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Abstract

We give a formal account of SSCC, a calculus for modeling service-based systems, suitable to
describe both service composition (orchestration) and the protocols that services follow when invoked
(conversation). The calculus includes primitives for defining and invoking services, for isolating con-
versations (called sessions) among clients and servers, and for orchestrating services. The calculus is
equipped with a reduction and a labeled transition semantics related by an equivalence result.

SSCC provides a good trade-off between expressive power for modeling and simplicity for analysis.
We assess the expressive power by modeling van der Aalst workflow patterns and an automotive case
study from the European project Sensoria. For analysis, we present a simple type system ensuring com-
patibility of client and service protocols. We also study the behavioral theory of the calculus, highlighting
some axioms that capture the behavior of the different primitives.

As a final application of the theory, we define and prove correct some program transformations.
These allow to start modeling a system from a typical UML Sequence Diagram, and then transform the
specification to match the service-oriented programming style, thus simplifying its implementation using
web services technology.
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1 Introduction
Enterprise application integration, either to reuse legacy code, or to combine third-party software mod-
ules, has long been tackled by several middleware proposals, namely using message brokers or workflow
management systems. As the popularity of using the Web increased, traditional middleware was forced
to provide integration across companies. The technologies developed lay in the concept of Web service: a
way of exposing (to the Web) the functionalities performed by internal systems and making them dynami-
cally searchable (discoverable and accessible through the Web) and composable, allowing adaptability and
reusability [1].

1.1 A formal approach to service-oriented programming
Nowadays, Web Services are one of the main technologies used to deploy applications that coordinate
behaviors over the Web. Contributing to the success of the technology are the currently available stan-
dards [2,6,18,24] that, in order to achieve business goals, allow easy orchestration of different services (dis-
tributed and belonging to different organizations), while maximizing interoperability. While standards and
programming tools are continuously improving, the formal bases of Service-Oriented Computing (SOC)
are still uncertain: there is an urgent need for models and techniques allowing the development of applica-
tions in a safe manner, while checking that systems provide the required functionalities. These techniques
should be able to deal with the different aspects of services, including their dynamic behavior.

To model systems, and, in particular, to be able to reason and ensure properties about specifications of
service-oriented systems, one needs mathematical tools. Process calculi are one suitable tool, providing
not only a description language, but a rigorous semantics as well, allowing the proof of relevant properties.
Process calculi give precise semantics to system specifications, and they come equipped with a rich toolbox
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of analysis techniques, including type systems and contextual equivalences. When defining a calculus for
SOC, different aspects influence the choice of primitives and of their behavior, and a careful trade-off
between expressiveness and suitability to analysis should be found. Our main concerns have been threefold.

Expressiveness of the language: the calculus should be able to express in a direct way the different
kinds of interactions that characterize SOC: invocations of services, client-server conversations, and inter-
actions among different client-server pairs. We use three different classes of operators to this end: services,
sessions, and streams. We show, via examples, that these are enough to model various kinds of SOC sce-
narios. We stress in particular the importance of interactions using streams, which is the heart of SSCC
orchestration. Other constructs such as tuple spaces or shared memory would be as expressive as streams,
but would be more difficult to analyze. Furthermore, primitives similar to our streams are commonly used
in practice, for instance when programming Service Oriented Architectures.

Expressiveness of the analysis: the elements to be analyzed should correspond to explicit elements
in the calculus. Concerning the three classes of operators in the previous paragraph, service definition
is fundamental to speak about service availability. It also allows easy extensions for service discovery
based on quality of service. Sessions, instead, allow to analyze client-server compatibility and to study
behavioral-based service discovery. Other mechanisms, such as BPEL correlation sets [2], would make
these analyses more complex, since they rely on run-time values for determining the communication pat-
terns, spreading the protocol code throughout the whole program. Streams are, on the one hand, used for
modeling service coordination, and, on the other hand, needed to study global properties of systems such
as deadlock-freedom and the fact that the system satisfies a more abstract specification.

Computability of the analysis: static analysis should be decidable, possibly also efficient to compute.
Thus, the allowed communication patterns should be constrained whenever this does not destroy expres-
siveness. In our calculus, streams and sessions are static, and the dynamism is concentrated in service
invocation. To stress the effect of these considerations on the design decisions, we give some “proof of
concept” analyses to illustrate how to exploit the features of the calculus.

1.2 Our proposal
We present SSCC (Stream-based, Service-Centered Calculus), a calculus for modeling service-based sys-
tems, inspired by SCC [8] and Orc [28, 35], and developed with the above considerations in mind. A
prominent feature is that it captures in a direct way the main activities in service-oriented computations:
definition and invocation of services, long-running interactions between the service invoker and the service
provider, and orchestration of complex computations exploiting services as building blocks.

SSCC builds on SCC [8], and tries to improve, in particular, the suitability for modeling orchestration.
To this end, it introduces a new construct, called stream, with the aim of collecting the results from some
ongoing computations and make them available for new ones. This is the main aspect that differentiates
SSCC from CaSPiS [9, 10], the most direct evolution of SCC. While proposing interesting concepts, like
sessions, and featuring services as first class entities, SCC looks not fully adequate for service composition.
In fact, the only way for a session to interact with other client-server pairs is the return primitive, and the
functional style of invocation is not adequate for modeling complex patterns of interactions, such as van
der Aalst workflow patterns [43]. To overcome these problems we introduce streams and we allow non-
persistent service invocations, thus enhancing the expressiveness of the calculus, while making it easier
to program with. This design choice has been taken in order to simplify static analysis techniques, trying
to find a suitable trade-off between expressiveness of the chosen primitives and suitability to analysis. In
particular, since stream names cannot be communicated, their scope is known statically.

Another source of inspiration was Orc [35], a basic programming model for orchestration of Web ser-
vices. Here a few coordination constructs are used to model the most common patterns, and a satisfying
expressiveness is claimed by presenting a formalization of all van der Aalst workflow patterns [19]. How-
ever, in order to model the more challenging patterns, special sites (the basic computation entity in Orc)
are required, acting, e.g., as semaphores. This is a coordination concern, and in our opinion should be
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addressed within the language. Thus we introduced more basic mechanisms to tackle all the coordination
concerns inside the calculus (most of Orc operators can be expressed as macros in our model). Also, we
introduced conversations, which are absent in Orc, to model service behavior (Orc leaves this unspecified).

1.3 Contributions
The main contribution of this paper is SSCC, a language for modeling service-oriented systems based on
the session communication paradigm and equipped with a formal semantics. This paper aggregates two
conference papers [21, 31] and two technical reports [20, 32]. The preliminary results in the conference
papers are extended and fully proved. Thus, much of the material here presented is new.

A clear separation of concerns: conversation and orchestration. As discussed above, the main con-
cerns leading to this language were expressiveness and intuitiveness for modeling and suitability for anal-
ysis. Concerning the modeling part, we want to emphasize here some aspects. The calculus allows for the
description of service interaction and of service orchestration using distinct mechanisms; the conversation
between parties engaged in a service interaction is described by a series of value send/receive, isolated
inside a session, while the orchestration of services is performed using the stream operations. The two
communication methods are orthogonal, as witnessed for instance by the fact that their scopes give rise to
separate nesting hierarchies. This choice simplifies both the type system and the observational semantics,
as discussed below. Notice that Orc [35] lacks the conversation primitives, and that both Orc and SCC [8]
feature insufficient orchestration. Furthermore, in both SCC [8] and CaSPiS [9, 10] orchestration is not
orthogonal w.r.t. sessions, thus making it difficult to program cross-sessions orchestration patterns.

A flexible programming style. Service orchestration and service conversation are both easily structured
in SSCC. (Keep in mind that SSCC is a process calculus, not a full-fledged programming language.)
We were in fact able to encode all van der Aalst workflow patterns [43] (apart from the ones that require
termination), in intelligible code. We tried the same exercise using SCC and the results for some patterns
were not satisfying at all. As a more challenging test, we put SSCC at work by modeling the Automotive
case study [4] of the European project Sensoria [40]. Again, SSCC passed the test. Actually, it was able to
model different programming styles, from object-oriented to session-oriented to request-response oriented.
Concerning the analysis part, we concentrated on a type system and on proofs of equivalence based on a
contextual equivalence.

A type discipline. We provide a simple static analysis system to check the compatibility between service
definition and service invocation, as well as protocol sequentiality. Our type system is inspired in the
results achieved for session types [22, 25, 42, 46]. Interestingly, it exploits the separation of concerns
between conversation and orchestration. In fact, the type of a process has two components, one concerning
its conversation behavior and another concerning its orchestration behavior. This allows to simplify the
reasoning in some cases: for instance, the simplified type system for session sequentiality has no need
to consider the orchestration part. The same simplification is not possible in other calculi where the two
aspects are intertwined.

A coinductive contextual congruence. The contextual congruence in SSCC coincides with a bisimilar-
ity that is also a (non-input) congruence and gives rise to some axiomatic laws. These laws not only clarify
the relationship among language constructs, but they also allow for meaningful program transformations.

Program transformations. We exploited the theory for defining and proving correct some program
transformations. Those transformations allow to start designing a system from a standard UML Sequence
Diagram [3] (based on the object-oriented paradigm). Such a diagram has a direct translation into SSCC,
and it induces an object-oriented style. This style does not match the session-oriented style normally used
for service-oriented systems. Our first program transformation allows to transform it to fit this second
style. However, most implementation technologies based on the service-oriented paradigm do not fully
support general sessions, but only request-response communications, which can be seen as a particular
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case. Our second transformation allows to transform the program to fit this implementation requirement.
Interestingly, this transformation exploits the type system for session sequentiality, since it is correct only
for sequential sessions.

1.4 Related work
Among process calculi, the π-calculus (and its variants) has been frequently used in SOC. We claim that
general purpose concurrent calculi are not suitable for our aims, since the different communication patterns
are mixed, and most of the interesting properties are not directly reflected in text of programs. Thus, these
calculi do not satisfy the requirements above. Different proposals use types, e.g., session types [22, 25,
42, 46], to solve this problem, but since they allow free π-calculus communications the analysis becomes
difficult. We consider our proposal as some kind of tamed π-calculus, with a good trade-off between
expressiveness for SOC systems and suitability to analyze SOC-related properties.

This approach was born inside the EU project Sensoria [40] on Software Engineering for Service-
Oriented Overlay Computers. The first outcome of this line of research has been SCC [8]. SCC had the
merit of introducing services and sessions as first-class entities in the calculus, but lacked good primitives
for orchestrating groups of services. The only orchestration-oriented mechanism was the return primitive,
allowing a session to return a value to its enclosing session, but implementing complex interaction patterns
using it was an hard task. We show examples supporting this claim in Section 3.1 and in Appendix B, when
modeling workflow patterns [43].

SSCC has been the first proposal [31] extending SCC to provide easier orchestration, followed by
the Conversation Calculus [45] and CasPiS [9, 10]. CasPiS approach is the closest to ours. The main
difference is that CasPiS uses pipelines for orchestration instead of our streams. Pipelines allow to redirect
session communications to another session. The difficulty in using pipelines is that the same messages can
be used both for session communication and for orchestration. Instead we use two orthogonal features. The
separation of concerns is one of the cornerstones of SSCC approach, since it allows one to use different
analysis techniques on messages used for different purposes. For instance, in the type system in Section 2.4,
session communications are modeled using behavioral types, while streams have simpler static types. A
similar approach would not be as effective in CasPiS. See, e.g., [12] for a type system for CasPiS.

The Conversation Calculus introduces the notion of conversation, a medium where different processes
can interact. Conversations are more expressive and more complex than SSCC sessions or streams, since
they allow for direct multiparty interactions, while such a kind of interaction has to be programmed in
some well-structured way in SSCC. As a consequence, static analysis in the Conversation Calculus is
much more difficult, as can be seen by comparing its type system ensuring well-formed communications
in [15] and our type system in Section 2.4, which has a similar aim.

Multiparty sessions, similar to conversations, have been studied also in µse [11]. There, two running
multiparty sessions can dynamically merge. This makes static analysis even more difficult.

Two other calculi have been considered inside the Sensoria project: COWS [33] and SOCK [13].
Communication in these two calculi is not based on private sessions: they use instead the correlation set
mechanism. Using this mechanism the recipient of a message is found based on (part of) the message
content. For instance, a message including a specific user name is matched by the session created for man-
aging all the communications for that specific user name. Correlation sets are used by the main technology
for service-oriented orchestration: WS-BPEL [2]. However, since communication patterns depend on run-
time values, they are more difficult to analyze statically. Only basic properties can be statically proved, as
in [36]. In fact, private sessions can be seen as a constrained use of correlation sets ensuring more behavior
predictability.

While both COWS and SOCK are based on correlation sets, they differ in many respects. In fact,
COWS is more abstract, in the spirit of name passing calculi, while SOCK is essentially an imperative lan-
guage extended with primitives for correlation-based communication. This makes SOCK more complex,
but closer to real service-oriented languages. In fact, Jolie [27, 37], a full-fledged language for program-
ming service-oriented applications, is based on the semantics of SOCK. We refer to [14] for a comparison
of the calculi proposed inside the Sensoria project, and to [30] for a comparison of their behavioral theories.

Orc [35] is a language that focuses on orchestrating the concurrent invocation of services to achieve a
given goal. The theory is built upon three composition operators—parallel composition, sequencing and
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selective pruning—while relying on a number of primitive services (sites, in the Orc’s terminology) to
perform basic computations. The symmetric parallel composition of f and g, written as f | g, permits
independent computations and publications (i.e., outputs) from f and g. Sequencing of f and g, written as
f >x >g, conveys all values x published by f to g. Selective pruning of f and g, written as g where x :∈ f
conveys some value x published by f to g. We find that Orc does not provide enough support for orchestrat-
ing computations and does not support separation of concerns between orchestration and computation. In
particular, and with respect to SSCC, Orc does not provide primitives for expressing conversations among
services. This paper shows that flexible programming together with proofs of correctness for programming
transformations can only be achieved in a language that takes conversation as a primitive concept.

Another thread of research [7,16,17,26,29] aims at capturing the principles behind Web service based
business processes. A global description of communication behavior allows one to generate automatically
an “endpoint-based” description of each participant to the protocol, a projection of the global scenario.
We are at the same abstraction level of the endpoint calculus, but this one relies on multiparty session
communication, and the considerations above for the Conversation Calculus apply.

1.5 The rest of this paper
We start by presenting the main ideas of the process language through two basic examples (Section 2.1).
Then, Section 2.2 and Section 2.3 present, respectively, the syntax and the operational semantics (both
a reduction-based system and a labeled transition system, shown to coincide on silent transitions) of the
process description language.

Section 2.4 presents a first theoretical mechanism to study the (static) behavior of processes, a type
system for SSCC. Equipped with this mechanism, we present in Section 3 more elaborate examples of
systems specification in SSCC: Section 3.1 presents the encoding of common workflow patterns, and
Section 3.2 presents a non-trivial programming exercise—the automotive case study.

Section 4 presents another theoretical mechanism to study the (dynamic) behavior of processes, giving
notions of behavioral equivalences and proving some of their properties.

As an application of these theoretical results, Section 5 discusses how different programming styles
applied to the same concrete problem may lead to seemingly different implementations, and shows, using
the properties from the previous sections, that these implementations are indistinguishable if one abstracts
from internal details. Furthermore, this section introduces a generic set of rules allowing to program
SSCC processes according to different programming styles, and presents a set of (behavior-preserving)
transformation rules allowing one to move from one style to another.

The last section summarizes the results obtained, and explores possible directions for future work.

2 SSCC: examples, syntax, and operational semantics
To motivate the basic constructs of the calculus, we present them one by one, incrementally building a
simple example. A more elaborate example follows, to illustrate the expressive power of the calculus.
Afterwards, we define rigorously the syntax, the operational semantics, and the type system of SSCC.

2.1 Modeling: basic examples
A first example. We start by defining a simple process to deliver the price of a room for a given date at a
given hotel.

( date ) 〈 query−the−hote l−db 〉 . p r i ce

Here, the parentheses in (date) indicate the reception of a value, and an identifier alone, as in price, means
publishing a value. We use the notation 〈 activity 〉 to refer to code for some activity which is not (yet)
specified. For instance, 〈query−the−hotel−db〉 stands for code which looks, in the hotel database, for the
price of the stay; when running, this code uses an actual value for the parameter (date, in this example).
Hotel bologna may turn the process above into a service definition, by writing:

bologna ⇒ ( date ) 〈 query−the−hote l−db 〉 . p r i ce
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Here bologna is the name of a service that can be invoked to interact with the hotel, and whose behavior is
as above. A client is supposed to meet the expectations of the service by providing a date and requesting a
price:

bologna ⇐ 31Dec2012 . ( p r i ce ) 〈use−p r i ce 〉

Here we have an invocation (⇐ ) of service bologna, whose behavior first sends 31Dec2012 as date, then
waits for an answer, which is stored in price. The code continues with some unspecified use of the received
price.

When the service provider (⇒ ) and the service client (⇐ ) get together, by means, e.g., of parallel
composition, a conversation takes place, and values are exchanged in both directions.

Now suppose that a broker comes to the market trying to provide better deals for its clients. The
behavior of the broker is as follows: it asks prices to three hotels that it knows of (bologna, lagoa, lisbon),
waits for two results, and publishes the best offer of the two. Calling the three services for the same given
date is as above:

bologna ⇐ date . ( p r i ce1 ) . . . |
lagoa ⇐ date . ( p r i ce2 ) . . . |
l i s b o n ⇐ date . ( p r i ce3 ) . . .

Note the use of parallel composition | to perform the three invocations concurrently.
In order to collect the prices for further processing, we introduce a stream constructor, playing the role

of a service orchestrator. The various prices are fed into the stream; another process reads the stream. We
write it as follows.

stream
bologna ⇐ date . ( p r i ce1 ) . feed pr i ce1 |
lagoa ⇐ date . ( p r i ce2 ) . feed pr i ce2 |
l i s b o n ⇐ date . ( p r i ce3 ) . feed pr i ce3

as f in
f ( x ) . f ( y ) . 〈 publ ish−the−min−of−x−and−y 〉

To write price1 into a stream we use the syntax feed price1. To read a value from stream f we use
f (x ). 〈use−x〉, where 〈use−x〉 is the code that uses the parameter x. Writing is an anonymous operation
(feeds to the nearest enclosing stream), whereas reading is named. The above pattern is so common that
we provide a special syntax for it. Inspired by Orc, call stands for an invocation of a (parametric) service,
whereas P>n x1...xn>Q models the flow of n values from process P to process Q, via a stream. We refer to
Figure 9 in page 15 for a formal definition of the derived syntactic constructs.

( c a l l bologna ( date ) |
c a l l lagoa ( date ) |
c a l l l i s b o n ( date ) ) >2

x y > 〈 publ ish−the−min−of−x−and−y 〉

To complete the example we rely on a min service, chaining the first two answers, and publishing the result.
We also turn the code into a service named broker.

broker ⇒ ( date ) . (
( c a l l bologna ( date ) |

c a l l lagoa ( date ) |
c a l l l i s b o n ( date ) ) >2

x y > c a l l min ( x , y ) >1 m > m)

In detail, the first two values returned by the services, x and y, are used to invoke service min (note again
the use of special syntax call). The value returned by service min is bound to m and returned to the client
of service broker (the last occurrence of m is the return value).

Note that a client interacts with the broker using the same protocol that it would use to interact with a
particular hotel named broker. The downside of this approach is that the client does not know which hotel
offers the best price; it is not difficult to adapt the example to overcome this limitation.

Using call and P>n x1...xn>Q we have avoided explicitly mentioning streams altogether. Direct stream
manipulation can however be quite handy. The following example shows a broker that logs all three
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answers by sending them to a specific service log, while publishing the best price of the first two (cf.
the Discriminator Pattern [43] in Section 3.1).

stream . . . as f in
f ( x ) . f ( y ) . c a l l min ( x , y ) >1

m > (m | f ( z ) . log ⇐ x . y . z )

Our language is equipped with a notion of types,1 allowing to statically filter programs that may incur
in conversation errors, such as both the service provider and the client expecting a value at the same time
(while if one is expecting a value the other one should be sending it), or the service expecting a value while
the client has already terminated its execution. Returning to the hotel example, we can easily see that the
conversation between the service provider (⇒) and the client (⇐) is, from the point of view of the provider,
as follows: expect a date; send a price; terminate. The whole process of querying the hotel database to
obtain the price is opaque to the client, and does not show up in the type. We write the type for an hotel as:

bologna : : [? Date . ! Pr ice . end ]

The protocol with the broker is somewhat more complex, yet its interface with the client is exactly the
same.

broker : : [? Date . ! Pr ice . end ]

All values in a stream are required to be of the same type. The type of a process is a pair describing the
conversation it engages into and the values it writes into its stream. Considering the part stream P as f in Q
of the broker example, we have that P is of type (end, Price), meaning that P does not engage in any
interaction with the client, and that it feeds Price values into the stream. On the other hand, Q is of type
(! Price.end, T), since it communicates a price to the client (the type of the stream is arbitrary, given that Q
does not feed into its stream).

A memory cell. Even if a memory cell is not a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog updates. Contrary to SCC [8], our language allows
writing stateful services without exploiting service termination. Inspired by the encoding of objects in the
π-calculus [39], we set up a simple, ephemeral, service to produce a value: buffer ⇒ v. The persistent
service get below (persistent services are identified by the extra ∗ in the service definition) calls the buffer
service to obtain its value (thus consuming the service provider), replies the value to the client, and replaces
the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > ( v | b u f f e r ⇒ v )

The service set calls the buffer service (in order to consume the service provider), then gets the new value
from the client and replaces the buffer with this value.

set ∗⇒ c a l l b u f f e r >1 > (w) ( b u f f e r ⇒ w)

Note that above, in the operator P>1 >Q, the name of the parameter is not written: we omit it since it is
never used in the continuation.

Finally, the cell service sets up three services—get, set, and buffer—sends the first two to the client,
and keeps buffer locally with initial value 0.

c e l l ∗⇒ (ν bu f fe r , get , se t ) . get . se t .
( b u f f e r ⇒ 0 |

get ∗⇒ c a l l b u f f e r >1 v >
( v | b u f f e r ⇒ v ) |

se t ∗⇒ c a l l b u f f e r >1 > (w) ( b u f f e r ⇒ w) )

1Types and the type system are presented in detail in Section 2.4.
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P,Q ::= Processes
| 0 Terminated process
| P |Q Parallel composition | (ν a)P Name restriction
| X Process variable | recX.P Recursive process definition
| a⇒ P Service definition | a⇐ P Service invocation
| v.P Value sending | (x)P Value reception
| streamP as f inQ Stream | feed v.P Feed the process’ stream
| f(x).P Read from a stream

v ::= Values
a Service name | unit Unit value

Figure 1: The syntax of SSCC

2.2 Syntax
The syntax for SSCC processes is inspired by that of the π-calculus, but it includes several additional
features. A process may post/read a message to/from its environment; more complex processes may be
built by joining two processes in parallel, restricting a name within a process or using recursion (guarded
by prefixes).

Furthermore, a process may be a service definition a ⇒ P or service invocation a ⇐ P, containing the
name a of the service and a protocol P. When a service invocation meets its corresponding definition, the
corresponding protocols execute within a session whose name is freshly generated, and messages posted
by one endpoint are read by the other endpoint of that session.

Service orchestration is achieved by means of stream composition. A stream is a one-way static channel
whose name cannot be communicated; the process “inside” a stream can only post values to that stream,
whereas the “outer” process can only read from that stream. It is important to point out that any process
may (directly) write to exactly one stream, but might be able to read from several; hence the need to
name the stream in the reading, but not in the writing, context. This choice simplifies the type system
and the behavioral analysis, not compromising expressiveness, as far as we noticed with the (large amount
of) examples developed. Intuitively, communication via streams corresponds to local interaction, whereas
service interaction is meant for remote communication.

Notation. Processes are built using three kinds of identifiers: service names, stream names, and process
variables. Service names are ranged over by a and b; values, ranged over by u and v, can be either service
names or the unit value. Basic values such as integers and strings can be easily added, and will be used in
examples. Names for values can also be used as variables (bound by value reception or read from stream),
and we use x and y in this case. Stream names are ranged over by f and g. Process variables are ranged
over by X and Y, and are used to define recursive processes. All process variables are required to be bound,
i.e., they must appear only within a recursive process definition of which they are the recursion variable.
Thus, we consider a process well-formed only if it contains no free process variables.

Definition 1 (Syntax). The grammar in Figure 1 defines the syntax of SSCC processes.

The first five cases of the grammar introduce standard process calculi operators: the terminated pro-
cess 0, parallel composition P|Q, name restriction (notice that only service names can be restricted), and
recursion (to define recursion we need both process variables X and recursive process definitions rec X.P).

We then have two constructs to build services: definition (or provider) and invocation (or client). They
are both defined by their name a and protocol P. Service definition and service invocation are symmet-
ric, differently from SCC [8]. Service protocols are built using value sending and receiving, allowing
bidirectional communication between clients and servers.

Finally, there are the three constructs for service orchestration, which constitute the main novelty of our
calculus. The stream construct declares a stream f for communication from P to Q. P can insert a value v
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P,Q ::= Runtime processes
. . . as in Figure 1
| r � P Server session | r � P Client session
| (ν r)P Session restriction | streamP as f = ~v inQ Stream with values

Figure 2: The runtime syntax of SSCC

into the stream f using feed v.P’, and Q can read from there using f (x ).Q’. Streams can be considered
either ordered or unordered. An unordered stream is a multiset, while an ordered one is a queue. In most
cases the difference is not important. Herein, streams are considered ordered, acting as queues. Note that
stream communication is inherently asynchronous. We write w :: ~v for the stream obtained by adding w to
stream ~v, and ~v :: w for a stream from which w can be removed. In the latter case ~v is what we get after
removing w. We denote the empty stream by 〈〉.

Observe that these processes do not yet contain sessions. Indeed, sessions can only arise as a result of
the interaction of a service definition and a service invocation, which produces an active session. Therefore,
an extended run-time syntax is needed. This syntax distinguishes a fourth set of identifiers: session names,
ranged over by r and s. The letters n and m are used to range over both session names and service names.
Moreover, at runtime, values in the stream are stored together with the stream definition: the static construct
stream P as f in Q can be seen as an abbreviation of stream P as f=〈〉 in Q.

Definition 2 (Runtime syntax). The grammar in Figure 2 defines the syntax of runtime SSCC processes.

Henceforth, we only consider processes derived from the ones in the static syntax.

2.3 Operational semantics
Since the aim of SSCC is to model systems that change over time, it is essential to describe how they
evolve. This is done by giving an operational semantics, which is a reduction relation on runtime processes.

Notation Some constructs act as binders. Name x is bound in (x)P and in f(x).P ; name n is bound in
(ν n)P ; stream f is bound in streamP as f = ~v inQ with scope Q; and process variable X is bound in
recX.P . The sets of free and bound names in P are denoted, respectively, by fn(P ) and bn(P ). The set
of names in P is n(P ) = fn(P ) ∪ bn(P ). If ~w = w1 · · ·wn with n ≥ 0, then Set(~w) = {w1, . . . , wn}.
We work up to α-conversion and follow Barendregt’s variable convention, whereby all variables in binding
occurrences in any mathematical context are pairwise distinct and distinct from the free variables [5]. We
use capture avoiding substitutions (thanks to Barendregt convention) to replace names for names, as in
[v/x], and processes for process variables, as in [recX.P/X].

Structural congruence. Before proceeding further, it is appropriate to introduce a structural congruence
relation for SSCC processes. In the rules in Figure 3 and in the following, in processes containing sessions,
r ./ P stands for either r�P or r�P ; multiple occurrences of r ./ P within the same rule are instantiated
in the same way (i.e., all r�P or all r�P ), while occurrences of r ./P stand for the opposite instantiation
(i.e., where r ./ P stands for r � P , r ./ P stands for r � P , and vice-versa).

Definition 3 (Structural congruence relation). The structural congruence relation ≡ on runtime SSCC
processes is the smallest congruence closed under the rules in Figure 3.

Reduction relation. Interactions can happen in different active contexts. Since our interactions are bi-
nary, we introduce also two-holed contexts, which we call double contexts.

Definition 4 (Active contexts). The grammar in Figure 4 generates active contexts CJK and double contexts
DJ, K.

Applying a double context to two processes P1 and P2 produces the process obtained by replacing the
first (in the prefix visit of the syntax tree) hole • with P1 and the second hole • with P2.
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P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R) (S-NIL, S-COMM, S-ASSOC)
(ν n)P |Q ≡ (ν n)(P |Q) if n /∈ fn(Q) r ./ (ν a)P ≡ (ν a)(r ./ P )

(S-EXTR-PAR, S-EXTR-SESS)
stream (ν a)P as f = ~v inQ ≡ (ν a)(streamP as f = ~v inQ) if a /∈ fn(Q) ∪ Set(~v)

(S-EXTR-STREAML)

streamP as f = ~v in (ν a)Q ≡ (ν a)(streamP as f = ~v inQ) if a /∈ fn(P ) ∪ Set(~v)
(S-EXTR-STREAMR)

streamP as f inQ ≡ streamP as f = 〈〉 inQ (S-RUN-TIME-STREAM)
(ν n)(ν m)P ≡ (ν m)(ν n)P (ν a)0 ≡ 0 recX.P ≡ P [recX.P/X]

(S-SWAP, S-COLLECT, S-REC)

Figure 3: The structural congruence relation

CJK ::= • | CJK|Q | P |CJK | (ν n)CJK
| stream CJK as f = ~v inQ | streamP as f = ~v in CJK | r ./ CJK

DJ, K ::= C′JK|C′′JK | stream C′JK as f = ~v in C′′JK

Figure 4: Active and double contexts

Definition 5 (Reduction semantics). The rules in Figure 5, together with symmetric rules of R-COMM and
of R-SYNC (swapping the processes in the two holes of DJ, K), inductively define the reduction relation on
SSCC processes.

Rule R-SYNC allows a service invocation and a service definition to interact. This interaction produces
a pair of complementary sessions, distinguished by a fresh restricted name r. Notice that both the service
invocation and the service definition disappear. Rule R-COMM allows communication between correspond-
ing sessions. Since value sending and receiving refer to the innermost session, we have to ensure that r is
such a session. This is done by requiring that CJK and C′JK do not contain sessions around the hole. Then
there are the two rules dealing with streams: rule R-FEED puts a value in the stream while rule R-READ
takes a value from the stream. In R-FEED, similarly to what happens in R-COMM, the right premise en-
sures that the value sent by the feed operation is not captured by an inner stream construct in context CJK.
Finally rule R-CONG allows reductions to happen inside arbitrary active contexts, and rule R-STR exploits
structural congruence.

2.4 Type system
This section deals with the static behavior of SSCC processes. Type systems provide protocol information,
abstracting from the actual data being sent, and are powerful enough to prove a number of interesting
properties about termination.

Typing for SSCC processes is a way of providing information about their protocol, telling the world
about the data they are expecting and how they communicate with the outside. This simple type system,
built along the lines of session types [22, 25, 42, 46], is strong enough to ensure protocol compatibility
among clients and servers. It is also able to deal with many different interacting services simultaneously.

Definition 6 (Types). The grammar in Figure 6 defines the syntax of types.

Types are divided into three classes. Types for values T are either Unit, which denotes the only basic
type,2 or [U ], which is the type of a service or session with protocol U . This protocol is always seen from

2To be possibly extended with, say, integers and strings.
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DJ, K does not bind r or a r /∈ fn(P ) ∪ fn(Q) ∪ fn(DJ, K)
DJa⇒ P, a⇐ QK→ (ν r)DJr � P, r �QK

(R-SYNC)

DJ, K, CJK, and C′JK do not bind r or v
CJK and C′JK do not contain sessions around the hole

(ν r)DJr ./ CJv.P K, r ./ C′J(x)QKK→ (ν r)DJr ./ CJP K, r ./ C′JQ[v/x]KK
(R-COMM)

CJK does not bind w the hole does not occur in CJK in the left part of a stream context
stream CJfeedw.P K as f = ~v inQ→ stream CJP K as f = w : :~v inQ

(R-FEED)

CJK does not bind w or f
streamP as f = ~v : :w in CJf(x).QK→ streamP as f = ~v in CJQ[w/x]K

(R-READ)

P → P ′

CJP K→ CJP ′K
Q ≡ P → P ′ ≡ Q′

Q→ Q′
(R-CONG, R-STR)

Figure 5: The reduction relation

T ::= Types

Unit unit type
| [U ] service type

U ::= Conversation types

?T.U input
| !T.U output
| end end of conversation
| α type variable
| recα.U recursive type

Figure 6: The syntax of value types

the server point of view, regardless of the role of the process being typed. Types for streams are of the
form 〈T 〉 where T is the type of the values the stream carries. Finally, types for processes are of the form
(U, T ) where U is the protocol that the process follows, and T is the type of the values the process feeds
into its stream.

The rec operator for types is a binder, giving rise, in the standard way, to notions of bound and free
variables and α-equivalence. As was the case for processes, α-convertible types are considered the same.
Furthermore, this paper takes an equi-recursive view of types, not distinguishing between a type rec α.U
and its unfolding T [rec α.U/α]. We are interested on contractive (not including subterms of the form
recα.recα1 . . . recαn.α) types only; see [38].

In order to establish communication, two processes must have complementary protocols, in the sense
that one is ready to send values of the type that the other is expecting, and vice-versa. This is captured
via the operation of complementation on conversation types, defined in Figure 7. Intuitively, if a client
executes protocol U and a server implements protocol U , then the conversation between them can proceed
without errors.

Typing judgments are as follows:

Γ ` P : (U, T ) Processes

Γ ` v : T Values

where Γ is a map with entries a : T , r : T , f : 〈T 〉, and X : (U, T ).
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?T.U , !T.U !T.U , ?T.U end , end α , α rec α.U , rec α.U

Figure 7: The complement of a conversation type

Γ, n : T ` n : T Γ, f : 〈T 〉 ` f : 〈T 〉 Γ ` unit : Unit (T-NAME, T-SNAME, T-UNIT)

Γ ` P : (U, T ) Γ ` v : T ′

Γ ` v.P : (!T ′.U, T )

Γ, x : T ′ ` P : (U, T )

Γ ` (x)P : (?T ′.U, T )
(T-SEND, T-RECEIVE)

Γ ` P : (U, T ) Γ ` a : [U ]

Γ ` a⇒ P : (end, T )

Γ ` P : (U, T ) Γ ` a : [U ]

Γ ` a⇐ P : (end, T )
(T-DEF, T-CALL)

Γ ` P : (U, T ) Γ ` r : [U ]

Γ ` r � P : (end, T )

Γ ` P : (U, T ) Γ ` r : [U ]

Γ ` r � P : (end, T )
(T-SESS-S, T-SESS-C)

Γ ` P : (U, T ) Γ ` v : T

Γ ` feed v.P : (U, T )

Γ, x : T ` P : (U, T ′) Γ ` f : 〈T 〉
Γ ` f(x).P : (U, T ′)

(T-FEED, T-READ)

Γ ` P : (U, T ) Γ ` Q : (end, T )

Γ ` P |Q : (U, T )

Γ ` P : (end, T ) Γ ` Q : (U, T )

Γ ` P |Q : (U, T )
(T-PAR-L, T-PAR-R)

Γ ` P : (U, T ) Γ, f : 〈T 〉 ` Q : (end, T ′) w ∈ Set(~v)⇒ Γ ` w : T

Γ ` streamP as f = ~v inQ : (U, T ′)
(T-STREAM-L)

Γ ` P : (end, T ) Γ, f : 〈T 〉 ` Q : (U, T ′) w ∈ Set(~v)⇒ Γ ` w : T

Γ ` streamP as f = ~v inQ : (U, T ′)
(T-STREAM-R)

Γ, X : (U, T ) ` P : (U, T )

Γ ` recX.P : (U, T )

Γ, n : T1 ` P : (U, T )

Γ ` (ν n)P : (U, T )
(T-REC, T-RES)

Γ, X : (U, T ) ` X : (U, T ) Γ ` 0 : (end, T ) (T-VAR, T-NIL)

Figure 8: The type system

Definition 7 (Type system). The rules in Figure 8 inductively define the type system for SSCC processes.

The type of a process is an abstraction of its behavior: its first component shows the protocol of the
process, while the second component traces the type of the values fed to its stream. Notice that the prop-
erties of internal sessions and streams are guaranteed by the typing derivation and the typing assumptions
in Γ, and they do not influence the type of the process. For instance, if the process is a session r � P,
then its protocol is end, but the protocol followed by P is traced by an assumption r : [U ] in Γ. When the
complementary session is found, the compatibility check is performed.

These types force protocols to be sequential, which the authors consider to be a good programming
style. Suppose for instance that the protocol contained two parallel outputs: then there should be two inputs
in the complementary protocol, and we cannot know which output is matched with each input. Either this
is irrelevant for the process, and the outputs can be sorted out in an arbitrary way, or it is relevant, and it
should generate an error.

Another aspect is that parallel protocols are more complex to check for compatibility. Notice that this
does not forbid having, e.g., two concurrent service invocations, since sequentiality is only enforced inside
protocols.

SSCC equipped with this type system is type safe: typable processes are not errors, nor can they gener-
ate errors. The proof of this result requires, as usual, a type preservation property—subject reduction—and
a definition of erroneous processes. The proofs of the theorems below can be found in Appendix A.

Theorem 1 (Subject reduction). Let Γ ` P : (U, T ) and P → P ′. Then Γ ` P ′ : (U, T ).

Theorem 2 (Type Safety). Let P be a typable process. Then P has no subterm of the following forms.
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Protocol:
DJr ./ CJv.P K, r ./ C′Ju.QKK Two outputs
DJr ./ CJv.P K, r ./ 0K Output and 0
DJr ./ CJ(x)P K, r ./ C′J(y)QKK Two inputs
DJr ./ CJ(x)P K, r ./ 0K Input and 0

where in all the cases DJ, K does not bind r, and CJK and C′JK do not contain sessions around the •.

Sequentiality:
DJv.P, u.QK Parallel outputs
DJ(x)P, u.QK Parallel input and output
DJv.P, (y)QK Parallel output and input
DJ(x)P, (y)QK Parallel inputs

where in all cases DJ, K does not contain sessions around the •.

An example of protocol failure is illustrated by process r � v.P | r � nil . This process cannot be
typed, since the two parallel components require different assumptions for r, namely r : [! T.U’] where T is
the type of v, and r : end, respectively. Similarly, a non-sequential conversation is r � (v.P | u.Q), which
also cannot be typed, since both v.P and u.Q have non-end protocols, thus forbidding the application of
rules for parallel composition. Techniques used for session types can be adapted to type check SSCC
processes [44].

As an example we show the typing judgment for the protocol of the memory cell from Section 2.1.
Services in SSCC are ephemeral: they do not survive invocation. Recursion can be used to provide
persistent services: a service a ⇒ P can be made persistent by writing instead rec X.a⇒ (P | X), which we
abbreviate as a ∗⇒ P (see Figure 9).

get : : [ ! I n t . end ]
get ∗⇒ c a l l b u f f e r >1 v > ( v | b u f f e r ⇒ v )

The type captures the fact that the get service publishes the integer stored in the memory cell.

set : : [? I n t . end ]
se t ∗⇒ c a l l b u f f e r >1 > (w) ( b u f f e r ⇒ w)

The type indicates that a value is sent to the service (it will be used for updating the memory cell).

c e l l : : [ ! [ ! I n t . end ] . ! [ ? I n t . end ] . end ]
c e l l ∗⇒ (ν bu f fe r , get , se t ) . get . se t . ( b u f f e r ⇒ 0 |

get ∗⇒ c a l l b u f f e r >1 v > ( v | b u f f e r ⇒ v ) |
se t ∗⇒ c a l l b u f f e r >1 > (w) ( b u f f e r ⇒ w) )

The type for the Cell service is more interesting. It makes apparent the fact that, upon instantiation, the
Cell service will publish two services, the first able to send a value (for getting the value of the memory
cell) and the second able to receive a value (for setting the memory cell).

3 Specifying in SSCC
This section explores examples that highlight the versatility of SSCC, while comparing to solutions written
in SCC and Orc. These two languages are briefly reviewed in Section 1.4. For modeling we use a few
useful abbreviations, which are gathered in Figure 9. We will continue to use them in the rest of the paper.

The first example shows that naming streams can be handy. Fork-join is a pattern that spawns two
threads, and resumes computation after receiving a value from each thread. In the example below, services
a and b are run in parallel; call a feeds the first result produced by the service into stream f , and similarly
for call b and stream g.

fo rk−and− j o i n : : [ ? [ ! T1 . end ] . ? [ ! T2 . end ] . ! T1 . ! T2 . end ]
fo rk−and− j o i n ∗⇒ ( a ) ( b ) (

stream c a l l a as f in
stream c a l l b as g in

f ( x ) . g ( y ) . x . y )

14



call a(x1 ,..., xn) , a ⇐ x1...xn .(y) feed y

P >n x1 ... xn >Q , stream P as f in f (x1 ). ... f (xn ).Q

P >x >Q , stream P as f in rec X.f (x ).( Q | X)

a ∗⇒ P , rec X. a ⇒ (P | X)

if b then P , b ⇐ (x)(y) x ⇐ feed unit >1 >P

if ¬b then P , b ⇐ (x)(y) y ⇐ feed unit >1 >P

if b then P else Q , if b then P | if ¬b then Q

T1 → ... → Tn→ T , [?T1 ...?Tn .!T.end]

ε → T , [! T.end]

Bool , [![ end ].![end].end]

Assume omnipresent the following services,

t t ∗⇒ 0
t rue ∗⇒ t t . f f .0
f a l s e ∗⇒ f f . t t .0

and omniabsent the service for ff .

Figure 9: Derived constructs

The example is inspired in Orc [28, 35], but Orc, when one of the service invocations at a or b completes,
kills the other. Instead, we let them run to completion. Orc is not able to match our semantics: reading a
single value from an expression can only be performed via the where construct, and that necessarily means
terminating the evaluation of the expression. We feel that termination should be distinct from normal or-
chestration; we leave for further work termination (and the corresponding compensation). Notice, however,
that the declared type makes sure that services a and b produce each a single value.

The second example describes an idiom where for each value x produced by a process P, a second
process Q is started. If process P produces its values by feeding into its stream, then, in the process below,
a new copy of process Q is spawned for each value read from the stream. Process

stream P as f in rec X. f ( x ) . (Q | X)

can be abbreviated to P >x >Q (x can be dropped if it does not occur in Q), so that a service that reads
news from sites CNN and BBC and e-mails each to a given address can be written as:

email−news : : [? Address . end ]
email−news ∗⇒ ( a ) ( ( c a l l CNN | c a l l BBC) > x > emai l ⇐ a . x )

The example and the short syntax is again from Orc. In this case we are faithful to the Orc semantics.

3.1 Workflow patterns
In this section we illustrate the expressiveness of SSCC by implementing the Workflow Patterns (WP) from
van der Aalst et al. [43]. This permits contrasting again our approach with that of SCC and of Orc [19],
which have similar aims. While WPs are an interesting benchmark, they are aimed at workflow description
languages, not at calculi for SOC. For this reason some of the patterns are not meaningful (e.g., WP11:
Implicit Termination) in our context, while others are redundant (e.g., WP12: Multiple Instances without
Synchronization is similar to WP2: Parallel Split, since process calculi can obviously handle multiple
instances). Also, some patterns require the ability to kill processes, which has not yet been introduced in
SSCC, and thus are out of our possibilities. On the contrary WPs consider only “activities”, i.e., services
that receive one value and give back one result, while our calculus can also model more complex protocols.
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We describe all patterns (in reference [43]) as services; we also present their types. Those that have
multiple entry points (the various merges, for example) are modeled with a vector of boolean values,
describing which services should be invoked.

For us, an activity is a service that writes at most one value on the client side (replies at most one value).
The simplest activity is the null service.

n u l l S e r v i c e : : ε → Unit
n u l l S e r v i c e ∗⇒ unit

Most of the patterns below allow definitions in SSCC that do not directly use either the stream opera-
tions (stream, feed, and f (x ).P) or recursion.

In what follows we give a brief description of each workflow pattern and present an illustrative example,
both taken from [43]. To allow a comparison we also show how the patterns can be implemented in
SCC. Services in SCC have always one parameter: we exploit it as first input for the server if the server
protocol should start with an input, otherwise we assume it is unused and use unit as invocation value. We
concentrate on WP1, WP3, WP4, WP9, WP10, and WP17, the patterns we find more significant and which
better highlight the expressive power of SSCC. The reader should refer to Appendix B for the modeling
of all the workflow patterns from [43].

WP1: Sequence
“An activity in a workflow process is enabled after the completion of another activity in the same process.
Example: an insurance claim is evaluated after the client’s file is retrieved.”

seq : : ( ε → T1 ) → ( ε → T2 ) → T2

seq ∗⇒ ( a1 ) ( a2 ) c a l l a1 >
1 > c a l l a2 >

1 x > x

In Orc the implementation is similar. In SCC the most direct implementation is:

seq ⇒ ( a1 ) ( a2 ) a2 ⇐ a1 ⇐ unit

This implementation is fine for activities (actually here a2 is invoked with the value from a1 rather than
with unit: this problem is solved in SSCC), but if a1 is not an activity then a2 is called for each value
returned by a1, and this is not the expected semantics. In SSCC this cannot happen, since the remaining
values returned by a1 stay forever in the stream. To enforce correct behavior in SCC one should write:3

seq ⇒ ( a1 ) ( a2 ) ( ν r ) ( r � ( a1 ⇐ unit | ( res ) return res ) |
r � ( v ) a2 ⇐ unit )

Notice that the SCC encoding above uses a conversation (a process of the form r � P | r � Q), which
we view as runtime syntax in SSCC. However, sessions can be also avoided in SCC using “fake” service
invocations and definitions (nevertheless, service definitions stay there afterward, since they are persistent).

WP3: Synchronization
“A point in the workflow process where multiple parallel subprocesses/activities converge into one single
thread of control, thus synchronizing multiple threads. It is an assumption of this pattern that each incoming
branch of a synchronizer is executed only once. Example: insurance claims are evaluated after the policy
has been checked and the actual damage has been assessed.”

sync : : ( ε → T) → . . . → ( ε → T) → Unit
sync ∗⇒ ( a1 ) . . . ( an ) ( c a l l a1 | . . . | c a l l an ) >n > unit

Orc uses the where operator, and SCC uses sessions (or “fake services”):

sync ⇒ ( a1 ) . . . ( an ) ( ν r ) ( r � ( a1 ⇐ unit | . . . | an ⇐ unit ) |
r � ( x1 ) . . . ( xn ) return unit )

3This can be done also by type checking the protocol for a1: this feature is not yet available in SCC, but it can be easily transferred
there.
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WP4: Exclusive Choice
“A point in the workflow process where, based on a decision or workflow control data, one of several
branches is chosen. Example: based on the workload, a processed tax declaration is either checked using a
simple administrative procedure or is thoroughly evaluated by a senior employee.”

xor : : Bool → ( ε → T) → ( ε → T) → T
xor ∗⇒ ( b ) ( a1 ) ( a2 ) i f b then c a l l a1 >

1 x > x else c a l l a2 >
1 x > x

Notice that if−then−else cannot be typed with the current type system unless both branches have the
empty protocol (since they occur in parallel). This problem can be solved by adding a dedicated typing
rule to exploit the knowledge that only one of the branches is actually executed.

In SCC one can implement true and false in a similar way. Then we have:

i f b then P = (νs ) s � b {(− ) ( x ) ( y ) return x } ⇐ unit
| s � ( x1 ) (ν r ) r � x1 {(− ) return unit } ⇐ unit

| r � ( z ) P
i f ¬b then P = (νs ) s � b {(− ) ( x ) ( y ) return y } ⇐ unit

| s � ( x1 ) (ν r ) r � x1 {(− ) return unit } ⇐ unit
| r � ( z ) P

Notice that while in SSCC feeds from P are not intercepted by the if context, in SCC the returns are
lost, since P is executed inside a subsession. To forward the results to the caller, extra programming effort is
required. Actually, since P cannot be executed at top level (since in order to start it when a trigger coming
from a subsession is received, the trigger should be transmitted using a return, which either goes to the
other side, or executes P inside a session) a forward of values is needed, but in SCC one is able to specify
only a finite amount of forwarding. Thus, if P can give back an unbounded number of replies, this cannot
be programmed. Nevertheless, in the following example we always suppose to have the if with forwarding
of the results. Since workflow patterns deal only with activities (one result), then the forwarding can be
implemented.

The if−then−else is as in SSCC.

xor ⇒ ( b ) ( a1 ) ( a2 ) i f b then a1 ⇐ unit else a2 ⇐ unit

Because of the above observation the xor in SCC (with the above implementation of if ) gives back no
value.

WP9: Discriminator
“The discriminator is a point in a workflow process that waits for one of the incoming branches to complete
before activating the subsequent activity. From that moment on it waits for all remaining branches to
complete and “ignores” them. Once all incoming branches have been triggered, it resets itself so that it
can be triggered again (which is important, otherwise it could not really be used in the context of a loop).
Example: to improve query response time, a complex search is sent to two different databases over the
Internet. The first one that comes up with the result should proceed the flow. The second result is ignored.”

d i s c r i m i n a t o r : : ( ε → T) → . . .→ ( ε → T) → Unit
rec X. d i s c r i m i n a t o r ⇒ ( a1 ) . . . ( an )

stream c a l l a1 | . . . | c a l l an as f in
f ( x1 ) . unit . f ( x2 ) . . . f ( xn ) . X

In SCC, we cannot control the point where the service discriminator becomes available again.

d i s c r i m i n a t o r ⇒ ( a1 ) . . . ( an )
(ν r ) r � a1 ⇐ unit | . . . | an ⇐ unit

r � ( x1 ) . return unit . ( x2 ) . . . ( xn )

Here, the Orc implementation supposes the existence of a basic site S, with methods put and get, acting
as a buffer. This site cannot be described in Orc (Orc does not deal with site programming). We think
that sites should deal only with computation, while all the coordination should be done at the coordination
language level. This implementation fails to satisfy this separation of concerns principle. We are not aware
of better implementations in Orc.
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WP10: Arbitrary Cycles
“A point in a workflow process where one or more activities can be done repeatedly.” Arbitrary cycles can
be obtained via mutual invocations among services. We show here how an example of a structured cycle
can be programmed: while (service c returns true) do {call service a}.

whi le : : ( ε → Bool ) → ( ε → T) → Unit
whi le ∗⇒ ( c ) ( a ) c a l l c >1 b >

I f S i g n a l ( b , c a l l a >1 > c a l l whi le ( c , a ) ) >1 x > x

where

I f S i g n a l ( b ,P) = i f b then P else unit

The pattern is programmed as in Orc.

WP17: Interleaved Parallel Routing
“A set of activities is executed in an arbitrary order: each activity in the set is executed, the order is decided
at run-time, and no two activities are executed at the same moment (i.e., no two activities are active for the
same workflow instance at the same time). Example: the Navy requires every job applicant to take two
tests: physical_test and mental_test. These tests can be conducted in any order, but not at the same time.”

We assume that each service (a1 to an) signals termination by sending a value, as witnessed by their
types. Contrary to Orc, SSCC is expressive enough to describe the pattern within the language.

i n t e r l e a v e : : [ ? [ ! T1 . end ] . . . ? [ ! Tn . end ] . end ]
i n t e r l e a v e ⇒ ( a1 ) . . . ( an ) ( ν back ) (

stream
back ∗⇒ ( x ) feed x

as l ock in
back ⇐ unit |
l ock ( _ ) . a1 ⇐ ( x ) ( back ⇐ unit ) | . . . |
l ock ( _ ) . an ⇐ ( x ) ( back ⇐ unit ) )

Essentially, the different activities execute in parallel, and a lock ensures that two of them are never
enabled together. Note the use of auxiliary service back to relay values from the right to the left part of a
stream construct, where they are fed into the stream.

In principle, the implementation in SCC can follow the same idea, replacing the stream with a session
(possibly obtained using fake services, cf. WP1 above), and the feed x with a return x. However, the results
produced by services a1 ,..., an would naturally go into the same session, and should be forwarded to the
top-level. Orc, here, exploits a basic site M implementing a lock with methods acquire and release. This
site cannot be programmed inside Orc (see discussion in WP9).

3.2 The automotive scenario
In this section we show how two case studies from an automotive scenario can be represented in SSCC in a
satisfactory way. The scenario and the case studies were developed in the EU project Sensoria [40] and the
project deliverable D8.0 [23] presents them in detail. The first case study, a sight service that dynamically
shows sights according to the driver’s preferences, is straightforward to model. The second case study,
a dinner service that allows the driver to make a reservation at a restaurant with some interaction, raises
some problems with communication and typing of the resulting processes, which we then show that can be
solved without compromising the motivation behind SSCC.

Road sights scenario. Here is the scenario as described in [23].

The driver has subscribed to the dynamic sight service offered by the car company. The vehi-
cle’s GPS coordinates are automatically sent to the dynamic sight server at regular intervals,
so the vehicle’s location is known within a specified radius. Based on the driver’s preferences
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Figure 10: SD for sight service scenario

that were given at the beginning of the trip, the dynamic sight server searches a sightseeing
database for appropriate sights and displays them on the in-car map of the vehicle’s navigation
system. The driver clicks on sights he would like to visit, which results in the display of more
detailed information about this specific sight (e.g., opening times, guidance to parking, etc.).

As suggested by Banci et al. [4], there are four actors in this scenario. The driver enables the sight
service and sets his preferences via the Car Communication System (CCS). The CCS manages the com-
munication to, and from, the sight service. The sight service has access to a sightseeing database where
it gathers information from. Finally, the vehicle’s navigation system displays the results to the driver in a
graphical way.

UML Sequence Diagrams [3] describe the exchange of messages among the components in a complex
system; we use a variant of these diagrams (henceforth referred as SD). The dialogue between the actors
is represented in Figure 10. Service CCS can be implemented by the following process in SSCC. The
notation 〈action〉 stands for an internal action of the system; the numbers on the right correspond to the
numbers of the actions in the sequence diagram.

CCS⇒ ( Preferences ) . / / 1 : , 2 :
( S igh tServ ice ⇐ Preferences . / / 3 : , 4 :

〈compute GPSdata〉 . / / 5 :
GPSdata . / / 6 :
( SearchResult ) . / / 8 :
feed SearchResult )

>1 SearchResult >
SearchResult . / / 9 :
( Options ) . / / 10:
〈compute Disp layResu l t 〉 . / / 11:
Disp layResu l t . / / 12:
〈compute MapData〉 . / / 13:
( NavSystem ⇐ MapData ) / / 14 : ,15 :

This implementation follows the SD diagram in Figure 10 closely. It is easy to prove that

Γ ` CCS⇒ ... : (end, T)
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for any T (since the process performs no feed to its stream) whenever Γ is such that

Γ ` CCS : [?Preferences.!SearchResult.?Options.!DisplayResult.end]

Γ ` SightService : [?Preferences.?GPSdata.!SearchResult.end]

Γ ` NavSystem : [?MapData.end]

The (anonymous) stream has type 〈SearchResult〉.
Observe that the types of all these services (CCS, SightService, and NavSystem) correspond precisely

to their part of the conversation in the sequence diagram presented above from the point of view of the
party who invokes them. For example, the type of SightService composes the arrows labeled 4:, 6:, and 8:,
which is the trace of its conversation with CCS.

Instead, the communication along the stream does not correspond to any action in the SD. As we will
discuss in more detail in the next section, it corresponds to the communication between two sessions within
the CCS (the session CCS–SightService and the session CCS–Driver), and not to communication between
different parties.

Dinner service. Once again we present the scenario as described in [23].

Paul is very hungry, since he is driving without any food for 5 hours, so he activates the dinner
service and enters a pizzeria as desired restaurant type and a price range between five and ten
euros per meal. The navigation system displays a collection of nearby restaurants that match
the preferred settings. Paul chooses the option to check for available seats in the participating
local restaurants, and as a result the map displays only restaurants with available tables. Paul
chooses “Tony’s Pizza” and gets his reservation acknowledged. The way to the restaurant’s
parking lot is now displayed on the navigation system map.

Again, following the description in Banci et al. [4], we identify four actors in this scenario. The driver
enables the dinner service and sets his preferences via the Car Communication System (CCS). The CCS
manages the communication to, and from, the dinner service. The dinner service has access to a database
of restaurants that it can contact in order to acknowledge the reservation. Finally, the vehicle’s navigation
system displays the results to the driver in a graphical way.

The dialogue between the actors is represented by the SD in Figure 11, which is again essentially as
in [4]. However, it is not so straightforward as before to implement the CCS in SSCC. The problem arises
from the need to interact with the driver after receiving information from the dinner service, and then give
feedback to the latter. We present some alternatives and discuss the drawbacks of each of them.

Implementation using a continuation. In this approach, the dinner service, when invoked for the first
time, creates a (customized) new service whose (unique) name is sent back to the CCS. Afterwards, the
CCS invokes that new service, which contains some persistent information. This solution deviates slightly
from the sequence diagram above, since the session between the CCS and the dinner service is actually
split into two sessions, one between the CCS and the dinner service (actions 3: to 8:), another between the
CCS and the new service (actions 14: and 15:); see Figure 12.

CCS⇒ ( Preferences ) . / / 1 : , 2 :
stream ( DinnerServ ice ⇐ Preferences . / / 3 : , 4 :

〈compute GPSdata〉 . / / 5 :
GPSdata . / / 6 :
( SearchResult ) . / / 8 :
feed SearchResult .
( NewService ) . / / 8 ’ :
feed NewService )

as f in ( f ( SearchResult ) .
SearchResult . / / 9 :
( CheckSeats ) . / / 10:
〈compute Disp layResu l t 〉 / / 11:
Disp layResu l t . / / 12:
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Figure 11: SD for dinner service scenario
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Figure 12: SD for the dinner service scenario with creation of a continuation. Only the continuation part is
detailed (cf. Figure 11).
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( ChooseRestaurant ) . / / 13:
f ( NewService ) .
( NewService ⇐ ChooseRestaurant . / / 13 ’ : , 14 :

( ResAccept ) . / / 15:
feed ResAccept )

>1 ResAccept >
ResAccept . / / 16:
〈compute MapData〉 . / / 17:
( NavSystem ⇐ MapData ) / / 18 : ,19 :

)

This approach is interesting because it shows how continuations can be easily passed as (specialized)
services, yielding some form of persistency. However, the CCS as given will not be typable because stream
f cannot be typed consistently (since it is used twice to pass two bits of information of different types).

Implementation using an auxiliary service. An alternative approach is to feed new data from the com-
munication system into the dinner service. However, this is not immediately possible using the syntax of
SSCC. In order to achieve this “backward” communication, a new (linear) service b is created (whose
name is private to the communication system). Whenever the communication system needs to send more
data to the dinner service, it does so via b. Notice that one service is created for each message that needs to
be sent back.

This solution follows the original SD (Figure 11) faithfully.

CCS⇒ ( Preferences ) . / / 1 : , 2 :
(νb ) ( stream ( DinnerServ ice ⇐ Preferences . / / 3 : , 4 :

〈compute GPSdata〉 . / / 5 :
GPSdata . / / 6 :
( SearchResult ) . / / 8 :
feed SearchResult .
b ⇓ ( ChooseRestaurant ) .
ChooseRestaurant . / / 14:
( ResAccept ) . / / 15:
feed ResAccept )

as f in ( f ( SearchResult ) .
SearchResult . / / 9 :
( CheckSeats ) . / / 10:
〈compute Disp layResu l t 〉 . / / 11:
Disp layResu l t . / / 12:
( ChooseRestaurant ) . / / 13:
b ⇑ ChooseRestaurant .
f ( ResAccept ) .
ResAccept . / / 16:
〈compute MapData〉 . / / 17:
( NavSystem ⇐ MapData ) / / 18 : ,19 :

) )

where:

• b ⇑ v.P stands for (b ⇐ v.feed unit)>1 x >P,
which in turn unfolds to stream (b⇐ v.feed unit) as g in (g(x ).P).

• b ⇓ (x ).P stands for (b ⇒ (z)feed z)>1 x >P,
which in turn unfolds to stream (b⇒ (z)feed z) as g in (g(x ).P).

Observe that both b ⇑ v.P and b ⇓ (x).P have the same type as P (but in the second case P might not be
typable without the extra information of the type of x); furthermore, v:T ` b:?T, hence the use of these
abbreviations always fits well with the type system. Indeed, the only typing problem is the one above
—namely stream f cannot be adequately given a type.
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Implementation with communication via services. The constructions b ⇑ v.P and b ⇓ (x).P may
also be used to communicate in the same direction as the stream, hereby avoiding the typing problems
both previous solutions suffered from. Thus, we arrive at a third proposal for modeling the dinner service
scenario within SSCC, which again follows the proposed SD faithfully.

CCS⇒ ( Preferences ) . / / 1 : , 2 :
(νa1 , a2 , b ) (

( DinnerServ ice ⇐ Preferences . / / 3 : , 4 :
〈compute GPSdata〉 . / / 5 :
GPSdata . / / 6 :
( SearchResult ) . / / 8 :
a1 ⇑ SearchResult .
b ⇓ ( ChooseRestaurant ) .
ChooseRestaurant . / / 14:
( ResAccept ) . / / 15:
a2 ⇑ ResAccept )

|
( a1 ⇓ ( SearchResult ) .

SearchResult . / / 9 :
( CheckSeats ) . / / 10:
〈compute Disp layResu l t 〉 . / / 11:
Disp layResu l t . / / 12:
( ChooseRestaurant ) . / / 13:
b ⇑ ChooseRestaurant .
a2 ⇓ ( ResAccept ) .
ResAccept . / / 16:
〈compute MapData〉 . / / 17:
( NavSystem ⇐ MapData ) / / 18 : ,19 :

)
)

With this solution, it can be easily verified that

Γ ` CCS⇒ ... : (end, T)

for any T (since the process performs no feed to its stream) in any context Γ such that:

Γ ` CCS : [?Preferences.!SearchResult.?CheckSeats.

!DisplayResult.?ChooseRestaurant.!ResAccept.end]

Γ ` DinnerService : [?Preferences.?GPSdata.!SearchResult.

?ChooseRestaurant.!ResAccept.end]

Γ ` NavSystem : [?MapData.end].

The types of services a1, a2, and b are derived as in the previous example. Again, the types of the services
reflect their communication in the SD with the party who invokes them: the type of CCS is the concatena-
tion of actions 2:, 9:, 10:, 12:, 13:, and 16:; the type of DinnerService is the concatenation of actions 4:, 6:,
and 8:; and the type of NavSystem is simply action 19:.

Observe that all internal communication via a1, a2, and b is hidden in the type of the services and is not
represented in the SD.

Remarks. The Dinner Service scenario exposes an issue with streams: they render communication asym-
metric, since a running instance of a service is able to feed information into the process that invoked it, but
the latter process has no way to interact back (directly) with that instance of the service (this is actually the
intended motivation behind streams, since when a service is invoked it should go on running on its own).

However, in this scenario, the communication system has to synchronize two sessions running concur-
rently (that with the dinner service and another one with the driver) and information has to run back and
forth between them—which is a priori not possible due to who invoked whom.
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Figure 13: Two services running in parallel (the curved arrows indicate where information needs to be
transmitted between sessions)

A simple way to work around this problem is using continuations: whenever a session needs extra
information from the context to proceed, it saves its state in a new service, feeds the name of that service
into the context and dies; later on, the context can invoke the continuation of that session with any extra
information that became available in the meantime. Another possibility is to use ephemerous services to
communicate in the “opposite” direction.

Figure 13 depicts the sequence of messages exchanged between the intervenients (forgetting activation
commands). Observe that CCS is managing two sessions; the curved arrows denote information that must
be transmitted from one into the other (which CCS should be able to do). The arrows going left can be
implemented by feeding into the appropriate stream; the arrow going right must be dealt with using one of
the two mechanisms detailed earlier.

This diagram also explains why typing fails for the first and the second solution. Except for their
direction, there is no essential distinction between the arrows connecting both sessions CCS is managing.
However, streams are specially tailored to capture the right-to-left arrows, while the left-to-right have to be
implemented by service invocation. But the purpose of stream communication is quite different: allowing
a process invoking several concurrent services to receive answers from them all regardless the order.

Thus, the search for a symmetric manner of modeling all the curled arrows in Figure 13 is motivated
not only because of technical problems, but also by desire for coherence. The third solution proposed to
the dinner problem satisfies both requirements: CCS manages communication between the sessions it is
involved in in a uniform way, and the resulting process is typable.

This example reveals the need for program transformations that make possible the analysis and ver-
ification of programs with such characteristics. The following sections address the behavioral theory of
processes that allow us to reason about such program transformations.

4 Behavioral theory
This section deals with the dynamic behavior of SSCC processes. We define first a labeled transition
system (LTS) in the early style, and then notions of bisimilarity known in the literature as strong ground
bisimilarity and weak ground bisimilarity. The reason for choosing them is simple: we are interested
in capturing contextual equivalence, so bisimilarity should be a congruence. Therefore, we choose the
simplest possible setting where this may happen. It is well-known already from the π-calculus that ground
bisimilarity over a late LTS is not preserved by parallel composition, requiring the more demanding notions
of late and early bisimilarity (which in turn are not preserved by input prefix, since they are not closed under
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µ ::= Labels

↑v Value output
| ↓v Value input
| a⇒(r) Service definition activation
| a⇐(r) Service invocation
| ⇑v Stream feed
| f ⇓v Stream read
| r � ↑v Server session output
| r � ↓v Server session input
| r � ↑v Client session output
| r � ↓v Client session input
| rτ Conversation step
| τ Internal step
| (a) ↑a Value extrusion
| (a)r � ↑a Server session extrusion
| (a)r � ↑a Client session extrusion
| (a) ⇑a Stream feed extrusion

Figure 14: The syntax of labels

general substitutions). Not surprisingly, this fact also occurs in SSCC: ground bisimilarity is a non-input
congruence. Although the general strategy is the same as for π-calculus, the proof techniques themselves
differ significantly.

4.1 Labeled transition system
The LTS we define herein adapts (albeit in an insignificant way in terms of expressive power, as discussed
below) the original one, presented in [31], to allow for the results we are seeking. There are in total roughly
thirty transition rules, which can be grouped into four classes. However, only a few rules correspond to a
process actually doing something (reading or writing a message); the remaining ones either just propagate
an action within a component of a process to the whole system, or model interaction between two separate
sub-processes.

Labels and rules. We define first the actions performed by a process.

Definition 8 (Labels). The grammar in Figure 14 defines the syntax of labels.

We define now the LTS and give a short explanation of the rules.

Definition 9 (Labeled transition system). The labeled transition system for SSCC is inductively defined
by the rules in Figure 15.

The action of sending a value v is represented by the label ↑ v, while receiving v corresponds to the
label ↓v. Feeding a value into a stream is written ⇑ v, reading from stream f is written f ⇓v. These labels
can only arise by application of rules L-SEND, L-RECEIVE, L-FEED, and L-READ.

The request of a service is represented by the label a⇐ (r), and activation by a⇒ (r). These labels
arise by means of rules L-CALL and L-DEF. In the labels a is the name of the service and r the fresh name
of the session to be created. To ensure freshness, name r is bound in the label. This is obtained thanks to
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v.P
↑v−−→ P (x)P

↓v−−→ P [v/x] feed v.P
⇑v−−→ P f(x).P

f⇓v−−−→ P [v/x]
(L-SEND, L-RECEIVE,L-FEED, L-READ)

r /∈ fn(P )

a⇐ P
a⇐(r)−−−−→ r � P

r /∈ fn(P )

a⇒ P
a⇒(r)−−−−→ r � P

(L-CALL, L-DEF)

P
µ−−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−−→ P ′|Q
Q

µ−−→ Q′ bn(µ) ∩ fn(P ) = ∅
P |Q µ−−→ P |Q′

(L-PAR, L-PAR’)

P
lv−−→ P ′

r ./ P
r./lv−−−−→ r ./ P ′

P
µ−−→ P ′ µ 6=l v r /∈ bn(µ)

r ./ P
µ−−→ r ./ P ′

(L-SESS-VAL, L-SESS-PASS)

P
µ−−→ P ′ µ 6=⇑v bn(µ) ∩ (fn(Q) ∪ Set(~w)) = ∅

streamP as f = ~w inQ
µ−−→ streamP ′ as f = ~w inQ

(L-STREAM-PASS-P)

Q
µ−−→ Q′ µ 6= f ⇓v bn(µ) ∩ (fn(P ) ∪ Set(~w)) = ∅

streamP as f = ~w inQ
µ−−→ streamP as f = ~w inQ′

(L-STREAM-PASS-Q)

P
⇑v−−→ P ′

streamP as f = ~w inQ
τ−−→ streamP ′ as f = v : : ~w inQ

(L-STREAM-FEED)

P
(v)⇑v−−−−→ P ′ v /∈ fn(Q) ∪ Set(~w)

streamP as f = ~w inQ
τ−−→ (ν v)streamP ′ as f = v : : ~w inQ

(L-FEED-CLOSE)

Q
f⇓v−−−→ Q′

streamP as f = ~w : : v inQ
τ−−→ streamP as f = ~w inQ′

(L-STREAM-CONS)

P [recX.P/X]
µ−−→ P ′

recX.P
µ−−→ P ′

P
µ−−→ P ′ n /∈ n(µ)

(ν n)P
µ−−→ (ν n)P ′

(L-REC, L-RES)

P
rτ−−→ P ′

(ν r)P
τ−−→ (ν r)P ′

P
µ−−→ P ′ µ ∈ {↑a, r ./↑a,⇑a}

(ν a)P
(a)µ−−−−→ P ′

(L-SESS-RES, L-EXTR)

P
a⇔(r)−−−−→ P ′ Q

a⇔(r)−−−−−→ Q′

P |Q τ−−→ (ν r)(P ′|Q′)
P

a⇔(r)−−−−→ P ′ Q
a⇔(r)−−−−−→ Q′

streamP as f = ~w inQ
τ−−→ (ν r)streamP ′ as f = ~w inQ′

(L-SERV-COM-PAR, L-SERV-COM-STREAM)

P
r./↑v−−−−→ P ′ Q

r ./↓v−−−−→ Q′

P |Q rτ−−→ P ′|Q′
P

r./↑v−−−−→ P ′ Q
r ./↓v−−−−→ Q′

streamP as f = ~w inQ
rτ−−→ streamP ′ as f = ~w inQ′

(L-SESS-COM-PAR, L-SESS-COM-STREAM)

P
r./(v)↑v−−−−−−→ P ′ Q

r ./↓v−−−−→ Q′ v /∈ fn(Q)

P |Q rτ−−→ (ν v)(P ′|Q′)
P

r./↓v−−−−→ P ′ Q
r ./(v)↑v−−−−−−→ Q′ v /∈ fn(P )

P |Q rτ−−→ (ν v)(P ′|Q′)
(L-PAR-CLOSE, L-PAR-CLOSE’)

P
r./(v)↑v−−−−−−→ P ′ Q

r ./↓v−−−−→ Q′ v /∈ fn(Q) ∪ Set(~w)

streamP as f = ~w inQ
rτ−−→ (ν v)streamP ′ as f = ~w inQ′

(L-SESS-COM-CLOSE)

P
r./↓v−−−−→ P ′ Q

r ./(v)↑v−−−−−−→ Q′ v /∈ fn(P ) ∪ Set(~w)

streamP as f = ~w inQ
rτ−−→ (ν v)streamP ′ as f = ~w inQ′

(L-SESS-COM-CLOSE’)

Figure 15: The labeled transition system
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side conditions of propagation rules below, which guarantee that bound names in the labels are different
from free names in the process.

A third group of rules is concerned with propagation of labels, defining the circumstances when a
process executes an action because one of its components executes that action. Labels propagate across
parallel composition (rules L-PAR and L-PAR’) or session endpoints (as long as they do not bind the session
names); in this case, the labels for message sending/receiving become prefixed with the session name (rule
L-SESS-VAL), while other labels remain unchanged (rule L-SESS-PASS). Here, l v stands for one of ↓v or
↑ v, and multiple occurrences of l v are assumed to be instantiated in the same way, and likewise a⇔ (r)
stands for one of a⇒(r) and a⇐(r).

Every label is also propagated across streams (rules L-STREAM-PASS-P and L-STREAM-PASS-Q) ex-
cept for feeding or reading by the process at the stream’s appropriate end. In the latter cases, the value
is fed into/read from the stream, and the process executes an internal action τ (rules L-STREAM-FEED
and L-STREAM-CONS); if the value fed is restricted (see below), rule L-FEED-CLOSE should be applied
instead. Recursion and restriction do not affect labels (rules L-REC and L-RES), in the latter case as long
as these do not refer to the name being restricted. The exception occurs when an action with label rτ
(see below) occurs within a process where r is restricted: it becomes simply an internal action τ . In the
remaining cases, name extrusion occurs (rule L-EXTR). Name extrusion may occur whenever a value is
communicated, i.e. in value sending (this also includes labels prefixed by a session name) and in value
feed. As a notation, the bound name is written in parentheses.

Internal actions, labeled τ , and actions internal to session r, labeled rτ , arise when two subprocesses
interact. This can happen when a service invocation meets a service activation (rules L-SERV-COM-PAR
and L-SERV-COM-STREAM) or when two endpoints of a session r communicate (rules L-SESS-COM-PAR
and L-SERV-COM-PAR); here name extrusion may occur, in which case rules L-PAR-CLOSE or L-SESS-
COM-CLOSE apply. In these rules, l v stands for the opposite instantiation of l v and a⇔(r) for the
opposite instantiation of a⇔(r).

A few comments are in place at this point. The original LTS for SSCC, presented in [31], had fewer
rules (in particular, all the propagation rules were absent) and included the following additional rule.

P
µ−−→ P ′ P ≡ Q P ′ ≡ Q′

Q
µ−−→ Q′

(L-STRUCT)

Unfortunately, allowing this rule removes the capacity to use structural induction over processes to
reason over their actions. Furthermore, although all the new rules are admissible in the original presentation
of SSCC, rule L-STRUCT is not admissible in the new calculus, so the latter is strictly weaker. To see why,

note that in the original LTS, using L-STRUCT, L-SEND and L-PAR, one can infer that a|b ↑a−−→ b. However,

without L-STRUCT, the best one can show is that a|b ↑a−−→ 0|b. Notice that, in the example, one still has
0|b ≡ b, which for practical purposes suffices. The following result shows that this is not a coincidence.

Lemma 1 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If P α−−→ P ′, then Q α−−→ Q′ for
some Q′ with P ′ ≡ Q′, and vice-versa.

The proof of this result is in Appendix C, together with lemmas showing the derivability of the new
transition rules in the original system. The new LTS is strictly weaker than the original one, since it is
not always the case that two structurally congruent processes can evolve via the same action to the same
process, as the example above shows. However, it is always the case that structurally congruent processes
can evolve via the same action to structurally congruent processes: this is precisely the statement of the
Harmony Lemma. Observe that this is sufficient for both LTSs to yield the same notion of bisimilarity: the
Harmony Lemma implies that structural equivalence is a bisimulation, while all other transition rules are
preserved.

The reduction relation on processes (Definition 5) coincides with the restriction of the LTS to τ -
transitions.

Lemma 2 (Correspondence Lemma). Let P and Q be processes. It is the case that P τ−−→ Q if, and only
if, P → Q.
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4.2 Bisimilarity notions
The first notion of equivalence between processes that we present is strong bisimilarity, hereafter referred
to simply as “bisimilarity”. Two bisimilar processes behave in the same way, in the sense that they mimic
each other’s actions (even those that are not visible to the outside) perfectly.

Definition 10.

• A symmetric binary relation R on processes is a (strong) bisimulation if, for any processes P , Q
such that P R Q, if P α−−→ P ′ for some process P ′ and action α such that no bound name in α is
free in P or Q, then there exists a process Q′ such that Q α−−→ Q′ with P ′ R Q′.

• (Strong) bisimilarity ∼ is the largest bisimulation.

• Two processes P and Q are said to be (strongly) bisimilar if P ∼ Q.

Moreover, a full bisimulation is a bisimulation closed under service name substitutions, and we call full
bisimilarity ∼f the largest full bisimulation.

Since bisimilarity is not closed under service name substitutions, ∼f (∼. Bisimilarity (respectively
full bisimilarity) can be obtained both as the union of all bisimulations (respectively full bisimulations) or
as a fixed-point of a suitable monotonic operator; both characterizations are useful. Notice that “equal”
(structurally congruent) processes are bisimilar, since by the Harmony Lemma, ≡ is a bisimulation. More-
over, structurally congruent processes are also fully bisimilar. Bisimilarity as just defined is a non-input
congruence, as it is the case in the π-calculus.

Definition 11.

• A context CJK is a process where exactly one occurrence of 0 has been replaced by a hole •. Given
a process P , CJP K is the process obtained by replacing the hole in CJK by P .

• A context is said to be non-input if no hole occurs under an input prefix (x) or f(x).

Note that here we consider all possible contexts, not only active contexts as defined in Definition 4.

Proposition 1. Bisimilarity is a non-input congruence: if P ∼ Q and CJK is a non-input context, then
CJP K ∼ CJQK.

The proof is detailed in Appendix D. The strategy is the same as in [41], based on the notion and
properties of a relation progressing to another relation; however, several major details of the proof are
different due to the presence of recursion in the syntax of processes.

Corollary 1. Full bisimilarity is a congruence.

When discussing the behavior of a system, one often wants to abstract from implementation details
and ignore internal actions. In particular, processes are deemed to be equivalent if their visible behaviors
coincide. This is the goal of weak bisimilarity. Write P τ

=⇒ Q whenever P τ−−→ · · · τ−−→ Q, and P α
=⇒ Q

whenever P τ
=⇒ α−−→ τ

=⇒ Q for α 6= τ . Notice that, in particular, P τ
=⇒ P for every process P .

Definition 12.

• A symmetric binary relation R on processes is a weak bisimulation if, for any processes P , Q such
that P R Q, if P α

=⇒ P ′ for some process P ′ and action α such that no bound name in α is free in
P or Q, there exists a process Q′ such that Q α

=⇒ Q′ with P ′ R Q′.

• Weak bisimilarity ≈ is the largest weak bisimulation.

• Two processes P and Q are said to be weakly bisimilar if P ≈ Q.

Moreover, a full weak bisimulation is a weak bisimulation closed under service name substitutions, and we
call full weak bisimilarity ≈f the largest full weak bisimulation.

28



Again, (full) weak bisimilarity can be obtained as the union of all (full) weak bisimulations or as a
fixed-point of a suitable monotonic operator. The main property of weak bisimilarity is, as before, the
following.

Proposition 2. Weak bisimilarity is a non-input congruence.

The proof is detailed in Appendix D. Note that the typical π-calculus examples showing that (weak)
bisimulation is not a congruence can be adapted in a straightforward way to SSCC.

Corollary 2. Full weak bisimilarity is a congruence.

4.3 Useful axioms
Even if presenting a complete axiomatization for a calculus as complex as SSCC is out of the scope of
this paper, it is interesting to present some axioms (equational laws correct with respect to full strong
bisimilarity) that capture key facts about the behavior of processes. Some of them will also prove to be
useful in the next session.

On streams and sessions. In all cases but Axiom 8 (whose proof is described below), the correctness of
each axiom below is straightforwardly proved by considering a full bisimulation including all the instances
of the axiom together with the identity. The notation {feed v.Q→ Q} in the Unused Stream law (Axiom 7)
denotes a transformation on processes, defined by induction on the syntax, that is an homomorphism for
all process constructors, except for feed, where it transforms feed v.Q into Q, for all v and Q.

Proposition 3.

Session Garbage Collection

(ν r)DJr � 0, r � 0K∼f DJ0,0K if D does not bind r (1)

Stream Garbage Collection

stream0 as f inP ∼f P if f does not occur in P (2)

Session Independence
r ./ Q | s ./ P∼f r ./ (s ./ Q |P) if s 6= r (3)

The same holds if the sessions have opposite polarities:

r ./ Q | s ./P∼f r ./ (s ./Q |P) if s 6= r

Stream Independence

streamP as f in streamP ′ as g inQ∼f

streamP ′ as g in streamP as f inQ if f 6= g (4)

Streams are Orthogonal to Sessions

r ./ (feed v |P )∼f feed v | r ./ P (5)

Stream Locality

streamP as f in (Q |Q′)∼f(streamP as f inQ) |Q′ if f /∈ fn(Q′) (6)

Unused Stream
streamP as f in 0≈f P{feed v.Q→ Q} (7)
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Figure 16: SD for communication pattern: object-centred and session-centred view

Parallel Composition Versus Streams

streamP as f inQ∼f P |Q if f /∈ fn(Q) and P does not contain feed (8)

The Session Independence law shows that different sessions are independent. Interestingly this property
is strongly connected to the operators available in SSCC, failing in similar calculi such as SCC [8]. Note
that Axiom 7 is correct only with respect to full weak bisimilarity. It becomes correct with respect to full
strong bisimilarity if and only if P does not contain any feed which is not inside another stream. We still
have to prove Axiom 8.

Soundness of Equation 8. Since Q ≡ 0|Q we can apply Axiom 6 to obtain

streamP as f inQ∼f(streamP as f in0)|Q

The thesis then follows from Axiom 7.

5 Program transformations
This section presents an application of the results discussed earlier by means of a more complex example.
The first subsection discusses different approaches to implement services as SSCC processes; then a se-
quence of transformation rules is presented mapping processes obtained by one approach into processes
obtained by the other. The results in Section 4, together with general results to break sequential sessions
into smaller sessions developed in Section 5.3, are used to establish soundness of the transformation.

5.1 Program design
We describe how the same behavior, initially specified in an object-oriented style, can be modeled first in
a more session-centered style, and then in a request-response style suitable for implementation. Diagrams
for the initial sequence diagram and those describing the result of each transformation are in Figures 16
to 18.

The object-oriented view. The SD on the left of Figure 16 describes a very common pattern appearing
in scenarios involving (at least) three partners. The description of the communication pattern is as follows.

Object B receives from object A the value w and forwards it to object C. After receiving the
value, object C answers with a value w’. Object B replies with v and, finally, object C replies
with v’. Now object B forwards it to object A.

Notice that by “Object B receives from object A the value w” we mean that object A invokes a method
in object B passing the value w.
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Figure 17: SD for communication pattern: using a subsession

The session-centered view. Assume that the components of this abstract communication scenario are
clients and servers of a service-oriented architecture, and further assume that communication happens via
sessions. We refine the diagram by incorporating information about the running sessions, in the diagram
on the right of Figure 16, where the slanted arrows mean message passing between sessions4. An instance
of service B (let us call participant such an instance) has a session r running with participant A and another
session s running with participant C. Since sessions involve two partners, a session r between participants
A and B has two sides—called endpoints, rA at participant A and rB at participant B. The communication
pattern is now like this:

Participant B receives in session rB the value w, passes it to its part of the session with partic-
ipant C (sB), and then forwards the value through this session to C. Inside the same session,
C sends w’ to B, B sends v to C and C sends v’ to B. Participant B now forwards the value v’
back to A, passing it from session s to session r.

In addition to the normal constructs in the calculus, to model object-oriented systems (that do not follow
the laws of session communication), it is useful to have two constructs enabling arbitrary message passing.
These can be obtained by generalizing auxiliary services to polyadic communications:

b ⇑ 〈v1, ..., vn〉.P , stream b⇐ v1...vn.feed unit as f in f(v).P

b ⇓ (x1, ..., xn)P , stream b⇒ (z1)...(zn).feed z1...feed zn as f

in f(x1)...f(xn).P

where name v and stream f are not used in P .
The diagram on the right of Figure 16 is directly implemented in SSCC as

SC , (ν b, c) ( A | B | C ),

where
A , b⇐ w.(y)P, B , (ν b1, b2) ( B1 | B2 ), and C , c⇒ (x)w′.(y)v′.S,

with
B1 , b⇒ (x)b1 ⇑ x.b2 ⇓ (y)y.Q, and B2 , c⇐ b1 ⇓ (x)x.(z)v.(y)b2 ⇑ y.R.

The process above, although not deterministic (e.g., its first step may either be the invocation of service b
or of service c), is confluent, and it is easy to check that its behavior reflects the one described on the right
of Figure 16.

4Since to the best of our knowledge no extension of Sequence Diagrams with session information exists, we introduce in SD a
notation for it.
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Figure 18: SD for communication pattern: using subsessions and continuations

A first optimization. When participant B receives the value sent by A, it may immediately send it to
participant C, by calling it (and thus opening a subsession). One simply has to perform a “local” transfor-
mation on B. The resulting diagram is on the left of Figure 17, and it is implemented in SSCC as process
SC′, where we denote by E the new instance of B.

SC′ , (ν b, c) ( A | E | C )

E , b⇒ (x)(ν b1)(c⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

Still, participant E (which replaces B from the previous version) needs to pass the value sent by C in their
session, to its session with A, and a communication based on an auxiliary service is used.

A second optimization. The transfer of a value from a subsession to its parent session is, in the previous
implementation, not straightforward, since it requires the use of local services. In fact, it is more convenient
to use a trans-session construct like stream. Now participant F (initially B), passes the value received from
C, from the subsession to the main session, using another communication construct—a stream—instead of
using a local service. This is implemented in process SC′′.

SC′′ , (ν b, c) ( A | F | C )

where the new code for B (now F) is as follows.

F , b⇒ (x)(stream c⇐ x.(z)v.(y)feed y.R as f in f(y).y.Q)

The corresponding diagram is on the right of Figure 17. The two diagrams in Figure 17 are quite
similar: the one on the left uses message passing (denoted by the straight arrow from the inner to the outer
session), whereas the one on the right uses stream communication (described by the curved arrow).

Implementing the diagram. The previous diagram, and the corresponding SSCC process, model the
pattern at hand in a service-oriented, session-based style. However, current Web Service technologies
do not provide support for a complex mechanism such as sessions, considering instead request (one-way
communication) and request-response (two one-way communications in opposite directions) only—see,
e.g., the definition of WSDL [18]. It is easy to see that these are particular cases of sessions, where
protocols are composed respectively by one output or by one output followed by one input. The new
communication pattern is described in Figure 18, and reads as follows.

Participant B receives in session rB the value w, and then forwards it through its session sB

with participant C to C itself. Inside the same session C sends to B value w′ together with the
name of a freshly generated service C′ to continue the conversation on. Now B invokes C′

creating a new subsession s′ of session s and, inside s′, B sends v and receives as answer v′.
Participant B now forwards the value v′ back to A, passing it from session s′ to session r.
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This pattern can be implemented as:

SC′′′ , (ν b, c) ( A | G | D )

where the new codes for B (now G) and C (now D) are below. To write these new codes we need to
consider polyadic inputs and outputs, denoted respectively by (x1, . . . , xn) and 〈v1, . . . , vn〉. They can be
easily accommodated in the theory.

G , b⇒ (x)(stream c⇐ x.(z, c′)c′⇐ v.(y)feed y.R as f in f(y).y.Q)

D , c⇒ (x)(ν c′)〈w′, c′〉.c′⇒ (y)v′.S

Naturally, one asks whether the transformations of SC into SC′, SC′′, and, finally, SC′′′ are correct,
not changing the observable behavior of processes. Next we show how to give a positive answer to this
question.

5.2 Soundness of the transformations
We now prove that the transformations presented are actually correct with respect to full weak bisimilarity.
Interestingly, they are also transparent for process A, i.e., A needs not to be changed when the transforma-
tion is applied. To prove this we show that the three equations below hold.

(ν c)(B |C) ≈f (ν c)(E |C) (9)
(ν c)(E |C) ≈f (ν c)(F |C) (10)
(ν c)(F |C) ≈f (ν c)(G |D) (11)

The correctness of the whole transformations, i.e., SC≈f SC
′≈f SC

′′≈f SC
′′′ follows by closing under

contexts the equations above.
Note that the transformation of auxiliary communications (passing value w from rB to sB and value v

from sB to rB) into normal communications are not correct with respect to full strong bisimilarity. In fact,
auxiliary communications require a few more steps, and leave behind them empty sessions and streams,
which have to be garbage collected. The correctness of garbage collection is based on Axioms 1 and 2 (cfr.
Section 4.3).

Soundness of Equation 9. The proof can be easily obtained by exhibiting a bisimulation including the two
processes. For simplicity we will not detail it, but just highlight a few important points. For easier reading
we recall B, E and C below.

B , (ν b1, b2) ( b⇒ (x)b1 ⇑ x.b2 ⇓ (y)y.Q | c⇐ b1 ⇓ (x)x.(z)v.(y)b2 ⇑ y.R )

E , b⇒ (x)(ν b1)(c⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

C , c⇒ (x)w′.(y)v′.S

The two processes can mimic each other even if they are nondeterministic, since the nondeterminism
comes from τ steps, whose order is not important, given that processes are confluent. We thus just consider
a possible order of execution of τ steps. Both the processes can execute the following sequence of actions:
a service invocation at b giving rise to session r, an input on x taking value w, a service invocation at c
giving rise to session s. Then B can execute the auxiliary communication along b1. Then both B and C can
execute their protocol with C. By executing the two missing auxiliary communications (ν c)(B |C) and
(ν c)(E |C) reduce respectively to:

(ν s)(r � Q[w/x][v
′
/y] | s� R[w/x][w

′
/z][v

′
/y] | s� S[w/x][v/y])

(ν s)(r � (s� R[w/x][w
′
/z][v

′
/y]) | Q[w/x][v

′
/y] | s� S[w/x][v/y])

where we used structural congruence (which is included in full bisimilarity, according to Theorem 6 in Ap-
pendix D), garbage collection Axioms 1 and 2, and closure under contexts to remove the garbage produced
by auxiliary communications.

The processes above can be proved equivalent using structural congruence, session independence (Ax-
iom 3) and closure under contexts.
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Soundness of Equation 10. To prove the correctness of Equation 10 it is enough to prove E≈f F , then the
thesis follows from closure under contexts. For easier reading we recall E and F below.

E , b⇒ (x)(ν b1)(c⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

F , b⇒ (x)(stream c⇐ x.(z)v.(y)feed y.R as f in f(y).y.Q)

Actually, in general we can prove

(ν a)(C′Ja ⇑ v.P K | C′′Ja ⇓ (y).QK)≈f stream C′Jfeed v.P K as f in C′′Jf(y).QK (12)

provided that neither a nor f occur elsewhere and P and C′ contain no feeds. The thesis will follow by
instantiation and closure under contexts.

The proof shows that the three pairs below, together with a few other pairs differing from these because
of τ transitions (corresponding to intermediate steps), form a full bisimulation.

((ν a)(C′Ja ⇑ v.P K | C′′Ja ⇓ (y).QK), stream C′Jfeed v.P K as f in C′′Jf(y).QK)
(C′JP K | C′′Jstream0 as f ′ = 〈v〉 in f ′(y).QK,

stream C′JP K as f = 〈v〉 in C′′Jf(y).QK)
(C′JP K | C′′JQK, stream C′JP K as f in C′′JQK)

In each process considered in the relation, a, f , and f ′ do not occur elsewhere, and P and C′ do not
contain feeds. The only difficult part is when on the right the feed and the read from stream are executed
and, correspondingly, the two auxiliary communications on the left. Actually, both transitions on the right
amount to τ actions.

stream C′Jfeed v.P K as f in C′′Jf(y).QK τ−−→ stream C′JP K as f = 〈v〉 in C′′Jf(y).QK

stream C′JP K as f = 〈v〉 in C′′Jf(y).QK τ−−→ stream C′JP K as f in C′′JQ[v/y]K

The first transition is matched as follows.

(ν a)C′Ja ⇑ v.P K | C′′Ja ⇓ (y).QK =

(ν a)C′Jstream a⇐ v.feed unit as f ′′ in f ′′(x).P K |

C′′Jstream a⇒ (z)feed z as f ′ in f ′(y).QK τ→
∗

(ν a, r)C′Jstream r � 0 as f ′′ inP K | C′′Jstream r � 0 as f ′ = 〈v〉 in f ′(y).QK∼f

C′JP K | C′′Jstream0 as f ′ = 〈v〉 in f ′(y).QK

In the first step we used the definitions of auxiliary communications. The sequence of τ actions includes
service invocation at a creating session r, communication of v along the session, the two feeds and the read
from stream f ′′. In the last step we used Axioms 1 and 2 for garbage collection. For the challenge from
the left, note that only τ actions are involved, thus they can be matched by the right term staying idle, and
the order in which they are executed is not relevant.

The second transition from the right is matched by:

C′JP K | C′′Jstream0 as f ′ = 〈v〉 in f ′(y).QK τ−−→
C′JP K | C′′Jstream0 as f ′ inQ[v/y]K∼f C′JP K | C′′JQ[v/y]K

where we used Axiom 2 again. This concludes the proof.

Equation 11 only holds when processes are sequential. Therefore, we adapt the type system for that
purpose and present then the envisaged result.
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P : U

v.P : !.U

P : U

(x)P : ?.U

P : U

a⇒ P : end
P : U

a⇐ P : end
(T-SEND, T-RECEIVE, T-DEF, T-CALL)

P : U

r � P : end
P : U

r � P : end
P : U

feed v.P : U

P : U

f(x).P : U
(T-SESS-S, T-SESS-C, T-FEED, T-READ)

P : U Q : end
P |Q : U

P : end Q : U

P |Q : U
(T-PAR-L, T-PAR-R)

P : U Q : end
streamP as f = ~v inQ : U

P : end Q : U

streamP as f = ~v inQ : U
(T-STREAM-L, T-STREAM-R)

P : end
recX.P : end

P : U

(ν n)P : U
X : end 0 : end (T-REC, T-RES, T-VAR, T-NIL)

Figure 19: Type system for session sequentiality

5.3 Breaking sequential sessions
The equations proved in the previous section hold for arbitrary processes, and allow us to prove the cor-
rectness of the first two optimizations. However to prove the correctness of the implementation step they
are not enough. In fact, it is not easy to break a session allowing the conversation to continue in a freshly
generated new session, since, in general, communication patterns inside sessions can be quite complex,
e.g., since sessions may include many ongoing concurrent communications. However, a small class of
sequential sessions captures the most interesting within-session behaviors. Since such a class can be iden-
tified by a type system, we start by presenting the type system for session sequentiality (similar to the type
system for single threadness for mobile safe ambients in [34]), and then we present properties of well-typed
processes that allow us to prove the correctness of the last transformation.

The new type system is a simplification of the one previously presented, which guarantees also protocol
compatibility. Moreover, we consider here just finite types, thus session protocols should be finite. Notice
that this constraint does not forbid infinite behaviors, but just infinite sessions. In particular, if a process is
typable according to the general type system and all the involved types are non recursive, then the process
is typable according to this type system.

We consider typed processes of the form P : U where U is the protocol type. We consider as types ?.U ,
!.U , and end, denoting respectively a protocol that performs an input and then continues as prescribed byU ,
a protocol that performs an output and then continues as prescribed by U , and the terminated protocol. It
is clear that in this setting a request is a session with protocol !.end (and complementary protocol ?.end),
while a request-response has protocol !.?.end (and complementary protocol ?.!.end).

Definition 13 (Type system for session sequentiality). The type system is inductively defined by the rules
in Figure 19.

Under the typability assumption, SSCC sessions are sequential in a very strong sense: we can stati-
cally define a correspondence between inputs and outputs such that each input is always matched by the
corresponding output. We show how to break sessions, i.e., how to make the conversation continue on a
freshly created new session. The general law is presented under Theorem 3. The two pieces of the broken
session have protocols that are simpler than the original one, thus by repeatedly applying the transforma-
tion we can reduce any protocol to a composition of request and request-response patterns. We formalize
the procedure described so far.

Definition 14. Let P be a process. An input/output prefix inside P is at top-level in P if it is neither inside
a service definition/invocation nor inside a session. Given a process P we can assign sequential indices
to top-level input/output prefixes in P according to the position of their occurrence in the term, starting
from 1. Thus the i-th top-level prefix in P is the top-level prefix in P that occurs in i-th position.
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For instance, let P be a.(x).stream (y).feed y as f in f(y).y⇐ a.(z).feed z. Then P annotated with
indices on its top-level prefixes is:

a : 1.(x) : 2.stream (y) : 3.feed y as f in f(y).y⇐ a.(z).feed z

Definition 15. Given a process P with a subterm Q, we say that Q is enabled in P if P = CJQK for some
active context CJ•K. The same definition holds also for prefixes.

Intuitively a subterm is enabled when it can execute.

Lemma 3. Let P be a process typable with the type system for session sequentiality. If P has type end,
then it has no top-level enabled prefixes, otherwise it has exactly one top-level enabled prefix, and this has
index 1.

Proof. By induction on the typing proof of P . The thesis follows trivially for rules T-SEND, T-RECEIVE, T-
DEF, T-CALL, T-SESS-S, T-SESS-C, T-FEED, T-READ, and T-NIL. For rule T-RES, it follows by inductive
hypothesis. For rules T-PAR-L, T-PAR-R, T-STREAM-L, and T-STREAM-R, it follows from the observation
that one of the two sides has no enabled prefix, thus the inductive hypothesis can be applied on the other
side.

Definition 16. Given a transition P α−−→ Q and a prefix in P we say that the prefix is consumed if, in the
derivation of the transition, rule L-SEND or L-RECEIVE is applied to the prefix.

Notice that the consumed prefix does not occur in Q.

Lemma 4. Let P0 = (ν a)DJa⇒ P, a⇐ QK be a typed process such that a does not occur in DJ•, •K.
Suppose P0

α0−−→ . . .
αn−1−−−−→ Pn. Then either:

• for all i ∈ {1, . . . , n} we have Pi = (ν a)D′iJa⇒ P, a⇐ QK for some D′iJ•, •K or

• there exists j ∈ {1, . . . , n} such that for each i < j we have Pi = (ν a)D′iJa⇒ P, a⇐ QK for some
D′iJ•, •K, and for each k ≥ j we have Pk = (ν r)D′kJr�P ′k, r�Q′kK for someD′kJ•, •K, processes P ′k
and Q′k and session name r. Furthermore, in a transition Pk

αk−−→ Pk+1 the m-th prefix (according
to Definition 14) in P ′k is consumed if and only if the m-th prefix in Q′k is consumed, and the two are
synchronized.

Proof. The proof is by induction on n. The base case (n = 0) is trivial. Let us consider the inductive case.
When Pi = (ν a)D′iJa⇒ P, a⇐ QK the only possible transitions (since a does not occur in D′iJ•, •K) are
transitions involving only the context, which leave the process in the same form, or the interaction between
the service invocation on a and the service definition of a in the holes. If all the transitions are of the first
category then we are in the first case of the lemma. Otherwise, let j − 1 be the first transition of the second
category. This leads to a process of the form Pj = (ν r)D′jJr�P ′j , r�Q′jK. Let us consider now processes
of this form. In order to prove the condition on prefixes we show that the following property holds: at
each step either (i) all the prefixes preserve their indices, or (ii) prefixes with index 1 are consumed and the
indices of all other prefixes decrease by 1. For transitions not involving prefixes, the thesis follows trivially.
Suppose now that, e.g., in P ′k an output prefix is consumed (the case where the prefix is an input prefix or

the consumed prefix is in Q′k is symmetric). Thus P ′k
↑v−−→ P ′k+1 and r � P ′k

r�↑v−−−−→ r � P ′k+1. Since r is
private, this label should interact with a label of the form r� ↓ v. Since sessions are only runtime syntax
(cfr. Lemma 5 in Appendix A) such a label can be generated only by r �Q′k, and thanks to Lemma 3 this
must be the prefix with index 1. Thus, in both P ′k+1 and Q′k+1 prefix indices are equal to the indices in P ′k
and Q′k minus 1. This proves the thesis.

We now have all the tools required to prove the correctness of the session breaking technique.

Theorem 3. Let (ν a)DJa⇐ CJ(x).P K, a⇒ C′Jv.QKK be a typed process such that a does not occur in
DJ•, •K. Suppose that there exists i such that (x).P and v.Q are the i-th top-level prefixes in CJ(x).P K and
in C′Jv.QK, respectively. Let y /∈ fn(P ), b /∈ fn(Q). Then:

(ν a)DJa⇐ CJ(x).P K, a⇒ C′Jv.QKK≈f(ν a)DJa⇐ CJ(x, y).y⇐ P K, a⇒ C′J(ν b)〈v, b〉.b⇒ QKK
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Proof. We show that the following relation is a full weak bisimulation,

{((ν a)DJa⇐ CJ(x).P K, a⇒ C′Jv.QKK, (ν a)DJa⇐ CJ(x, y).y⇐ P K, a⇒ C′J(ν b)〈v, b〉.b⇒ QKK)
((ν r)DJr � CJ(x).P K, r � C′Jv.QKK, (ν r)DJr � CJ(x, y).y⇐ P K, r � C′J(ν b)〈v, b〉.b⇒ QKK)

((ν r)DJr � CJP K, r � C′JQKK, (ν r, b)DJr � CJb⇐ P K, r � C′Jb⇒ QKK)
((ν r)DJr � CJP K, r � C′JQKK, (ν r, r′)DJr � CJr′ � P K, r � C′Jr′ �QKK)}

where all the names and processes are universally quantified, y /∈ fn(P ), b /∈ fn(Q), and (x). and v. have
the same index.

Processes in the first pair can move only to processes of the same shape or to processes in the second
pair because of Lemma 4. Similarly, processes in the second pair can move to processes of the same form
or to processes in the third pair since prefixes (x). and v. have the same index, and thus are consumed
together, again thanks to Lemma 4. In the third pair the only transition that can change the structure of
the processes is the invocation of service b on the right, but since this is a τ step, the left part can answer
by staying idle. Processes in the last pair only evolve to processes of the same shape. This concludes the
proof.

We are now in a position to prove the soundness of the last transformation.

Soundness of Equation 11. We have to prove that (ν c)(F |C) ≈f (ν c)(G |D). For easier reading we recall
F, C, G and D below.

F , b⇒ (x)(stream c⇐ x.(z)v.(y)feed y.R as f in f(y).y.Q)

C , c⇒ (x)w′.(y)v′.S

G , b⇒ (x)(stream c⇐ x.(z, c′)c′⇐ v.(y)feed y.R as f in f(y).y.Q)

D , c⇒ (x)(ν c′)〈w′, c′〉.c′⇒ (y)v′.S

It is easy to verify that (ν c)(F |C) can be typed according to the type system for session sequentiality. By
considering:

DJ•1, •2K = b⇒ (x)(stream •1 as f in f(y).y.Q)|•2
CJ•K = x.• P = v.(y)feed y.R
C′J•K = (x)• Q = (y)v′.S

we can apply Theorem 3 to get the thesis, since prefixes (z) (in process F) and w′ (in process C) have both
index 2.

Notice that the technique above can be extended to break protocols of services with more than one
definition/invocation: simply break all of them at the same point.

Let us consider the following example. Let

P , a⇐ v.(x)stream b⇐ x.(y).feed y as f in f(z).z.(w)

together with servers for a and b

A , a⇒ (x1).v1.(x2).v2 B , b⇒ (x3).v3

It is easy to check that P : !.?.!.?.end, A : ?.!.?.!.end, and B : ?.!.end.
While B can be easily programmed as a solicit-response (the complementary operation to request-

response), P and A require a transformation. Notice that input (x). in P and output v1. in A have both
index 2. We can apply the transformation, thus obtaining processes Q and C equivalent to P and A,
respectively, while B is unchanged.

Q , a⇐ v.(x, s)s⇐ stream b⇐ x.(y).feed y as f in f(z).z.(w)

C , a⇒ (x1).(ν c)〈v1, c〉.c⇒ (x2).v2

All the services in the new system have type !.?.end or ?.!.end, thus they can be implemented as request-
responses or solicit-responses. The correctness of the transformation, when done on a closed system, is
proved by applying Theorem 3.

37



6 Concluding remarks
SSCC is a typed language aiming at flexibly describing services, conversations, and orchestration, with
a restricted set of constructors. The expressiveness of the language is witnessed by the simple implemen-
tation of all workflow patterns in [43] (except for the ones that require process termination) and by the
examples in Sections 2.1 and 3.2. We have shown instead in Section 5 how to exploit formal techniques to
define correct program transformations relating different styles of programming used in the field of service-
oriented systems, namely object-oriented, session-based and request/request-response based. This allows
to exploit the different techniques available in each field, and still get a system implemented using the
desired technology. In addition to that, we have illustrated the expressiveness of SSCC also in a field like
object-oriented programming, for which it was not conceived. We have further demonstrated the benefit of
working with sequential sessions, where more powerful transformations are available.

As future directions of work, we plan to further study the behavioral theory of SSCC, and to consider
other analysis techniques. For the former, we want to investigate the relationships between contextual
equivalence and bisimilarity, to look for up-to techniques for bisimilarity, and to try to extend the axioms
in Section 4.3 to a complete axiomatization. Concerning the latter, we are interested in more refined
techniques for proving service availability (e.g., linearity of service invocation and definition) and in proofs
of deadlock freedom for large classes of protocols.

Also, we intend to investigate the possibility of extending the session breaking transformation to larger
classes of systems. We are aware of the fact that parallel communications make the agreement between
the client and the server on where to change session more difficult. A promising approach to avoid this
problem is to perform a preliminary transformation turning arbitrary sessions into sequential ones.

Another thread for future development concerns the definition of a compensation mechanism to recover
from failures, and the study of its behavioral theory.
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A Subject reduction
Lemma 5. For each session name r and each process P , in P there are at most two sessions with name
r. If there are exactly two such sessions, then they are one client session r � P ′ and one server session
r � P ′′, they are both in the scope of a binder for r and they are not nested. The three occurrences of r
(client, server, and binder) are the only occurrences of r in P .

Proof. By induction on the length of the computation creating P . The thesis is true for computations of
length 0 (sessions do not appear in the static syntax). Sessions are created only by service definitions and
service invocations. When a session is created its name is bound, thus different from other session names.
Because of that, different service invocations/definitions cannot create sessions with the same name. We
have the creation of two sessions with the same name r only when a service invocation on r interacts with
the corresponding service definition. In this case the two created sessions are a client session and a server
session, they are not nested, and they are both in the scope of a restriction on r. Since r is bound, no other
occurrences of r are created in the rest of the computation.

Lemma 6 (Substitution lemma). If Γ, x : T ′ ` P : (U, T ) and Γ ` v : T ′ then Γ ` P [v/x] : (U, T ).

Proof. By induction on the typing proof. All the cases are simple.

Lemma 7. If Γ ` P : (end, T ) then P has no transitions of the form P
µ−−→ P ′ with µ ∈ {↑v, ↓v, (v) ↑v}.

Proof. The only way to obtain such transitions is to have processes of the form CJv.P K or CJ(x)P K where
CJ−K is composed only by streams, parallel compositions, and restrictions. Let us consider four cases
according to the top-level operator in CJK.

In the base case we have to use rule T-SEND or T-RECEIVE. These rules do not allow (end, T ) as
resulting type.

In the case of stream we have to use rule T-STREAM-R or T-STREAM-L. We consider just the first case,
the second being symmetric. The stream has type (end, T ) only if the second argument has the same type.
Since also the first argument has type (end, T ′) we know by induction that neither of the arguments can do
the communication transitions, thus P cannot do them too.

In the case of parallel composition we have to use rule T-PAR-R or T-PAR-L. We consider the first case,
the second one being symmetric. Process P has type (end, T ) only if the second argument has the same
type. Since also the first argument has type (end, T ) we know by induction that neither of the arguments
can do the communication transitions, thus P cannot do them too.

In the case of restriction we have to use rule T-RES. Process P has type (end, T ) only if the restricted
process has the same type. We know by induction that the argument cannot do the communication transi-
tions, thus P cannot do them too.

Lemma 8 (Weakening). If Γ ` P : (U, T ) and n 6∈ fn(P ) then Γ, n : T ′ ` P : (U, T ), for all T ′.

Proof. Simple, by induction on the derivation of the typing judgment.

Lemma 9 (Strengthening). If Γ, n : T ′ ` P : (U, T ) and n /∈ fn(P ) then Γ ` P : (U, T ).

Proof. Simple, by induction on the derivation of the typing judgment.

Lemma 10 (Subject congruence). If Γ ` P : (U, T ) and P ≡ Q then Γ ` Q : (U, T ).

Proof. It is enough to show that structural congruent terms can be given the same type using the same
assumptions. It is enough to show this for the LHS and the RHS for each structural congruence rule,
then the thesis follows by induction (the congruence axioms are simple). All the cases but the one for
recursion are easy. We show just this case. Suppose that Γ ` recX.P : (U, T ). Then, by hypothesis
Γ, X : (U, T ) ` P : (U, T ). By structural induction on P we can prove that if Γ, X : (U, T ) ` P : (U, T )
then Γ ` P [recX.P/X] : (U, T ). This holds for the case of P = X and is preserved by all the contexts
(notice in fact that the assumptions about different occurrences of the same variable are compatible). The
proof is similar in the opposite direction.
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Let Γ[[U
′]/r] denote the substitution on Γ of [U ′] for Γ(r).

Theorem 4. Let P be a process such that Γ ` P : (U, T ). Then:

• if P
↑v−−→ P ′ then U =!T ′.U ′, Γ ` v : T ′ and Γ ` P ′ : (U ′, T );

• if P
(v)↑v−−−−→ P ′ then U =!T ′.U ′ and Γ, v : T ′ ` P ′ : (U ′, T );

• if P
↓v−−→ P ′ then U =?T ′.U ′ and Γ, v : T ′ ` P ′ : (U ′, T );

• if P
a⇐(r)−−−−→ P ′ then Γ ` a : [U ′] and Γ, r : [U ′] ` P ′ : (U, T );

• if P
a⇒(r)−−−−→ P ′ then Γ ` a : [U ′] and Γ, r : [U ′] ` P ′ : (U, T );

• if P
⇑v−−→ P ′ then Γ ` v : T and Γ ` P ′ : (U, T );

• if P
(v)⇑v−−−−→ P ′ then Γ, v : T ` P ′ : (U, T );

• if P
f⇓v−−−→ P ′ then Γ ` f : 〈T 〉 and Γ, v : T ` P ′ : (U, T );

• if P
r�↑v−−−−→ P ′ then Γ ` r : [!T ′.U ′], Γ ` v : T ′ and Γ[[U

′]/r] ` P ′ : (U, T );

• if P
(v)r�↑v−−−−−−→ P ′ then Γ ` r : [!T ′.U ′] and Γ[[U

′]/r], v : T ′ ` P ′ : (U, T );

• if P
r�↓v−−−−→ P ′ then Γ ` r : [?T ′.U ′] and Γ[[U

′]/r], v : T ′ ` P ′ : (U, T );

• if P
r�↑v−−−−→ P ′ then Γ ` r : [?T ′.U ′], Γ ` v : T ′ and Γ[[U

′]/r] ` P ′ : (U, T );

• if P
(v)r�↑v−−−−−−→ P ′ then Γ ` r : [?T ′.U ′] and Γ[[U

′]/r], v : T ′ ` P ′ : (U, T );

• if P
r�↓v−−−−→ P ′ then Γ ` r : [!T ′.U ′] and Γ[[U

′]/r], v : T ′ ` P ′ : (U, T );

• if P rτ−−→ P ′ then Γ ` r : [!T ′.U ′] or Γ ` r : [?T ′.U ′] and Γ[[U
′]/r] ` P ′ : (U, T );

• if P τ−−→ P ′ then Γ ` P ′ : (U, T ).

Proof. The proof is by induction on the derivation of the transition. We perform a case analysis on the last
rule used in the derivation.

L-SEND: P has the form v.P ′. This can be typed only using rule T-SEND and this requires U =!T ′.U ′,
Γ ` P ′ : (U ′, T ) and Γ ` v : T ′. This is exactly as desired.

L-RECEIVE: P has the form (x)P ′′ and P ′ = P ′′[v/x]. P can be typed only using rule T-RECEIVE and
this requires U =?T ′.U ′ and Γ, x : T ′ ` P ′ : (U ′, T ). Thanks to Lemma 6 we also have Γ, v : T ′ `
P ′[v/x] : (U ′, T ).

L-CALL: P has the form a⇐ P ′′ and P ′ = r � P ′′. P can be typed only using rule T-CALL and this
requires U = end, Γ ` P ′′ : (U ′, T ) and Γ ` a : [U ′]. Using rule T-SESS-C (and thanks to
Lemma 8) one can derive Γ, r : [U ′] ` r � P ′′ : (end, T ).

L-DEF: P has the form a⇒ P ′′ and P ′ = r�P ′′. P can be typed only using rule T-DEF and this requires
U = end, Γ ` P ′′ : (U ′, T ) and Γ ` a : [U ′]. Using rule T-SESS-S (and thanks to Lemma 8) one
can derive Γ, r : [U ′] ` r � P ′′ : (end, T ).

L-FEED: P has the form feed v.P ′. This can be typed only using rule T-FEED and this requires Γ `
P ′ : (U, T ) and Γ ` v : T . This is exactly as required.
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L-READ: P has the form f(x).P ′′ and P ′ = P ′′[v/x]. P can be typed only using rule T-READ and this re-
quires Γ, x : T ′ ` P ′′ : (U, T ) and Γ ` f : 〈T ′〉. From Lemma 6 we have Γ, v : T ′ ` P ′′[v/x] : (U, T )
as required.

L-STREAM-PASS-P: P has the form streamP ′′ as f = ~v inQ with P ′′
µ−−→ P ′′′ and we have P ′ =

streamP ′′′ as f = ~v inQ. There are two cases according to the last rule used to type P . We consider
rule T-STREAM-R first and rule T-STREAM-L later. Thanks to Lemma 7, µ /∈ {↑ v, ↓ v, (v) ↑ v}.
Also, µ /∈ {⇑v, (v) ⇑v}. By hypothesis all the assumptions on f , ~v andQ are satisfied. By induction
hypothesis in all the cases but r ./↑ v, (v)r ./↑ v, r ./↓ v and rτ we have that Γ′ ` P ′′′ : (end, T )
for some extension Γ′ of Γ. Thanks to Lemma 8, Γ′ can be used to derive Γ′ ` P ′ : (U, T ) as
required. Notice also that the assumptions on Γ′ are satisfied by induction hypothesis since the label
is unchanged. For the other cases the problem is that the assumption about r is changed. However,
thanks to Lemma 5 there are two cases. If there is just one occurrence of r, thus the assumption is
never used outside P ′′′, Lemma 9 can be used to drop the old assumption and Lemma 8 to add the
new one, and the thesis follows. If there are three occurrences two should be in opposite session
constructs and the third in a restriction binding them. The only label of these that can cross the
restriction is rτ , thus no occurrence of r can be in Q, since otherwise we can not obtain this label.
Thus r is not used in Q and we can derive Γ′ ` Q : (U, T ) as required, using again lemmas 9 and 8.
Thus we can also derive Γ′ ` P ′ : (U, T ) and the thesis follows.

Let us consider the second case. Notice that µ /∈ {⇑ v, (v) ⇑ v}. Now both U and µ are preserved
from the premise, thus in most of the cases the thesis follows immediately from the induction premise
(when a new assumption is needed in Γ, such as in extrusions, Lemma 8 can be used, and the
compatibility of the new assumption is guaranteed by the side condition on bound names of the
typing rule). The only tricky cases concern labels r ./↑ v, (v)r ./↑ v, r ./↓ v and rτ , but the same
reasoning above applies. The thesis follows.

L-STREAM-PASS-Q: P has the form streamP ′′ as f = ~v inQ with Q
µ−−→ Q′ and we have P ′ =

streamP ′′ as f = ~v inQ′. By hypothesis all the assumptions on P , f and ~v are satisfied. Also,
Γ, f : 〈T ′〉 ` Q : (U, T ). By induction hypothesis Γ′, f : 〈T ′〉 ` Q′ : (U ′, T ) where Γ′ and U ′

are defined by the statement of the theorem. Notice that Γ′ verifies all the assumptions of rule
T-STREAM-L (resp. T-STREAM-R) since it is either an extension of Γ (and in this case Lemma 8 can
be used), or it changes the assumption about some session r, and in this case the same reasoning done
for rule L-STREAM-PASS-P can be used. Thus one can use rule T-STREAM-L (resp. T-STREAM-R)
to derive Γ′ ` P ′ : (U ′, T ) as required.

L-STREAM-FEED: P has the form streamP ′′ as f = ~w inQ with P ′′
⇑v−−→ P ′′′ and we have P ′ =

streamP ′′′ as f = v : : ~w inQ. There are two cases corresponding to rules T-STREAM-R and
T-STREAM-L. We consider the first one, the second being similar. By hypothesis Γ ` P ′′ : (end, T ′),
Γ, f : 〈T ′〉 ` Q : (U, T ) and w′ ∈ Set(~w) ⇒ Γ ` w′ : T ′. By induction hypothesis Γ ` v : T ′ and
Γ ` P ′′′ : (end, T ′). Thus using rule T-STREAM-R we can prove Γ ` P ′ : (U, T ) (notice, in particu-
lar, that the assumption about v : : ~w can be proved from the assumptions about v and ~w).

L-STREAM-CONS: P has the form streamP ′′ as f = ~w : : v inQ with Q
f⇓v−−−→ Q′ and we have

P ′ = streamP ′′ as f = ~w inQ′. There are two cases corresponding to rules T-STREAM-R
and T-STREAM-L. We consider the first one, the second being symmetric. By hypothesis Γ `
P ′′ : (end, T ′), Γ, f : 〈T ′〉 ` Q : (U, T ) and w′ ∈ Set(~w : : v)⇒ Γ ` w′ : T ′. By induction hypoth-
esis Γ, f : 〈T ′〉, v : T ′ ` Q′ : (U, T ). Since Γ, v : T ′ is an extension of Γ we can use it (thanks to
Lemma 8) in all the premises of rule T-STREAM-R and finally derive Γ, v : T ′ ` P ′ : (U, T ).

L-PAR: the reasoning is as for rule L-STREAM-PASS-P, but there is no stream here.

L-SESS-VAL: we consider just the cases for �, the other being simpler. P has the form r � P ′′. By

hypothesis U = end, Γ ` P ′′ : (U ′, T ) and Γ ` r : [U ′]. Let us consider the case P ′′
↑v−−→ P ′′′

before. This implies P ′ = r � P ′′′. By induction hypothesis U ′ =!T ′.U ′′, Γ ` v : T ′ and Γ `
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P ′′′ : (U ′′, T ). Using rule T-SESS-C we can prove Γ[[U ′′]/r] ` r � P ′′′ : (end, T ) as required since
this is the only place where the assumption about r is used inside the term thanks to Lemma 5,

thus it can be changed using lemmas 9 and 8. Let us now consider the case P ′′
↓v−−→ P ′′′. Again

P ′ = r�P ′′′. By induction hypothesisU ′ =?T ′.U ′′, Γ, v : T ′ ` P ′′′ : (U ′′, T ). Using rule T-SESS-C

we can prove Γ[[U ′′]/r], v : T ′ ` r�P ′′′ as required, since this is the only place where the assumption
about r is used inside the term thanks to Lemma 5, thus it can be changed using lemmas 9 and 8.

L-SESS-PASS: we consider just the cases for �, the others being simpler. P has the form r � P ′′ with
P ′′

µ−−→ P ′′′ and P ′ = r � P ′′′. By hypothesis U = end, Γ ` P ′′ : (U ′, T ) and Γ ` r : [U ′]. Notice
that µ 6=l v. Thus for all the cases but session communication labels we have Γ′ ` P ′′′ : (U ′, T ) for
some extension Γ′ of Γ. In the case of session communication labels instead the assumption about
r′ is changed from Γ to Γ′. Notice that thanks to Lemma 5 r 6= r′, thus in both the cases we can use
rule T-SESS-C to derive Γ′ ` r � P ′′′ : (end, T ) as required, since the label of the new transition is
equal to the label of the premise, thus the assumptions on Γ′ coincide.

L-SESS-COM-STREAM: P has the form streamP ′′ as f = ~w inQ with P ′′
r�↑v−−−−→ P ′′′, Q

r�↓v−−−−→ Q′

and P ′ = streamP ′′′ as f = ~w inQ′ (the other cases are similar). There are two cases corre-
sponding to rules T-STREAM-R and T-STREAM-L. We consider just the first one, the second being
similar. By hypothesis Γ ` P : (end, T ′) and Γ, f : 〈T ′〉 ` Q : (U, T ). By induction hypothesis on
the first transition Γ ` r : [!T ′′.U ′], Γ ` v : T ′′ and Γ[[U

′]/r] ` P ′′′ : (U, T ). From the second tran-
sition we have a redundant hypothesis on r and Γ[[U

′]/r], f : 〈T ′〉, v : T ′ ` Q′ : (U, T ). Notice that
Γ[[U

′]/r], f : 〈T ′〉, v : T ′ = Γ[[U
′]/r], f : 〈T ′〉 since Γ[[U

′]/r], f : 〈T ′〉 ` v : T ′. Thus we can apply
rule T-STREAM-R to derive Γ[[U

′]/r] ` P ′ : (U, T ) as required.

L-SERV-COM-STREAM: P has the form streamP ′′ as f = ~w inQ with P ′′
a⇒(r)−−−−→ P ′′′, Q

a⇐(r)−−−−→ Q′

and P ′ = (ν r)streamP ′′′ as f = ~w inQ′ (the symmetric case is similar). There are two cases
corresponding to rules T-STREAM-R and T-STREAM-L. We consider just the first one, the second
being similar. By hypothesis Γ ` P ′′ : (end, T ′) and Γ, f : 〈T ′〉 ` Q : (U, T ). By induction hypoth-
esis (on both the transitions) Γ ` a : [U ′] and Γ, r : [U ′] ` P ′′ : (end, T ′) and Γ, f : 〈T ′〉, r : [U ′] `
Q′ : (U, T ). Using rule T-STREAM-R we can derive the judgment Γ, r : [U ′] ` streamP ′′′ as f =
~w inQ′ : (U, T ). Then we can use rule T-RES to derive Γ ` P ′ : (U, T ) as desired.

L-SESS-COM-PAR: the reasoning is as for rule L-SESS-COM-STREAM, but there is no stream here.

L-SERV-COM-PAR: the reasoning is as for rule L-SERV-COM-STREAM, but there is no stream here.

L-RES: P has the form (ν n)P ′′ with P ′′
µ−−→ P ′′′ and P ′ = (ν n)P ′′′. By hypothesis Γ, n : T ′ `

P ′′ : (U, T ) for some T ′. By induction hypothesis Γ′, n : T ′ ` P ′′′ : (U ′, T ) where Γ′ and U ′

are as defined by the statement of the theorem. Thus we can apply rule T-RES to derive Γ′ `
(ν n)P ′′′ : (U ′, T ) since the label is unchanged thus Γ′ and U ′ are as before.

L-EXTR: P has the form (ν a)P ′′ with P ′′
µ−−→ P ′. By hypothesis Γ, a : T ′ ` P ′′ : (U, T ). Thanks to the

induction hypothesis Γ′, a : T ′ ` P ′ : (U ′, T ) where Γ′ and U ′ are as described in the statement of
the theorem. This is exactly as required, given the different requirements between each action and
the corresponding extruding action.

L-SESS-RES: P has the form (ν r)P ′′ with P ′′ rτ−−→ P ′′′ and P ′ = (ν r)P ′′′. By hypothesis Γ, r : [U ′] `
P ′′ : (U, T ) (the type of r should be a protocol since r is a session). By the induction hypothesis
Γ, r : [U ′′] ` P ′′′ : (U, T ). Then we can use rule T-RES to derive Γ ` P ′′′ : (U, T ) as required.

L-STRUCT: By Lemma 10.

Proof of Theorem 1, page 13 (Subject Reduction). The thesis follows from Theorem 4 and the characteri-
zation of reductions as transitions with labels τ given in Theorem 2.
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Proof of Theorem 2, page 13 (Type Safety). The proofs of all the cases are by contradiction. We suppose
that such a subterm exists and we show that it is not typable. We consider the two different cases:

Protocol: Let us consider the first case. Here v.P and u.Q have types of the form ([!T.U ], T ′′) and
([!T ′.U ′], T ′′′) respectively. One can prove by structural induction on the context that the protocol
part of the type is preserved (only the session construct can change it, but the side condition forbids
sessions around the hole). Thus the two session constructs require r : [!T.U ] and r : [?T ′. U ′] (sup-
posing that the first one is a server session, the symmetric otherwise). SinceDJ, K does not bind r the
assumptions are preserved, and at top level they should agree since the same Γ is used to type the two
sides of parallel composition or stream. This is not the case and we have the required contradiction.
The other cases are similar, with just end protocol for 0 and ([?T.U ], T ′′) for input.

Sequentiality: In all the cases the two terms inserted into the double context have non end protocol. The
property is preserved by the context (since there are no sessions around the hole). At top level we
have two non end protocols, but the rules for parallel composition and stream can not be applied
because of this. Since no other rules can type a parallel composition or a stream we have the desired
contradiction.

B Workflow patterns in SSCC
This section completes Section 3.1, by modeling in SSCC the remaining workflow patterns from [43].

WP2: Parallel Split
“A point in the workflow process where a single thread of control splits into multiple threads of control
which can be executed in parallel, thus allowing activities to be executed simultaneously or in any order.
Example: after registering an insurance claim, two parallel subprocesses are triggered: one for checking
the policy of the customer and one for assessing the actual damage.”

Parallel composition is built-in. The same in SCC and in Orc.

WP5: Simple Merge
“A point in the workflow process where two or more alternative branches come together without synchro-
nization. It is an assumption of this pattern that none of the alternative branches is ever executed in parallel.
Example: after the payment is received or the credit is granted, the car is delivered to the customer.”

merge : : Bool → ( ε → T) → . . .→ Bool → ( ε → T) → Unit
merge ∗⇒ ( b1 ) ( a1 ) . . . ( bn ) ( an )

( i f b1 then c a l l a1 | . . . | i f bn then c a l l an ) >1 > unit

This is more in line with van der Aalst specification than the corresponding model in Orc, since SSCC
is able to model the fact that only some of the activities are activated. Notice that, given the assumptions,
replacing >1 > with >> will not change the behavior.

WP6: Multi-Choice
“A point in the workflow process where, based on a decision or workflow control data, a number of branches
are chosen. Example: after executing the activity evaluate_damage, the activity contact_fire_department or
the activity contact_insurance_company is executed. At least one of these activities is executed. However,
it is also possible that both need to be executed.”

Notice that the code resulting from the application of this WP is not an activity, since it may produce
more than one result. The more natural implementation of this WP in SSCC is:
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mul t iCho ice ∗⇒ ( b1 ) ( a1 ) . . . ( bn ) ( an )
( i f b1 then c a l l a1 >

1 x > x | . . . |
i f bn then c a l l an >

1 x > x )

A similar implementation is possible in Orc and in SCC.
However, this service is not typable, since all the results are sent in parallel inside the same session. To

solve this problem we can sequentialize them by writing:

mul t iCho ice : : [? Bool . ? ( ε → T ) . . . . .? Bool . ? ( ε → T ) . ! T . . . . ! T . end ]
mul t iCho ice ∗⇒ ( b1 ) ( a1 ) . . . ( bn ) ( an )

stream
( i f b1 then c a l l a1 | . . . | i f bn then c a l l an )
as f in
f ( y1 ) . y1 . . . . f ( yn ) . yn

Note that the service may not produce the number of results specified by its type, since the stream may not
supply enough elements.

WP7: Synchronizing Merge
“A point in the workflow process where multiple paths converge into one single thread. If more than one
path is taken, synchronisation of the active threads needs to take place. If only one path is taken, the
alternative branches should reconverge without synchronization. It is an assumption of this pattern that a
branch that has already been activated, cannot be activated again while the merge is still waiting for other
branches to complete. Example: extending the example of WP6 (Multi-choice), after either or both of the
activities contact_fire_department and contact_insurance_company have been completed (depending on
whether they were executed at all), the activity submit report needs to be performed (exactly once).”

syncMerge : : ( ε → Bool ) → ( ε → Unit ) → . . .→
( ε → Bool ) → ( ε → Unit ) → Unit

syncMerge ∗⇒ ( b1 ) ( a1 ) . . . ( bn ) ( an )
c a l l sync ( i f S i g n a l _ b1_a1 , . . . , i f S i g n a l _ bn_an ) >n > unit

i f S i g n a l _ b i _a i : : ε → Unit
i f S i g n a l _ b i _a i ⇒ I f S i g n a l ( b i , c a l l a i >

1 x > x )

where

I f S i g n a l ( b ,P) = i f b then P else unit

Essentially, we reuse WP3 (Synchronization) on services ifSignal_bi_ai. Service ifSignal_bi_ai invokes ai

and gives back its result if bi is true, it immediately returns unit otherwise. When all the results from the
invoked services have been collected, a unit value is returned. It can be used to trigger the final activity.

Similar to Orc and SCC.

WP8: Multi-Merge
“A point in a workflow process where two or more branches reconverge without synchronization. If more
than one branch gets activated, possibly concurrently, the activity following the merge is started for every
activation of every incoming branch. Example: two activities audit_application and process_application
running in parallel, which should both be followed by an activity close_case.”

merge : : [? Bool . ? ( ε → T ) . . . . .? Bool . ? ( ε → T ) . ? ( ε → T1 ) . ! T1 . . . . . ! T1 . end ]
merge ∗⇒ ( b1 ) ( a1 ) . . . ( bn ) ( an ) ( c )

stream
( i f b1 then c a l l a1 | . . . | i f bn then c a l l an )
as f in

stream
f ( y1 ) . c a l l c ( y1 ) . . . . f ( yn ) . c a l l c ( yn )
as g in
g ( z1 ) . z1 . . . . . g ( zn ) . zn
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This is not an activity, since it provides multiple replies. Similar to the Orc implementation. In SCC one
can use the technique of WP1 (Sequence). Notice also that now the behavior of the synchronization is the
expected one (one instance is launched for each value).

WP11: Implicit Termination
“A given subprocess should be terminated when there is nothing else to be done. In other words, there
are no active activities in the workflow and no other activity can be made active (and at the same time the
workflow is not in deadlock).”

This pattern is not meaningful in process calculi. In fact, in calculi the standard behavior is that pro-
cesses naturally terminate when they have finished their activity, not when a final state is reached by one
of their components. This is the case for both SCC and SSCC, while this is not the case in workflow
managers.

WP12: Multiple Instances without Synchronization
“Within the context of a single case (i.e., workflow instance) multiple instances of an activity can be created,
i.e., there is a facility to spawn new threads of control. Each of these threads of control is independent of
other threads. Moreover, there is no need to synchronise these threads. Example: a customer ordering a
book from an electronic bookstore such as Amazon may order multiple books at the same time. Many
of the activities (e.g., billing, updating customer records) occur at the level of the order. However, within
the order, multiple instances need to be created to handle the activities related to one individual book (e.g.,
update stock levels, shipment). If the activities at the book level do not need to be synchronized, this pattern
can be used.”

Multiple instances of the same service can be executed concurrently without any particular problem.
An unbounded number of instances can be created by persistent services. The same in SCC.

WP13: Multiple Instances with a Priory Design Time Knowledge
“For one process instance an activity is enabled multiple times. The number of instances of a given activity
for a given process instance is known at design time. Once all instances are completed, some other activity
needs to be started. Example: the requisition of hazardous material requires three different authorizations.”

sync_n : : ( ε → T) → Unit
sync_n ∗⇒ ( a ) c a l l sync ( a , . . . , a ) >1 x > x

Since the number of instances (calls to) of service a is known to be n, it is enough to pass n arguments
to service sync (cfr. WP3: Synchronization).

A similar approach can be used in Orc. A possible implementation in SCC is:

sync_n ⇒ ( a ) sync { a . . . . . a . ( x ) return x } ⇐ a

where one instance of a is passed as invocation parameter, and the orher n−1 instances are passed inside
the session protocol.

WP14: Multiple Instances with a Priory Run-time Knowledge
“For one case, an activity is enabled multiple times. The number of instances of a given activity for a
given case varies and may depend on characteristics of the case or availability of resources, but is known at
some stage during run-time, before the instances of that activity have to be created. Once all instances are
completed some other activity needs to be started. Example: when booking a trip, the activity book_flight
is executed multiple times if the trip involves multiple flights. Once all bookings are made, the invoice is
to be sent to the client.”

We treat this case as a particular case of WP15. See below for the discussion.
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WP15: Multiple Instances without a Priory Run-time Knowledge
“For one case an activity is enabled multiple times. The number of instances of a given activity for a given
case is not known during design time, nor is it known at any stage during run-time, before the instances
of that activity have to be created. Once all instances are completed, some other activity needs to be
started. The difference with WP14 is that even while some of the instances are being executed or already
completed, new ones can be created. Example: for the processing of an insurance claim, zero or more
eyewitness reports should be handled. The number of eyewitness reports may vary. Even when processing
eyewitness reports for a given insurance claim, new eyewitnesses may surface and the number of instances
may change.”

Invoke service a as long as service c replies true. Instances are executed in parallel: the first instance is
launched in parallel with parloop_c_a. Termination of an instance is checked together with the termination
of the parloop launched together.

parloop_c_a : : ε → Unit
parloop_c_a ∗⇒ c a l l c >1 b >

I f S i g n a l ( b , c a l l sync ( a , parloop_c_a ) ) >1 x > x

For simplicity we have chosen a loop service specific for c and a. To write a generic loop service that
accepts two parameters (c and a) we have to customize sync to invoke services with parameters. We leave
the exercise to the reader. Similar implementations can be done in Orc and in SCC.

As far as WP14 is concerned, the main choice is how to represent the run-time knowledge about the
required number of instances to be executed, i.e., how to represent state. Possibilities include taking ad-
vantage of the number of values in a stream, of the number of available instances of a service, or of the
number of values in a session protocol.

WP16: Deferred Choice
“A point in the workflow process where one of several branches is chosen. In contrast to the XOR-split, the
choice is not made explicitly (e.g., based on data or on a decision), but several alternatives are offered to the
environment. However, in contrast to the AND-split, only one of the alternatives is executed. This means
that once the environment activates one of the branches, the other alternative branches are withdrawn. It is
important to note that the choice is delayed until the processing in one of the alternative branches is actually
started, i.e., the moment of choice is as late as possible. Example: after receiving products there are two
ways to transport them to the department. The selection is based on the availability of the corresponding
resources. Therefore, the choice is deferred until a resource is available.”

Requires a means to kill unwanted computations, such as the where operator in Orc.

C On the labeled transition system of SSCC

C.1 The Harmony Lemma
In the proof below we use a to denote any label in {↑a, r ./↑a,⇑a}.

Theorem 5 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If P α−→ P ′, then Q α−→ Q′ with
P ′ ≡ Q′, and vice-versa.

Proof. By induction on the proof that P ≡ Q.

• Equivalence relation

– Reflexivity. Immediate, taking Q′ to be P ′.

– Symmetry. Immediate consequence of the induction hypothesis, since the thesis of the theorem
is symmetric.
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– Transitivity. Assume P ≡ Q because P ≡ R and R ≡ Q, and suppose that P α−→ P ′. By
induction hypothesis, R α−→ R′ with P ′ ≡ R′; hence, again by induction hypothesis, Q α−→ Q′

with R′ ≡ Q′. P ′ ≡ Q′ follows by transitivity of ≡.

• Congruence properties

– Parallel composition. Suppose P ≡ Q. For each of the possible transitions of P | R, it is
straightforward to verify thatQ | R can simulate them, possibly using the induction hypothesis;
similarly, R | Q can simulate R | P . Notice that the side conditions in the transition rules
always hold since structurally congruent processes have the same free names.

– Composition with stream. Analogous.

– Name restriction. Suppose P ≡ Q and let a be a name. For each of the possible transitions of
(νa)P , it is easy to check that (νa)Q can simulate them, possibly using the induction hypoth-
esis.

– Session input/output. Straightforward, observing (for input) that structural congruence is closed
under substitution.

– Stream input/output. Analogous.

– Service definition/invocation. Straightforward.

• Monoid structure

– Unit. Let Q be P | 0. If P α−→ P ′, then by rule L-PAR also P | 0 α−→ P ′ | 0, since 0 has no free
names. Also, P ′ | 0 is congruent to P ′. Reciprocally, if P | 0 α−→ P ’, then the only rule that
can have been applied is L-PAR (since 0 6→), whence P ′ is P ′′ | 0 with P α−→ P ′′.

– Commutativity. Assume P is R | S and Q is S | R. Take any proof of R | S α−→ T and replace
occurrences of L-PAR by L-PAR’, of L-SESS-COM-PAR by L-SESS-COM-PAR’, of L-SERV-
COM-PAR by L-SERV-COM-PAR’ and vice-versa; it is straightforward to verify that this yields
a proof that S | R α−→ T ′ with T ≡ T ′. The converse is analogous.

– Associativity. Let P be R | (S | T ) and Q be (R | S) | T . Suppose that P α−→ P ′; there are six
rules that can be used to infer this transition. For simplicity, in the proofs below we omit side
conditions related to bound names, since it is simple to verify that they always follow from the
assumptions.

∗ L-PAR: then R α−→ R′ and P ′ is R′ | (S | T ). The proof below shows that (R | S) | T α−→
(R′ | S) | T , which establishes the thesis.

R
α−→ R′

R | S α−→ R′ | S
L-PAR

(R | S) | T α−→ (R′ | S) | T
L-PAR

∗ L-PAR’: then S | T α−→ U ; there are six sub-cases, according to the rule used to derive this
transition.
· The rule applied is L-PAR, so S α−→ S′ and U is S′ | T ; then the following proof

establishes the thesis.

S
α−→ S′

R | S α−→ R | S′
L-PAR’

(R | S) | T α−→ (R | S′) | T
L-PAR

· The rule applied is L-PAR’, so T α−→ T ′ and U is S | T ′; then the following proof
establishes the thesis.

T
α−→ T ′

(R | S) | T α−→ (R | S) | T ′
L-PAR’
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· The rule applied is L-SESS-COM-PAR, so S
r./lv−−−→ S′, T

r./lv−−−→ T ′, U is S′ | T ′ and
α is rτ for some fresh r; then the following proof establishes the thesis.

S
r./lv−−−→ S′

R | S r./lv−−−→ R | S′
L-PAR’

T
r./lv−−−→ T ′

(R | S) | T rτ−→ (R | S′) | T ′
L-SESS-COM-PAR

· The rule applied is L-SERV-COM-PAR, thus we have S
a⇔(r)−−−−→ S′, T

a⇔(r)−−−−→ T ′,
U is (νr)(S′ | T ′) and α is τ ; then the following proof establishes the thesis, since
(νr)((R | S′) | T ′) ≡ R | ((νr)(S′ | T ′)) as r is not a free name of R.

S
a⇔(r)−−−−→ S′

R | S a⇔(r)−−−−→ R | S′
L-PAR’

T
a⇔(r)−−−−→ T ′

(R | S) | T τ−→ (νr)((R | S′) | T ′)
L-SERV-COM-PAR

· The rule applied is L-PAR-CLOSE, so S
r./(a)a−−−−→ S′, T

r./↓a−−−→ T ′, U is (νa)(S′ | T ′)
and α is rτ . This case is analogous to that of L-SESS-COM-PAR, the extra name
restrictions in the resulting processes posing no additional problem.

· The rule applied is L-PAR-CLOSE’, so S
r./↓a−−−→ S′, T

r./(a)a−−−−→ T ′, U is (νa)(S′ | T ′)
and α is rτ . This case is analogous to the previous one.

∗ L-SESS-COM-PAR: then R
r./lv−−−→ R′ and S | T r./lv−−−→ U ; there are two similar sub-cases,

according to whether the last transition is proved via L-PAR or via L-PAR’. Without loss
of generality, assume that the former is the case; then the following proof establishes the
thesis.

R
r./lv−−−→ R′ S

r./lv−−−→ S′

R | S rτ−→ R′ | S′
L-SESS-COM-PAR

(R | S) | T rτ−→ (R′ | S′) | T
L-PAR’

∗ L-SERV-COM-PAR: then R
a⇔(r)−−−−→ R′ and S | T a⇔(r)−−−−→ U ; again there are two similar

sub-cases, according to whether the last transition is proved via L-PAR or via L-PAR’.
Without loss of generality, assume that the former is the case; then the following proof
establishes the thesis.

R
a⇔(r)−−−−→ R′ S

a⇔(r)−−−−→ S′

R | S τ−→ (νr)(R′ | S′)
L-SERV-COM-PAR

(R | S) | T τ−→ (νr)(R′ | S′) | T
L-PAR’

Since r is not a free name of T , the latter process is structurally congruent to process
(νr)(R′ | (S′ | T )).

∗ L-PAR-CLOSE: then R
r./(a)a−−−−→ R′ and S | T r./↓a−−−→ U . This case is analogous to that of

L-SESS-COM-PAR, the extra name restrictions in the resulting processes posing no addi-
tional problem.

∗ L-PAR-CLOSE’: then R
r./↓a−−−→ R′ and S | T r./(a)a−−−−→ U . This case is again analogous to

the previous one.

The case when Q α−→ Q′ is dealt with by a similar case analysis.

• Name restriction
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– Parallel composition. Suppose P is ((νn)R) | S and Q is (νn)(R | S). Assume first that
P

α−→ P ′; there are three different cases, according to which transition rule was used.

∗ L-PAR: then (νn)R
α−→ R′. There are three possible sub-cases.

· Suppose (νn)R
α−→ R′ follows by L-RES. Then n is not a name in α, R′ is (νn)R′′

and R α−→ R′′. Since n is also not a name in S, the following derivation establishes
the thesis.

R
α−→ R′′

R | S α−→ R′′ | S
L-PAR

(νn)(R | S)
α−→ (νn)(R′′ | S)

L-RES

· Suppose (νn)R
α−→ R′ follows by L-SESS-RES. Then α is τ , R′ is (νn)R′′ and

R
nτ−−→ R′′. Again, since n is also not a name in S, the following derivation establishes

the thesis.
R

nτ−−→ R′′

R | S nτ−−→ R′′ | S
L-PAR

(νn)(R | S)
τ−→ (νn)(R′′ | S)

L-SESS-RES

· Suppose (νn)R
α−→ R′ follows by L-EXTR. Then α is (n)n and R n−→ R′. Again,

since n is also not a name in S, the following derivation establishes the thesis.

R
n−→ R′

R | S n−→ R′ | S
L-PAR

(νn)(R | S)
(n)n−−−→ (R′ | S)

L-EXTR

In either case, it is easy to verify that (νn)(R | S) evolves to a process structurally con-
gruent to the evolution of ((νn)R) | S.

∗ L-PAR’: then S α−→ S′. Since (νn)R | S is well-formed, n does not occur in S; therefore
n cannot occur in α. Then the following derivation establishes the thesis.

S
α−→ S′

R | S α−→ R | S′
L-PAR’

(νn)(R | S)
α−→ (νn)(R | S′)

L-RES

∗ L-SESS-COM-PAR: then α is rτ , (νn)R
r./lv−−−→ R′ and S

r./lv−−−→ S′. Then necessarily
R′ is (νn)R′′ and the former transition is inferred via L-RES. The following derivation
establishes the thesis.

R
r./lv−−−→ R′′ S

r./lv−−−→ S′

R | S rτ−→ R′′ | S′
L-SESS-COM-PAR

(νn)(R | S)
rτ−→ (νn)(R′′ | S′)

L-RES

The cases when the rule applied is L-SERV-COM-PAR, L-PAR-CLOSE or L-PAR-CLOSE’
are similar, except that further applications of S-SWAP may be necessary to verify that both
processes evolve to structurally congruent processes.

Assume now that Q α−→ Q′. Since the top-level constructor in Q is name restriction, there are
three possible cases.

∗ Assume the last rule applied is L-RES. Then R | S α−→ T , with Q′ being (νn)T and n a
name not occurring in α. There are six sub-cases, corresponding to the six different rules
that may be used to infer the transition of R | S.

52



· L-PAR: then T isR′ | S withR α−→ R′; then the following proof establishes the thesis.

R
α−→ R′

(νn)R
α−→ (νn)R′

L-RES

((νn)R) | S α−→ ((νn)R′) | S
L-PAR

· L-PAR’: then T is R | S′ with S α−→ S′; the following proof establishes the thesis.

S
α−→ S′

((νn)R) | S α−→ ((νn)R) | S′
L-PAR’

· L-SESS-COM-PAR: then α is rτ , R
r./lv−−−→ R′, S

r./lv−−−→ S′ and T is R′ | S′. Care
must be taken to distinguish whether n is v.
If n is not v, then the following derivation establishes the thesis.

R
r./lv−−−→ R′

(νn)R
r./lv−−−→ (νn)R′

L-RES
S

r./lv−−−→ S′

((νn)R) | S rτ−→ ((νn)R′) | S′
L-SESS-COM-PAR

If n is v, then by well-formedness the process performing the output must beR (other-
wise S would contain a binder n, which violates the assumption that all bound names
in R | S are distinct); the following proof establishes the thesis.

R
r./lv−−−→ R′

(νn)R
r./(n)lv−−−−−→ R′

L-EXTR
S

r./lv−−−→ S′

((νn)R) | S rτ−→ (νn)(R′ | S′)
L-SESS-CLOSE

· L-SERV-COM-PAR: then α is τ , R
a⇔(r)−−−−→ R′, S

a⇔(r)−−−−→ S′ and T is (νr)(R′ | S′).
Notice that from the hypothesis it follows that n is distinct from r. Consider the
following derivation.

R
a⇔(r)−−−−→ R′

(νn)R
a⇔(r)−−−−→ (νn)R′

L-RES
S

a⇔(r)−−−−→ S′

((νn)R) | S τ−→ (νr)(((νn)R′) | S′)
L-SERV-COM-PAR

Finally, using rules S-EXTR-PAR and S-SWAP, it follows that (νr)(((νn)R′) | S′) ≡
(νr)(νn)(R′ | S′) ≡ Q′.

· L-PAR-CLOSE: then α is rτ , R
r./(a)a−−−−→ R′, S

r./↓a−−−→ S′ and T is (νa)(R′ | S′).
Again, by well-formedness, a is distinct from n. The following derivation establishes
the thesis.

R
r./(a)a−−−−→ R′

(νn)R
r./(a)a−−−−→ (νn)R′

L-RES
S

r./↓a−−−→ S′

((νn)R) | S rτ−→ (νa)(((νn)R′) | S′)
L-SESS-CLOSE

· L-PAR-CLOSE’: then α is rτ , R
r./↓a−−−→ R′, S

r./(a)a−−−−→ S′ and T is (νa)(R′ | S′).
Again, by well-formedness, a is distinct from n. The following derivation establishes
the thesis.

R
r./↓a−−−→ R′

(νn)R
r./↓a−−−→ (νn)R′

L-RES
S

r./(a)a−−−−→ S′

((νn)R) | S rτ−→ (νa)(((νn)R′) | S′)
L-SESS-CLOSE’
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∗ Assume the last rule applied is L-SESS-RES. This case is very similar to the previous one,
but simpler: since session names may not be communicated, there are less possible cases
and no need arises to use close rules.

∗ Assume the last rule applied is L-EXTR. Then α is (n)µ, where µ is an output (session
or stream). By well-formedness, n does not occur in S, whence it follows that necessarily
R

µ−→ R′ and Q′ is R′ | S. Then the following proof shows that P α−→ Q′.

R
µ−→ R′

(νn)R
(n)µ−−−→ R′

L-EXTR

((νn)R) | S (n)µ−−−→ R′ | S
L-PAR

– Composition with stream. There are two congruence rules for this case; both of them require
a case analysis that is completely similar to that in the previous case (since composition with a
stream is very similar to parallel composition). The extra case arising from L-FEED-CLOSE is
similar to the other close rules.

– Session. Assume P is r ./ ((νa)R) and Q is (νa)(r ./ R). Suppose first that P α−→ P ′; there
are two different cases.
∗ L-SESS-VAL: then α is r ./ µ, where µ is an input/output action. There are two possible

sub-cases, according to how the transition of (νa)R is inferred (since L-SESS-RES does
not apply).
· L-RES: then P ′ is r ./ ((νa)R′) with R

µ−→ R′, and the following derivation estab-
lishes the thesis.

R
µ−→ R′

r ./ R
r./µ−−−→ r ./ R′

L-SESS-VAL

(νa)(r ./ R)
r./µ−−−→ (νa)(r ./ R′)

L-RES

· L-EXTR: then P ′ is r ./ R′, µ is a, and the following derivation establishes the thesis.

R
a−→ R′

r ./ R
r./a−−−→ r ./ R′

L-SESS-VAL

(νa)(r ./ R)
r./(a)a−−−−→ r ./ R′

L-EXTR

∗ L-SESS-PASS: this case is very similar with only two differences. In the case of L-EXTR,
µ is now ⇑ a, and the rest follows as before. There is also the extra case of L-SESS-RES,
which is straightforward.

Assume now that Q α−→ Q′. The proof is very similar, so we will only sketch it; there are three
cases.
∗ L-RES: then Q′ is (νa)S with r ./ R α−→ S. There are two cases for the latter transition;

in either of them, S must be of the form r ./ R′ and the thesis follows by swapping the
application of the two rules.

∗ L-SESS-RES: similar, but now there is only one sub-case, corresponding to L-SESS-PASS.
∗ L-EXTR: then r ./ R

µ−→ Q′ and either α is (a)µ or α is s ./ (a)a and µ is s ./ a for some
session name s. Again there are two cases for the latter transition, and a straightforward
swapping of the two rules yields the proof that P α−→ Q′.

– Commutativity. Straightforward, since two different names are involved and well-formedness
of the processes guarantees that all side conditions in the relevant rules will hold.

– Zero. Straightforward, since (νa)0 6→ and 0 6→.

• Recursion This case is completely straightforward: if recX.R
α−→ P ′, then the only rule that can have

been used to infer that transition is L-REC, whence it immediately follows that R
[recX.R/X

] α−→
P ′. Reciprocally, if the latter condition holds, then by L-REC also recX.R

α−→ P ′.
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C.2 Derivability of the new transition rules in the original LTS
Lemma 11. Rule L-PAR’ is admissible in the original LTS for SSCC.

Proof. The following derivation shows that any instance of L-PAR’ can be derived in the original LTS.

Q
µ−→ Q′ bn(µ ∩ fn(P )) = ∅

Q | P µ−→ Q′ | P
L-PAR

Q | P ≡ P | Q Q′ | P ≡ P | Q′

P | Q µ−→ P | Q′
L-STRUCT

Lemma 12. Rule L-REC is admissible in the original LTS for SSCC.

Proof. The following derivation shows that any instance of L-REC can be derived in the original LTS.

P
[
rec X.P /X

] µ−→ P ′ P
[
rec X.P /X

]
≡ rec X.P P ′ ≡ P ′

rec X.P
µ−→ P ′

L-STRUCT

The following lemma shows a property of transitions derived in the new LTS.

Lemma 13. Let P and P ′ be processes and a be a name.

1. If P
(a)↑a−−−→ P ′ then P ≡ (νa)R for some R such that R

↑a−→ P ′.

2. If P
r./(a)↑a−−−−−→ P ′ then P ≡ (νa)R for some R such that R

r./↑a−−−→ P ′.

3. If P
(a)⇑a−−−→ P ′ then P ≡ (νa)R for some R such that R

⇑a−→ P ′.

Proof. All three parts of the lemma are proved by induction on the proof of the transition.
For (i), the base case is when rule L-EXTR is applied. Then the thesis follows immediately from the

premise of the rule and reflexivity of ≡. The induction cases are when one out of L-PAR, L-PAR’, L-
STREAM-PASS-P, L-STREAM-PASS-Q, L-RES or L-REC is applied.

The first four cases are analogous. Suppose rule L-PAR was applied; then P is P1 | P2, P ′ is P ′1 | P2,

P1
(a)↑a−−−→ P ′1 and a is not a free name of P2. By induction hypothesis, P1 ≡ (νa)R with R

↑a−→ P ′1; also

P1 | P2 ≡ (νa)R | P2. By rule L-PAR, R | P2
↑a−→ P ′. The case of L-REC is also straightforward: since

rec X.P ≡ P
[
rec X.P /X

]
, the induction hypothesis immediately establishes the result. Finally, for L-RES,

simply apply the induction hypothesis and use S-SWAP to conclude the thesis.
The proof of (ii) is completely similar except for the base case. Here, the rule being applied may also

be L-SESS-VAL, in which case P is r ./ Q and P ′ is r ./ Q′. By (i), also Q ≡ (νa)R with R
↑a−→ Q′,

whence r ./ R
r./↑a−−−→ P ′. Since r ./ (νa)R ≡ (νa)r ./ R, the thesis follows.

The last case is analogous to the first.

Lemma 14. Rules L-PAR-CLOSE and L-PAR-CLOSE’ are admissible in the original LTS for SSCC.

Proof. Suppose P | Q rτ−→ (νa)P ′ | Q′ by L-PAR-CLOSE. By part (ii) of Lemma 13, P ≡ (νa)R for

some R such that R
r./↑a−−−→ P ′. The following derivation shows that this instance of L-PAR-CLOSE can be

derived in the original LTS.

R
r./↑a−−−→ P ′ Q

r./↓a−−−→ Q′

R | Q rτ−→ P ′ | Q′
L-PAR

(νa)R | Q rτ−→ (νa)P ′ | Q′
L-RES

(νa)R ≡ P Q ≡ Q
P | Q rτ−→ (νa)P ′ | Q′

L-STRUCT
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For rule L-PAR-CLOSE’, apply the previous construction with L-PAR’ instead of L-PAR and invoke
Lemma 11.

Lemma 15. Rules L-SESS-CLOSE and L-SESS-CLOSE’ are admissible in the original LTS for SSCC.

Proof. Analogous to the previous one.

Lemma 16. Rule L-FEED-CLOSE is admissible in the original LTS for SSCC.

Proof. Suppose streamP as f = ~w inQ
τ−→ (νa)streamP ′ as f = a :: ~w inQ by L-FEED-CLOSE. By

part (iii) of Lemma 13, P ≡ (νa)R for some R such that R
⇑a−→ P ′. The following derivation shows that

this instance of L-PAR-CLOSE can be derived in the original LTS. Note, in fact, that the application of L-
STRUCT is sound, since from (νa)R ≡ P it follows that (νa)streamR as f = ~w inQ ≡ streamP as f =
~w inQ (for the left-hand-side), and since ≡ is reflexive (for the right-hand-side).

R
⇑a−→ P ′

streamR as f = ~w inQ
τ−→ streamP ′ as f = a :: ~w inQ

L-STREAM-FEED

(νa)streamR as f = ~w inQ
τ−→ (νa)streamP ′ as f = a :: ~w inQ

L-RES

streamP as f = ~w inQ
τ−→ (νa)streamP ′ as f = a :: ~w inQ

L-STRUCT

D On the bisimilarities of SSCC

D.1 Strong bisimilarity
We study here strong bisimilarity, hereafter referred to simply as “bisimilarity”, as defined in Definition 10.
Remember that bisimilarity can be obtained as the union of all bisimulations or as a fixed-point of a suitable
monotonic operator; also it is well defined, as the next result shows.

Theorem 6. Structurally congruent processes are bisimilar.

Proof. It suffices to show that ≡ is a bisimulation, which is an immediate consequence of the Harmony
Lemma.

We now show that bisimilarity is a non-input congruence, just as in π-calculus. The strategy of the
proof is the same as in [41], based on the notion and properties of a relation progressing to another relation.

Definition 17. A relation R on processes strongly progresses to another relation S, denoted R ; S, if,
whenever PRQ, P α−→ P ′ implies Q α−→ Q′ for some Q′ with P ′SQ′, and vice-versa.

Definition 18. A function F on processes is strongly safe ifR ⊆ S andR; S imply F(R) ⊆ F(S) and
F(R) ; F(S).

Lemma 17. If F is strongly safe and ∼⊆ F(∼), then F (∼) =∼.

Proof. See [41].

Given a function F , define F∗ such that F∗(R) is the transitive closure of F(R).

Lemma 18. If F is such that R ⊆ S and R ; S imply that F(R) ⊆ F∗(S) and F(R) ; F∗(S), then
F∗ is strongly safe.

Proof. See [41].

The proof relies on defining functions Fni1 and Fni like those for π-calculus; however, the definition of
the former has to be slightly adapted.
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Definition 19.

• An n-ary multi-hole context C is a process where some occurrences of 0 have been replaced by
holes [·]i; each hole may occur zero or more times. Given n processes P1, . . . , Pn, C[P1, . . . , Pn] is
the process obtained by uniformly replacing all occurrences of all holes in C by the corresponding
process.

• A (multi-hole) context is said to be non-input if no hole occurs under an input prefix (x) or f(x).

• Functions Fni1 and Fni are defined as follows.

Fni1(R) = {〈C[P ], C[Q]〉 [] PRQ and C is a non-input context}
Fni(R) = {〈C[P1, . . . , Pn], C[Q1, . . . , Qn]〉 [] PiRQi and C is an n-ary non-input context}

Lemma 19. Fni = F∗ni1.

Proof. As for π-calculus.

Lemma 20. Function Fni is strongly safe.

Proof. Applying Lemma 18, one must show that, whenever R ⊆ S and R; S, both Fni1(R) ⊆ Fni1(S)
and Fni1(R) ; Fni(S). The first of these is trivial by definition of Fni1.

Assume that PRQ. One must show that, for every context C, if C[P ]
α−→ P ′, then C[Q]

α−→ Q′ for
some P ′ and Q′ such that there exist an n-ary context C ′ and processes P1SQ1, . . . , PnSQn for which P ′

is C ′[P1, . . . , Pn] and Q′ is C ′[Q1, . . . , Qn].
The proof is by induction on the derivation tree for C[P ]

α−→ P ′. In all steps, there are two cases to
consider, according to whether C is [·] or not; the former case is always trivial, since the hypothesisR; S
establishes the thesis. Therefore, we always assume below that C is not [·]. The proof looks at the last rule
being applied.

• L-SEND: then C is v.C0 and α is ↑v for some v. Furthermore, v.C0[Q]
↑v−→ C0[Q]; since C0 is also

a multi-hole context andR ⊆ S, it follows that 〈C0[P ], C0[Q]〉 ∈ Fni(S), hence the thesis holds.

• L-RECEIVE: then C is (x)C0, and since C is a non-input context (by definition of Fni1), it follows
that C0 does not contain holes; hence in this case C[P ] and C[Q] coincide, and the result is trivial.

• L-FEED: then C is feed v.C0 and α is ⇑v for some v. Furthermore, feed v.C0[Q]
⇑v−→ C0[Q]; since

C0 is also a multi-hole context andR ⊆ S, it follows that 〈C0[P ], C0[Q]〉 ∈ Fni(S), hence the thesis
holds.

• L-READ: then C is f(x).C0, and since C is a non-input context (by definition of Fni1), it follows
that C0 does not contain holes; hence in this case C[P ] and C[Q] coincide, and the result is trivial.

• L-CALL: then C is a⇐ C0 and α is a⇐ (r) for some r not occurring free in C0[P ]. Furthermore,

a⇐ C0[Q]
a⇐(r)−−−−→ r / C0[Q], since by definition of bisimulation r does not occur free in C0[Q].

Taking C ′ to be the context r / C0 establishes the thesis.

• L-INV: analogous.

• L-PAR: there are two cases to consider.

– If C is C0 | R, then C0[P ]
α−→ P ′ and α and R share no bound names. By induction hypothesis

there exists a process Q′ such that C0[Q]
α−→ Q′, and P ′, Q′ are respectively C ′0[P1, . . . , Pn]

andC ′0[Q1, . . . , Qn] for some n-ary multi-hole contextC ′0 and processes P1SQ1, . . . , PnSQn.
Thus C0[Q] | R α−→ Q′ | R, hence taking C ′ to be C ′0 | R establishes the thesis.
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– If C is R | C0, then R α−→ R′ and C0[P ] and R share no bound names. By the hypothesis of
L-PAR, C0[Q] and R also share no bound names, hence R | C0[Q]

α−→ R | Q′, and taking C ′

to be R | C ′0 establishes the thesis.

• L-PAR’: analogous (the two cases are reversed).

• L-STREAM-PASS-P and L-STREAM-PASS-Q: analogous to L-PAR and L-PAR’, respectively.

• L-STREAM-FEED: there are two cases to consider.

– If C is streamC0 as f = ~w inR, then C0[P ]
⇑v−→ P ′; by induction hypothesis, there exists

a process Q′ such that C0[Q]
⇑v−→ Q′, and P ′ and Q′ are respectively C ′0[P1, . . . , Pn] and

C ′0[Q1, . . . , Qn] for some n-ary multi-hole context C ′0 and processes P1SQ1, . . . , PnSQn.
Thus streamC0[Q] as f = ~w inR

τ−→ streamQ′ as f = v :: ~w inR, hence taking C ′ to be
streamC ′0 as f = v :: ~w inR establishes the thesis.

– If C is streamR as f = ~w inC0, then R
⇑v−→ R′, hence streamR as f = ~w inC0[Q]

τ−→
streamR′ as f = v :: ~w inC0[Q], hence taking C ′ to be streamR′ as f = v :: ~w inC0 estab-
lishes the thesis.

• L-STREAM-CONS: analogous (the two cases are reversed).

• L-SESS-VAL: then C is r ./ C0, α is r ./ µ for some µ, and C0[P ]
µ−→ P0. By induction hy-

pothesis, C0[Q]
µ−→ Q0 for some Q0 such that there exist a multi-hole context C ′0 and processes

P1SQ1, . . . , PnSQn for which P0 is C ′0[P1, . . . , Pn] and Q0 is C ′0[Q1, . . . , Qn]. Taking C ′ to be
r ./ C ′0 establishes the thesis, since then r ./ C0[Q]

r./µ−−−→ C ′[Q1, . . . , Qn].

• L-SESS-PASS: then C is r ./ C0, α is neither an input nor an output, and C0[P ]
α−→ P0. The proof

then follows as above except that the action does not change when the session is added to C ′0.

• L-SESS-COM-PAR: C is either C0 | R or R | C0; the two cases are analogous, so assume the

first holds. Then C0[P ]
r./lv−−−→ P ′, R

r./lv−−−→ R′, α is rτ for some r and C0[P ] | R rτ−→ P ′ | R′.
By induction hypothesis there exists a process Q′ such that C0[Q]

r./lv−−−→ Q′, and P ′, Q′ are re-
spectively C ′0[P1, . . . , Pn] and C ′0[Q1, . . . , Qn] for some n-ary multi-hole context C ′0 and processes
P1SQ1, . . . , PnSQn. Then C0[Q] | R rτ−→ Q′ | R′, hence taking C ′ to be C ′0 | R′ establishes the
thesis.

• the cases concerning rules L-SERV-COM-PAR, L-SESS-COM-STREAM, L-SERV-COM-STREAM, L-
PAR-CLOSE, L-PAR-CLOSE’, L-FEED-CLOSE, L-SESS-COM-CLOSE and L-SERV-COM-CLOSE are
all very similar to the previous one.

• L-RES: then C is (νa)C0, (νa)C0[P ]
α−→ (νa)P ′, a is not a name in α and C0[P ]

α−→ P ′. By
induction hypothesis there exists a process Q′ such that C0[Q]

α−→ Q′, and P ′, Q′ are respec-
tively C ′0[P1, . . . , Pn] and C ′0[Q1, . . . , Qn] for some n-ary multi-hole context C ′0 and processes
P1SQ1, . . . , PnSQn. Thus (νa)C0[Q]

α−→ (νa)Q′, hence taking C ′ to be (νa)C ′0 establishes the
thesis.

• L-SESS-RES: analogous, only now α is τ and the induction hypothesis is applied to a transition via
aτ .

• L-EXTR: analogous, only now α is an action extruding a and the induction hypothesis is applied to
a transition without the extrusion; furthermore, the context C ′ is simply C ′0.

• L-REC: C is recX.C0 and C0[P ]
[recX.C0[P ]/X

] α−→ P ′. Since P is well-formed, it contains no
free occurrences of X; hence there exists a context C1 such that C1[P ] is C0[P ]

[recX.C0[P ]/X
]

and C1[Q] is C0[Q]
[recX.C0[Q]/X

]
. Hence the induction hypothesis applies, and there exist a
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process Q′ and a context C ′ such that C1[Q]
α−→ Q′, P ′ is C ′[P ] and Q′ is C ′[Q]. Therefore also

recX.C0[Q]
α−→ Q′, and C ′ is the required context.

Theorem 7. Bisimilarity is a non-input congruence.

Proof. Straightforward consequence of Lemmas 17 and 20.

At this point we can explain in more detail why the original LTS for SSCC had to be changed. Consider
any derivation containing an application of L-STRUCT.

P
µ−→ P ′ P ≡ Q P ′ ≡ Q′

Q
µ−→ Q′

L-STRUCT

In general, the induction hypothesis will not be applicable to the subtree that shows P
µ−→ P ′, since

there is no obvious relationship between P and Q; furthermore, the thesis of the induction hypothesis does
not help in establishing the final result, since again there is no obvious relationship between Q′ and P ′.

Observe also that this is not a problem of this particular proof technique. Whether the induction were
on the derivation tree (as above), on contexts (as the proof for π-calculus, see [41]) or on processes (ar-
guably an alternative) the same problem would arise, since the issue arises from the fact that the theorem
assumes hypotheses on the actual process performing the transition. This justifies the attempt to eliminate
L-STRUCT from the LTS altogether.

D.2 Weak bisimilarity
We turn now to weak bisimilarity, defined according to Definition 12. Weak bisimilarity treats internal
actions as irrelevant. Again, weak bisimilarity can be obtained as the union of all weak bisimulations or as
a fixed-point of a suitable monotonic operator.

Theorem 8. Let ' be the largest relation such that, whenever P ' Q, for every process P ′ and action α,
if P α−→ P ′, then Q α

=⇒ Q′ for some Q′ with P ′ ' Q′ and vice-versa. Then P ≈ Q iff P ' Q.

Proof. The direct implication is straightforward, since P α−→ P ′ implies that P α
=⇒ P ′. For the converse,

assume that P α
=⇒ P ′. If P ′ is P and α is τ , then result is trivial; otherwise, there exist processes P1, . . . , Pn

and P ′1, . . . , P
′
m such that P is P1, Pi

τ−→ Pi+1 for i < n, Pn
α−→ P ′1, P ′j

τ−→ P ′j+1 for j < m and P ′m is
P ′. By hypothesis, there exist processes Q1, . . . , Qn and Q′1, . . . , Q

′
m (not necessarily distinct) such that

Qi
τ
=⇒ Qi+1 for i < n, Qn

α
=⇒ Q′1 and Q′j

τ
=⇒ Q′j+1 for j < m; furthermore, Pi ' Qi and P ′j ' Q′j for all

i ≤ n and j ≤ m. In particular, Q α
=⇒ Q′m and P ′ ' Q′m, so ' is a weak bisimulation.

The reason for introducing ' is that this relation is simpler to work with when proving properties by
induction. In turn, the definition of ≈ is more symmetric and its relationship with ∼ is immediate.

We now show that bisimilarity is a non-input congruence, again like in π-calculus. The strategy of the
proof is once more the same as in [41].

Definition 20. A relation R on processes progresses to another relation S, denoted R;;S, if, whenever
PRQ, P α−→ P ′ implies Q α

=⇒ Q′ for some Q′ with P ′SQ′, and vice-versa.

Definition 21. A function F on processes is safe if R ⊆ S and R;;S imply F(R) ⊆ F(S) and
F(R);;F(S).

Lemma 21. If F is safe and ≈⊆ F(≈), then F (≈) =≈.

Proof. See [41].

As is the case with π-calculus, proving that Fni is safe must be done directly, since chaining is not
secure.
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Lemma 22. Function Fni is safe.

Proof. LetR ⊆ S andR;;S. It must be shown that Fni1(R) ⊆ Fni1(S) and Fni(R);;Fni(S). As before,
the first of these is trivial by definition of Fni1.

Assume that PiRQi for i = 1, . . . , n. It must be shown that, for every multi-context C, if there is
a transition C[P1, . . . , Pn]

α−→ P ′, then C[Q1, . . . , Qn]
α
=⇒ Q′ for some P ′ and Q′ such that there exist

another multi-context C ′ and processes P1SQ1, . . . , PmSQm for which P ′ is C ′[P1, . . . , Pm] and Q′ is
C ′[Q1, . . . , Qm].

Once more we proceed by induction on the derivation tree for C[P1, . . . , Pn]
α−→ P ′. Most cases are

very similar to the proof of Lemma 20; however, since the induction hypothesis now gives a weak transition
some care must be taken.

As before, the case when C is [·] is straightforward; furthermore, the cases of rules L-SEND, L-
RECEIVE, L-FEED, L-READ, L-CALL, L-INV, L-SESS-VAL, L-SESS-PASS, L-SESS-COM-PAR, L-SERV-
COM-PAR, L-SESS-COM-STREAM, L-SERV-COM-STREAM,L-PAR-CLOSE, L-PAR-CLOSE’, L-FEED-
CLOSE, L-SESS-COM-CLOSE, L-SERV-COM-CLOSE, L-RES, L-SESS-RES, L-EXTR and L-REC are dealt
with as in the proof of Lemma 20, with an extra step at the end (to take care of the possible extra τ steps)
similar to the cases detailed above.

The only remaining cases are those when C is either a parallel composition or a stream composition,
since now both subprocesses may be contexts.

• L-PAR: then C is C1 | C2, C1[P1, . . . , Pn]
α−→ P ′, and α and C2[P1, . . . , Pn] share no bound

names. By induction hypothesis there exists a process Q′ such that C1[Q1, . . . , Qn]
α
=⇒ Q′, and

P ′, Q′ are respectively C ′1[P ′1, . . . , P
′
m] and C ′1[Q′1, . . . , Q

′
m] for some multi-hole context C ′1 and

processes P ′1SQ′1, . . . , P ′mSQ′m. By applying L-PAR to all steps of the sequence of transitions
C1[Q1, . . . , Qn]

τ−→ . . .
α−→ . . .

τ−→ Q′, we conclude that

C1[Q1, . . . , Qn] | C2[Q1, . . . , Qn]
α
=⇒ C ′1[Q′1, . . . , Q

′
m] | C2[Q1, . . . , Qn],

hence taking C ′ to be C ′1 | C2 establishes the thesis5.

• L-PAR’: analogous (the roles of C1 and C2 are reversed).

• L-STREAM-PASS-P and L-STREAM-PASS-Q: as before, these are analogous to L-PAR and L-PAR’,
respectively.

• L-STREAM-FEED: then C is streamC1 as f = ~w inC2 and C1[P1, . . . , Pn]
⇑v−→ P ′. By induc-

tion hypothesis, there exists a process Q′ such that C1[Q1, . . . , Qn]
⇑v
=⇒ Q′, and P ′ and Q′ are re-

spectively C ′1[P ′1, . . . , P
′
n] and C ′1[Q′1, . . . , Q

′
n] for some n-ary multi-hole context C ′1 and processes

P ′1SQ′1, . . . , P ′nSQ′n. In other words, C1[Q1, . . . , Qn]
τ
=⇒ Q∗

⇑v−→ Q∗∗
τ
=⇒ Q′; using L-STREAM-

PASS-P for the τ transitions, we conclude that

streamC1[Q1, . . . , Qn] as f = ~w inC2[Q1, . . . , Qn]
τ
=⇒ streamQ∗ as f = ~w inC2[Q1, . . . , Qn]
τ−→ streamQ∗∗ as f = v :: ~w inC2[Q1, . . . , Qn]
τ
=⇒ streamC ′1[Q′1, . . . , Q

′
n] as f = v :: ~w inC2[Q1, . . . , Qn],

hence taking C ′ to be streamC ′1 as f = v :: ~w inC2 establishes the thesis.

• L-STREAM-CONS: analogous (the roles of C1 and C2 are reversed).

Theorem 9. Weak bisimilarity is a non-input congruence.

Proof. Straightforward consequence of Lemmas 21 and 22.

5We assume that a n-hole context does not have to contain occurrences of all its holes, so in particular C1 and C2 are n-hole
contexts in which some holes may not occur.
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