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Abstract. Originally proposed in the mid-90s, design patterns for soft-
ware development played a key role in object-oriented programming not
only in increasing software quality, but also by giving a better under-
standing of the power and limitations of this paradigm. Since then,
several authors have endorsed a similar task for other programming
paradigms, in the hope of achieving similar benefits.
In this paper we present a set of design patterns for Mdl-programs, a
hybrid formalism combining several description logic knowledge bases
via a logic program. These patterns are extensively applied in a natural
way in a large-scale example that illustrates how their usage greatly
simplifies some programming tasks, at the level of both development
and extension.
We also discuss some limitations of this formalism, examining some usual
patterns in other programming paradigms that have no parallel in Mdl-
programs.

1 Introduction

In the mid-nineties, the Gang of Four’s work on software design patterns [13]
paved the way for important advances in software quality; presently, many valu-
able experienced designers’ “best practices” are not only published but effec-
tively used by the software development community. From very basic, abstract,
patterns that can be used as building blocks of several more complex ones, to
business-specific patterns and frameworks, dozens of design patterns have been
proposed, e.g. [1, 11, 12, 19–21, 23], establishing a kind of common language be-
tween development teams, which substantially enriches their communication,
and hence the whole design process.

Despite their widespread usage in the object-oriented paradigm, on which a
lot of the work has been focused, effort has also been made in adapting these
best practices to other paradigms – service-oriented [11], functional [2, 15, 22],
logic [24] and others – and in finding new paradigm-specific patterns. As several
of these authors observed, studying design patterns in different programming
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paradigms is far from being a trivial task: each paradigm has its specific features,
meaning that patterns that are very straightforward in one paradigm can be very
complex in another, and vice-versa.

In this spirit, we carried the task of identifying several basic and other, more
complex, patterns in the paradigm of Mdl-programs [5] – which join description
logics with rules (expressed as a Datalog-like logic program) –, a powerful and
expressive approach to reasoning over general knowledge bases or ontologies that
generalizes the original dl-programs [8]. The goal of this paper is to extend the
original presentation in [6] with a more detailed analysis of the limitations that
arise in this framework.

This work should be seen as quite distinct from that on ontology design pat-
terns [14]. In the setting of Mdl-programs, ontologies are seen as immutable,
being used and not changed, under the coordination of a set of rules. Our pat-
terns focus therefore almost exclusively on these rules; thus, ontology design
patterns and design patterns for Mdl-programs should in general be seen as two
complementary techniques, and not as alternatives.

1.1 Motivation

The usefulness of combining description logics with rule-based reasoning systems
led to the introduction of dl-programs [7, 8], which couple a description logic
knowledge base with a generalized logic program, interacting by means of special
atoms, the dl-atoms. These programs were later generalized to include several
knowledge bases, yielding Mdl-programs [5].

Looking at Mdl-programs, it is clear that they represent a completely dif-
ferent programming paradigm – not only are they closely related to the logic
programming paradigm, but they involve description logic knowledge bases, in
the presence of which the study of design patterns attains a different quality: on
the one hand, some patterns become trivial (such as Façade) or meaningless
(such as Dynamic Binding or Singleton), on the other hand some patterns
pose totally new problems that have not been addressed in other paradigms
where they do not arise (such as Proxy, which we will discuss in Section 5).

Mdl-programs, combining description logic knowledge bases and a logic-based
rule language, provide the adequate setting for the study of design patterns for
the Semantic Web. Indeed, description logics are at the core of the Semantic
Web, with a huge effort being currently invested in the interchange between
OWL – an extension of the description logic SROIQ and a W3C recommendation
– and a diversity of rule languages [18]. The components of an Mdl-program are
kept independent, giving them nice modularity properties; furthermore, Mdl-
programs keep ontologies separate, which is much more convenient than e.g.
merging them: not only is it simpler to have independent knowledge bases (which
might even be physically separated, or independently managed), but merging
ontologies is in itself a mighty task with its own specific problems [4, 16].

On the other hand, Mdl-programs limit heterogeneity to two different frame-
works: description logics for the knowledge bases part and logic programming for
the rule part; the latter somehow represents the “conductor” that “coordinates”



the other parts. However, they fully support non-monotonicity (even at the level
of the description logic knowledge bases as will be seen later by application of
a specific basic pattern). Mdl-programs are therefore a simpler framework than
other, more powerful, alternatives (such as Hex-programs [9] or multi-context
systems [3]), but expressive enough for their use within the Semantic Web.

The remainder of the paper is structured as follows. Section 2 explains Mdl-
programs in detail. Section 3 presents seven different design patterns, and Sec-
tion 4 illustrates their combined use by means of a larger example. Section 5
explores limitations and future directions of research, and Section 6 summarizes
the contributions presented earlier.

2 Mdl-programs

Multi-description logic programs, the framework in which we will introduce our
design patterns, generalize the original definition of dl-programs in [8] to accom-
modate for several description logic knowledge bases. This construction, intro-
duced in [6] and detailed in [5], is in line with [25], although it sticks to the
original operators ] and ∪- in dl-atoms.

A dl-atom relative to a set of knowledge bases {L1, . . . ,Ln}1 is

DLi [S1 op1 p1, . . . , Sm opm pm;Q] (t) ,

often abbreviated to DLi[χ;Q](t), where: (1) 1 ≤ i ≤ n; (2) each Sk, with
1 ≤ k ≤ m, is either a concept or a role from Li or a special symbol in {=, 6=};
(3) opk ∈ {],∪- }; (4) pk are the input predicate symbols, which are unary or
binary predicate symbols depending on the corresponding Sk being a concept
or a role; and (5) Q(t) is a dl-query in the language of Li, that is, it is either
a concept inclusion axiom F or its negation ¬F , or of the form C(t1), ¬C(t1),
R(t1, t2), ¬R(t1, t2), = (t1, t2), 6= (t1, t2), where C is a concept, R is a role, t, t1
and t2 are terms (variables or constants).

The operators ] and ∪- are used to extend the knowledge base Li locally,
with Sk ] pk (resp., Sk ∪- pk) increasing Sk (resp., ¬Sk) by the extension of pk.
Intuitively, the dl-atom above adds this information to Li and then asks this
knowledge base for the set of terms satisfying Q(t).2

A Multi Description Logic program (Mdl-program) is a pair 〈{L1, . . . ,Ln},P〉
where: (1) each Li is a description logic knowledge base; (2) P is a set of (normal)
Mdl-rules, i.e. rules of the form a ← b1, . . . , bk,not bk+1, . . . ,not bp where a is
a logic program atom and each bj , for 1 ≤ j ≤ p, is either a logic program
atom or a dl-atom relative to {L1, . . . ,Ln}. Note that P is a generalized logic
program, so negation is the usual, closed-world, negation-as-failure. This is in
contrast with the Li, which (being description logic knowledge bases) come with
an open-world semantics.

1 The description logics underlying the Lis need not be the same.
2 The precise semantics can be found in [5]; the third operator in [8] is not included,

as it can be defined in terms of ∪- , and this option simplifies the semantics [25].



The semantics of Mdl-programs [5] is a straightforward generalization of the
semantics of dl-programs [8] and will not be discussed here, since it will not be
needed explicitly.

A common feature of multi-component systems is the need for entities in one
component to “observe” entities in another component. In the setting of Mdl-
programs, this is achieved by means of observers. An Mdl-program with observers
is 〈{L1, . . . ,Ln},P, {Λ1, . . . , Λn}, {Ψ1, . . . , Ψn}〉 where: (1) 〈{L1, . . . ,Ln},P〉 is
an Mdl-program; (2) for 1 ≤ i ≤ n, Λi is a finite set of pairs 〈S, p〉 where S is
a concept, a role, or a negation of either, from Li and p is a predicate from P;
(3) for 1 ≤ i ≤ n, Ψi is a finite set of pairs 〈p, S〉 where p is a predicate from P
and S is a concept, a role, or a negation of either, from Li. For each pair in Ψi
or Λi, the arities of S and p must coincide. The sets Λ1, . . . , Λn, Ψ1, . . . , Ψn will
occasionally be referred to as the observers of 〈{L1, . . . ,Ln},P〉. Intuitively, Λi
contains concepts and roles in Li that P needs to observe, in the sense that P
should be able to detect whenever new facts about them are derived, whereas
Ψi contains the predicates in P that Li wants to observe. For simplicity, when
we consider Mdl-programs with observers that only have one knowledge base,
we will omit the braces and refer to them as dl-programs with observers.

Instead of defining formal semantics for Mdl-programs with observers, we
introduced a translation of these into (standard) Mdl-programs that reduces ob-
servers to syntactic sugar. The above Mdl-program with observers thus implicitly

defines the Mdl-program
〈
{L1, . . . ,Ln},PΨ1,...,Ψn

Λ1,...,Λn

〉
where PΨ1,...,Ψn

Λ1,...,Λn
is obtained

from P by: (1) adding rule p(X) ← DLi[;S](X) for each 〈S, p〉 ∈ Λi, if S is
a concept (and its binary counterpart, if S is a role); and (2) in each dl-atom
DLi[χ;Q](t) (including those added in the previous step), adding S ] p to χ for
each 〈p, S〉 ∈ Ψi and S ∪- p to χ for each 〈p,¬S〉 ∈ Ψi.

We now illustrate these concepts by means of a simple example. Consider two
knowledge bases L1, defining travel-related concepts, including that of (tourist)
Destination, and L2, compiling information about wines, including a concept
Region identifying some major wine regions throughout the world. We wish to
join these ontologies by means of rules to obtain an Mdl-program with observers
that reasons about wine-related destinations. This is achieved by taking P to be

wineDest(Tasmania)← (r1)

wineDest(TamarValley)← (r2)

wineDest(Sydney)← (r3)

overnight(X)← DL1[; hasAccommodation](X,Y ) (r4)

oneDayTrip(X)← DL1[; Destination](X),not overnight(X) (r5)

and observers Λ2 = {〈Region,wineDest〉}, Ψ1 = {〈wineDest,Destination〉} and
Λ1 = Ψ2 = ∅.

This very simple program defines a predicate wineDest with three instances
obtained from rules (r1–r3), corresponding to three wine regions that are inter-
esting tourist destinations, together with all instances of Region from L2, which



are obtained via the only element in Λ2. Unfolding this observer yields the rule

wineDest(X)← DL2[; Region](X) (r0) ,

which corresponds to this intuitive semantics.
The set Ψ1 causes Destination]wineDest to be added to the context of every dl-

atom querying L1, extending P’s view of L1 – namely in rules (r4) and (r5). This
causes L1 to answer taking into account not only those instances of Destination
in its knowledge base, but also those instances of wineDest that P knows about
(including the ones derived from L2).

Rule (r5) identifies the destinations that are only suitable for one-day trips.
The possible destinations are obtained by querying P’s extended view of L1

for all instances of Destination. The result is then filtered using the auxiliary
predicate overnight defined in (r4) as the set of destinations for which some
accommodation is known. This uses the role hasAccommodation of L1, where
hasAccommodation(t1,t2) holds whenever t1 is a Destination and t2 an accom-
modation facility located in t1. The reason for resorting to (r4) at all is the
usual one in logic programming: the operational semantics of negation-as-failure
requires all variables in a negated atom to appear in non-negated atoms in the
body of the same rule. Note the impact of Ψ1: if Destination were not being up-
dated with the information from wineDest, the program would not be able to
infer e.g. oneDayTrip(Tasmania).

Mdl-programs with observers have been implemented [17] as a plugin for the
dlvhex tool [10].

3 Design patterns for Mdl-programs

In this section, we present a first set of seven design patterns for Mdl-programs,
introduced in [6]. These are divided in two categories: the three elementary design
patterns are the building blocks for the four more complex ones. Together, these
seven patterns form a powerful set from which quite complex programs can be
designed in a more structured way, simplifying the programmer’s task while at
the same time yielding more flexible programs that are easier to maintain.

The presentation of each design pattern follows a similar scheme: each is
presented as a pair problem/solution within the context of an Mdl-program
with observers 〈{L1, . . . ,Ln},P, {Λ1, . . . , Λn}, {Ψ1, . . . , Ψn}〉. In the next section,
we present a large-scale example that illustrates how the seven patterns work
together, complementing each other.

Elementary design patterns. The three basic design patterns for Mdl-pro-
grams deal with three simple tasks: transporting information from the logic
program to a knowledge base and reciprocally, and giving closed-world semantics
to a concept or role in one of the knowledge bases.

We first consider the case when the logic program component systematically
wants to import information from a knowledge base in order to define a predicate,
keeping track of changes made to the relevant concept or role.



Pattern Observer Down.

Problem. Predicate p from P needs to be updated every time the extent
(set of named individuals) of concept or role S (of the same arity as p)
in Li is changed.

Solution. Add the pair 〈S, p〉 to Λi.

A second scenario occurs when one of the description logics relies on the
observation of a predicate from P.

Pattern Observer Up.

Problem. In P’s view, concept or role S from Li needs to be updated every
time the extent of predicate p (of the same arity as S) in P is changed.

Solution. Add the pair 〈p, S〉 to Ψi.

The third building block addresses a very typical situation in ontology usage:
a concept or role should be given closed-world semantics.

Pattern Closed-world.

Problem. In P’s view, concept (or role) S from Li should follow closed-world
semantics.

Solution.
Choose predicate symbols s+, s− not used in P.
Add 〈S, s+〉 to Λi, 〈s−,¬S〉 to Ψi, and s−(X)← not s+(X) to P.

Derived design patterns. We now present a second set of general-purpose
design patterns that can be seen as organized combinations of the previous ones,
but are also useful as components of more complex patterns.

A useful variant of the Observer design pattern occurs when a description
logic’s functionality relies on the observation of a predicate in a different de-
scription logic; this can be achieved by combining both the Observer Up and
Observer Down patterns, thus making the logic program P a mediator. A par-
ticular case arises when an ontology designed primarily for reasoning interacts
with a knowledge base that is mostly about particular instances. This design
pattern appears often in combination with Definitions with Holes below.

Pattern Transversal Observer.

Problem. In P’s view, concept (or role) S from Li needs to be updated every
time the extent of concept (resp. role) R from Lj is changed (i 6= j).

Solution. Choose a predicate symbol p not used in P.
Add 〈R, p〉 to Λj and 〈p, S〉 to Ψi.

The next design patterns allows one to define a predicate in P abstracting
from how it is represented in the knowledge bases.



Pattern Split Definitions.

Problem. In P there is a predicate p whose instances are inherited from
concepts or roles S1, . . . , Sk where each Sj comes from the knowledge
base Lϕ(j), for 1 ≤ j ≤ n.

Solution. For each 1 ≤ j ≤ n, add the pair 〈Sj , p〉 to Λϕ(j).

Note that Split Definitions consists of a combined application of several
Observer Down, all with the same observer predicate in P. This pattern deals
with a predicate that is kept as independent as possible from its definition.
Instead of defining clauses, the instances are plugged in through the use of Mdl-
programs with observers, thus externalizing the definition of the predicate –
in the spirit of Dynamic Binding. The possibility of using different concepts
or roles (possibly even from different knowledge bases) captures the essence of
Polymorphism. For this reason, this pattern was originally named Polymorphic
Entities [6].

The converse situation yields a different pattern, due to the way Mdl-programs
are typically developed: the logic program is written to connect pre-existing
knowledge bases. This pattern is particularly useful when in presence of termi-
nological ontologies where some concepts are not defined, and captures a typical
way of working with ontologies.

Pattern Definitions with Holes.

Problem. Concept or role S is needed for reasoning in Li, but its definition
will be in Lj (with i 6= j) or P.

Solution.
Use S in Li without defining it (so the extent of S is empty).
Later, connect S to its definition using Observer Up, Observer
Down or Transversal Observer, possibly coupled with Split Def-
initions.

This pattern corresponds to the Template Method pattern of object-oriented
programs [13], and to the Programming with Holes technique of [21]. In the next
section we will show an example where the holes are filled in by resorting to
Split Definitions.

The last design pattern in this section applies when several components of
an Mdl-program contribute to the definition of a predicate.

Pattern Combined Definitions.

Problem. There is a predicate being defined in some of the Lis (in the form
of concepts or roles Si) and P (in the form of two predicates p+ and
p−, corresponding to the predicate and its negation).

Solution.
For each i, add 〈Si, p+〉 and 〈¬Si, p−〉 to Λi.
For each i, add 〈p+, Si〉 and 〈p−,¬Si〉 to Ψi.



Note that Combined Definitions is essentially different from Observer:
in Observer, a predicate is defined in one component and used in others; in
Combined Definitions, not only the usage, but also the definition of the
predicate is split among several components, so that one must look at the whole
Mdl-program to understand it. This is also part of the reason to include the
negations of the predicates involved in the observers: the distributed predicate
must end up with the same semantics, both in P and in all the involved Lis –
at least regarding named individuals.

It is possible to apply this pattern when P does not participate in the pred-
icate’s definition. In this case, P is simply a mediator, and p+ and p− can be
any fresh predicate names.

This pattern was originally introduced in [6] under the name Lifting.

The application of each of the patterns proposed in this section yields local-
ized changes to the Mdl-program: they consist of either changing dl-atoms (by
means of adding pairs to Ψi) or adding rules to P (either directly, as in the case
of Closed-world, or by adding pairs to Λi). In all cases, these changes are
only reflected in P, and they can be divided into two or three distinct types.
This is in line with the whole philosophy of dl-programs: there is an asymmetry
between their components where the logic program is the orchestrator between
all components as well as its façade: it is the only entity interacting with the
outside world.

4 A comprehensive example

We now illustrate the usage of the different design patterns introduced so far by
means of a more complex example.

Scenario. The software developers at WishYouWereThere travel agency de-
cided to develop an Mdl-program to manage several of the agency’s day-to-day
tasks. Currently, WishYouWereThere has two active partnerships, one with
an aviation company, another with a hotel chain. Thus, the Mdl-program to be
developed uses three ontologies:

– LA is a generic accounting ontology for travel agencies, which is commercially
available, and which contains all sorts of rules relating concepts relevant for
the business. This ontology is strictly terminological, containing no specific
instances of its concepts and roles.

– LF is the aviation partner’s knowledge base, containing information not only
about available flights between different destinations, but also about clients
who have already booked flights with that company.

– LH is a similar knowledge base pertaining to the hotels owned by the partner
hotel chain.

One of the points to take into consideration is that the resulting Mdl-program
with observers 〈{LA,LF ,LH},P, {ΛA, ΛF , ΛH}, {ΨA, ΨF , ΨH}〉 should be easily



extended so that the travel agency can establish new partnerships, in particular
with other aviation companies and hotel chains, as long as those provide their
own knowledge bases. At the end of this section, we will show how the systematic
use of design patterns and observers helps towards achieving this goal.

By establishing partnerships, WishYouWereThere’s client basis is ex-
tended with all the clients who have booked services of its partners. In this way,
promotions made available by either partner are automatically offered to every
partner’s clients, as long as the bookings are made through the travel agency.
In return, the partners get publicity and more clients, since a person may be
tempted to fly with their company or book their hotel due to these promotions,
thereby becoming also their client.

Updating the client database. Ensuring that each partner’s clients automatically
become WishYouWereThere’s clients can be achieved by noting that this
is exactly the problem underlying Observer Down. Assuming LF and LH
have concepts Flyer and Guest, respectively, identifying their clients, and that
the agency’s clients will be stored as a predicate client in P, all that needs to be
done is to register client as an observer of Flyer and Guest, which, according to the
pattern, is achieved by ensuring that 〈Flyer, client〉 ∈ ΛF and 〈Guest, client〉 ∈ ΛH .

Identifying pending payments. The designers of LA resorted intensively to Def-
initions with Holes, since many of the concepts they use can only be defined
in the presence of a concrete client database. In particular, LA contains a role
toPay, about which it contains no membership axioms. The information about
the specific purchases a client has made and not paid so far must be collected
from the partners’ knowledge bases, LF and LH .

There are two ways of completing this definition. The more direct one stems
from noting that toPay should be an observer of adequate roles in LF and LH .
We will assume that these roles are payFlight and payHotel. Applying twice
Transversal Observer (which is the adequate pattern), one needs to ensure
that

〈payFlight, toPayF〉 ∈ ΛF 〈toPayF, toPay〉 ∈ ΨA
〈payHotel, toPayH〉 ∈ ΛH 〈toPayH, toPay〉 ∈ ΨA .

The major drawback of this solution is that it requires adding two dummy pred-
icates to P whose only purpose is to serve as go-between from both knowledge
bases to LA. An alternative solution is to create a single auxiliary predicate
toPay in P and make toPay from LA an observer of this predicate applying Ob-
server Up. In turn, we use the Split Definitions pattern to connect toPay to
payFlight and payHotel. The resulting Mdl-program with observers is such that:

〈payFlight, toPay〉 ∈ ΛF 〈payHotel, toPay〉 ∈ ΛH 〈toPay, toPay〉 ∈ ΨA .

As we will discuss later, this solution will also simplify the process of adding new
partners to the agency.



Offering promotions. WishYouWereThere offers a number of promotions
to its special clients. For example, in February the agency offers them a 20%
discount on all purchases. Because of the partnership, the concept of special
client is distributed among all partners: a client is a special client if it fulfills one
of the partners’ requirements – e.g. having traveled some number of miles with
the airline partner, or booked a family holiday in one of the partner’s hotels, or
bought one of the agency’s pricey packages. The partnership protocol requires
that each knowledge base provide a concept identifying which clients are eligible
for promotions, so that the partners can change these criteria without requiring
WishYouWereThere to change its program.

This is a situation where the Combined Definitions design pattern ap-
plies. Assuming that LF uses TopClient for its special clients, LH uses Gold and
P defines special, these three predicates are given the same semantics through
Combined Definitions. Intuitively, this means that, in the Mdl-program’s
view, all three concepts equally denote all special clients, regardless of where
they originate. The application of the pattern translates to

〈TopClient, special〉 ∈ ΛF 〈¬TopClient, notSpecial〉 ∈ ΛF
〈special,TopClient〉 ∈ ΨF 〈notSpecial,¬TopClient〉 ∈ ΨF

and four similar observers in ΛH and ΨH , with Gold in place of TopClient.
Furthermore, in order to determine whether a particular client is entitled to

promotions, it is useful to give closed-world semantics to these predicates. Since
they are all equivalent, we can do this very simply in P by adding the rule

notSpecial(X)← not special(X) .

Note that we did not need to apply the Closed-world pattern because
special is a predicate from P, where the semantics is closed-world: the application
of Combined Definitions ensures that Gold and TopClient, being equivalent,
also have closed-world semantics.

In order for one of the partner companies to make its clients eligible for
special promotions, its ontology just needs to contain inclusion axioms partially
characterizing special clients. For example, one could have

∃flies.10000OrMore v TopClient ∈ LF
familyBooking v Gold ∈ LH

special(X)← booked(X,Y ), expensive(Y ) ∈ P

A subtle issue now appears regarding the consistency problems that may
arise from the use of the Combined Definitions pattern. Since this pattern
identifies concepts from different knowledge bases, it does not a priori guarantee
that the resulting knowledge bases are consistent. In particular, if one of the
partners grants special status to a client and another denies this status to the
same client, an inconsistency will arise. More sophisticated variations of the
Combined Definitions pattern can be developed to detect and avoid this
kind of situation, but such a discussion is beyond the scope of this presentation.



An example of a promotion offered by WishYouWereThere to special
clients would be

20%Discount(X)← special(X) .

All special clients will benefit from this discount, regardless of who (the travel
agency, the hotel partner or the aviation company) decided that they should
be special clients. However, in some cases partners may want to deny their
promotions to particular clients. For example, the aviation company is offering
100 bonus miles to special costumers booking a flight on a Tuesday, but this
promotion does not apply to its workers. In order to allow this kind of situation,
partners may define a dedicated concept identifying the non-eligible clients. Since
all clients external to that partner are automatically eligible, this concept needs
to have closed-world semantics so that (in our example) LF can include the rules

100BonusMilesWinner v TopClient u ¬Blocked

Worker v Blocked

still giving the promotion to all clients from the other partners. Although each
knowledge base can enforce this semantics in its domain, in order to extend it
to other clients the Closed-World pattern must be applied, so we will have

〈Blocked, blockedF〉 ∈ ΛF 〈nonBlockedF,¬Blocked〉 ∈ ΨF
nonBlockedF(X)← not blockedF(X) ∈ P

Suppose that airline employee Ann qualifies for WishYouWereThere pro-
motions because she spent three weeks in Jamaica with her husband and their
five children, hence Gold(Ann) holds in LH and therefore Ann is a special client.
She is therefore eligible for WishYouWereThere’s promotions, but she will
still not earn the bonus miles because it is LF who decides whether someone gets
that particular promotion, and even though TopClient(Ann) holds that knowl-
edge base will not return 100BonusMilesWinner(Ann). However, she will earn the
20%Discount, since it is offered directly by WishYouWereThere.

Adding new partnerships. We now discuss briefly how new partners can be easily
added to the system later on, as this illustrates quite well the advantages of
working both with design patterns and in the context of Mdl-programs with
observers.

Summing up what we have so far relating to the partnerships, the sets
ΛF , ΛH , ΨF and ΨH are:

ΛF : 〈Flyer, client〉 ΛH : 〈Guest, client〉
〈payFlight, toPay〉 〈payHotel, toPay〉
〈TopClient, special〉 〈Gold, special〉
〈¬TopClient, notSpecial〉 〈¬Gold, notSpecial〉
〈Blocked, blockedF〉 〈Blocked, blockedH〉



ΨF : 〈special,TopClient〉 ΨH : 〈special,Gold〉
〈notSpecial,¬TopClient〉 〈notSpecial,¬Gold〉
〈nonBlockedF,¬Blocked〉 〈nonBlockedH,¬Blocked〉

Also, the application of the design patterns added the following rules to P.

nonBlockedF(X)← not blockedF(X)

nonBlockedH(X)← not blockedH(X)

notSpecial(X)← not special(X)

The similarity between ΛF and ΛH , and between ΨF and ΨH , is a clear illus-
tration of the changes required when future partners of WishYouWereThere
are added to the system. Furthermore, the names they use for each concept or
role are not relevant – they just need to indicate how they identify their clients,
their clients’ debts, their special clients, and the clients they wish to exclude
from their promotions.

5 Beyond these patterns

The set of design patterns we presented does not by any means claim to be
exhaustive or all-powerful. Design patterns for several programming paradigms
have been around for more than two decades, and dozens of different patterns
have been proposed and applied, often in very specific contexts. Our goal was
to show how some of the most common general-purpose design patterns can
be implemented within the framework of Mdl-programs, thereby illustrating the
potential of this formalism. Among the more elaborate design patterns, our se-
lection took into account the ones that can be more naturally formalized using
Mdl-programs with observers. In this section we explore some limitations and
discuss future directions for our work.

In a practical context, it is not uncommon to have a function in P whose
definition is unstable in the sense that it may vary, for example rotating cyclically
among several possibilities. Also, there are cases where one foresees possible
future variations which are not contemplated in the existing requirements. The
following pattern provides a clean way to implement such functions in a way
that minimizes undesirable impact on the other elements of the program.

Pattern Indirection.

Problem. There is a predicate p (in P) whose definition may vary, but P
should be protected from these variations, in the sense that it should
suffer minimal and easily identifiable modifications.

Solution. Create a stable interface through a dedicated knowledge base LI
in KB.
Define p with a set of rules, each one protected by a query to LI on a
concept or role S.
Define S in LI such that the satisfiable clauses of p are the ones corre-
sponding to its current definition.



Different applications of this pattern may share the same dedicated knowl-
edge base LI , since each of them only looks at a particular concept or role.

The Indirection design pattern captures some aspects of the principle of
Protected Variations in object-oriented programming [19], which is a root prin-
ciple motivating most of the mechanisms and patterns in programming and
design that provide flexibility and protection from variations. This pattern was
not originally introduced in [6].

As a particular case, it may happen that a component of a system is not
known or available at the time of implementation of others, yet it is necessary
to query it. A way to get around this is to use a prototype knowledge base that
will later on be connected to the concrete component in a straightforward way.

The same problem may also arise if one wishes to be able to replace a knowl-
edge base with another with a similar purpose, but whose concept and role names
may be different.

Both of these situations reflect another aspect of the same principle of Pro-
tected Variations mentioned above, but now the point of variation in KB that
P is being protected from lies in one of the knowledge bases and not in P itself.

Pattern Adapter.

Problem. One wants to work with Lk independently of its particular syntax.
Solution. Decide the names to use in P for the concepts and roles involved,

and add an empty interface knowledge base LI to KB using these names.
Later, connect each concept and role in LI with its counterpart in Lk
by means of an application of the Transversal Observer pattern.

There is one important characteristic of this implementation of the usual
Adapter design pattern: the Mdl-program syntax for local extensions to dl-
queries only works in the particular case where the query is over a concept or
role being directly extended. Because all queries go through the interface knowl-
edge base, where no axioms exist, any other extensions are lost. The following
example illustrates this situation.

Consider an interface LI specifying two concepts P and Q, which are made
concrete in LC as A and B. Furthermore, LC also contains the inclusion axiom
A v B. Finally, P contains the single fact thisIsTrue(ofMe). In P, the direct query
DLC [A ] thisIsTrue;B](X) returns the answer X = ofMe, since LC is extended
with A(ofMe) in the context of this query. However, the corresponding indirect
query (i.e. the same query, but passing through the adapter)

DLI [P ] p+, P ∪- p−, Q ] q+, Q∪- q−, P ] thisIsTrue;Q](X)

after extending P with the rules

p+(X)← DLC [;A](X) q+(X)← DLC [;B](X)

p−(X)← DLC [;¬A](X) q−(X)← DLC [;¬B](X)



– introduced by the concretization of the observer sets – returns no answer, since
LI only knows the facts about B that are directly given by LC through q+.

Note, however, that the dl-atom DLC [A ] thisIsTrue;A](X) is equivalent to

DLI [P ] p+, P ∪- p−, Q ] q+, Q∪- q−, P ] thisIsTrue;P ](X) ,

since the query is directly on the concept whose extent was altered. This is
a restriction with respect to the full power of Mdl-programs; but we see it as
a feature of the Adapter design pattern. Should a context arise where such
flexibility is essential, then this is not the right design pattern to apply. In
practice, situations where a Adapter is applicable are common enough to make
it a useful pattern.

A more problematic situation arises when one wants to control or restrict
access to a resource, for example a database containing sensitive information –
a problem typically addressed by means of a proxy. In practice, this is not very
different from the Adapter design pattern – but Adapter is an algorithm-free
pattern that just defines interfaces, whereas an entity implementing Proxy is
expected to do some processing before passing on the information it receives.

An implementation along the lines we have followed so far would explore the
possibility of a proxy knowledge base to serve as a mediator between two com-
ponents. In the setting of Mdl-programs, however, this is actually not possible
to achieve directly, since all queries must go through the logical program. The
only other option is to encode the proxy in the logic program itself, forcing every
dl-query to the protected resource to be immediately preceded by some atoms
implementing the proxy – which from the Proxy design pattern perspective is
not completely satisfactory, since the person who develops the logic program can
access the implementation of the proxy.

There would be ways to go around these problems, namely by extending
Mdl-programs with appropriate syntactic constructions besides observers. In-
deed, our motivation for defining Mdl-programs with observers was, primarily,
to guarantee that all dl-queries were appropriately extended, even the ones that
were written after deciding that a concept or role should be observing a predi-
cate. As it turned out, this construction is powerful enough to allow for elegant
implementations of all the design patterns discussed earlier. There is an aspect
that cannot be overstressed: the sets Λi and Ψi are syntactic sugar. As such, they
do not add to the expressive power of Mdl-programs, but they substantially in-
crease their legibility and internal structure. By working with an Mdl-program
with observers, one can more easily understand the core of the program (which
is the logic program P) without being disturbed by the presence of myriads
of rules that connect P with the several knowledge bases. In particular, most
of the design patterns we presented can be expressed simply as adding specific
pairs to carefully chosen observer sets Λi and Ψi – yielding a clean program that
is also very easy to maintain and extend. At the end of the day, though, the
Mdl-program with observers simply translates into an Mdl-program.

To deal with a full Adapter or Proxy, one would have to extend the syntax
of Mdl-programs in a non-conservative way; but doing this would remove their



simplicity, which was the main motivation for using them in the first place.
Therefore, this section can be summarized as follows: the design patterns here
introduced allow one to write Mdl-programs in a clean and elegant way, thereby
obtaining programs of a better quality than ad hoc designed solutions. If one
needs to go beyond the power of Mdl-programs, namely to implement a full-
fledged proxy, then one should not use them at all, but rather move to a more
powerful formalism.

6 Conclusions

The purpose of the present study, at this stage, is to show that design patterns
have a place in the world of the Semantic Web. One can foresee a future where
there is a widespread usage of systems combining description logics with rules,
and the availability of systematic design methodologies is a key ingredient to
making this future a reality.

This paper extends the original presentation in [6] by discussing an initial
set of design patterns for Mdl-programs, together with a large-scale example
illustrating their application, and showing the inherent limitations of this pro-
gramming framework.

An aspect that will have to be addressed in the future relates to the practical
issues of the usage of design patterns. Ad hoc solutions to specific problems may
be more efficient than the application of systematic methods, but they tend
to yield less generalizable and less extensible software applications. Also, the
use of observers (essential to many of the patterns proposed) introduces higher
complexity, especially when non-stratified negation is involved. It is important
to understand the compromise between efficiency and quality obtained by a
systematic use of design patterns by means of a practical evaluation using the
prototype implementation of Mdl-programs within dlvhex [17].

The mechanisms herein discussed can be applied to multi-context systems,
in view of the similarities between these and Mdl-programs. A preliminary study
of this connection has been undertaken in [5].
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