
Twenty-Five Comparators is Optimal when Sorting
Nine Inputs (and Twenty-Nine for Ten)

Michael Codish
and Michael Frank

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel
{mcodish,frankm}@cs.bgu.ac.il

Luı́s Cruz-Filipe
and Peter Schneider-Kamp

Department of Mathematics and Computer Science
University of Southern Denmark

Odense, Denmark
{lcf,petersk}@imada.sdu.dk

Abstract—This paper describes a computer-assisted non-
existence proof of 9-input sorting networks consisting of 24
comparators, hence showing that the 25-comparator sorting
network found by Floyd in 1964 is optimal. As a corollary,
we obtain that the 29-comparator network found by Waksman
in 1969 is optimal when sorting 10 inputs. This closes the
two smallest open instances of the optimal-size sorting network
problem, which have been open since the results of Floyd and
Knuth from 1966 proving optimality for sorting networks of up to
8 inputs. The proof involves a combination of two methodologies:
one based on exploiting the abundance of symmetries in sorting
networks, and the other based on an encoding of the problem
to that of satisfiability of propositional logic. We illustrate that,
while each of these can single-handedly solve smaller instances
of the problem, it is their combination that leads to the more
efficient solution that scales to handle 9 inputs.

I. INTRODUCTION

General-purpose sorting algorithms are based on comparing,
and possibly exchanging, pairs of inputs. If the order of
these comparisons is predetermined by the number of inputs
to sort and does not depend on their concrete values, then
the algorithm is said to be data-oblivious. Such algorithms
are well suited for e.g. parallel sorting or secure multi-party
computations.

Sorting networks are a classical formal model for such
algorithms [9], where n inputs are fed into networks of
n channels, which are connected pairwise by comparators.
Each comparator takes the two inputs from its two channels,
compares them, and outputs them sorted back to the same
two channels. Consecutive comparators can be viewed as
a “parallel layer” if no two touch the same channel. A
comparator network is a sorting network if the output on the
n channels is always the sorted sequence of the inputs.

Ever since sorting networks were introduced, there has
been a quest to find optimal sorting networks for specific
given numbers of inputs: optimal size (minimal number of
comparators) as well as optimal depth (minimal number of
layers) networks. In this paper we focus on optimal-size
sorting networks.

Optimal-size and optimal-depth sorting networks for n ≤ 8
can already be found in Section 5.3.4 of [9]. For optimal
depth, in 1991 Parberry [12] proved optimality results for

n = 9 and n = 10, which in 2014 were extended by Bundala
and Závodný [4] to 11 ≤ n ≤ 16. Both approaches are
based on breaking symmetries among the first (two) layers
of comparators.

For optimal size, the case of n = 9 has been the smallest
open problem ever since Floyd and Knuth’s result for optimal-
size sorting networks [8] in 1966. At first, this might be
surprising: is optimal size really harder than optimal depth?
However, a comparison of the sizes of the search spaces
for the optimal-size and optimal-depth problems for n = 9
sheds some light on the issues. The smallest known sorting
network for 9 inputs has size 25. For proving/disproving its
optimality, we need to consider all comparator networks of 24
comparators. There are 36 = (9 × 8)/2 possibilities to place
each comparator on 2 out of 9 channels. Thus, the search
space for the optimal-size problem on 9 inputs consists of
(36)

24 ≈ 2.2× 1037 comparator networks.
In comparison, to show that the optimal-depth sorting net-

work for 9 inputs is 7, one must show that there are no sorting
networks of depth 6. The number of ways to place comparators
in an n channel layer corresponds to the number of matchings
in a complete graph with n nodes [4], and for n = 9 this
number is 2,620. Thus, the search space for the optimal-depth
problem on 9 inputs is “just” 2,6206 ≈ 3.2× 1020.

For the optimal-depth problem, all recent attempts we are
aware of ([11], [4]) have used encodings to the satisfiability
problem of propositional logic (SAT). Likewise, in this paper
we describe a SAT encoding for the optimal-size problem.
This SAT encoding was able to reproduce all known results
for n ≤ 6. Unfortunately, the SAT encoding alone did not
scale to n = 9, with state-of-the-art SAT solvers making no
discernible progress even after weeks of operation.

To solve the open problem of optimality for n = 9, we
had to invent symmetry breaking techniques for reducing the
search space to a manageable size. The general idea is similar
to the one taken in [4], [6] for the optimal-depth sorting
network problem, but involves the generation of minimal sets
of non-redundant comparator networks for a given number of
comparators, one comparator at a time. Redundant networks
(i.e., networks that sort less than others of same size or that are
equivalent to another network already in the set) are pruned.

For each pruned network, a witness is logged, which can be
independently verified.

For n = 9, we used this method, which we call generate-
and-prune, to reduce the search space from approx. 2.2×1037

to approx. 3.3× 1021 comparator networks, all of which can
be obtained by extending one of 914,444 representative 14-
comparator networks. This process took a little over one week
of computation, and all of the resulting problems could be
handled efficiently by our SAT encoding in less than 12 hours
(in total). All computations, if not specified otherwise, were
performed on a cluster with a total of 144 Intel E8400 cores
clocked at 3 GHz each, able to run 288 parallel threads.

The generate-and-prune method can also be used in isolation
to decide this open problem: amongst the set of all comparator
networks (modulo equivalence and non-redundancy) there is
only one single sorting network, and it is of size 25. To ob-
tain this result, we continued running the generate-and-prune
method for five more days in order to check the validity of
the results obtained through the SAT encoding independently,
thereby instilling a higher level of trust into the computer-
assisted proof. This paper presents both techniques: the first
one based completely on the generate-and-prune approach,
and the second, hybrid, method combining generate-and-prune
with SAT encoding. It is the second approach that solves the
nine-input case in the least amount of time, and also shows
the potential to scale.

Once determining that 25 comparators is optimal for 9
inputs, we move on to consider the case of 10 inputs. Using
a result of van Voorhis from 1971 [15], we know that the
minimal number of comparators for sorting 10 inputs is at
least 4 larger than for 9 inputs. As a sorting network with 29
comparators on ten inputs (attributed to Waksman) is known
since 1969 [9], our result implies its optimality.

The next section introduces the relevant concepts on sorting
networks together with some notation. The generate-and-prune
algorithm is introduced in Section III, while its optimizations
are discussed in detail in Section IV. The SAT encoding is
explained and analyzed in Section V. In Section VI we reflect
on the validity of the proof, and we conclude in Section VII.

II. PRELIMINARIES ON SORTING NETWORKS

A comparator network C with n channels and size k is a
sequence of comparators C = (i1, j1); . . . ; (ik, jk) where each
comparator (i`, j`) is a pair of channels 1 ≤ i` < j` ≤ n. The
size of a comparator network is the number of its comparators.
If C1 and C2 are comparator networks with n channels, then
C1;C2 denotes the comparator network obtained by concate-
nating C1 and C2; if C1 has m comparators, it is a size-m
prefix of C1;C2. An input ~x = x1 . . . xn ∈ {0, 1}n propagates
through C as follows: ~x0 = ~x, and for 0 < ` ≤ k, ~x` is the
permutation of ~x`−1 obtained by interchanging ~x`−1i`

and ~x`−1j`

whenever ~x`−1i`
> ~x`−1j`

. The output of the network for input
~x is C(~x) = ~xk, and outputs(C) =

{
C(~x)

∣∣ ~x ∈ {0, 1}n }
.

The comparator network C is a sorting network if all
elements of outputs(C) are sorted (in ascending order).

(a)

(b)

The zero-one principle (e.g. [9]) implies
that a sorting network also sorts se-
quences over any other totally ordered
set, e.g. integers. Images (a) and (b)
on the right depict sorting networks on
4 channels, each consisting of 6 com-
parators. The channels are indicated as horizontal lines (with
channel 4 at the bottom), comparators are indicated as vertical
lines connecting a pair of channels, and input values are
assumed to propagate from left to right. The sequence of com-
parators associated with a picture representation is obtained by
a left-to-right, top-down traversal. For example the networks
depicted above are: (a) (1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3)
and (b) (1, 2); (3, 4); (2, 3); (1, 2); (3, 4); (2, 3).

The optimal-size sorting network problem is about finding
the smallest size, S(n), of a sorting network on n channels.
In [8], Floyd and Knuth present sorting networks of optimal
size for n ≤ 8 and prove their optimality. Until today, the
minimal size S(n) of a sorting network on n channels was
known only for n ≤ 8; for greater values of n, there are upper
bounds on S(n) obtained e.g. by the systematic construction
of Batcher [3], or by concrete examples of sorting networks
(see [9]). The previously best known upper and lower bounds
for S(n) are given in [8] and reproduced in the first two
lines of the table in Figure 1 below. The last line shows the
contribution of this paper, i.e., the improved lower bounds for
n ≥ 9, matching the upper bounds for n = 9 and n = 10.

The following lemma due to van Voorhis [15] can be used
to establish lower bounds for S(n).

Lemma 1. S(n+ 1) ≥ S(n) + dlog2 ne for every n ≥ 1.

This lemma was applied in [8] to derive the values of S(6)
and S(8) from those of S(5) and S(7), respectively. Likewise,
we apply Lemma 1 to obtain the value of S(10) from our
proof that S(9) = 25 and also improve the values for S(n)
for n > 10, as indicated in the third line of the above table.

Crucial to our approach is the exploitation of symme-
tries in comparator networks, and these can be expressed
in terms of permutations on channels. Given an n chan-
nel comparator network C = (i1, j1); . . . ; (ik, jk), and
a permutation π on {1, . . . , n}, π(C) is the sequence
(π(i1), π(j1)); . . . ; (π(ik), π(jk)). Formally, π(C) is not a
comparator network, but rather a generalized comparator net-
work. A generalized comparator network is defined like a
comparator network, except that it may contain comparators
(i, j) with i > j, which order their outputs in descending
order, instead of ascending. It is well-known (e.g. Exer-
cise 5.3.4.16 in [9]) that generalized sorting networks are no
more powerful than sorting networks: a generalized sorting
network can always be untangled into a (standard) sorting
network with the same size and depth.

We write C1 ≈ C2 (C1 is equivalent to C2) iff there is a
permutation π such that C1 is obtained by untangling the (gen-
eralized) comparator network π(C2). The two networks (a)
and (b) above are equivalent via the permutation (1 3)(2 4) and
the application of the construction for untangling described

2

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
upper bound 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60
old lower bound 0 1 3 5 9 12 16 19 23 27 31 35 39 43 47 51
new lower bound 25 29 33 37 41 45 49 53

Fig. 1. Previously best known upper and lower bounds as well as our contributions yielding improved lower bounds (last row).

in [9] (Exercise 5.3.4.16).
Another important and related concept is that of a complete

set of filters for the optimal-size sorting network problem.

Definition 1. A (finite) set, F , of comparator networks on n
channels is a complete set of filters for the optimal size sorting
network problem on n channels if there exists an optimal size
sorting network on n channels of the form C;C ′ for some
C ∈ F .

For any given n there always exists a complete set of filters:
simply take the set of all comparator networks on n channels.
In this paper we will focus on the search for “small” complete
sets in which all filters are of the same size.

III. THE GENERATE-AND-PRUNE APPROACH

In this section we consider the task of generating the
set of all n-channel comparator networks consisting of k
comparators. Given this set one could, at least conceptually,
inspect the networks one-by-one to determine if there exists
an n-channel, k-comparator, sorting network. Obviously, such
a naive approach is combinatorically infeasible. With n chan-
nels, there are n(n − 1)/2 possibilities for each comparator,
and thus incrementally adding comparators would produce
(n(n − 1)/2)k networks with k comparators. For n = 9,
aiming to prove that there does not exist a sorting network
with 24 comparators would mean inspecting approximately
2.25×1037 comparator networks. Moreover, checking whether
a comparator network is a sorting network is known to be a
co-NP complete problem [13].

We propose an alternative approach, generate-and-prune,
which is driven just as the naive approach, but takes advantage
of the abundance of symmetries in comparator networks. It is
best described after introducing a definition and a lemma.

Definition 2. Let Ca and Cb be comparator networks
on n channels. If there exists a permutation π such that
π(outputs(Ca)) ⊆ outputs(Cb) then we denote this as Ca ≤π
Cb and we say that Ca subsumes Cb. We also write Ca � Cb to
indicate that there exists a permutation π such that Ca ≤π Cb.

Subsumption is reflexive, transitive, and contains ≈.

Lemma 2. Let Ca and Cb be comparator networks on n
channels, both of the same size, and such that Ca � Cb. Then,
if there exists a sorting network Cb;C of size k, there also
exists a sorting network Ca;C ′ of size k.

Proof. Under the hypotheses, there exists a permutation π
such that Ca ≤π Cb. Untangling Cb;π

−1(C) into Cb;C
′

yields the desired sorting network (see the proof of the similar
Lemma 7 in [4] for details).

Lemma 2 implies that, when adding a next comparator in
the naive approach, we do not need to consider all possible
positions to place it. In particular, we can omit networks which
are subsumed by others.

The generate-and-prune algorithm, depicted in Figure 2, is
as follows, where Rnk and Nn

k are sets of n channel networks
each consisting of k comparators. First, initialize the set Rn0
to consist of a single element: the empty comparator network.
Then, repeatedly apply two types of steps, Generate and
Prune, to add comparators in all possible ways incrementally,
and then remove those subsumed by others.

1) Generate: Given the set Rnk , derive the set Nn
k+1 con-

taining all nets obtained by adding one extra comparator
to each element of Rnk in all possible ways.

2) Prune: Given the set Nn
k+1, derive the set Rnk+1 ob-

tained by pruning Nn
k+1 to remove networks subsumed

by those which are not pruned.
The pruning step can thus be described as keeping only one

network producing each minimal set of outputs (under permu-
tation). In other words, it keeps one representative of each
equivalence class of minimal networks w.r.t. �, independently
of the order in which the subsumption tests are made. A direct
consequence of Lemma 2 and the construction of Nn

k and Rnk
is the following lemma.

Lemma 3. For every n and k, the sets Nn
k and Rnk are

complete sets of filters on n channels.

Note that if a set of networks includes a sorting network,
then pruning that set will leave precisely one element (a sorting
network).

The Generate and Prune algorithms are both very
simple. However, they operate on huge data sets, consisting of
millions of comparator networks. So, it is the small implemen-
tation details that render them computationally feasible. We

Algorithm Generate.

input: Rn
k ; output: Nn

k+1;
Nn

k+1 = ∅;
Cn = {(i, j) | 1 ≤ i < j ≤ n}
for C ∈ Rn

k and c ∈ Cn do
Nn

k+1 = Nn
k+1 ∪ {C; c};

Algorithm Prune.

input: Nn
k ; output: Rn

k ;
Rn

k = ∅;
for C ∈ Nn

k do
for C′ ∈ Rn

k do
if (C′ � C) mark C;

if (not marked(C))
for C′ ∈ Rn

k do
if (C � C′)
Rn

k = Rn
k \ {C′};

Rn
k = Rn

k ∪ {C};

Fig. 2. The Generate and Prune algorithms.

3

first describe their schematic implementation and then describe
some of their finer details.

The Generate algorithm takes a set, Rnk , of networks, and
adds to each network in the set one new comparator in every
possible way. There are n(n−1)/2 comparators on n channels,
hence the execution time of Generate is O

(
n2 × |Rnk |

)
.

The Prune algorithm basically tests each network from
its input, Nn

k , keeping only those networks which are not
subsumed by any other network encountered so far. These
minimal (w.r.t. subsumption) networks are kept in the set Rnk ,
which after execution of the algorithm contains a complete set
of filters on n channels. The sets Rnk are initially empty, and
then they grow and shrink throughout the run of the algorithm,
until finally containing only minimal elements in the order �.
While theoretically |Rnk | could first grow to nearly |Nn

k | before
collapsing to its final size, experimentation indicates that the
intermediate sizes of Rnk are bounded by its final size. Thus,
the algorithm is posed such that the outer loop is on the
elements of Nn

k , and the inner loop on the current set Rnk .
In this manner, the worst-case behavior of Prune is

O (|Nn
k | × |Rnk | × f(n)), where f(n) is the cost of a single

subsumption test. A naive implementation tests if Ca � Cb
maintaining the sets Sa = outputs(Ca) and Sb = outputs(Cb)
and iterating over the space of n! permutations to test if there
exists a permutation π such that π(Sa) ⊆ Sb.

These very simple algorithms are straightforward to imple-
ment, test and debug. Our implementation is written in Prolog
and can be applied to reconstruct all of the known values for
Sn for n ≤ 6 in under an hour of computation on a single
core. The sizes of the largest sets Rnk for n = 6, 7, 8 are∣∣R6

6

∣∣ =
∣∣R6

7

∣∣ = 53,
∣∣R7

9

∣∣ = 678 and
∣∣R8

11

∣∣ = 16,095; the
values for n = 7, 8 were obtained using the optimized version
of our implementation described in the next sections.

We analyze the case n = 7 in some detail. There are
21 possibilities for the first comparator (i, j) on a 7-channel
comparator network; however, these are all equivalent by
means of the permutation (i 1)(j 2). Hence

∣∣R7
1

∣∣ = 1. We
assume the single representative to be the network (1, 2). The
second comparator can again be one of the same 21; but
there are only four possibilities that are not equivalent: either
it is again (1, 2), or it is of the form (1, j) with j 6= 2,
or of the form (2, j) with j > 2, or of the form (i, j)
with 2 < i < j. The first possibility yields a comparator
network that is subsumed by any of the others. For the other
three possibilities, suitable permutations can map the second
comparator to (1, 3), (2, 3) or (3, 4), respectively. Therefore,∣∣R7

2

∣∣ = 3, and the representatives can be chosen to be net
(1, 2); (1, 3), net (1, 2); (2, 3) and net (1, 2); (3, 4). A similar
reasoning shows that there are only seven possibilities for the
three-comparator networks.

IV. IMPLEMENTING GENERATE-AND-PRUNE

This section describes details of the implementation of the
Generate and Prune algorithms and the optimizations that,
in the end, make it possible to compute the precise value of
S(9) = 25. Here we keep in mind that the values for n2,

2n, and n! where n = 9 are constants: 81, 512, and 362,880.
On the other hand, the number of elements in

∣∣N9
24

∣∣ could
potentially grow to more than 1037.

A. Representing comparator networks

The inner loops in the Prune algorithm involve subsump-
tion tests on pairs of networks. We implement these in terms
of the search for a permutation under which the outputs of the
one network are a subset of the outputs of the other. Moreover,
as each network is tested for subsumption multiple times, we
choose to represent a comparator network, explicitly, together
with the set of its outputs. It is convenient to represent the
output binary sequence ~x = x1 . . . xn by the corresponding
binary number (least significant bit first), #~x. With this
representation, xi = (#~x/2i−1 mod 2), where ‘/’ stands for
integer division, and the result of exchanging positions i and j
in ~x translates to computing #~x−2i−1+2j−1 when xi = 1 and
xj = 0, the only case when such an exchange is necessary.
These operations can be implemented extremely efficiently,
e.g. using shifts.

As an example, consider the comparator network C =
(1, 2); (3, 4); (1, 3) on four channels, which has outputs(C) =
{0000, 0001, 0011, 0100, 0110, 0101, 0111, 1111}. This is rep-
resented as the set {0, 8, 12, 2, 6, 10, 14, 15}. Consider the
output ~x = 0101, for which #~x = 10. We have x1 =
(10/20 mod 2) = 0 and x2 = (10/21 mod 2) = 1, and
likewise x3 = 0 and x4 = 1. Since x2 > x3, applying
the comparator (2, 3) to ~x yields the sequence ~y such that
#~y = #~x− 21 + 22 = 12, namely 0011. In the same way, it
is easy to check that outputs(C; (2, 3)) is represented as the
set {0, 8, 12, 4, 6, 14, 15}.

Given this choice, in Generate, adding a comparator
(i, j) to a network C simply requires applying (i, j) to those
elements #~x of the set of outputs in the representation of C
for which xi > xj . So, the cost of computing output sets
diminishes with each extra comparator, since the sizes of the
output sets decrease with each addition. In the example above,
adding the comparator (2, 3) to the network would change 10
to 12 and 2 to 4.

The Generate algorithm is implemented to produce a
file where each network is tupled with the set of its outputs
(represented as numbers) and some additional information
that is detailed below. Moreover, the elements in these sets
are partitioned according to the number of ones their binary
representation contains, as this facilitates the optimizations
described below. For instance, in the context of the previous
example, we represent C as the following triplet, where W is
described in the next section.

〈C, {{0}, {2, 8}, {6, 10, 12}, {14}, {15}} ,W 〉 (1)

Even though we are adding extra information, exponential
in n, this is still manageable in practice. Case in point, the
largest file encountered in the proof of n = 9 contains N9

15

and is just under 11 GB in size. We need to keep at most two
files at any given point of time: to support pruning of N9

k to
R9
k, and to support extending R9

k to N9
k+1.

4

no. of 1s C1 C2 C3

2
00011
00110
01010

00011
00101
00110
01001

00011
00101
00110

3
00111
01011
01110

00111
01011
01101

00111
01110
10110

Fig. 3. Three 5-channel comparator networks and part of their output sets.

B. Implementing the test for subsumption

We implemented the subsumption test C1 � C2 in Prune
as the search problem of finding a permutation π such that
π(outputs(C1)) ⊆ outputs(C2). For 9 channels, this might
involve considering 362,880 permutations. We illustrate why,
in many cases, it is computationally easy to detect the non-
existence of such a permutation, and how we restrict the search
space considerably in the other cases. This optimization is
crucial to move beyond the case of 6 channels.

Let S1 = P0] . . .] Pn and S2 = Q0] . . .] Qn be two
sets of length-n binary sequences partitioned according to the
number of 1s in the sequences. A basic observation that can be
applied to refine the search for a suitable permutation π is that
π(S1) ⊆ S2 if and only if (π(P0) ⊆ Q0)∧· · ·∧(π(Pn) ⊆ Qn).
Moreover, there are several easy-to-check criteria to determine
that no such π exists. We introduce these through an example.

Figure 3 details three 5-channel comparator networks to-
gether with the sets of their outputs on sequences with
two and three 1s. Focusing on the row detailing the output
sequences with two 1s, it is clear that C2 6� C1. Indeed, any
permutation of outputs(C2), must have four sequences with
two 1s each, and hence π(outputs(C2)) cannot be a subset
of outputs(C1), which has only three sequences with two 1s.
Experiments show that this criterion eliminates over 70% of
the subsumption tests in the application of Prune.

Focusing again on Figure 3, this time on the column
detailing the output sequences with three 1s, it becomes clear
that C1 6� C3. This is because the digit 0 occurs in four
different positions in the sequences for C1, and this will remain
the case when applying any permutation to its elements, but
only in three different positions in the sequences for C3.

Experiments show that this criterion eliminates around 15%
of the subsumption tests that passed the previous criterion.

In order to apply this criterion efficiently, we introduce some
notation. If C is an n-channel comparator network, x ∈ {0, 1},
and 0 ≤ k ≤ n is an integer value, let w(C, x, k) denote the
set of positions i such that there exists a vector x1 . . . xn in
outputs(C) containing k ones, and such that xi = x. The sets
w(C, x, k), for x ∈ {0, 1} and 0 ≤ k ≤ n, are computed when
C is generated and maintained as part of the representation of
C. This is the third element, W , in the triplet of Equation (1).

The information in the sets w(C, x, k) is also helpful in
restricting the search space for a suitable permutation, since

if π(outputs(Ca)) ⊆ outputs(Cb), then π(w(Ca, x, k)) ⊆
w(Cb, x, k) for all x ∈ {0, 1}, 1 ≤ k ≤ n.

Implementing these optimizations in Prune reduces the
computation time for 6 channels by a factor of over 200, and
allows the verification of the known results for n = 7 in a
few minutes and for n = 8 in a few hours. Of the 33 million
subsumption tests performed in the whole run for n = 7,
nearly 28 million were solved by the two criteria explained
above, thus avoiding any search.

C. Avoiding redundant comparators

Let us come back to the operation of incrementally adding
comparators as specified in Generate. In some cases, it is
easy to identify that a comparator is redundant and not to add
it in the first place. Networks obtained by adding a redundant
comparator would anyway be removed by Prune, but that
involves the more expensive subsumption test.

Consider a comparator network of the form C; (i, j);C ′.
We say that (i, j) is redundant if xi ≤ xj for all sequences
x1 . . . xn ∈ outputs(C). This notion of redundant compara-
tors is simpler than the one proposed in Exercise 5.3.4.51
of [9] (credited to R.L. Graham), but equivalent for standard
sorting networks. Since comparator networks are represented
explicitly together with their output sets, this condition is
straightforward to check.

In the loop of Generate, we refrain from adding re-
dundant comparators to the networks being extended, thus
guaranteeing that there are no redundant comparators in Rnk .
Correctness of not adding redundant comparators follows in
the same way as in the context of Exercise 5.3.4.51 of [9].
Implementing this optimization, the values of |Nn

k | drop
significantly, especially as k increases. Typically, the highest
value of |Nn

k | is reduced by more than 40%; subsequent values
drop even more, but their impact on computation time is less
pronounced. As a result, the total execution time for generate-
and-prune is reduced to about one half for each value of n ≤ 8.

The execution of generate-and-prune for n = 9, k ∈
{0, . . . , 25} remains a daunting task. To see this, consider
that the growth of the values of

∣∣N9
k

∣∣ and
∣∣R9

k

∣∣ (which for
k = 14 turned out to be 18,420,674 and 914,444, respectively)
requires more than 10 trillion subsumption checks, each in the
worst-case requiring to check 9! = 362,380 permutations. On
a positive note, the optimizations described up to here allow
the algorithms to be run for n = 9 within the life span of a
human being (more precisely, an expected approx. 9 years of
computation on a single core). In order to reduce this total
execution time of generate-and-prune for n = 9 to a feasible
value, we developed parallelized versions of both algorithms.

In this way, we were able to compute the sets R9
k for

1 ≤ k ≤ 14 in just over one week – more precisely, in 7
days, 17 hours, and 58 minutes – using 144 cores running
288 parallel threads. The reduced set of filters R9

14 contains
914,444 elements, and we turned to the use of a SAT solver
to encode the search for an optimal-size sorting network on
9 channels. This required less than half a day of computation
on 288 threads, as described in the next section.

5

V. THE SAT ENCODING APPROACH

In recent years, Boolean SAT-solving techniques have im-
proved dramatically, and SAT is currently applied to solve
a wide variety of hard and practical combinatorial problems,
often outperforming dedicated algorithms. The general idea is
to encode a hard problem instance µ to a Boolean formula ϕµ,
such that the satisfying assignments of ϕµ correspond to the
solutions of µ. Given such an encoding, a SAT solver can be
applied to solve µ. Recent attempts to attack open instances
of the optimal-depth sorting network problem, e.g. [11], [4],
consider encodings to SAT. However, these encodings do not
readily apply to the optimal-size sorting network problem In
fact, we are not aware of any previous attempts to encode the
optimal-size sorting network problem in SAT.

The encoding we propose in this paper is of size exponential
in the number of channels, n. This is also the case for all
previous SAT encodings for the optimal-depth sorting network
problem. Both of these problems are naturally expressed in
the form ∃∀ϕ (does there exist a network that sorts all of its
inputs?), and are easily shown to be in ΣP2 . We expect that,
similar to the problem of circuit minimization, they are also
ΣP2 -hard, although we have not succeeded to prove this. We
do not expect there to be a polynomial-size encoding to SAT.

A. Encoding the search for a sorting network

We describe here a SAT encoding of the following decision
problem, which we term the (n, k) sorting network problem:
does there exist a sorting network of size k on n inputs? We
introduce this encoding as a finite domain constraint model
such that the encoding to CNF of each constraint in the model
is straightforward. At the implementation level, we apply the
BEE compiler [10], which performs this encoding together
with a range of “compile-time” optimizations.

We represent a size k comparator network Network

with n channels as a sequence of the form Network =
〈c(I1, J1), . . . , c(Ik, Jk)〉 where the Ii and Ji are finite do-
main integer variables with domain [1, n] and Ii < Ji for each
i. The conjunction of the following constraints encodes that
Network is a valid comparator network on n channels.

validn(Network) =

k∧
i=1

new int(Ii, 1, n) ∧
new int(Ji, 1, n) ∧
int lt(Ii, Ji)

A constraint of the form new int(I, 1, n) specifies that I is
the bit-level representation of an integer variable with domain
[1, n]. A constraint of the form int lt(I, J) specifies that the
integer value represented by I is less than that represented
by J. Below, we also consider the constraint eq(I, i), which
specifies that the integer value represented by I is equal to
the constant i. The specific representation of integers is not
important – any of the standard integer representations works.
In our implementation, we adopt a unary representation in the
order encoding (see e.g. [7], [1]).

The conjunction of the following constraints encodes the
impact of a single comparator c(I, J) in terms of the vectors
of Boolean variables ~x = 〈x1, . . . , xn〉 and ~y = 〈y1, . . . , yn〉,

representing the values on the n channels before and after the
comparator. The first conjunction, ϕI,J(~x, ~y), specifies that
when integer variables (I, J) take the values (i, j), then yi =
xi∧xj and yj = xi∨xj , i.e., the minimum goes to yi and the
maximum to yj . The second conjunction, ψI,J(~x, ~y), specifies
that xi = yj for all channels i different from the values I
and J .

ϕI,J(~x, ~y) =
∧

1≤i<j≤n

(
int eq(I, i) ∧ int eq(J, j)→
(yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj)

)
ψI,J(~x, ~y) =

∧
1≤i≤n

(
¬int eq(I, i) ∧ ¬int eq(J, i)→

xi ↔ yi

)
The following encodes that the comparator Network =
〈c(I1, J1), . . . , c(Ik, Jk)〉 sorts ~b ∈ Bn. Let ~x0 = ~b, ~xk be
equal to the vector obtained by sorting ~b, and let ~x1, . . . , ~xk−1
be length n vectors of Boolean variables. Then,

sorts(Network,~b) =

k∧
i=1

ϕIi,Ji(~xi−1, ~xi) ∧ ψIi,Ji(~xi−1, ~xi)

A sorting network with k comparators on n channels must sort
all of its inputs. Hence, a sorting network with k comparators
on n channels exists if and only if the following formula is
satisfiable.

sortern(Network) =
validn(Network) ∧∧
~b∈Bn sorts(Network,~b)

(2)

Our implementation of the above encoding introduces sev-
eral additional optimizations. We list these here briefly, for
Network = 〈c(I1, J1), . . . , c(Ik, Jk)〉.
• No redundant neighbors. For each 1 ≤ i < k, we add the

constraint: Ii 6= Ii+1 ∨ Ji 6= Ji+1.
• Independent comparators in ascending order. For each

1 ≤ i < k, we add the constraint: Ii 6= Ii+1 ∧ Ii 6=
Ji+1 ∧ Ji 6= Ii+1 ∧ Ji 6= Ji+1 → Ii < Ii+1.

• All adjacent comparators. Following Exercise 5.3.4.35
of [9], we add the constraint that states that all com-
parators of the form (i, i + 1) must be present in every
standard sorting network.

• Only unsorted inputs. Let Bnun denote the subset of Bn
consisting of unsorted sequences. Then it is possible to
refine the conjunction in Equation (2) replacing Bn with
the smaller Bnun. Observe that |Bnun| = 2n−n−1 has the
size of the smallest test set possible in order to determine
that Network is a sorting network [5].

The table in Figure 4 shows the results obtained with our
implementation of the SAT encoding described above. The
left part of the table concerns the search for sorting networks
of optimal size; and the right part, the “proof” that smaller
networks do not exist. The columns labeled “BEE” detail
the compilation times (in seconds) to generate the CNF and
to perform optimizations prior to SAT solving. The columns
labeled “SAT” detail the SAT-solving times (in seconds) for
the satisfiable instances, on the left, and for the unsatisfiable
instances, on the right. The ∞ symbol indicates a time-out:

6

optimal sorting networks (sat) smaller networks (unsat)
n k BEE #clauses #vars SAT k BEE #clauses #vars SAT
4 5 0.18 1916 486 0.01 4 0.15 1480 356 0.01
5 9 1.03 10159 2550 0.03 8 0.90 8963 2221 1.27
6 12 4.55 35035 8433 2.45 11 3.99 32007 7657 242.02
7 16 21.68 114579 26803 16.70 15 19.04 107227 25000 ∞
8 19 82.93 321445 73331 ∞ 18 73.34 304145 69221 ∞
9 25 452.55 977559 219950 ∞ 24 406.67 937773 210715 ∞

Fig. 4. SAT solving for n-channel sorting networks with k comparators: BEE compile times and SAT solving times are in seconds.

these instances did not terminate even after one week of
computation. We observe that the sizes of these SAT instances,
even those that we cannot solve, are not excessive: all instances
contain less than one million clauses, and less than one quarter
of a million variables.

B. Searching from a complete set of comparator networks

Since the methodology presented above does not scale
beyond n = 6, we will now show how to capitalize on the
results from Section IV. Therefore, we focus on the following
variant of the previous problem, which we term the (n, k, S)
sorting network problem: given a (complete) set of comparator
networks, S on n channels, is there a network C ∈ S that can
be extended to a sorting network of size k?

To solve this problem, we consider each element C ∈ S sep-
arately. We encode the corresponding (n, k) sorting network
problem in terms of Network = 〈c(I1, J1), . . . , c(Ik, Jk)〉,
and fix the values of the comparator positions in the prefix of
Network to match the positions of those in C. Even this small
difference turns out to provide one key ingredient to solve the
optimal-size sorting network problem; the other key ingredient
is to make sure that the set S is as small as possible.

With the SAT encoding of Equation (2), we are not able
to show that there is no sorting network of size 15 on 7
channels (even given a week of computation time). Recall
Lemma 3, and consider n = 7. The set R7

3 consists of 7
comparator networks and is complete. So, there exists an
optimal-size sorting network on 7 channels if and only if
there exists one of the form C;C ′ for some C ∈ R7

3. Solving
the (7, 15, R7

3) sorting network problem reveals that there is
no sorting network on 7 channels with 15 comparators. The
computational cost of this proof sums up to approximately 10
minutes of parallel computation (on 7 cores), or less than 1
hour in total of sequential computation.

Solving the SAT and UNSAT cases for 8 channels is more
involved. Here we consider R8

5, which is a complete set of
comparator networks with 5 comparators each and consists of
57 elements. For the UNSAT case, computation requires just
under 1.36 hours on 57 cores (the time to complete the slowest
instance), or a total of 33.83 hours on a single core. For the
SAT case, computation requires 0.35 of an hour (on 57 cores),
which is the time until the first satisfiable instance terminates.

There is one further optimization, adopted from [4], that we
consider when encoding the search for a sorting network that
extends a given comparator network. Consider again Equa-
tion (2). A sorting network must sort all of its (unsorted) inputs

and hence the conjunction of all ~b ∈ Bn (or the smaller set
Bnun). However, if we consider any specific subset of B ⊆ Bn
and show that there is no comparator network that sorts the
elements of B, then surely there is also no comparator network
that sorts the elements of Bn. In particular, we consider the set
Bns , which we call the set of windows of size s, of all unsorted
length n binary sequences of the form 0`1 .w.1`2 such that
`1 + `2 = s. If the encoding of Equation (2) is unsatisfiable
when replacing Bn with Bns , then it is unsatisfiable also in its
original form. Solving the UNSAT case for 8 channels and 18
comparators using this optimization reduces the total solving
time from 33.83 hours to 27.52 hours. From the 57 instances
that need be shown unsatisfiable, 50 are found so with s = 3;
a further 4 with s = 2; and the remaining 3 with s = 1.

To solve the optimal-size sorting network problem for
n = 9 channels, we consider the (9, 24, R9

14) sorting network
problem, where R9

14 is the complete set of 914,444 comparator
networks obtained using the technique described in Section IV.
We show that each of the corresponding propositional for-
mulae is unsatisfiable, implying that there is no extension
of an element of R9

14 to a 24 comparator sorting network.
The average solving time (per instance) is 4.09 seconds for
compilation and 7.83 seconds for the SAT solver. The total
solving time for all instances (compilation and SAT solving)
is 3028 hours. There is an additional overhead of 333 hours
for using the windows optimization (the cost of resolving with
a smaller window when an instance is satisfiable). Running
288 threads on 144 cores requires just under 12 hours of
computation. From the 914,444 instances, 675,736 (74%) were
found unsatisfiable using a window of size 4, 233,400 (25%)
were found unsatisfiable using a window of size 3, 4,979 (less
than 1%) were found unsatisfiable using a window of size 2,
and the remaining 329 (less than 1%) were found unsatisfiable
using a window of size 1.

VI. OPTIMALITY OF 25 COMPARATORS FOR 9 INPUTS

The results of Sections IV and V prove that S(9) = 25,
relying on first computing the set R9

14 (1 week of computation)
and then applying a SAT solver to solve the (9, 24, R9

14)
sorting network problem, showing that no element of R9

14 can
be extended to a 24-comparator sorting network (less than half
a day of computation).

Using the techniques of Section IV, we also applied the
generate-and-prune approach continuing from R9

14 until termi-
nation with |R9

25| = 1 (an additional 5 days of computation),
thereby obtaining independent confirmation of the same result.

7

This yielded the following 25-comparator sorting network.

In both cases, the implementation relies on a Prolog pro-
gram to compute the sets R9

k. The original proof involves
also a Prolog implementation of the SAT encoding, the BEE
constraint compiler, and the state-of-the-art SAT solver Cryp-
toMiniSAT [14]. We use SWI-Prolog 6.6.1.

While it is reassuring to have two alternative proofs, they
both share the computation of R9

14. Although we have proved
all of the mathematical claims underlying the design of the
proof algorithm and have carefully checked the correctness of
the Prolog implementation, there is always the potential for
errors in computer programs. The objective of this section is
to provide further confidence in the correctness of our results.

One of the key aspects of computer-assisted proofs is guar-
anteeing their validity. Barendregt and Wiedijk [2] introduced
the de Bruijn criterion: every computer-assisted proof should
be verifiable by an independent small program (a “verifier”).
We now summarize how our approach meets this criterion.

Verifiers for SAT encodings are, in our case, more com-
plex, as the instances we need to verify are all unsatisfiable.
While satisfiable instances have concrete assignments as their
witnesses, for unsatisfiable instances we would have to verify
914,444 (minimal) unsatisfiable cores. Hence, we focus our
validity argument on the generate-and-prune approach, which
involves two critical points. We must guarantee that: (1) when
extending a network with k comparators to one with k + 1
comparators, all extensions are considered, and (2) when
eliminating a network, this is sound.

In order to verify our result independently from the Prolog
implementation, the code is augmented to produce a log file
during execution. We then verify that the information in this
file provides a sound and complete basis for the reconstruction
of our proof that there is no 9-channel sorting network
consisting of 24 comparators. To this end, an independent
Java implementation of the generate-and-prune algorithm is
provided, with one main important difference to the Prolog
implementation: it performs no search, and is aware only of
the information available in the log file. This file contains
lines of the form “killed(C1, C2, π)”, specifying that network
C1 is pruned because it is subsumed by a network C2 with
permutation π (namely, that C2 ≤π C1). Such lines are
introduced both when extending a network with a redundant
comparator (with the identity permutation) and when pruning.

The verifier reconstructs the computation of all of the sets
R9
k, starting from R9

0 which consists of the empty comparator
network. When extending R9

k to R9
k+1 it first performs a naive

extension to N9
k+1, adding all comparators in all possible

positions, and then computes R9
k+1 using the log file only.

Namely, for each row of the form killed(C1, C2, π), we first

verify that indeed π(outputs(C2)) ⊆ outputs(C1), and then
remove C1 from N9

k+1. By soundness, we mean that whenever
a network is eliminated, we have verified that the logged
permutation π is indeed a witness to its redundancy. By com-
pleteness, we mean that after pruning we have a complete set
of comparator networks. In order to ensure completeness, we
additionally verify that the logged subsumption information
is acyclic. Otherwise, it would be possible, for example, that
there were two networks, C1 and C2 such that both C1 ≤π1

C2

and C2 ≤π2
C1, and that both were eliminated.

Using this tool, we verified the computer-assisted proof of
n = 7 in 4 seconds, the one for n = 8 in 2 minutes, and the
one for n = 9 in just over 6 hours of computational time. The
logs and the Java verifier are available from: http://imada.sdu.
dk/∼petersk/sn/

VII. CONCLUSIONS

We have shown that S(9) = 25, i.e., the minimal number of
comparators needed to sort nine inputs is 25. This closes the
smallest open instance of the optimal-size problem for sorting
networks, which was open since 1964. As a corollary, given
the result from [9] that states that S(10) ≤ 29, and applying
the inequality S(n+1) ≥ S(n)+ dlog2 ne from [15], we now
also know that S(10) = 29.

REFERENCES

[1] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean
cardinality constraints. In CP2003, pages 108–122, 2003.

[2] H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Transactions A of the Royal Society, 363(1835):2351–2375, 2005.

[3] K. E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Computing Conference, volume 32 of AFIPS Conference
Proceedings, pages 307–314. Thomson Book Company, 1968.

[4] D. Bundala and J. Závodný. Optimal sorting networks. In LATA 2014,
volume 8370 of LNCS 8370, pages 236–247. Springer, 2014.

[5] M. J. Chung and B. Ravikumar. Bounds on the size of test sets for
sorting and related networks. Discrete Mathematics, 81(1):1–9, 1990.

[6] M. Codish, L. Cruz-Filipe, and P. Schneider-Kamp. The quest for
optimal sorting networks: Efficient generation of two-layer prefixes.
CoRR, abs/1404.0948, 2014.

[7] J. M. Crawford and A. B. Baker. Experimental results on the application
of satisfiability algorithms to scheduling problems. In AAAI, pages
1092–1097. AAAI Press / The MIT Press, 1994.

[8] R. W. Floyd and D. E. Knuth. The Bose–Nelson sorting problem. In A
survey of combinatorial theory, pages 163–172. North-Holland, 1973.

[9] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[10] A. Metodi, M. Codish, and P. J. Stuckey. Boolean equi-propagation for
concise and efficient sat encodings of combinatorial problems. J. Artif.
Intell. Res. (JAIR), 46:303–341, 2013.

[11] A. Morgenstern and K. Schneider. Synthesis of parallel sorting networks
using SAT solvers. In MBMV 2011, pages 71–80. OFFIS-Institut für
Informatik, 2011.

[12] I. Parberry. A computer-assisted optimal depth lower bound for nine-
input sorting networks. Mathematical Systems Theory, 24(2):101–116,
1991.

[13] I. Parberry. On the computational complexity of optimal sorting network
verification. In PARLE (1), volume 505 of LNCS, pages 252–269.
Springer, 1991.

[14] M. Soos. CryptoMiniSAT, v2.5.1. http://www.msoos.org/cryptominisat2,
2010.

[15] D. Voorhis. Toward a lower bound for sorting networks. In Complexity
of Computer Computations, The IBM Research Symposia Series, pages
119–129. Springer US, 1972.

8

http://imada.sdu.dk/~petersk/sn/
http://imada.sdu.dk/~petersk/sn/
http://www.msoos.org/cryptominisat2

	Introduction
	Preliminaries on sorting networks
	The generate-and-prune approach
	Implementing generate-and-prune
	Representing comparator networks
	Implementing the test for subsumption
	Avoiding redundant comparators

	The SAT encoding approach
	Encoding the search for a sorting network
	Searching from a complete set of comparator networks

	Optimality of 25 comparators for 9 inputs
	Conclusions
	References

