
Sorting Networks: the End Game?

Michael Codish1, Lúıs Cruz-Filipe2, and Peter Schneider-Kamp2

1 Department of Computer Science
Ben-Gurion University of the Negev
PoB 653, Beer-Sheva, Israel 84105

mcodish@cs.bgu.ac.il
2 Department of Mathematics and Computer Science,

University of Southern Denmark
Campusvej 55, 5230 ODENSE M, Denmark

{lcf,petersk}@imada.sdu.dk

Abstract. This paper studies properties of the back end of a sorting
network and illustrates the utility of these in the search for networks
of optimal size or depth. All previous works focus on properties of the
front end of networks and on how to apply these to break symmetries in
the search. The new properties help shed understanding on how sorting
networks sort and speed-up solvers for both optimal size and depth by
an order of magnitude.

Keywords: sorting networks, SAT solving, symmetry breaking

1 Introduction

In the last year, new results were obtained regarding optimality of sorting net-
works, concerning both the optimal depth of sorting networks on 11 to 16 chan-
nels [2] and the optimal size of sorting networks on 9 and 10 channels [3]. Both
these works apply symmetry-breaking techniques that rely on analyzing the
structure at the front of a sorting network in order to reduce the number of
candidates to test in an exhaustive proof by case analysis.

In this work, we focus on the dual problem: what does the end of a sorting
network look like? To the best of our knowledge, this question has never been
studied in much detail. Batcher [1] characterizes a particular class of networks
that can be completed to a sorting network in a systematic way, but his work
only applies to the search for efficient sorting networks. Parberry [8] establishes
a necessary condition to avoid examining the last two layers of a candidate prefix
in his proof of optimality of the depth 6 sorting network on 9 channels, but its
application requires fixing the previous layers (although it has similarities to the
idea behind our proof of Theorem 11 below).

We show that the comparators in the last layer of a sorting network are of a
very particular form, and that the possibilities for the penultimate layer are also

? Supported by the Israel Science Foundation, grant 182/13 and by the Danish Council
for Independent Research, Natural Sciences.

2 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

limited. Furthermore, we show how to control redundancy of a sorting network
in a very precise way in order to restrict its last two layers to a significantly
smaller number of possibilities, and we study the impact of this construction in
the SAT encodings used in the proofs of optimality described in [2, 3].

The analysis, results, and techniques in this paper differ substantially from
the work done on the first layers: that work relies heavily on symmetries of
sorting networks to show that the comparators in those layers may be restricted
to be of a particular form. Our results show that the comparators in the last
layers must have a particular form. When working with the first layers it suffices
to work up to renaming of the channels, as there are very general results on
how to apply permutations to the first layers of any sorting network and obtain
another sorting network of the same depth and size. On the last layer, this is
not true: permuting the ending of a sorting network will not, in general, yield
the ending of another sorting network. We formalize the fact that, as inputs go
through a sorting network, the number of channels between pairs of unsorted
values gets smaller, until, at the last layer, all occurrences of unsorted pairs of
values are on adjacent channels. To the best of our knowledge, this surprising
fact has never been observed before, and it influences the possible positions of
comparators in the last layers. This intuition about the mechanism of sorting
networks is formally expressed by the notion of k-block and Theorem 11, which
is the main contribution of this paper.

2 Preliminaries on Sorting Networks

A comparator network C with n channels and depth d is a sequence C =
L1; . . . ;Ld where each layer Lk is a set of comparators (i, j) for pairs of channels
i < j. At each layer, every channel may occur in at most one comparator. The
depth of C is the number of layers d, and the size of C is the total number of
comparators in its layers. If C1 and C2 are comparator networks, then C1;C2

denotes the comparator network obtained by concatenating the layers of C1 and
C2; if C1 has m layers, it is an m-layer prefix of C1;C2.

An input x̄ ∈ {0, 1}n propagates through C as follows: x̄0 = x̄, and for
0 < k ≤ d, x̄k is the permutation of x̄k−1 obtained as follows: for each comparator
(i, j) ∈ Lk, the values at positions i and j of x̄k−1 are reordered in x̄k so that
the value at position i is not larger than the value at position j. The output of
the network for input x̄ is C(x̄) = x̄d, and outputs(C) =

{
C(x̄) | x̄ ∈ {0, 1}n

}
.

The comparator network C is a sorting network if all elements of outputs(C)
are sorted (in ascending order). The zero-one principle (e.g. [6]) implies that a
sorting network also sorts any other totally ordered set, e.g. integers.

Optimal sorting network problems are about finding the smallest depth and
the smallest size of a sorting network for a given number of channels n. Figure 1
shows a sorting network on 5 channels that has optimal size (9 comparators) and
optimal depth (5 layers). It also shows how the network sorts the input 10101.

In order to determine the minimal depth of an optimal sorting network on
n channels, one needs to consider all possible ways in which such a network

Sorting Networks: the End Game 3

1

0

1

0

1

1

1

0

1

0

1

1

0

1

0

1

1

0

1

0

1

1

1

0

0

1

1

1

0

0

Fig. 1. An optimal-depth, optimal-size sorting network on 5 channels, operating on
the input 10101. The channels are numbered from top to bottom, with a comparator
(i, j) represented as a vertical line between two channels; each comparator moves its
smallest input to its top channel. The layers are separated by a vertical dashed line.

can be built. Parberry [8] shows that the first layer of a depth-optimal sorting
network on n channels can be assumed to consist of the comparators (2k−1, 2k)
for 1 ≤ k ≤

⌊
n
2

⌋
. Parberry and later Bundala and Závodný pursued the study

of the possibilities for the second layer and demonstrated the impact of this on
the search for optimal sorting networks.

The following two observations will be be instrumental for proofs in later
sections. We write x̄ ≤ ȳ to denote that every bit of x is less than or equal to
the corresponding bit of y, and x̄ < ȳ for x̄ ≤ ȳ and x 6= y.

Lemma 1. Let C be a comparator network and x̄ be a sorted sequence. Then x̄
is unchanged by every comparator in C.

Lemma 2 (Theorem 4.1 in [1]). Let C be a comparator network and x̄, ȳ ∈
{0, 1}n be such that x̄ ≤ ȳ. Then C(x̄) ≤ C(ȳ).

3 The Last Layers of a Sorting Network

In this section we analyze the last two layers of a sorting network and derive some
structural properties that will be useful both for restricting the search space in
proofs of optimality, and as a tool to understand how a sorting network works.

We begin by recalling the notion of redundant comparator (Exercise 5.3.4.51
of [6], credited to R.L. Graham). Let C; (i, j);C ′ be a comparator network. The
comparator (i, j) is redundant if xi ≤ xj for all sequences x1 . . . xn ∈ outputs(C).
If D′ is a comparator network obtained by removing every redundant comparator
fromD, thenD′ is a sorting network iffD is a sorting network: from the definition
it follows that D(x̄) = D′(x̄) for every input x̄ ∈ {0, 1}n. This result was already
explored in the proof of optimality of the 25-comparator sorting network on
9 channels [3]. We will call a sorting network without redundant comparators
non-redundant. In this section we focus on non-redundant sorting networks.

Lemma 3. Let C be a non-redundant sorting network on n channels. Then all
comparators in the last layer of C are of the form (i, i+ 1).

4 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

0

0

1

1

0

0

(a)

0

1

1

1

1

0

(b)

Proof. Let C be as in the premise with a comparator c = (i, i+
2) in the last layer. We can assume it is the last comparator.
Since c is not redundant, there is an input x̄ such that channels
i to i+ 2 before applying c look like (a) or (b) on the right.

Suppose x̄ is a word yielding case (a), and let ȳ be any
word obtained by replacing one 0 in x̄ by a 1. Since C is a
sorting network, C(ȳ) is sorted, but since x̄ < ȳ the value in
channel i before applying c must be a 1 (Lemma 2), hence ȳ
yields situation (b). Dually, given ȳ yielding (b), we know that
any z̄ obtained by replacing one 1 in ȳ by a 0 will yield (a).

Thus all inputs with the same number of zeroes as x̄ or ȳ must yield either (a)
or (b), in particular sorted inputs, contradicting Lemma 1. The same reasoning
shows that c cannot have the form (i, i+ k) with k > 2, thus it has to be of the
form (i, i+ 1). ut

Corollary 4. Suppose that C is a sorting network with no redundant compara-
tors that contains a comparator (i, j) at layer d, with j > i + 1. Then at least
one of channels i and j is used in a layer d′ with d′ > d.

Proof. If neither i nor j are used after layer d, then the comparator (i, j) can be
moved to the last layer without changing the function computed by C. By the
previous lemma C can therefore not be a sorting network. ut

Lemma 3 restricts the number of possible comparators in the last layer in a
sorting network on n channels to n−1, instead of n(n−1)/2 in the general case.

Theorem 5. The number of possible last layers in an n-channel sorting network
with no redundancy is Ln = Fn+1−1, where Fn denotes the Fibonacci sequence.

Proof. Denote by L+
n the number of possible last layers on n channels, where the

last layer is allowed to be empty (so Ln = L+
n −1). There is exactly one possible

last layer on 1 channel, and there are two possible last layers on 2 channels (no
comparators or one comparator), so L+

1 = F2 and L+
2 = F3.

Given a layer on n channels, there are two possibilities. Either the first chan-
nel is unused, and there are L+

n−1 possibilities for the remaining n− 1 channels;

or it is connected to the second channel, and there are L+
n−2 possibilities for the

remaining n− 2 channels. So L+
n = L+

n−1 + L+
n−2, whence L+

n = Fn+1. ut

Even though Ln grows quickly, it grows slower than the number Gn of pos-
sible layers in general [2]; in particular, L17 = 2583, whereas G17 = 211,799,312.

To move (backwards) beyond the last layer, we introduce an auxiliary notion.

Definition 6. Let C be a depth d sorting network without redundant compara-
tors, and let k < d. A k-block of C is a set of channels B such that i, j ∈ B if
and only if there is a sequence of channels i = x0, . . . , x` = j where (xi, xi+1) or
(xi+1, xi) is a comparator in a layer k′ > k of C.

Sorting Networks: the End Game 5

Note that for each k the set of k-blocks of C is a partition of the set of channels.
Given a comparator network of depth d, we will call its (d−1)-blocks simply

blocks – so Lemma 3 states that a block in a sorting network C is either a
channel unused at the last layer of C or two adjacent channels connected by a
comparator at the last layer of C.

Example 7. Recall the sorting network shown in Figure 1. Its 4-blocks, or simply
blocks, are {1}, {2}, {3, 4} and {5}, its 3-blocks are {1}, {2, 3, 4, 5}, and for k < 3
there is only the trivial k-block {1, 2, 3, 4, 5}.

Lemma 8. Let C be a sorting network of depth d on n channels, and k < d.
For each input x̄ ∈ {0, 1}n, there is at most one k-block that receives a mixture
of 0s and 1s as input.

Proof. From the definition of k-block, there is no way for values to move from
one k-block to another. Therefore, if there is an input for which two distinct
k-blocks receive both 0s and 1s as inputs, the output will not be sorted. ut

Lemma 9. Let C be a depth d sorting network on n channels without redundant
comparators. Then all comparators in layer d− 1 connect adjacent blocks of C.

Proof. The proof is similar to that of Lemma 3, but now considering blocks
instead of channels. Let c be a comparator in layer d − 1 of C that does not
connect adjacent blocks of C. Since c is not redundant, there must be some
input x̄ that provides c with input 1 on its top channel and 0 on its bottom
channel. The situation is depicted below, where A and C are blocks, and B is
the set of channels in between. According to Lemma 8, there are five possible
cases for A, B and C, depending on the number of 0s in x̄.

0

1

C

B

A A all 0 all 0 all 0 all 0 mixed
B all 0 all 0 mixed all 1 all 1
C mixed all 1 all 1 all 1 all 1

(a) (b) (c) (d) (e)

Suppose that x̄ yields (a). By changing the appropriate number of 0s in x̄ to
1s, we can find a word ȳ yielding case (b), since again by monotonicity of C this
cannot bring a 0 to the top input of c. Likewise, we can reduce (e) to (d). But
now we can move between (b), (c) and (d) by changing one bit of the word at
a time. By Lemma 2, this must keep either the top 1 input of c or the lower 0,
while the other input is kept by the fact that C is a sorting network. Again this
proves that this configuration occurs for all words with the same number of 0s,
which is absurd since it cannot happen for the sorted input. ut

Combining this result with Lemma 3 we obtain the explicit configurations
that can occur in a sorting network.

Corollary 10. Let C be a depth d sorting network on n channels without re-
dundant comparators. Then every comparator (i, j) in layer d− 1 of C satisfies
j − i ≤ 3. Furthermore, if j = i+ 2, then either (i, i+ 1) or (i+ 1, i+ 2) occurs
in the last layer; and if j = i+ 3, then both (i, i+ 1) and (i+ 2, i+ 3) occur in
the last layer.

6 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

Fig. 2. Sorting networks containing a comparator (i, i+ 3) in their penultimate layer.

The sorting networks in Figure 2 show that the bound j − i ≤ 3 is tight. We
can also state a more general form of Lemma 9, proved exactly in the same way.

Theorem 11. If C is a sorting network on n channels without redundant com-
parators, then every comparator at layer k of C connects adjacent k-blocks of C.

When considering the last n comparators instead of the last k layers, induc-
tion on n using Theorem 11 yields the following result.

Corollary 12. Every k-block with n comparators of a sorting network without
redundant comparators uses at most n+ 1 channels.

4 Co-saturation

The results in the previous sections allow us to reduce the search space of all pos-
sible sorting networks of a given depth simply by identifying necessary conditions
on the comparators those networks may have. However, the successful strategies
in [2, 3, 8] all focus on finding sufficent conditions on those comparators: identi-
fying a (smaller) set of networks that must contain one sorting network of depth
d (or size k), if such a network exists at all.

We now follow this idea pursuing the idea of saturation in [2]: how many (re-
dundant) comparators can we safely add to the last layers of a sorting network?
We will show how to do this in a way that reduces the number of possibilities
for the last two layers to a minimum. Note that we are again capitalizing on the
observation that redundant comparators do not change the function represented
by a comparator network and can, thus, be removed or added at will.

Lemma 13. Let C be a sorting network on n channels. There is a sorting net-
work N of the same depth whose last layer: (i) only contains comparators between
adjacent channels; and (ii) does not contain two adjacent unused channels.

Proof. We first eliminate all redundant comparators from C to obtain a sorting
network S. By Lemma 3 all comparators in the last layer of S are then of the
form (i, i+1). Let j be such that j and j+1 are unused in the last layer of S; since
S is a sorting network, this means that the comparator (j, j + 1) is redundant
and we can add it to the last layer of S. Repeating this process for j = 1, . . . , n
we obtain a sorting network N that satisfies both desired properties. ut

Sorting Networks: the End Game 7

We say that a sorting network satisfying the conditions of Lemma 13 is in last
layer normal form (llnf).

Theorem 14. The number of possible last layers in llnf on n channels is Kn =
Pn+5, where Pn denotes the Padovan sequence, defined as P0 = 1, P1 = P2 = 0
and Pn+3 = Pn + Pn+1.

Proof. Let K+
n be the number of layers in llnf that begin with the comparator

(1, 2), and K−n the number of those where channel 1 is free. Then Kn = K+
n +K−n .

Let n > 3. If a layer in llnf begins with a comparator, then there are Kn−2
possibilities for the remaining channels; if it begins with a free channel, then there
are K+

n−1 possibilities for the remaining channels. Therefore Kn = K+
n +K−n =

Kn−2 +K+
n−1 = Kn−2 +Kn−3. There exist one last layer on 1 channel (with no

comparator), one on 2 channels (with one comparator between them) and two
on 3 channels (one comparator between either the top two or the bottom two
channels), so K1 = P6, K2 = P7 and K3 = P8. From the recurrence it follows
that Kn = Pn+5. ut

Note that Kn grows much slower than the total number Ln of non-redundant
last layers identified in Theorem 5. For example, K17 = 86 instead of L17 = 2583.

If the last layer is required to be in llnf, we can also study the previous
layer. By Lemma 9, we know that every block can only be connected to the
adjacent ones; again we can add redundant comparators to reduce the number
of possibilities for the last two layers.

Lemma 15. Let C be a sorting network of depth d in llnf. Let i < j be two
channels that are unused in layer d− 1 and that belong to different blocks. Then
adding the comparator (i, j) to layer d− 1 of C still yields a sorting network.

Proof. Suppose there is an input x̄ such that channel i carries a 1 at layer d− 1,
and channel j carries a 0 at that same layer. Since neither channel is used, their
corresponding blocks will receive these values. But then C(x̄) has a 1 in a channel
in the block containing i and a 0 in the block contaning j, and since i < j this
sequence is not sorted by C. Therefore the comparator (i, j) at layer d− 1 of C
is redundant, and can be added to this network. ut

Lemma 16. Let C be a sorting network of depth d in llnf. Suppose that there is
a comparator (i, i+ 1) in the last layer of C, that channel i+ 2 is used in layer
d− 1 but not in layer d, and that channels i and i+ 1 are both unused in layer
d− 1 of C (see Figure 3, left). Then there is a sorting network C ′ of depth d in
llnf such that channels i+ 1 and i+ 2 are both used in layers d− 1 and d.

Proof. Since channels i and i+1 are unused in layer d−1, comparator (i, i+1) can
be moved to that layer without changing the behaviour of C; then the redundant
comparator (i+1, i+2) can be added to layer d, yielding the sorting network C ′

(Figure 3, left). If i > 1 and channel i− 1 is not used in the last layer of C, then
C ′ must also contain a comparator (i−1, i) in its last layer (Figure 3, right). ut

8 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

−→
−→

Fig. 3. Transformations in the proof of Lemma 16.

Lemma 16 can also be applied if channel i− 1 (instead of i+ 2) is used at layer
d− 1 and unused in layer d.

Definition 17. A sorting network of depth d is co-saturated if: (i) its last layer
is in llnf, (ii) no two consecutive blocks at layer d−1 have unused channels, and
(iii) if (i, i+ 1) is a comparator in layer d and channels i and i+ 1 are unused
in layer d− 1, then channels i− 1 and i+ 2 (if they exist) are used in layer d.

Theorem 18. If C is a sorting network on n channels with depth d, then there
is a co-saturated sorting network N on n channels with depth d.

Proof. Assume C is given. Apply Theorem 14 to find a sorting network S in llnf,
containing no redundant comparators except possibly in the last layer.

Let B1, . . . , Bk be the (d − 1)-blocks in S. For i = 1, . . . , k − 1, if blocks Bi

and Bi+1 have a free channel, add a comparator between them. (Note that it
may be possible to add two comparators between these blocks, namely if they
both have two channels and none is used in layer d− 1.) Let N be the resulting
network. By Lemma 15, all the comparators added from S to N are redundant,
so N is a sorting network; by construction, N satisfies (ii).

If N does not satisfy (iii), then applying Lemma 16 transforms it into another
sorting network N ′ that does. ut

Table 1 shows the number of possibilities for the last two layers of a co-
saturated sorting network on n channels for n ≤ 17, obtained by a representation
of these suffixes similar to the one described in [4].

In the next sections, we show how we can capitalize on these results to im-
prove the proofs of optimal depth and optimal size of sorting networks.

5 Implications for Optimal Depth SAT encodings

In this section, we describe how SAT encodings in the spirit of [2] can profit from
the results in Sections 3 and 4. We detail the boolean variables in the model of the

Table 1. Number of distinct co-saturated two-layer suffixes on n channels, for n ≤ 17.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 4 12 26 44 86 180 376 700 1,440 2,892 5,676 11,488 22,848 45,664

Sorting Networks: the End Game 9

encoding, and express our contribution in terms of those. The remaining details
of this construction are immaterial to this paper. The encoding represents an
n-channel comparator network of depth d by d× n(n− 1) Boolean variables

Vdn =
{
c`i,j | 1 ≤ ` ≤ d, 1 ≤ i < j ≤ n

}
where the intention is that c`i,j is true if and only if the network contains a
comparator between channels i and j at depth `. Further, to facilitate a concise
and efficient encoding of our new results, we introduce an additional set of d · n
Boolean variables capturing which channels are “used” at a given layer

Udn =
{
u`k | 1 ≤ ` ≤ d, 1 ≤ k ≤ n

}
where the intention is that u`k is true if and only if there is some comparator
on channel k at level `. Using these variables, previous work describes how the
search for an n-channel sorting network of depth d is encoded by a formula ϕ0

satisfiable if and only if there is such a network. If ϕ0 is satisfiable, the network
found can be reconstructed from the assignment of the variables Vdn.

5.1 Encoding Necessary Conditions

The results of Section 3 represent necessary conditions for non-redundant sorting
networks. Thus, we can just add them to the SAT encoding as further restrictions
of the search space without losing solutions. We start by looking at the last layer,
i.e., the layer at depth d, and then continue to consider layer d− 1.

Consider first Lemma 3, which states that non-redundant comparators in the
last layer have to be of the form (i, i+ 1). Seen negatively, we can simply forbid
all comparators (i, j) where j > i+ 1, that connect non-adjacent channels. This
restriction can be encoded straightforwardly by adding the following (n−1)(n−2)
unit clauses ϕ1 to the SAT encoding:

ϕ1 =
{
¬cdi,j | 1 ≤ i, i+ 1 < j ≤ n

}
The restriction from Lemma 3 is generalized by Corollary 4, which states

that whenever a comparator at any layer connects two non-adjacent channels,
necessarily one of these channels is used at a later layer. Similarly to ϕ1 we can
encode this by adding one clause for each of the (n− 1)(n− 2)/2 non-adjacent
comparator at any given depth ` using ϕ1(`):

ϕ1(`) =

 c`i,j →
∨

`<k≤d

uki ∨ ukj | 1 ≤ i, i+ 1 < j ≤ n

Note that indeed ϕ1(d) = ϕ1, as there is no depth k with ` < k ≤ d.

We now move on to consider the penultimate layer d−1. According to Corol-
lary 10, no comparator at this layer can connect two channels more than 3 chan-
nels apart. Similar to Lemma 3, we encode this restriction by adding unit clauses
for each of the (n− 3)(n− 4)/2 comparators more than 3 channels apart:

ϕ2 =
{
¬cd−1i,j | 1 ≤ i, i+ 3 < j ≤ n

}

10 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

Corollary 10 also states that the existence of a comparator (i, i + 3) on the
penultimate layer implies the existence of the two comparators (i, i + 1) and
(i+ 2, i+ 3) on the last layer. This is straightforwardly encoded using additional
2(n− 3) implication clauses:

ϕ3 =
{
cd−1i,i+3 → cdi,i+1

)
∧
(
cd−1i,i+3 → cdi+2,i+3 | 1 ≤ i ≤ n− 3

}
Finally, Corollary 10 also states that the existence of a comparator (i, i+2) on

the penultimate layer implies the existence of either of the comparators (i, i+ 1)
or (i+ 1, i+ 2) on the last layer. This can be encoded using n− 2 clauses:

ϕ4 =
{
cd−1i,i+2 → cdi,i+1 ∨ cdi+1,i+2 | 1 ≤ i ≤ n− 2

}
Empirically, we have found that using ϕ = ϕ0 ∧ϕ1 ∧ϕ2 ∧ϕ3 ∧ϕ4 instead of just
ϕ0 decreases SAT solving times dramatically. In contrast, adding ϕ1(`) for ` < d
has not been found to have a positive impact.

5.2 Symmetry Breaking using Sufficient Conditions

The restrictions encoded so far were necessary conditions for non-redundant
sorting networks. In addition, we can break symmetries by using the sufficient
conditions from Section 4, essentially forcing the SAT solver to add redundant
comparators.

According to Lemma 13 (ii) we can break symmetries by requiring that there
are no adjacent unused channels in the last layer, i.e., that the network is in llnf.

ψ1 =
{
udi ∨ udi+1 | 1 ≤ i < n

}
Essentially, this forces the SAT solver to add a (redundant) comparator between
any two adjacent unused channels on the last layer.

The next symmetry break is based on a consideration of two adjacent blocks.
There are four possible cases: two adjacent comparators, a comparator followed
by an unused channel, an unused channel followed by a comparator, and two
unused channels. The latter is forbidden by the symmetry break ψ1 (and thus
not regarded further).

The case of two adjacent comparators is handled by formula ψa
2 :

ψa
2 =

{
cdi,i+1 ∧ cdi+2,i+3 →

(
ud−1i ∧ ud−1i+1

)
∨
(
ud−1i+2 ∧ u

d−1
i+3

)
| 1 ≤ i ≤ n− 3

}
This condition essentially forces the SAT solver to add a (redundant) comparator
on layer d− 1, if both blocks have an unused channel in that layer.

The same idea of having to add a comparator at layer d − 1 is enforced for
the two remaining cases of a comparator followed by an unused channel or its
dual by ψb

2 and ψc
2, respectively:

ψb
2 =

{
cdi,i+1 ∧ ¬udi+2 →

(
ud−1i ∧ ud−1i+1

)
∨ ud−1i+2 | 1 ≤ i ≤ n− 2

}
ψc
2 =

{
¬udi ∧ cdi+1,i+2 → ud−1i ∨

(
ud−1i+1 ∧ u

d−1
i+2

)
| 1 ≤ i ≤ n− 2

}

Sorting Networks: the End Game 11

Table 2. SAT solving for n-channel, depth 8 sorting networks with |Rn| 2-layer filters.
The table shows the impact of the restrictions on the last two layers in the size of the
encoding and the solving time (in seconds) for the slowest unsatisfiable instance, as
well as the total time for all |Rn| instances.

unrestricted last layer: ϕ0 restricted last layer: ψ
slowest instance total slowest instance total

n |Rn| #clauses #vars time time #clauses #vars time time

15 262 278312 18217 754.74 130551.42 335823 25209 148.35 19029.26
16 211 453810 27007 1779.14 156883.21 314921 22901 300.07 24604.53

The final symmetry break is based on Lemma 16, i.e., on the idea of moving
a comparator from the last layer to the second last layer. We encode that such
a situation cannot occur, i.e., that whenever we have a comparator on the last
layer d following or followed by an unused channel, one of the channels of the
comparator is used on layer d− 1:

ψa
3 =

{
cdi,i+1 ∧ ¬udi+2 → ud−1i ∨ ud−1i+1 | 1 ≤ i ≤ n− 2

}
ψb
3 =

{
cdi,i+1 ∧ ¬udi−1 → ud−1i ∨ ud−1i+1 | 2 ≤ i ≤ n− 1

}
Empirically, we found that ψ = ϕ ∧ ψ1 ∧ ψa

2 ∧ ψb
2 ∧ ψc

2 ∧ ψa
3 ∧ ψb

3 further
improves the performance of SAT solvers. In order to show optimality of the
known depth 9 sorting networks on 15 and 16 channels, it is enough to show
that there is no sorting network on those numbers of channels with a depth
of 8. Previous work [4] introduces the notion of complete set of prefixes: a set
Rn such that if there exists a sorting network on n channels with depth d, then
there exists one extending a prefix in Rn. Using this result, it suffices to show
that there are no sorting networks of depth 8 that extend an element of R15

or R16. Table 2 shows the improvement of using ψ instead of ϕ0, detailing for
both cases the number of clauses, the number of variables and the time to solve
the slowest of the |Rn| instances (which are solved in parallel). We also specify
the total solving time (both compilation and SAT-solving) for all |Rn| instances
together. The new encodings are larger per same instance (the slowest instances,
showed in the table, are different), but, as indicated in the table, the total time
required in order to show that the formulas are unsatisfiable is reduced by a
factor of around 6.

6 Conclusion

This paper presents the first systematic exploration of what happens at the end
of a sorting network, as opposed to at the beginning. We present properties of
the last layers of sorting networks. In order to assess the impact of our contribu-
tion, we show how to integrate them into SAT encodings that search for sorting
networks of a given depth [2]. Here, we see an order of magnitude improvement

12 M. Codish, L. Cruz-Filipe and P. Schneider-Kamp

in solving times, bringing us closer to being able to solve the next open instance
of the optimal depth problem (17 channels).

While the paper presents detailed results on the end of sorting networks in the
context of proving optimal depth of sorting networks, the necessary properties
of the last layers can also be used to prove optimal size. We experimented on
adding constraints similar to those in Section 5 for the last three comparators, as
well as constraints encoding Corollary 12, to the SAT encoding presented in [3].
Preliminary results based on uniform random sampling of more than 10% of the
cases indicate that we can reduce the total computational time used in the proof
that 25 comparators are optimal for 9 channels from 6.5 years to just over 1.5
years. On the 288-thread cluster originally used for that proof, this corresponds
to reducing the actual execution time from over 8 days to just 2 days.

These results can also be used to improve times for the search for sorting
networks. In a recent paper [7], the authors introduce an incremental approach to
construct sorting networks (iterating between two different SAT problems). They
show that, using the first three layers of a Green filter [5], their approach finds a
sorting network with 17 channels and depth 10, thus improving the previous best
upper bound on the depth of a 17-channel sorting network. Using the same prefix,
together with the constraints on the last two layers described in Section 5, we
can find a depth 10 sorting network in under one hour of computation. Without
these last layer constraints, this procedure times out after 24 hours.

References

1. Baddar, S.W.A.H., Batcher, K.E.: Designing Sorting Networks: A New Paradigm.
Springer (2011)

2. Bundala, D., Závodný, J.: Optimal sorting networks. In: LATA 2014. LNCS, vol.
8370, pp. 236–247. Springer (2014)

3. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five compara-
tors is optimal when sorting nine inputs (and twenty-nine for ten). In: Proceedings
of ICTAI 2014. IEEE (2014), accepted for publication

4. Codish, M., Cruz-Filipe, L., Schneider-Kamp, P.: The quest for optimal sorting
networks: Efficient generation of two-layer prefixes. In: Proceedings of SYNASC
2014. IEEE (2014), accepted for publication

5. Coles, D.: Efficient filters for the simulated evolution of small sorting networks. In:
Proceedings of GECCO’12. pp. 593–600. ACM (2012)

6. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley (1973)

7. Müller, M., Ehlers, T.: Faster sorting networks for 17, 19 and 20 inputs. CoRR
abs/1410.2736 (2014), http://arxiv.org/abs/1410.2736

8. Parberry, I.: A computer-assisted optimal depth lower bound for nine-input sorting
networks. Mathematical Systems Theory 24(2), 101–116 (1991)

