database I induces a propositional
interpretation of literals. We say that I entails literal L, I |= L, if L is a and
a ∈ I, or if L is not a and a 6∈ I. Given an AIC r of the form L1, . . . , Ln ⊃
α1, . . . , αm, we say that I |= r if I 6|= Li for some i; otherwise, r is said to be
applicable in I. Finally, if η is a set of AICs, then I |= η iff I |= r for every
r ∈ η.

The operational nature of rules is given by the notion of updating a database
by a set of update actions, which captures the intuive idea conveyed above. The
result of updating I with a set of update actions U is I ◦ U , defined as

I ◦ U = (I ∪ {a | +a ∈ U}) \ {a | −a ∈ U} .

In order for this definition to make sense, U must not contain +a and −a for
the same atom a. A set of update actions satisfying this requirement is said to
be consistent.

Given a set of AICs η and a database I, a set of update actions U such
that I ◦ U |= η achieves the task of making I consistent w.r.t. η. In general,
for any given database that is inconsistent w.r.t. η there will be either none or
several such U . In order to compare different ways of repairing I, Caroprese and
Truszczyński [5] studied different semantics for AICs.

Minimality of change is commonly accepted as a desirable property [6, 18].
This motivates the following notion: given a database I and a set of AICs η,
a consistent set of update actions U such that (i) every action in U changes I
and (ii) I ◦ U |= η is called a weak repair for 〈I, η〉; a repair for 〈I, η〉 is a weak
repair for 〈I, η〉 that is minimal w.r.t. inclusion (so it contains no proper subset
that is also a weak repair). Condition (i) states that weak repairs only include
actions that change the database, and may be formally stated as ({+a | a ∈ I}∪
{−a | a ∈ At \ I}) ∩ U = ∅, or equivalently as I ◦ α 6= I for every α ∈ U .

Condition (ii) simply states that weak repairs make the database consistent
w.r.t. η.

None of these conditions takes into account the operational nature of AICs,
however, since they ignore the actions in the heads of the rules in η. For this
purpose, one needs to consider the more sophisticated notion of founded (weak)
repairs [5]. The intuition behind these is that they should contain only actions
that are motivated (founded) by the application of some rule. An update action
α is founded1 w.r.t. 〈I, η〉 and a set of update actions U if there is a rule r ∈ η
such that α ∈ head (r) and I ◦ U |= L for every literal L ∈ body (r) \ {lit(α)D}.
Quoting [5], “if U is to enforce r, then it must contain α” – if α is removed from
U , then all literals in the body of r are true and the rule is violated. A set of
update actions U is founded w.r.t 〈I, η〉 if every action in U is founded w.r.t.
〈I, η〉 and U . A set of update actions U is a founded (weak) repair for 〈I, η〉 if
(i) U is a weak repair for 〈I, η〉 and (ii) U is founded w.r.t. 〈I, η〉.

It is important to stress that founded repairs are minimal weak repairs that
are founded. Indeed, there are founded weak repairs that do not contain any
founded repair as subset (see [5] for an example). Also, being founded does not
imply being a weak repair, so these two tests must be performed independently.

Founded repairs, however, sometimes exhibit unexpected properties, such as
circularity of support [5] – e.g. they contain two actions α and β such that α
is founded by means of a rule r whose body only holds because of β, and β is
founded by means of a rule r′ whose body only holds because of α –, and it is
therefore interesting to consider a more complex type of repairs: justified repairs.
In order to define these, we need some auxiliary notions. The set of non-updatable
literals of a rule r is defined as nup(r) = body (r) \ (lit(head (r)))

D
, were lit is

extended to sets in the obvious way. A set of update actions U is closed for rule
r if nup(r) ⊆ lit(U) implies head (r) ∩ U 6= ∅, and U is closed for η if U is closed
for every rule in η.

An update action +a (resp. (−a)) is a no-effect action w.r.t. I and J if
a ∈ I ∩J (resp. a 6∈ (I ∪J)) – in other words, both I and J are unaffected by
the action. The set of all no-effect actions w.r.t. I and J is denoted by ne(I,J).
Given a database I and a set of AICs η, a consistent set of update actions U is
a justified action set for 〈I, η〉 if U is a minimal set of update actions containing
ne (I, I ◦ U) and closed for η. In that case, the set U \ ne (I, I ◦ U) is a justified
weak repair for 〈I, η〉. Being closed for η implies being a weak repair for 〈I, η〉,
so this terminology is consistent with the previous usage of the latter term.

In spite of the minimality requirement in the definition of justified weak
repair, there are justified weak repairs that contain a justified repair as a proper
subset; this is because the minimality involved in this definition is within a
different universe. All justified weak repairs are founded, but not conversely:
indeed, these repairs successfully avoid circularity of support.

We will use the following alternative characterization of justified weak repair:
a weak repair U for 〈I, η〉 is justified if (i) U ∩ ne (I, I ◦ U) = ∅ and (ii) U ∪

1 This equivalent characterization of founded action, which can be found in [7], is
slightly different from that in [5], and simpler to use in practice.

ne (I, I ◦ U) is a justified action set. Indeed, takingW = U ∪ne (I, I ◦ U), it can
easily be checked that ne (I, I ◦W) = ne (I, I ◦ U): the only differences between
I and I ◦ W must originate from U by definition of ne (I, I ◦ U). Therefore
W \ ne (I, I ◦W) = U .

The major problem with computing repairs for inconsistent databases lies in
the complexity of deciding whether such repairs exist. Given I and η, the problem
of deciding whether there exists a weak repair, a repair or a founded weak repair
for 〈I, η〉 is NP-complete (on the size of η), whereas deciding whether there is a
founded repair, a justified weak repair or a justified repair for η is Σ2

P -complete
(again on the size of η).2 In the special case where all AICs are normalized –
they have only one action in their head – the last two problems also become NP-
complete. Due to these ultimately bad complexity bounds, techniques to lower
the size of the problem can be extremely useful in practice. The goal of this
paper is to discuss how a set of AICs η can be divided into smaller sets such
that the computation of (simple, founded, justified) repairs can be computed for
each of those sets and the results combined in polynomial time.

3 Independent AICs

In this section, we introduce a notion of independence between active integrity
constraints. The goal is the following: given a set of AICs η, to partition it in
distinct independent sets η1, . . . , ηn such that the search for repairs for a database
I and η can be parallelized among the ηi. We define independent sets of AICs
in such a way that (simple, founded, justified) repairs for the different sets can
be combined into a (simple, founded, justified) repair for 〈I, η〉.

The basic concept is that of independent AICs. Two AICs are independent if
they do not share any atoms between their literals, so that applicability of one
does not affect applicability of the other.

Definition 1.

1. The atom underlying a literal L is |L|, defined as |a| = |not a| = a.
2. Let r1 and r2 be two AICs, where r1 is L1, . . . , Ln ⊃ α1, . . . , αp and r2 is

M1, . . . ,Mm ⊃ β1, . . . , βq. Then r1 and r2 are independent, r1 |= r2, if
{|L1|, . . . , |Ln|} ∩ {|M1|, . . . , |Mm|} = ∅.

3. Let η1 and η2 be sets of AICs. Then η1 and η2 are independent, η1 |= η2, if
r |= s whenever r ∈ η1 and s ∈ η2.

Two comments are in place regarding this definition. First, the notion of
independence does not take into account the actions in the rules (the “active”
part of the AICs); this aspect will be dealt with in Section 5. Second, this
concept only depends on the active integrity constraints themselves, and not on
the underlying database. This issue has positive practical implications, as we
will see later.

2 The size of I does not affect the complexity bounds for these problems [5].

This notion of independence captures the spirit of parallelization, as the next
lemmas state. Throughout the remainder of this section, let I be a database, η1,
η2 be independent sets of AICs and η = η1 ∪ η2.

Lemma 1. Let U1 and U2 be sets of update actions such that every action in Ui
corresponds to a literal (or its dual) in a rule in ηi,

3 and take U = U1 ∪ U2. For
every literal L such that L ∈ body (r) with r ∈ ηi, I ◦ U |= L iff I ◦ Ui |= L. In
particular, for every r ∈ ηi, I ◦ U |= r iff I ◦ Ui |= r.

Proof. Let L ∈ body (r) for some r ∈ η1. If α ∈ U2, then |lit(α)| 6= |L| because
η1 |= η2, whence I ◦ U |= L iff I ◦ U1 |= L (note that I ◦ U = (I ◦ U1) ◦ U2).
The result for rules is a straightforward consequence. The argument for U2 is
similar. ut

Lemma 2. Let U1 and U2 be weak repairs for 〈I, η1〉 and 〈I, η2〉, respectively,
such that the actions in Ui are all duals of literals in the body of some rule in
ηi. Then U = U1 ∪ U2 is a weak repair for 〈I, η〉.

Proof. We first show that U is a consistent set of actions containing only essential
actions. For consistency, note that the set of atoms underlying the actions in U1 is
disjoint from that of the atoms underlying the atoms in U2, from the hypothesis
and the fact that η1 |= η2; hence, if +α and −α were both in U = U1 ∪ U2
for some a, this would mean that +α,−α ∈ Ui for some i, whence Ui would be
inconsistent. Furthermore, if α ∈ Ui then α must change the state of I (since Ui
is a weak repair for 〈I, ηi〉), so U consists only of essential update actions.

Finally, we show that U is a weak repair. Without loss of generality, let
r ∈ η1. Then I ◦ U1 |= r, since U1 is a weak repair for 〈I, η1〉, and by Lemma 1
I ◦ U |= r. ut

The hypothesis that the actions in each Ui are all duals of literals in the body
of some rule in ηi is essential: if it were not required, then U1 could “break” sat-
isfaction of some rule in η2 or reciprocally, or there might be inconsistencies from
joining U1 and U2. Although this hypothesis could be weakened, it is actually
a (very) reasonable assumption: no reasonable algorithm for computing weak
repairs should include actions that do not affect the semantics of the integrity
constraints that should hold, since this verification can be done very efficiently.

If U1 and U2 are repairs, we get the following stronger result.

Lemma 3. If U1 and U2 are repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then
U = U1 ∪ U2 is a repair for 〈I, η〉.

Proof. By Lemma 2, U is a weak repair for 〈I, η〉. For any U ′ (U , define
U ′i = U ′ ∩ Ui for i = 1, 2. Note that one of the inclusions U ′i ⊆ Ui must be strict;
without loss of generality, assume that U ′1 (U1. Since U1 is a repair, this means
that U ′1 cannot be a weak repair, hence there is a rule r ∈ η1 such that U ′1 6|= r.
By Lemma 1 U ′1∪U ′2 6|= r, hence U ′ = U ′1∪U ′2 cannot be a weak repair for 〈I, η〉.
Therefore U is a repair for 〈I, η〉. ut
3 Formally, {|lit(α)| | α ∈ Ui} ⊆ {|L| | ∃r ∈ ηi.L ∈ body (r)}.

The converse result also holds: if we split the actions in a weak repair U
according to whether they affect rules in η1 or η2, we get weak repairs for those
sets of AICs.

Lemma 4. Let U be a weak repair for 〈I, η〉. Then

Ui = {α ∈ U | ∃r ∈ ηi.lit(α)D ∈ body (r)}

are weak repairs for 〈I, ηi〉. Furthermore, U = U1 ∪U2 if the actions in U are all
duals of literals in the body of some rule in η.

Proof. Assume that U is a weak repair for 〈I, η〉 and let Ui be as stated. Since
U is a weak repair for 〈I, η〉, I ◦ U |= r for every rule r ∈ ηi. By Lemma 1,
I ◦ Ui |= r. Therefore Ui is a weak repair for 〈I, ηi〉.

If the actions in U are all duals of literals in the body of some rule in η, then
they occur in the body of a rule in η1 or η2, so they will all occur either in U1
or U2, whence U = U1 ∪ U2. ut

The stated equality can be made to hold in the general case by adding the actions
that do not affect any rule to either U1 or U2; however, this is not an interesting
situation, and we will not consider it any further.

If U is minimal, then the same result can be made stronger.

Lemma 5. If U is a repair for 〈I, η〉, then U1 and U2 as defined above are
repairs for 〈I, η1〉 and 〈I, η2〉, respectively, and furthermore U = U1 ∪ U2.

Proof. By Lemma 4, each Ui is a weak repair for 〈I, ηi〉. Suppose that U ′1 (U1
is also a weak repair for 〈I, η1〉. By Lemma 1, U ′ = U ′1 ∪ U2 is a weak repair for
〈I, η〉 with U ′ (U , which is absurd. Therefore U ′1 is not a weak repair, hence U1
is a repair. The case for U2 is similar. Finally, U cannot contain actions that are
not duals of literals in the body of rules in η, since these can always be removed
without affecting the property of being a weak repair; therefore U1∪U2 = U . ut

These results also hold if we consider founded or justified (weak) repairs.

Lemma 6. Let U1 and U2 be founded w.r.t. 〈I, η1〉 and 〈I, η2〉, respectively.
Then U = U1 ∪ U2 is founded w.r.t. 〈I, η〉.

Proof. In order for U to be founded w.r.t. 〈I, η〉, every action in U must be
founded w.r.t. 〈I, η〉 and U . Let α ∈ U and assume that α ∈ U1 (the case when
α ∈ U2 is similar).

Since U1 is founded w.r.t. 〈I, η1〉, there is a rule r ∈ η1 such that α ∈ head (r)
and I ◦ U1 |= L for every L ∈ body (r) \ {lit(α)D}. By Lemma 1, I ◦ U |= L for
every such L. Since η1 ⊆ η, this means that α is founded w.r.t. 〈I, η〉 and U . ut

Corollary 1. If U1 and U2 are founded (weak) repairs, then U is also a founded
(weak) repair.

Proof. Consequence of Lemmas 2, 3 and 6. ut

Lemma 7. Let U be founded w.r.t. for 〈I, η〉. Then U1 and U2 as defined in
Lemma 4 are such that U = U1 ∪ U2 and each Ui is founded w.r.t. 〈I, ηi〉.

Proof. Let α ∈ U1; since U is founded w.r.t. 〈I, η〉, there is a rule r ∈ η such
that α ∈ head (r) and I ◦ U |= L for every L ∈ body (r) \ {lit(α)D}. But if
α ∈ head (r), then necessarily r ∈ η1; and in that case I ◦ U1 |= L for every
L ∈ body (r) \ {lit(α)D} by Lemma 1. Therefore α is founded w.r.t. 〈I, η1〉 and
U1, whence U1 is founded w.r.t. 〈I, η1〉. The case when α ∈ U2 is similar.

By definition of founded set, all actions in U must necessarily be in either U1
or U2, so U = U1 ∪ U2. ut

Corollary 2. If U is a (weak) founded repair, then U1 and U2 are also (weak)
founded repairs.

Proof. Consequence of Lemmas 4, 5 and 7. ut

Lemma 8. Let U1 and U2 be justified (weak) repairs for 〈I, η1〉 and 〈I, η2〉,
respectively. Then U = U1 ∪ U2 is a justified (weak) repair for 〈I, η〉.

Proof. We begin by making some observations that will be used recurrently
throughout the proof.

(a) For i = 1, 2, ne (I, I ◦ U) ⊆ ne (I, I ◦ Ui), since Ui ⊆ U .
(b) For i = 1, 2, ne (I, I ◦ Ui) ⊆ (ne (I, I ◦ U)∪U3−i): U can only change literals

that changed either by U1 or by U2. In particular, since η1 |= η2, if nup(r) ⊆
lit(ne (I, I ◦ Ui)) for some r ∈ ηi, then L ∈ lit(ne (I, I ◦ U)); and if α ∈
head (r) for some r ∈ ηi and α ∈ ne (I, I ◦ Ui), then α ∈ ne (I, I ◦ U).

(c) For i = 1, 2, if L ∈ body (r) with r ∈ ηi and L ∈ lit(U), then L ∈ lit(Ui):
since every justified weak repair is founded [5], Ui only contains actions in
the heads of rules of ηi, and the thesis follows from η1 |= η2.

We first show that U ∪ ne (I, I ◦ U) is closed for η. Let r ∈ η1; the case when
r ∈ η2 is similar. Suppose nup(r) ⊆ lit (U ∪ ne (I, I ◦ U)), and let L ∈ nup(r).
If L ∈ lit(U), then L ∈ lit(U1) by (c), hence nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U)),
whence nup(r) ⊆ lit(U1 ∪ ne (I, I ◦ U1)) by (a). But U1 ∪ ne (I, I ◦ U1) is closed
for η1, so head (r)∩ (U1 ∪ ne (I, I ◦ U1)) 6= ∅. By U1 ⊆ U and (b), also head (r)∩
(U ∪ ne (I, I ◦ U)) 6= ∅.

To check minimality, suppose that U ′ (U is such that U ′ ∪ ne (I, I ◦ U) is
closed for η and take U ′i = U ′ ∩ Ui for i = 1, 2. Note that one of the inclusions
U ′i ⊆ Ui must be strict. Without loss of generality, assume this is the case when
i = 1, and take r ∈ η1. If nup(r) ⊆ lit (U ′1 ∪ ne (I, I ◦ U1)), then nup(r) ⊆
lit (U ′ ∪ ne (I, I ◦ U)), consequence of U ′1 ⊆ U ′ and (b). Since U ′ ∪ ne (I, I ◦ U)
is closed for η and η1 ⊆ η, it follows that head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅. By
definition of U1 and (a), it follows that head (r)∩ (U ′1 ∪ ne (I, I ◦ U1)) 6= ∅. Then
U ′1 ∪ ne (I, I ◦ U1) is closed for η1, contradicting minimality of U1.

Hence U is a justified weak repair for 〈I, η〉. By Lemma 3, if U1 and U2 are
both justified repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then U is also a justified
repair for 〈I, η〉. ut

Lemma 9. Let U be a justified (weak) repair for 〈I, η〉. Then U1 and U2 as
defined in Lemma 4 are such that U = U1 ∪ U2 and each Ui is a justified (weak)
repair for 〈I, ηi〉.

Proof. Again note that properties (a), (b) and (c) from the previous proof
hold. We begin by showing that U1 ∪ ne (I, I ◦ U1) is closed under η1. Take
r ∈ η1 and suppose that nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U1)). Then nup(r) ⊆ lit(U ∪
ne (I, I ◦ U)) by U1 ⊆ U and (b). Since U ∪ ne (I, I ◦ U) is closed for η, it fol-
lows that head (r) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅. By construction of U1 and (a), we
conclude that head (r) ∩ (U1 ∪ ne (I, I ◦ U1)) 6= ∅. The case for U2 is similar.

To check minimality, suppose that U ′1 (U1 is such that U ′1 ∪ ne (I, I ◦ U1)
is closed for η1 and take U ′ = U ′1 ∪ U2. Let r ∈ η and assume nup(r) ⊆ lit(U ′ ∪
ne (I, I ◦ U)); there are two possible cases.

– Suppose r ∈ η1 and let L ∈ nup(r). Note that L ∈ lit(U2) is impossible, since
η1 |= η2. Therefore nup(r) ⊆ lit (U ′1 ∪ ne (I, I ◦ U)), whence by (a) nup(r) ⊆
lit (U ′1 ∪ ne (I, I ◦ U1)), and therefore head (r) ∩ (U ′1 ∪ ne (I, I ◦ U1)) 6= ∅.
From U ′1 ⊆ U ′ and (b), also head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

– Suppose r ∈ η2 and let L ∈ nup(r). Since L ∈ lit(U ′1) is impossible, it follows
that L ∈ U2 ∪ ne (I, I ◦ U), and since U2 ⊆ U we conclude that nup(r) ⊆
lit(U∪ne (I, I ◦ U)). Since U∪ne (I, I ◦ U) is closed for η (which contains η2),
it follows that head (r) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅, and since head (r) does not
contain actions in U1 necessarily head (r) ∩ (U2 ∪ ne (I, I ◦ U)) 6= ∅, whence
head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

In either case, from nup(r) ⊆ (U ′ ∪ ne (I, I ◦ U)) one concludes that head (r) ∩
(U ′ ∪ ne (I, I ◦ U)) 6= ∅, whence U ′ ∪ ne (I, I ◦ U) is closed for η, contradicting
minimality of U . This is absurd, so U1 is a justified weak repair. Again the case
for U2 is similar.

Since justified weak repairs are founded, Lemma 7 guarantees that U =
U1 ∪ U2. Furthermore, if U is a justified repair for 〈I, η〉, then each Ui is a
justified repair for 〈I, ηi〉 by Lemma 5. ut

The practical significance of the results in this section is a parallelization
algorithm: if η = η1∪η2 with η1 |= η2, then all (simple, founded, justified) repairs
for 〈I, η〉 can be expressed as unions of (simple, founded, justified) repairs for
〈I, η1〉 and 〈I, η2〉 by Lemmas 5, 7 and 9, so one can search for these repairs
instead and combine them in at the end; Lemmas 3, 6 and 8 guarantee that
no spurious results are obtained. The next section expands on these ideas, and
discusses how η can be adequately split.

4 Finding independent sets of AICs

The results in the previous section show that splitting a set of AICs η into two
independent sets η1 and η2 allows one to parallelize the search for repairs of
a database I, by searching independently for repairs for 〈I, η1〉 and 〈I, η2〉. In
this section we address a complementary issue: how can one find these sets? We
begin by formulating the results in the previous section in a more general way.

Definition 2. A partition of a set of AICs η is a set η = {η1, . . . , ηn} such that
η = ∪ni=1ηi and ηi |= ηj for i 6= j.

Theorem 1. Let η be a partition of η.

1. If U is a simple/founded/justified (weak) repair for 〈I, η〉, then there exist
sets U1, . . . ,Un with U = ∪ni=1Ui such that Ui is a simple/founded/justified
(weak) repair for 〈I, ηi〉.

2. If Ui is a simple/founded/justified (weak) repair for 〈I, ηi〉 for i = 1, . . . , n
and U = ∪ni=1Ui, then U is a simple/founded/justified (weak) repair for
〈I, η〉.

Proof. By induction on n. For n = 1, the results are trivial. Assume that the
result is true for n; applying the induction hypothesis to η1, . . . , ηn, on the one
hand, and the adequate lemma from Section 3 to η′ =

⋃n
i=1 and ηn+1, yields the

result for η1, . . . , ηn+1, since η′ |= ηn+1. ut

To find a partition of η (actually, the best partition of η), we will define an
auxiliary relation on AICs. Two AICs r1 and r2 are dependent, r1 6 |= r2, if there
exist literals L1 ∈ body (r1) and L2 ∈ body (r2) such that |L1| = |L2|.

Lemma 10. Let η be a partition of η. Then ηi is closed under 6 |= for every i,
i.e. for every rule r, r′ ∈ η, if r ∈ ηi and r 6 |= r′, then r′ ∈ ηi.

Proof. Let r be a rule in ηi and let r′ ∈ η be such that r 6 |= r′. Since η is a
partition of η, r′ ∈ ηk for some k. But i 6= k would contradict ηi |= ηk (since r
and r′ are not independent), hence i = k. Therefore ηi is closed under 6 |= . ut

This relation is reflexive and symmetric, so its transitive closure 6 |= + is an
equivalence relation. This equivalence relation defines the best partition of η.

Theorem 2. The quotient set η/6 |=+ is a partition of η. Furthermore, for any

other partition η′ of η, if η′i ∈ η′, there exists ηj ∈ η/6 |=+ such that ηj ⊆ η′i.

Proof. Let η/6 |=+ = {η1, . . . , ηn}. By definition of quotient set,
⋃n
i=1 ηi = η. By

definition of 6 |= , ηi |= ηj . Given η′i as in the statement of the theorem and
choosing r ∈ η′i and observing that η′i is closed under 6 |= (Lemma 10) and [r] is
the minimal set containing r and closed under 6 |= , it follows that [r] ⊆ η′i. ut

Furthermore, η/6 |=+ can be computed efficiently and in an incremental way.

Theorem 3. Let η be a set of AICs such that every rule in η contains at most
k literals in its body. Then η/6 |=+ can be computed in O (k × |η|).

Proof. Consider the undirected graph whose nodes are both the rules in η and
the atoms occurring in those rules, and where there is an edge between an atom
and a rule if that atom occurs in that rule. This graph has at most k × |η|
nodes and can be constructed in O (k × |η|) time; it is a well-known fact that its
connected components can again be computed in O (k × |η|) time, and the rules
in each component coincide precisely with the equivalence classes in η/6 |=+ . ut

Three important remarks are due. First, k typically does not grow with η and
is usually small, so essentially this algorithm is linear in the number of AICs.
Also, the algorithm is independent of the underlying database, which is useful
since the database typically changes more often than η. Finally, if one wishes to
add new rules to η one can reuse the existing partition for η as a starting point,
which makes the algorithm incremental.

5 Stratified active integrity constraints

In this section, we show how to define a finer relation among active integrity
constraints that will allow an incremental construction of these repairs that can
again substantially reduce the time required to find them.

Throughout this section we assume a fixed set of AICs η, so all definitions
are within the universe of this set.

Definition 3. Let r1 and r2 be active integrity constraints. Then r1 ≺ r2 (r1
precedes r2) if {|lit(α)| | α ∈ head (r1)} ∩ {|L| | L ∈ body (r2)} 6= ∅.

Intuitively, r1 precedes r2 if ensuring r1 may affect applicability of r2. In partic-
ular, r1 ≺ r2 implies r1 6 |= r2.

By definition of AIC, ≺ is a reflexive relation. Let � be its transitive closure
(within η) and ≈ be the equivalence relation induced by �, i.e. r1 ≈ r2 iff
r1 � r2 and r2 � r1. It is a well-known result that 〈η/≈,�〉 is a partial order,
where [r1] � [r2] iff r1 � r2.

Definition 4. Let η1, η2 ⊆ η be closed under ≈. Then η1 ≺ η2 (η1 precedes
η2) if (i) some rule in η1 precedes some other rule in η2, but (ii) no rule in η2
precedes a rule in η1.4

In particular, if η1 ≺ η2 then η1 and η2 must be disjoint. Note that, if η1 and η2
are distinct minimal sets closed under ≈ (i.e. elements of η/ ≈), then η1 � η2 iff
η1 ≺ η2.

This stratification allows us to search for weak repairs as follows: if η1 ≺ η2,
then we can look for weak repairs for η1∪ η2 by first looking for weak repairs for
η1 and then extending these to η1 ∪ η2.

Lemma 11. Let η1, η2 ⊆ η with η1 ≺ η2, I be a database and U be a set of
update actions such that all actions in U occur in the head of some rule in
η1 ∪ η2. Let Ui be the restriction of U to the actions in the heads of rules in ηi.
If U is a weak repair for 〈I, η1 ∪ η2〉, then U1 and U2 are weak repairs for 〈I, η1〉
and 〈I ◦ U1, η2〉, respectively.

Proof. Since η1 ≺ η2, (a) actions in the head of a rule in η2 cannot change literals
in the body of rules in η1 and in particular (b) U1 and U2 are disjoint.

4 Formally: η1 ≺ η2 if (i) r1 ≺ r2 for some r1 ∈ η1 and r2 ∈ η2, but (ii) r2 6≺ r1 for
every r1 ∈ η1 and r2 ∈ η2.

By (a), I ◦ U1 |= r iff I ◦ U |= r for every r ∈ η1, so U1 is a weak repair for
〈I, η1〉. By (b), I ◦ U = I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2, hence U2 is a weak repair
for 〈I ◦ U1, η2〉. ut

Lemma 12. In the conditions of Lemma 11, if U is founded w.r.t. 〈I, η1 ∪ η2〉,
then U1 and U2 are founded w.r.t. 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof. (i) Let α ∈ U1. Since U is founded w.r.t. 〈I, η1 ∪ η2〉, there is a rule
r ∈ η1∪η2 such that α ∈ head (r) and I◦U |= L for every L ∈ body (r)\{lit(α)D}.
Since η1 ≺ η2, necessarily r ∈ η1. By (b) from the previous proof, I ◦U1 |= L for
every L ∈ body (r) \ {lit(α)D}, whence α is founded w.r.t. 〈I, η1〉 and U1. Thus
U1 is founded w.r.t. 〈I, η1〉.

(ii) Let α ∈ U2. Again there must be a rule r ∈ η such that α ∈ head (r) and
I ◦ U |= L for every L ∈ body (r) \ {lit(α)D}, and as before necessarily r ∈ η2.
Since I ◦U = (I ◦U1) ◦U2, it follows that α is founded w.r.t. 〈I ◦U1, η2〉 and U2,
hence U2 is founded w.r.t. 〈I ◦ U1, η2〉. ut

Corollary 3. If U is a founded weak repair for 〈I, η〉, then U1 and U2 are
founded weak repairs for 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof. Immediate consequence of Lemmas 11 and 12. ut

Lemma 13. In the conditions of Lemma 11, if U is a justified weak repair for
〈I, η1∪η2〉, then U1 and U2 are justified weak repairs for 〈I, η1〉 and 〈I ◦U1, η2〉,
respectively.

Proof. We first make some remarks that will be relevant throughout the proof.

(a) I ◦U1 |= L iff I ◦U |= L for every literal L ∈ body (r) with r ∈ η1, as argued
in the proof of Lemma 11.

(b) ne (I, I ◦ U) ⊆ ne (I, I ◦ U1), as in the proof of Lemma 8.
(c) ne (I, I ◦ U1) ⊆ ne (I, I ◦ U) ∪ U2, since actions in U2 may not affect literals

in the body of rules in η1 (this would contradict η1 ≺ η2). In particular, if
nup(r) ⊆ lit(ne (I, I ◦ U1)) for some r ∈ η1, then L ∈ lit(ne (I, I ◦ U)); and if
α ∈ head (r) for some r ∈ η1 and α ∈ ne (I, I ◦ U1), then α ∈ ne (I, I ◦ U).

(i) Let r ∈ η1 be such that nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U1)). From U1 ⊆
U and (c), one gets nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)); since U is closed under η,
head (r) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅. By definition of U1 and (c), also head (r) ∩
(U1 ∪ ne (I, I ◦ U1)) 6= ∅, whence U1 ∪ ne (I, I ◦ U1) is closed under η1.

For minimality, suppose that U ′1 (U1 is such that U ′1∪ne (I, I ◦ U1) is closed
under η1 and take U ′ = U ′1 ∪ U2. We show that U ′ ∪ ne (I, I ◦ U) is closed under
η. Assume nup(r) ⊆ lit(U ′ ∪ ne (I, I ◦ U)); there are two possible cases.

– r ∈ η1: since η1 ≺ η2, no literal in nup(r) can occur in lit(U2); there-
fore, from (b) it follows that nup(r) ⊆ lit (U ′1 ∪ ne (I, I ◦ U1)), and thus
head (r) ∩ (U ′1 ∪ ne (I, I ◦ U1)) 6= ∅. From U ′1 ⊆ U ′ and (c), also head (r) ∩
(U ′ ∪ ne (I, I ◦ U)) 6= ∅.

– r ∈ η2: from (U ′1 ∪ U2) ⊆ U , we conclude that nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)),
hence head (r)∩ (U ∪ ne (I, I ◦ U)) 6= ∅ because η2 ⊆ η and U is closed for η.
But head (r) cannot contain actions in U1, so head (r)∩ (U2∪ne (I, I ◦ U)) 6=
∅, whence head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

In either case, from nup(r) ⊆ (U ′ ∪ ne (I, I ◦ U)) one concludes that head (r) ∩
(U ′ ∪ ne (I, I ◦ U)) 6= ∅, whence U ′ ∪ ne (I, I ◦ U) is closed for η, which contra-
dicts U being a justified weak repair for 〈I, η〉. This is absurd, therefore U1 is a
justified weak repair for 〈I, η1〉.

(ii) Denote by N the set ne (I ◦ U1, I ◦ U1 ◦ U2). To show that U2 is a justified
weak repair for 〈I ◦U1, η2〉, we need to show that U2∪N is closed for η2 and that
it is the minimal such set containing N . Note that (d) N = U1 ∪ ne (I, I ◦ U),
since I ◦ U1 is “between” I and I ◦ U (as U1 ⊆ U).

First we show that U2 ∪ N is closed for η2. Let r ∈ η2 and assume that
nup(r) ⊆ lit (U2 ∪N). By (d), nup(r) ⊆ lit (U2 ∪ U1 ∪ ne (I, I ◦ U)) = (U ∪
ne (I, I ◦ U)), whence head (r)∩ (U ∪ ne (I, I ◦ U)) 6= ∅ because U ∪ ne (I, I ◦ U)
is closed under η. By construction of U2 and (d), also head (r)∩(U2∪N), whence
U2 ∪N is closed under η2.

Now let U ′2 (U2 be such that U ′2 ∪N is closed for η2 and take U ′ = U1 ∪U ′2.
We show that U ′∪ne (I, I ◦ U) is closed under η. Let r ∈ η be such that nup(r) ⊆
lit(U ′ ∪ ne (I, I ◦ U)). Yet again, there are two cases to consider.

– r ∈ η1: since U ′ ⊆ U , also nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)), whence head (r) ∩
(U ∪ne (I, I ◦ U)) 6= ∅ because U ∪ne (I, I ◦ U) is closed for η. But actions in
head (r) may not occur in U2, hence head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅ since
(U \ U ′) ⊆ U2.

– r ∈ η2: by (d), U ′ ∪ ne (I, I ◦ U) = U1 ∪ U ′2 ∪ ne (I, I ◦ U) = U ′2 ∪N , whence
head (r) ∩ (U ′2 ∪ N) 6= ∅ because U ′2 ∪ N is closed for η2, which amounts to
saying that that head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅.

In either case, head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) 6= ∅, so U ′ ∪ ne (I, I ◦ U) is closed
under η, contradicting the fact that U is a justified weak repair for 〈I, η〉. There-
fore U2 is a justified weak repair for 〈I ◦ U1, η2〉. ut

Lemmas 11, 12 and 13 are analogue to Lemmas 4, 7 and 9, respectively.
Interestingly, the analogue of Lemma 5 does not hold in this setting: it may
happen that U is a repair, but U1 is a weak repair. The reason is that there may
be a repair for 〈I, η1〉 such that there is no (weak) repair for 〈I ◦ U1, η2〉.

Example 1. Let I = ∅ and consider the following active integrity constraints.

r1 :not a ⊃ +a r4 :a, not b, not c, d ⊃ −d
r2 :not b, c ⊃ +b r5 :a, not b, not c, not d ⊃ +d

r3 :b, not c ⊃ +c

Taking η1 = {r1, r2, r3} and η2 = {r4, r5}, one has η1 ≺ η2. Furthermore, {+a}
and {+a,+b,+c} are weak repairs for 〈I, η1〉, the first of which is a repair.
However, the only repair for 〈I, η1 ∪ η2〉 is {+a,+b,+c}, which is not the union
of {+a} with a repair for 〈I ◦ {+a}, η2〉.

However, if both steps succeed then we can combine their results as before.

Lemma 14. Let η1, η2 ⊆ η with η1 ≺ η2, I be a database, and U1 and U2 be
sets of update actions such that all actions in Ui occur the head of some rule in
ηi. If U1 is a weak repair for 〈I, η1〉 and U2 is a weak repair for 〈I ◦U1, η2〉, then
U = U1 ∪ U2 is a weak repair for 〈I, η1 ∪ η2〉.

Proof. Since η1 ≺ η2, the hypothesis over U2 imply that (a) actions in U2 cannot
change literals in the body of rules in η1 and in particular (b) U1 and U2 are
disjoint.

Take r ∈ η1. Then I ◦ U1 |= r, whence I ◦ U |= r by (a).
Take r ∈ η2. Then (I ◦ U1) ◦ U2 |= r, and by (b) (I ◦ U1) ◦ U2 = I ◦ U .
Therefore U1 ◦ U2 is a weak repair for 〈I, η1 ∪ η2〉. ut

Lemma 15. In the conditions of Lemma 14, if U1 is a repair for 〈I, η1〉 and U2
is a repair for 〈I ◦ U1, η2〉, then U is a repair for 〈I, η1 ∪ η2〉.

Proof. By Lemma 14, U is a weak repair for 〈I, η1 ∪ η2〉. Suppose U is not a
repair; then there is U ′ (U such that U ′ is also a weak repair for 〈I, η1 ∪ η2〉.

Take U ′1 = U ′ ∩ U1 and U ′2 = U ′ ∩ U2; by Lemma 11, U ′1 is a weak repair for
〈I, η1〉 and U ′2 is a weak repair for 〈I ◦ U1, η2〉. But at least one of the inclusions
U ′1 ⊆ U1 and U ′2 ⊆ U2 must be strict, contradicting the hypothesis that U1 and
U2 are both repairs. Therefore U is a repair for 〈I, η1 ∪ η2〉. ut

In this setting, the condition that U1 and U2 be repairs is sufficient but not
necessary, as illustrated by the example above – unlike in Lemma 3 earlier.

Lemma 16. In the conditions of Lemma 14, if U1 is founded w.r.t. 〈I, η1〉 and
U2 is founded w.r.t. 〈I ◦ U1, η2〉, then U is founded w.r.t. 〈I, η1 ∪ η2〉.

Proof. Take α ∈ U1. Since U1 is founded w.r.t. 〈I, η1〉, there is a rule r ∈ η1
such that α ∈ head (r) and I ◦ U1 |= L for every L ∈ body (r) \ {lit(α)D}. By (b)
from the proof of Lemma 14, also I ◦ U |= L for every L ∈ body (r) \ {lit(α)D},
whence α is founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Take α ∈ U2. Since U2 is founded w.r.t. 〈I ◦U1, η2〉, there is a rule r ∈ η2 such
that (I ◦U1)◦U2 |= L for every L ∈ body (r)\{lit(α)D}, and since (I ◦U1)◦U2 =
I ◦ U this implies that α is founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Therefore U is founded w.r.t. 〈I, η1 ∪ η2〉. ut

As before, Lemmas 14, 15 and 16 can be combined in the following corollary.

Corollary 4. In the conditions of Lemma 14, if U1 is a founded (weak) repair
for 〈I, η1〉 and U2 is a founded (weak) repair for 〈I ◦U1, η2〉, then U is a founded
(weak) repair for 〈I, η1 ∪ η2〉.

Lemma 17. In the conditions of Lemma 14, if U1 is a justified weak repair for
〈I, η1〉 and U2 is a justified weak repair for 〈I ◦U1, η2〉, then U is a justified weak
repair for 〈I, η1 ∪ η2〉.

Proof. First observe that properties (a–d) of the proof of Lemma 13 all hold in
this context. Define N = ne (I ◦ U1, I ◦ U1 ◦ U2) as in that proof.

To see that U ∪ ne (I, I ◦ U) is closed for 〈I, η〉, let r ∈ η1 ∪ η2 be such that
nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)). We need to consider two cases.

– If r ∈ η1, then nup(r) ⊆ lit(U1∪ne (I, I ◦ U1)) by (a) and (b), and since U1∪
ne (I, I ◦ U1) closed for η1 this implies that head (r)∩(U1∪ne (I, I ◦ U1)) 6= ∅,
whence also head (r) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅ by U1 ⊆ U and (c).

– If r ∈ η2, then by equality (d) we have U ∪ ne (I, I ◦ U) = U2 ∪ U1 ∪
ne (I, I ◦ U) = U2∪N ; then nup(r) ⊆ lit(U2∪N), whence head (r)∩(U2∪N) 6=
∅ because U2 ∪ N is closed for η2, and the latter condition is precisely
head (r) ∩ (U ∪ ne (I, I ◦ U)) 6= ∅.

In either case U ∪ ne (I, I ◦ U) is closed for r, whence U ∪ ne (I, I ◦ U) is closed
for η1 ∪ η2.

For minimality, let U ′ ⊆ U be such that U ′ ∪ne (I, I ◦ U) is closed for η1 ∪ η2
and take U ′i = U ′ ∩ Ui for i = 1, 2. We show that U ′1 = U1 and U ′2 = U2.

– Let r ∈ η1 be such that nup(r) ⊆ lit(U ′1 ∪ ne (I, I ◦ U1)). Since U ′1 ⊆ U ′,
from (c) and the fact that nup(r)∩ lit(U2) = ∅ (because η1 ≺ η2) we conclude
that nup(r) ⊆ lit(U ′∪ne (I, I ◦ U), whence head (r)∩ (U ′∪ne (I, I ◦ U)) 6= ∅.
By (b) and the fact that head (r)∩U2 = ∅, also head (r)∩(U ′1∪ne (I, I ◦ U1)) 6=
∅. Therefore U ′1 ∪ ne (I, I ◦ U1) contains ne (I, I ◦ U1) and is closed for η1;
since U1 ∪ ne (I, I ◦ U1) is the minimal set with this property and U1 ∩
ne (I, I ◦ U1) = ∅, it follows that U ′1 = U1.

– Let r ∈ η2 be such that nup(r) ⊆ lit(U ′2 ∪ N). From (d) and the equality
U ′1 = U1 established above, nup(r) ⊆ lit(U ′∪ne (I, I ◦ U)), whence head (r)∩
(U ′ ∪ ne (I, I ◦ U)) 6= ∅. Again by (d) and U ′1 = U1 this amounts to saying
that head (r)∩ (U ′2 ∪N) 6= ∅. Therefore U ′2 ∪N contains N and is closed for
η2, whence as before necessarily U ′2 = U2.

Therefore U ′ = U , hence the set U ∪ ne (I, I ◦ U) is the minimal set containing
ne (I, I ◦ U) and closed for η1 ∪ η2. Therefore U is a justified weak repair for
〈I, η1 ∪ η2〉. ut

Lemmas 11, 12 and 13 allow us to split the search for (weak) repairs into
smaller steps, while Lemmas 14, 15, 16 and 17 allow us to combine the results.
However, 〈η/≈,�〉 is in general not a total order. Therefore, to obtain (weak)
repairs for η, we need to be able to combine weak repairs of sets η1 and η2 that
are not related via ≺ (see example below).

Let η1, η2 be two such sets, and consider a weak repair U for 〈I, η1 ∪ η2〉.
By Lemma 11, restricting U to the actions in η1 ∩ η2 yields a weak repair U ′
for 〈I, η1 ∩ η2〉; furthermore, restricting U to the actions in (η1 ∪ η2) \ (η1 ∩ η2)
yields a weak repair for 〈I ◦ (η1 ∩ η2), (η1 ∪ η2) \ (η1 ∩ η2)〉. This allows us to
restrict ourselves, without loss of generality, to the analysis of the situation where
η1 ∩ η2 = ∅. Since in this case the application of rules in η1 does not affect the

semantics of rules in η2 and vice-versa, the proofs of Lemmas 2, 3, 6 and 8 can
be straightforwardly adapted5 to prove the following result.

Lemma 18. Let η1, η2 ⊆ η be closed under ≈ and such that η1 6≺ η2 and η2 6≺ η1.
Let U be a weak repair for 〈I, η1∪η2〉 such that U only consists of actions in the
heads of rules in η1 ∪ η2. Define Ui to be the restriction of U to the actions in
the heads of rules in ηi. Then:

1. each Ui is a weak repair for 〈I, ηi〉;
2. if U is a repair for 〈I, η1 ∪ η2〉, then Ui is a repair for 〈I, ηi〉;
3. if U is founded w.r.t. 〈I, η1 ∪ η2〉, then Ui is founded w.r.t. 〈I, ηi〉;
4. if U is a justified (weak) repair for 〈I, η1 ∪ η2〉, then Ui is a justified (weak)

repair for 〈I, ηi〉.

Example 2. To understand how these results can be applied, consider the fol-
lowing set of AICs η.

r1 : a, b ⊃ −a | −b r4 : a, not b, not e ⊃ +e

r2 : not a, c ⊃ +a r5 : d, e, not f ⊃ +f

r3 : b, c, d ⊃ −d

The precedence relation between these rules, omitting the reflexive edges, can
be summarized in the following diagram.

r5

r3

==

r4

aa

r1

OO

**

66

r2jj

OO

The equivalence classes are η1 = {r1, r2}, η2 = {r3}, η3 = {r4} and η4 = {r5},
with (direct) precedence relation η1 � η2 � η4 and η1 � η3 � η4. In order to
find e.g. a founded weak repair for 〈I, η〉, we would:

1. find all founded weak repairs for 〈I, {r1, r2}〉;
2. extend each such U to founded weak repairs for 〈I◦U , {r3}〉 and 〈I◦U , {r4}〉,

using Lemma 16;
3. for each pair of weak repairs U2 for 〈I, {r1, r2, r3}〉 and U3 for 〈I, {r1, r2, r4}〉

such that U2 and U3 coincide on the actions from heads of rules in {r1, r2} (i.e.
−a, +a and −b), find weak repairs for 〈I ◦ (U2∪U3), {r5}〉, using Lemma 18.

In the last step, we are using the fact that any weak repair U for 〈I, η〉 must
contain a weak repair U ′ for 〈I, {r1, r2, r3, r4}〉; in turn, this can be split into
a weak repair U1 for 〈I, {r1, r2}〉 and weak repairs U ′2 for 〈I ◦ U1, {r3}〉 and
U ′3 for 〈I ◦ U1, {r4}〉; defining U2 = U ′2 ∪ U1 and U3 = U ′3 ∪ U1, we must have
U ′ = U1 ∪ U ′2 ∪ U ′3 = U2 ∪ U3. Lemma 12 guarantees that this algorithm finds all
founded weak repairs for 〈I, η〉.
5 Although these lemmas assume that η1 |= η2, the key argument is that applying

rules in U1 does not affect the semantics of rules in η2 and conversely, which still
remains true if η1 and η2 are closed under ≈ and neither η1 ≺ η2 nor η2 ≺ η1.

6 Conclusions

We introduced independence and precedence relations among active integrity
constraints that allow parallelization and sequentialization of the computation
of repairs for inconsistent databases. These two processes allow us to speed up
the process of finding these repairs: the advantages of parallelization are well-
known, whereas the sequentialization herein presented allows a complex problem
to be split in several small (and simpler) problems. Since size is a key issue in the
search for repairs of a database – this being an NP- or Σ2

P -comlete problem –
it is in general much more efficient to solve several small problems than a single
one as big as all of those taken together. Furthermore, the relations proposed are
well-behaved w.r.t. the different kinds of repairs considered in the denotational
semantics for AICs [5], so these results apply to all of them.

Using all the results presented in this paper, the strategy for computing
repairs for a set η of AICs can be summarized as follows.

1. Compute η/6 |=+
2. For each ηi ∈ η/6 |=+

(a) Compute ηi/ ≈
(b) Find (founded/justified) weak repairs for the minimal elements of ηi/ ≈
(c) For each non-minimal element ηj , find its (founded/justified) weak re-

pairs by (i) combining the weak repairs for its predecessors, (ii) applying
each result to I, with result I ′, and (iii) computing (founded/justified)
weak repairs for 〈I ′, ηj〉 (as in the example at the end of the last section).

This yields all (founded/justified) (weak) repairs for each element of η/6 |=+ .

3. Combine these (weak) repairs into a single (founded/justified) (weak) repair
for η.

The only catch regards the situation depicted in Example 1: if one is inter-
ested in computing repairs, then one may restrict the search in the outer cycle
to repairs. However, in step 2, whenever a repair cannot be extended when mov-
ing upwards in ηi/≈, one must also consider weak repairs including that repair,
since the end result may be a repair for the larger set. Also, if one does not
want founded or justified repairs, the precedence relation cannot be used. The
applicability of these techniques is summarized in Table 1.

In the worst case scenario, the set η/6 |=+ will be a singleton (so there will be

no parallelization) and likewise for η/≈ (so there will be no sequentialization).
However, in practical settings these are extremely unlikely situations: in typi-
cal databases concepts are built from more primitive ones, suggesting that the
structure of these sets will be quite rich. Since finding repairs is an NP-complete
or Σ2

p-complete problem, this division can play a key role in making this search
process much faster.

Work is in progress to implement these optimizations in order to obtain a
more precise understanding of their benefits.

Type Parallelization Stratification

weak repairs yes no
repairs yes no

founded weak repairs yes yes

founded repairs yes yes†

justified weak repairs yes yes

justified repairs yes yes†

† may require computation of weak repairs

Table 1. Applicability of parallelization and stratification techniques to the different
kinds of repairs.

Acknowledgements

The author wishes to thank Patŕıcia Engrácia, Graça Gaspar and Isabel Nunes
for their input and fruitful discussions on the topic of active integrity constraints.
A special word of thanks goes to the anonymous referees, who provided me with
very useful pointers that contributed to a much more comprehensive section on
related work; and also for suggesting a simplification of the original proof of
Theorem 3.

References

1. S. Abiteboul. Updates, a new frontier. In M. Gyssens, J. Paredaens, and D. van
Gucht, editors, ICDT, volume 326 of LNCS, pages 1–18. Springer–Verlag, 1988.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

3. C. Beeri and M.Y. Vardi. The implication problem for data dependencies. In
Proceedings of the 8th Colloquium on Automata, Languages and Programming,
pages 73–85, London, UK, 1981. Springer-Verlag.

4. L. Caroprese, S. Greco, C. Sirangelo, and E. Zumpano. Declarative semantics
of production rules for integrity maintenance. In S. Etalle and M. Truszczynski,
editors, ICLP, volume 4079 of LNCS, pages 26–40. Springer, 2006.

5. L. Caroprese and M. Truszczyński. Active integrity constraints and revision pro-
gramming. Theory Pract. Log. Program., 11(6):905–952, November 2011.

6. J. Chomicki. Consistent query answering: Five easy pieces. In T. Schwentick and
D. Suciu, editors, ICDT, volume 4353 of LNCS, pages 1–17. Springer, 2007.

7. L. Cruz-Filipe, P. Engrácia, G. Gaspar, and I. Nunes. Computing repairs from
active integrity constraints. In Hai Wang and Richard Banach, editors, TASE2013,
pages 183–190. IEEE, 2013.

8. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base
revision, updates, and counterfactuals. Artif. Intell., 57(2–3):227–270, 1992.

9. S. Flesca, S. Greco, and E. Zumpano. Active integrity constraints. In E. Moggi
and D. Scott Warren, editors, PPDP, pages 98–107. ACM, 2004.

10. A.C. Kakas and P. Mancarella. Database updates through abduction. In
D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, VLDB 1990, pages 650–661.
Morgan Kaufmann, 1990.

11. H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge
base and revising it. In J.F. Allen, R. Fikes, and E. Sandewall, editors, KR 1991,
pages 387–394. Morgan Kaufmann, 1991.

12. V.W. Marek and M. Truszczynski. Revision programming, database updates and
integrity constraints. In G. Gottlob and M.Y. Vardi, editors, ICDT, volume 893
of LNCS, pages 368–382. Springer–Verlag, 1995.

13. E. Mayol and E. Teniente. Addressing efficiency issues during the process of in-
tegrity maintenance. In T.J.M. Bench-Capon, G. Soda, and A.M. Tjoa, editors,
DEXA, volume 1677 of LNCS, pages 270–281. Springer–Verlag, 1999.

14. S.A. Naqvi and R. Krishnamurthy. Database updates in logic programming. In
C. Edmondson-Yurkanan and M. Yannakakis, editors, PODS 1988, pages 251–262.
ACM, 1988.

15. T.C. Przymusinski and H. Turner. Update by means of inference rules. J. Log.
Program., 30(2):125–143, 1997.

16. E. Teniente and A. Olivé. Updating knowledge bases while maintaining their
consistency. VLDB J., 4(2):193–241, 1995.

17. J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996.

18. M. Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1990.

