
Information Flow within Relational
Multi-context Systems?

Lúıs Cruz-Filipe1, Graça Gaspar2, and Isabel Nunes2

1 Dept. of Mathematics and Computer Science, University of Southern Denmark
2 LabMAg, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. Multi-context systems (MCSs) are an important framework
for heterogeneous combinations of systems within the Semantic Web. In
this paper, we propose generic constructions to achieve specific forms of
interaction in a principled way, and systematize some useful techniques to
work with ontologies within an MCS. All these mechanisms are presented
in the form of general-purpose design patterns. Their study also suggests
new ways in which this framework can be further extended.

1 Introduction

In parallel with the proliferation of different reasoning systems, larger and larger
bodies of knowledge are being built in several fields, each with its expressiveness
and efficiency, that can benefit enormously from adequate frameworks allowing
to reason with information coming from different sources. Integrating several
knowledge sources in a modular and flexible way is nowadays a growing need,
and there has been significant growth in the research and development of this
kind of heterogenous systems. As such, best practices should be devised as early
as possible to guide the design and implementation of these systems, as has been
done for other frameworks [2, 26].

A particular class of heterogeneous combinations is that of non-monotonic
multi-context systems (MCSs) [3], which consist of several independent systems
(“contexts”) interacting through Datalog-style “bridge rules”, controlling the
flow of information by means of knowledge added to a context whenever some
information is inferred in other contexts. MCSs have been a topic of active
research recently, and several variants of MCSs have been proposed to deal with
particular situations. Of particular interest are relational MCSs [15], where each
context has a first-order sublanguage. These generalize MCSs, since one can
take the first-order sublanguage to be empty. However, they allow bridge rules
with actual first-order variables, instead of seeing such rules simply as meta-level
notation for the (potentially very large) set of all their closed instances. This is
useful to express information flow between logic-based systems, as a single rule
can “transport” all instances of a predicate from one context to another.

? This work was supported by: Danish Council for Independent Research, Natural Sci-
ences; and Fund. Ciência e Tecnologia under contract PEst-OE/EEI/UI0434/2011.



Most example MCSs presented so far were designed to illustrate the potential
of this formalism, but to our knowledge there has not been much effort in the de-
velopment of systematic techniques to write MCSs. This is the main achievement
of this paper: we propose generic mechanisms, in the form of general-purpose de-
sign patterns, that achieve specific forms of interaction between contexts within
an MCS in a principled way – e.g. extending a context by means of a definition
in the language of another context, giving closed-world semantics for particular
predicates in a context with open-world semantics, or reasoning within the merge
of two contexts while keeping them separate. The study of these design patterns
not only facilitates the development of future MCSs, but also suggests new ways
in which their language can be extended. Our departure point was the study of
design patterns for multi dl-programs [10] – a generalization of dl-programs [13]
with multiple knowledge bases –, which can be seen as a subclass of MCSs by
means of a systematic translation [9]. The present study is however much more
general than the combination of the work in those two publications.

The paper is organized as follows. Section 2 summarizes previous research
relevant to this work. Section 3 recalls the formal definition of relational MCS and
introduces an elementary communication pattern for MCSs. Section 4 discusses
more general interaction patterns, and Section 5 explores particular applications
to MCSs using ontologies. Section 6 discusses future directions for this work.

2 Related work

Software design patterns enhance software quality by establishing best practices
together with a “common language” between development teams that substan-
tially enriches their communication, and hence the whole design process. From
very basic, abstract, patterns that can be used as building blocks of several
more complex ones, to business-specific patterns and frameworks, dozens of de-
sign patterns have been proposed in e.g. [16, 17]. Although most of the work
around design patterns focuses on the object-oriented paradigm, several patterns
are fundamental enough to be independent of the modeling and programming
paradigms used. Thus, effort has also been made in adapting these best practices
to other paradigms and in finding new paradigm-specific patterns [2, 26]. In this
line, we proposed a set of design patterns for Mdl-programs [10] – a formalism to
join description logics with rules [9], generalizing the original dl-programs [13].

Multi-context systems [3] (MCSs) are heterogeneous non-monotonic systems
whose components (called contexts) are knowledge bases that can be expressed
in different logics (e.g., a theory in classical logic, a description logic knowledge
base, a set of temporal logic formulas, a logic program under answer set seman-
tics, or a set of default logic rules). Unlike Mdl-programs, the communication
between the components is not centralized, but rather distributed among them
via sets of (non-monotonic) bridge rules. Since they were originally proposed,
several variations of MCSs have been studied that add to their potential fields of
application. Examples are managed MCS [4], whose bridge rules allow arbitrary
operations (e.g. deletion or revision operators) on context knowledge bases to be



defined; relational MCSs [15], which introduce variables and aggregate expres-
sions in bridge rules, extending the semantics of MCSs accordingly; or dynamic
MCSs [11], designed to cope with situations where knowledge sources and their
contents may change over time and are not known a priori. We will work within
relational MCSs and discuss a possible generalization of dynamic MCSs.

There are other formalisms to combine different reasoning systems. Hex-
programs [14] are higher-order logic programs with external atoms, and they
are also heterogeneous since these external atoms may query systems that use
different languages. The homogenous approach is exemplified by hybrid MKNF
knowledge bases [23], which however are not modular. (Partial) translations
between these formalisms have been studied to compare their expressive power
and to allow transfer of technology from one formalism into another [4, 9, 19].

Yet another way of combining reasoning systems is ontology mediation, which
facilitates the interoperability of different ontologies by allowing exchange of in-
stance data through the identification of alignments or the merging of overlap-
ping ontologies. An alignment between two distinct ontologies establishes rela-
tionships between pairs of entities, one from each ontology. These relationships
are then made concrete in the form of ontology mappings, with some tools [6, 12]
resorting to “bridge axioms” or even an ontology of generic bridges [21] whose
instances define mappings between the original ones. Alignments are also some-
times used as a first step towards defining a single ontology that merges the
original ones. However, merging ontologies requires solving the inconsistencies
or incoherences that might arise, which are difficult problems for which several
distinct theoretic approaches have been proposed [7], and much effort has been
put on the development of tools to assist with ontology merging [20].

Ontology alignment patterns [25] help designers to identify alignments by
looking at common patterns of ontology mismatches. Both these and the defini-
tion of an ontology of generic mappings are complementary to the construction
in Section 5, which translates a previously identified alignment into MCS bridge
rules and shows how to emulate partial ontology merging within an MCS. These
patterns are a complement of, rather than an alternative to, ontology design
patterns [18].

3 Information flow in relational multi-context systems

We begin this section with a quick summary of the notion of relational MCS [15].
A relational logic L is a quadruple 〈KBL,BSL,ACCL, ΣL〉, where KBL is

the set of well-formed logic bases of L, BSL is a set of possible belief sets,
ACCL : KBL → 2BSL is a function assigning to each knowledge base a set of
acceptable sets of beliefs, and ΣL is a signature consisting of sets PKB

L and PBS
L

of predicate names (with associated arity) and a universe UL of object constants,
such that UL ∩ (PKB

L ∪ PBS
L ) = ∅. If p ∈ PKB

L (resp. p ∈ PBS
L ) has arity k and

c1, . . . , ck ∈ UL then p(c1, . . . , ck) must be an element of some knowledge base
(resp. belief set). These elements are called relational ground elements, while
other elements of knowledge bases or belief sets are called ordinary. This notion



generalizes that of logic in a general MCS, where all elements are ordinary (so
PKB
L = PBS

L = UL = ∅).
Let I be a finite set of indices, {Li}i∈I be a set of relational logics, and V

be a set of variables distinct from predicate and constant names in any Li. A
relational element of Li has the form p(t1, . . . , tk) where p ∈ PKB

Li
∪PBS

Li
has arity

k and each tj is a term from V ∪ ULi
, for 1 ≤ j ≤ k. A relational k-bridge rule

over {Li}i∈I and V is a rule of the form

(k : s)← (c1 : p1), . . . , (cq : pq), not(cq+1 : pq+1), . . . , not(cm : pm) (1)

such that k, ci ∈ I, s is a knowledge base element of Lk and p1, . . . , pm are beliefs
of Lci .

A relational multi-context system is a collection M = {Ci}i∈I of contexts
Ci = 〈Li, kbi, bri, Di〉, where Li is a relational logic, kbi ∈ KBLi is a knowledge
base, bri is a set of relational i-bridge rules, and Di is a set of import domains
Di,j , with j ∈ I, such that Di,j ⊆ Uj . Unless otherwise stated, Di,j is assumed
to be the finite domain consisting of the constants appearing in kbj or in the
head of a rule in brj .

The semantics of relational MCSs is defined in terms of ground instances of
bridge rules, obtained from each rule r ∈ bri by uniform substitution of each
variable X in r by a constant in

⋂
Di,j , with j ranging over the indices of the

contexts to which queries containing X are made in r. A belief state for M is
a collection S = {Si}i∈I where Si ∈ BSLi

for each i ∈ I. Rule (1) is applicable
w.r.t. belief state S if pi ∈ Sci for 1 ≤ i ≤ q and pi 6∈ Sci for q < i ≤ m. The
set of the heads of all applicable rules in bri w.r.t. S is denoted by appi(S). An
equilibrium is a belief state S such that Si ∈ ACCi(kbi ∪ appi(S)). Particular
types of equilibria originally defined for MCSs [3] transfer to relational MCSs,
but we will not use them.

From this point onwards we will only consider relational MCSs, and omit the
adjective “relational” for brevity. The discussion below takes place within the
setting of an MCS M = {Ci}i∈I unless otherwise stated.

The basic communication structure of MCSs can be embodied in a very
simple design pattern, which is useful as a building block for more elaborate
patterns, and we can state its soundness. The proof of this and subsequent
results can be found in the extended version of this paper [8].

Pattern Observer.

Problem. The semantics of p ∈ PKB
i should include all instances of pj ∈

PKB
ϕ(j), with 1 ≤ j ≤ ` and ϕ(j) ∈ I, of the same arity.

Solution. Add the bridge rules (i : p(X)) ← (ϕ(j) : pj(X)) to bri, with
X = X1, . . . , Xk and 1 ≤ j ≤ `.

Proposition 1. Let M = {Ci}i∈I be an MCS such that kb ⊆ ACCi(kb) for

every kb ∈ KBi, and let p ∈ PKB
i be defined from pj ∈ PKB

ϕ(j) for j = 1, . . . , ` by

application of Observer. Let S = {Si}i∈I be an equilibrium for M . For each j,
if pj(t) ∈ Sϕ(j) for some t, then p(t) ∈ Si.



4 Extending expressiveness of contexts

An MCS’s information flow capabilities can be applied to extend the language of
one context using syntactic means available in another. As an example, suppose
that we want to define the transitive closure of a binary relation in a context
that has no primitives for this. At the semantic level, this can be achieved for
named individuals by means of an auxiliary context that can define transitive
closures. We introduce two patterns to deal with this situation; the first one is a
particular case of the second, but it is important enough to discuss on its own.

Pattern Fixpoint definition.

Problem. In context Ci we want to define a predicate p from other predi-
cates by means of a logic program.

Solution. (i) Add a logic programming context Cθ, i.e. a context such that
ACCθ(kb) contains only the minimal model of kb over the constants in
Ui, and Di,θ = Dθ,i = Di,i. (ii) Apply Observer to import from Ci to
Cθ all instances of the predicates necessary to define p. (iii) Take kbθ to
be the definition of p. (iv) Apply Observer to export p from Cθ to Ci.

Proposition 2. Let predicate p be defined in context Cθ by application of Fix-
point definition and S = {Sj}j∈I be an equilibrium of the corresponding MCS.

Define I to be the restriction of Si to the Herbrand base of kbθ (with constants
in Ui). Then Sθ ⊆ I.

In particular, this pattern allows us to view deductive databases as MCSs
– context Ci is the database, context Cθ is the view, and bridge rules connect
them.

In general, it can happen that I contains more information about p; this can
be avoided by applying Observer to both p and ¬p in the last step, but this
can easily lead to inconsistency if Ci proves some p(t) that is not derived by Cθ.

This construction works at the level of the instances – we cannot reason
abstractly about properties of defined concepts, as individuals outside the im-
port domain are never “carried over” by bridge rules. This is a necessary evil –
otherwise, one easily gets undecidability of reasoning in the resulting MCS.

Example 1. Let C1 be a context for a decidable fragment of first-order logic
where there are binary predicates R, Rt and S, ACC1(kb) is the set of logical
consequences of kb, and kb1 contains the axiom ∀x, y(Rt(x, y) → S(x, y)) to-
gether with some instances of R (but none of Rt). The goal is to have Rt be
the transitive closure of R, but this is not first-order definable. Application of
Fixpoint definition defines a logic programming context C2, where kb2 de-
fines Rt as the transitive closure of R in the usual way, and contains no other
rules. Then we add the two bridge rules (2 : R(X,Y )) ← (1 : R(X,Y )) and
(1 : Rt(X,Y )) ← (2 : Rt(X,Y )) to the resulting MCS. In this way, in every
equilibrium {S1, S2} of {C1, C2} the semantics of Rt in S1 will coincide with the



transitive closure of R in S1 on named individuals. However, S1 does not nec-
essarily satisfy ∀x, y(R(x, y) → S(x, y)): it can happen that R(c1, c2) holds for
individuals c1 and c2 that are not interpretations of constants in C1’s (syntactic)
domain, and the semantics of the bridge rules can not guarantee that Rt(c1, c2),
and hence S(c1, c2), holds.

A generalization of this mechanism is the more encompassing problem of
defining a predicate in one context by means of a construct only available in
other contexts. Typical examples include: description logic contexts, where con-
cept/role constructors are restricted to guarantee decidability and complexity
bounds on reasoning; relational databases, where no definitional mechanisms
exist; or impredicative definitions in first-order contexts. We can achieve this by
means of a similar construction: export the instances of the predicates required
for the definition into a context with the desired ability, write the definition
in that context, and import the instances of the defined predicate back to the
original context. Whether negations of predicates should be observed depends
on the particular application.

Pattern External definition.

Problem. In context Ci, we want to define a predicate p by means of a
construct that is only available in context Cj .

Solution. (i) ExtendDi,j andDj,i withDj,j . (ii) Apply Observer to import
all instances of the necessary predicates [and their (default) negations]
from Ci to Cj . (iii) Define p in kbj . (iv) Apply Observer to export p
[and ¬p] from Cj to Ci.

Proposition 3. Let predicate p be defined in context Ci by application of Ex-
ternal definition and S be an equilibrium of the corresponding MCS. Define
I and J to be the restrictions of Si to the language of Cj and of Sj to the lan-
guage of Ci, respectively. Then p(t) ∈ I whenever p(t) ∈ J , with the converse
implication holding if all negations are also being observed.

These two patterns fit well with terminological knowledge bases, where con-
cepts are defined in terms of other concepts whose definitions (or instances) may
be provided by an external entity. This construction works very nicely if Ci does
not allow individuals outside the import domain, namely if Ci is a relational or
deductive database, or a logic program.

Another important concern when designing systems is that of querying a con-
text or group of contexts subject to variation minimizing the necessary changes
to the contexts querying them. This variation can happen either because that
context’s contents are expected to change often, or because one does not want
to know explicitly which context is being queried when writing bridge rules. (A
concrete example will be presented in the next section.) This encapsulation can
be achieved by means of the following pattern, which generalizes Observer.



Pattern Group encapsulation.

Problem. Contexts C1, . . . , Ck should be encapsulated, i.e. other contexts
should not include queries (i : p) in the bodies of their bridge rules, for
i = 1, . . . , k.

Solution. (i) Define functions σi : Σi → ΣI and create a new interface con-

text CI with UI =
⋃k
i=1 Ui, KBI =

{⋃k
i=1 σi(kbi) | kbi ∈ KBi

}
, kbI = ∅,

BSI = KBI , ACCI(kb) = {kb}, and DI,i = Ui for i = 1, . . . , k. (ii) For
every relational symbol p ∈ Σi, apply Observer to make σi(p) in CI
an observer of p. (iii) In every other context, instead of writing (i : p)
in the body of a bridge rule, write (I : σi(p)).

Proposition 4. Let M be an MCS where CI is defined by application of Group
encapsulation. Define M ′ by removing CI from M and replacing every rule r
with all rules obtained from r by replacing each query (I : q) with a query (i : p)
for which σi(p) = q. Then:

1. If S is an equilibrium of M , then SI =
⋃k
i=1{σi(p)(t) | p(t) ∈ Si}.

2. S is an equilibrium of M iff S \ SI is an equilibrium of M ′.

This pattern can be made more general by also considering queries of the
form not(i : p). Removing the restriction kbI = ∅ we obtain a more powerful
design pattern where the interface context can implement algorithms to decide
which contexts to query on what. A more interesting possibility would be to
allow a limited form of second-order bridge rules, so that other contexts can
query CI and use the result to know which context to query on which symbol.

This kind of approach has been tackled in [19], but the second-order no-
tation therein is an abbreviation for all closed instances of a rule – solving the
presentation problem, but not the practical one. Higher-order variables in bridge
rules are considered in the schematic contexts of [11], but within a more general
setting where they are used as placeholders for contexts that are not known a
priori and may change over time. Our tentative proposal is to let bridge rules
use higher-order variables that serve as predicate names or context identifiers
(formally numbers, but in practice URLs), with a requirement that their first
occurrence in the body of a rule must be positive and in an argument position.
This would allow implementation of indirection-style techniques, with interface
contexts serving as mediators indicating what queries to pose to which contexts.

Pattern Indirection.

Problem. We want to protect an MCS from variations in bridge rules that
include atoms where both the context being queried and the predicate
in the query may change with time.

Solution. (i) Create an interface context CI implementing the algorithm to
decide which contexts should be queried and what the predicate names
in actual queries should be. (ii) In every rule with expectable variations,
include a query to CI whose answer provides all required information,
and use the result in subsequent literals in the body of the rule.



The proposal of having higher-order variables in bridge rules as first-class
citizens would allow us to have the best of both worlds: the number of actual
rules would be kept small, and the configuration algorithm of [11] can be seen
as a particular implementation of the interface context. We will return to this
issue at the end of the next section.

5 Applications to ontology manipulation

This section discusses specific mechanisms to deal with MCSs that contain on-
tologies as contexts. Due to their open-world semantics, this kind of knowl-
edge bases brings specific challenges. We consider an ontology to be a particular
knowledge base whose underlying logic is a description logic.

Definition 1. An ontology O based on description logic L induces the context
Ctx(O) = 〈L,O, ∅, UL〉, with L = 〈KBL,BSL,ACCL, ΣL〉 defined as follows: KBL
contains all well-formed knowledge bases of L; BSL contains all sets of literals in
the language of L; ACCL(kb) is the singleton set containing the set of kb’s known
consequences (positive and negative); and ΣL is the signature underlying L.

Belief sets (the elements of BSL) need not be categorical: they may contain
neither C(a) nor ¬C(a) for particular C and a. This gives ontologies their typical
open-world semantics. For this reason, the only element of ACCL(kb) may not be
a model of kb. This is in contrast with [3], where ACCL(kb) contains all models
of kb (see Example 2 below).

Default reasoning. Default rules can be encoded in dl-programs [13]. This con-
struction can be simplified in the framework of MCSs.

A default rule r has the form α1, . . . , αk : β1, . . . , βn/γ, where all αi, βj and γ
are literals, with semantics: if, for some instantiation θ of the free variables in r,
all αiθ hold and it is consistent to assume that all βjθ hold, then γθ is inferred.
Besides Reiter’s original semantics [24] based on extensions – theories that are
fixpoints w.r.t. default rules – many other semantics have been proposed [1].

Pattern Default rule.

Problem. Context Ci should include default rule α1, . . . , αk : β1, . . . , βn/γ.
Solution. Include (i : γ) ← (i : α1), . . . , (i : αk), not(i : β1), . . . , not(i : βn)

in bri.

The standard default semantics corresponds to minimal equilibria – equilibria
whose belief sets are not proper supersets of those in any other equilibria.

Proposition 5. Let O be an ontology and Γ be a set of default rules in the
language of O. Let M be the MCS with a single context Ctx(O) and bridge rules
obtained by applying Default rule to the rules in Γ . Then S is a minimal
equilibrium of M iff S is an extension of O and Γ .

Corollary 1. If: for every extension E and rule α1, . . . , αk : β1, . . . , βn/γ ∈ Γ ,
αi ∈ E iff O proves αi; then all equilibria of M are extensions of O and Γ .



In particular, if the rules in Γ are prerequisite free [5] (i.e. k = 0), then every
equilibrium of M corresponds to an extension of O and Γ , and conversely. This
is interesting in practice, as it corresponds to many useful applications such as
the modeling of closed-world reasoning by means of default rules [5]. For this
correspondence to hold, however, it is essential that Ctx(O) be defined as above,
and not by having the usual models-as-belief-sets construction of [3].

Example 2. Suppose thatO is the ontology consisting of the single formula C(a)t
C(b). Then O’s models contain at least one of C(a) or C(b). Since none of these is
guaranteed to hold in all models, ACCL(O) = ∅. Adding closed-world semantics
to C by means of the translated default rule (1 : ¬C(X))← not(1 : C(X)) yields
two equilibria, corresponding to the two extensions of the corresponding default
rule: {C(a),¬C(b)} and {C(b),¬C(a)}. With the approach from [3], ACCL(O)
contains the three models {C(a),¬C(b)}, {C(b),¬C(a)} and {C(a),C(b)}. The
bridge rule above has no effect, and adding it to the corresponding MCS still
yields three equilibria, one of which does not correspond to an extension.

The pattern Default rule generalizes default rules to MCSs not generated
from an ontology. Furthermore, allowing literals from other contexts in the body
of rules we can encode more general default rules. We can then see minimal
equilibria for MCSs with applications of this pattern as generalized default ex-
tensions, systematically approximating closed-world reasoning in a standard way.

To obtain true closed-world reasoning (so that the MCS in Example 2 would
be inconsistent, as O is inconsistent with the closed-world assumption) one could
define ACCi as a binary operator, allowing different treatment of the original
belief state and the conclusions derived from the application of bridge rules.

Working with alignments. Another problem that occurs quite often in practice is
that of reasoning within the merge of two ontologies without actually construct-
ing the merged ontology. An alignment [25] between two ontologies O1 and O2 is
a set A of atoms t(P,Q) where P is a concept (or role) from O1, Q is a concept
(resp. role) from O2, and t ∈ {subsumed, subsumes, equivalent, disjoint}.

Definition 2. Let O1 and O2 be two ontologies and A be an alignment between
them. The MCS induced by A is M(O1,O2,A), containing Ctx(O1) and Ctx(O2)
with the following bridge rules: for each triple subsumed(P,Q) ∈ A,

(2 : Q(X))← (1 : P (X)) and (1 : ¬P (X))← (2 : ¬Q(X)) (2)

if P , Q are concepts; for each triple disjoint(P,Q) ∈ A,

(2 : ¬Q(X))← (1 : P (X)) and (1 : ¬P (X))← (2 : Q(X)) (3)

if P , Q are concepts; or the binary counterparts of these, if P , Q are roles. The
triple subsumes(P,Q) is treated as subsumed(Q,P ), and equivalent(P,Q) is seen
as the conjunction of subsumed(P,Q) and subsumed(Q,P ).



Again this achieves a merge of O1 and O2 at the level of the individuals in
the import domain – we cannot reason e.g. about the potential subsumption of
a concept from O1 by a concept from O2. Still, this construction is useful as it
avoids the extra step of constructing a new ontology.

There is a more practical aspect of this approach that we can ameliorate:
when querying M(O1,O2,A), one must know where the concept or role in the
query originates from. This issue can be bypassed by applying Group Encap-
sulation to hide the two contexts in this MCS.

Pattern Alignment.

Problem. We want to reason about the instances in the merge of two on-
tologies O1 and O2 w.r.t. a given (consistent) alignment A, without
building the merged ontology.

Solution. Apply Group Encapsulation to M(O1,O2,A).

This design pattern assumes that A is consistent; however, it may happen
that A is not guaranteed to be consistent. To avoid inconsistencies at the level
of the instances, we may use the more robust technique from [22], taking the
maximal consistent merge of O1 and O2 by writing the alignment triples as
default rules. This translates to constructing M ′(O1,O2,A) as M(O1,O2,A)
but replacing the bridge rules with those obtained by Default Rule, protecting
the context from the introduction of (explicit) inconsistencies. For example, if C
and D are concepts, then subsumed(C,D) would yield

(2 : D(X))← (1 : C(X)), not (2 : ¬D(X))

(1 : ¬C(X))← (2 : ¬D(X)), not (1 : C(X))

Example 3. Suppose O1 has the instance axioms C(a) and C(b), O2 only has the
axiom ¬D(a)t¬D(b), and A contains subsumed(C,D). Then M ′(O1,O2,A) has
two equilibria: 〈{C(a),C(b)}, {D(a),¬D(b)}〉 and 〈{C(a),C(b)}, {¬D(a),D(b)}〉.
In both, the semantics of D is maximal (it includes as many instances of C as it
may consistently do), but none satisfies the alignment axiom C v D since A is
inconsistent with O1 and O2.

There is a drawback to this construction: the number of bridge rules grows
with the number of concepts and roles in O1 and O2. It would be useful to be able
to write these bridge rules in a second-order language, e.g. the first rule in (2)
would become (2 : D(X))← (0 : subsumes(C,D)), (1 : C(X)) where context C0

is simply A. The interesting aspect is that context C0 can be seen as a relational
(first-order) context – it is the usage of its “constants” as predicate names in the
bridge rules that gives them a higher-order nature. We are currently developing
a formal theory of MCSs with higher-order rules.

6 Conclusions

In this paper we addressed several issues related to the flow of information
between the several components of a relational MCS, presenting general-purpose
design patterns that systematize the constructs supporting this communication.



Due to the specific semantics of bridge rules, these constructions only affect
the individuals in the import domains of the contexts where new predicates are
defined. This apparent limitation is essential to avoid fundamental inconsistency
and undecidability problems: the main advantage of these design patterns is
precisely allowing one to mimic extending the expressiveness of a context for
one particular definition in a way that, in its full generality, would render the
context inconsistent or undecidable.

We also discuss constructions adapted to working with ontologies, introduc-
ing a new definition of context generated from an ontology, fundamentally dif-
ferent from previous work [3], capturing the nature of the open- vs closed-world
semantics in the form required to allow fine-tuning of the particular interpreta-
tion for specific predicates.

The development of these design patterns also suggests syntactic extensions
to MCSs: making the consequence operator binary, allowing different treatment
of data from the knowledge base and data inferred from application of bridge
rules, in order to have true closed-world reasoning; and higher-order bridge rules,
where the result of queries to one context can be used to decide which predicates
to use on subsequent queries to other contexts, or even to which context those
queries should be made. The last construct has been used in the form of meta-
level notation, as an abbreviation for a set of rules, in previous work [11, 19]. We
are currently working on making these two constructions first-class citizens of
MCSs, allowing them in the syntax of bridge rules and studying their semantics.

References

1. G. Antoniou. A tutorial on default logics. ACM Computing Surveys, 31(3):337–359,
1999.

2. S. Antoy and M. Hanus. Functional logic design patterns. In Z. Hu and
M. Rodŕıguez-Artalejo, editors, FLOPS 2002, volume 2441 of LNCS, pages 67–
87. Springer, 2002.

3. G. Brewka and T. Eiter. Equilibria in heterogeneous nonmonotonic multi-context
systems. In AAAI2007, pages 385–390. AAAI Press, 2007.

4. G. Brewka, T. Eiter, M. Fink, and A. Weinzierl. Managed multi-context systems.
In T. Walsh, editor, IJCAI, pages 786–791. IJCAI/AAAI, 2011.

5. G. Brewka, I. Niemel, and M. Truszczyński. Nonmonotonic reasoning. In F. van
Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Represen-
tation, chapter 6, pages 239–284. Elsevier, 2008.

6. J. de Bruijn, M. Ehrig, C. Feier, F. Mart́ıns-Recuerda, F. Scharffe, and M. Weiten.
Ontology mediation, merging, and aligning. In J. Davies, R. Studer, and P. War-
ren, editors, Semantic Web Technologies: Trends and Research in Ontology-based
Systems. John Wiley & Sons, Ltd, Chichester, UK, 2006.

7. R. Cóbe and R. Wassermann. Ontology merging and conflict resolution: Inconsis-
tency and incoherence solving approaches. In Workshop on Belief change, Non-
monotonic reasoning and Conflict Resolution (BNC), 2012.

8. L. Cruz-Filipe, G. Gaspar, and I. Nunes. Information flow within relational multi-
context systems. Technical Report 2014;03, Faculty of Sciences of the University
of Lisbon, September 2014. Available at http://hdl.handle.net/10455/6900.



9. L. Cruz-Filipe, R. Henriques, and I. Nunes. Description logics, rules and multi-
context systems. In K. McMillan, A. Middeldorp, and A. Voronkov, editors, LPAR-
19, volume 8312 of LNCS, pages 243–257. Springer, December 2013.

10. L. Cruz-Filipe, I. Nunes, and G. Gaspar. Patterns for interfacing between logic
programs and multiple ontologies. In Joaquim Filipe and Jan Dietz, editors,
KEOD2013, pages 58–69. INSTICC, 2013.

11. M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Dynamic distributed non-
monotonic multi-context systems. In G. Brewka, V. Marek, and M. Truszczynski,
editors, Nonmonotonic Reasoning, Essays Celebrating its 30th Anniversary, vol-
ume 31 of Studies in Logic. College Publications, 2011.

12. Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation by ontology
merging and automated reasoning. In Ontologies for Agents: Theory and Experi-
ences, pages 73–94. Springer, 2005.

13. T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics
for description logic programs in the semantic Web. ACM Transactions on Com-
putational Logic, 12(2), 2011. Article Nr 11.

14. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming. In
L.P. Kaelbling and A. Saffiotti, editors, IJCAI2005, pages 90–96. Professional Book
Center, 2005.

15. M. Fink, L. Ghionna, and A. Weinzierl. Relational information exchange and
aggregation in multi-context systems. In J.P. Delgrande and W. Faber, editors,
LPNMR, volume 6645 of LNCS, pages 120–133. Springer, 2011.

16. M. Fowler. Patterns of Enterprise Application Architecture. Addison–Wesley, 2002.
17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison–Wesley, 1995.
18. A. Gangemi and V. Presutti. Ontology design patterns. In S. Staab and R. Studer,

editors, Handbook on Ontologies, International Handbooks on Information Sys-
tems, pages 221–243. Springer, 2009. 2nd edition.

19. M. Homola, M. Knorr, J. Leite, and M. Slota. MKNF knowledge bases in multi-
context systems. In M. Fisher, L. van der Torre, M. Dastani, and G. Governatori,
editors, CLIMA, volume 7486 of LNCS, pages 146–162. Springer, 2012.

20. J. Kim, M. Jang, Y. Ha, J. Sohn, and S. Lee. MoA: OWL ontology merging
and alignment tool for the semantic web. In M. Ali and F. Esposito, editors,
IEA/AIE2005, volume 3533 of LNCS, pages 722–731. Springer, 2005.

21. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA – a MApping FRAme-
work for Distributed Ontologies. In A. Gómez-Pérez and V.R. Benjamins, editors,
EKAW2002, volume 2473 of LNCS, pages 235–250. Springer, 2002.

22. T.A. Meyer, K. Lee, and R. Booth. Knowledge integration for description logics.
In M.M. Veloso and S. Kambhampati, editors, AAAI2005, pages 645–650. AAAI
Press / The MIT Press, 2005.

23. B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the
ACM, 57, June 2010. Article Nr 30.

24. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
25. F. Scharffe, O. Zamazal, and D. Fensel. Ontology alignment design patterns.

Knowledge and Information Systems, pages 1–28, April 2013.
26. L. Sterling. Patterns for Prolog programming. In A.C. Kakas and F. Sadri, editors,

Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert
A. Kowalski, Part I, volume 2407 of LNCS, pages 374–401. Springer, 2002.


