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Abstract. Since the proof of the four color theorem in 1976, computer-
generated proofs have become a reality in mathematics and computer
science. During the last decade, we have seen formal proofs using verified
proof assistants being used to verify the validity of such proofs.
In this paper, we describe a formalized theory of size-optimal sorting
networks. From this formalization we extract a certified checker that
successfully verifies computer-generated proofs of optimality on up to
8 inputs. The checker relies on an untrusted oracle to shortcut the search
for witnesses on more than 1.6 million NP-complete subproblems.

1 Introduction

Sorting networks are hardware-oriented algorithms to sort a fixed number of
inputs using a predetermined sequence of comparisons between them. They are
built from a primitive operator, the comparator, which reads the values on two
channels, and interchanges them if necessary to guarantee that the smallest one
is always on a predetermined channel. Comparisons between independent pairs
of values can be performed in parallel, and the two main optimization problems
one wants to address are: how many comparators do we need to sort n inputs
(the optimal size problem); and how many computation steps do we need to sort
n inputs (the optimal depth problem). This paper focuses on the former problem.

Most results obtained on the optimal-size problem rely on exhaustive analysis
of state spaces. For up to 4 inputs, a simple information-theoretical argument
suffices, and for 5 inputs, the state space is small enough to be exhausted by
manual inspection and symmetry arguments. However, all known optimality
proofs for 7 inputs use computer programs to eliminate symmetries within the
search space of almost 1020 comparator sequences of length 15 and show that no
sorting network of this size exists [9]. It took 50 years before a similar approach [6]
was able to settle that the known sorting network of size 25 on 9 inputs is optimal.
Optimality results for 6, 8, and 10 are obtained by a theoretical argument [18].

The proof in [6] uses a generate-and-prune algorithm to show size optimality
of sorting networks, and it not only established optimality of 25 comparisons for
sorting 9 inputs, but it also directly confirmed all smaller cases. The pruning step
includes an expensive test taking two sequences of comparators and deciding



whether one of them can be ignored. This test, which often fails, is repeated
an exponential number of times, each invocation requiring iteration over all
permutations of n elements in the worst case. During execution, we took care to
log the comparator sequences and permutations for which this test was successful.

In this paper we describe a Coq formalization of the theory of optimal-
size sorting networks, from which we extract a certified checker implementing
generate-and-prune with the goal of confirming the validity of these results. In
order to obtain feasible runtimes, we bypass the expensive search process in the
extracted certified checker by means of an oracle based on the logs of the origi-
nal execution. The checker takes a skeptical approach towards the oracle: if the
oracle provides wrong information at any step, the checker ignores it.

In the presentation, we discuss how we exploit the constructiveness of the
theory to simplify the formalization and identify places where skepticism towards
the oracle becomes relevant. Interestingly, the interactive process of formaliza-
tion itself revealed minor gaps in the hand-written proofs of [6], underlining the
importance of formal proof assistants in computer-aided mathematical proofs.

This paper is structured as follows. Section 2 summarizes the theory of sorting
networks relevant for this formalization, and describes the generate-and-prune
algorithm together with the information logged during its execution. Section 3
describes the formalization of the theory, with emphasis on the challenges en-
countered. Section 4 deals with the aspects of the formalization that have a
direct impact on the extracted program, namely the specification of the oracle
and the robustness needed to guarantee that unsound oracles do not compro-
mise the final results. Section 5 addresses the implementation of the oracle and
the execution of the extracted code. Finally, Section 6 presents some concluding
remarks and directions in which this work can be extended.

1.1 Related work

The proof of the four colour theorem from 1976 [1,2] was not the first computer-
assisted proof, but it was the first to generate broad awareness of a new area
of mathematics, sometimes dubbed “experimental” or “computational” math-
ematics. Since then, numerous theorems in mathematics and computer science
have been proved by computer-assisted and computer-generated proofs. Besides
obvious philosophical debates about what constitutes a mathematical proof, con-
cerns about the validity of such proofs have been raised since. In particular,
proofs based on exhausting the solution space have been met with skepticism.

During the last decade, we have seen an increasing use of verified proof
assistants to create formally verified computer-generated proofs. This has been a
success story, and it has resulted in a plethora of formalizations of mathematical
proofs, a list too long to even start mentioning particular instances. Pars pro
toto, consider the formal proof of the four colour theorem from 2005 [11].

Outside the world of formal proofs, computer-generated proofs are flour-
ishing, too, and growing to tremendous sizes. The proof of Erdös’ discrepancy
conjecture for C = 2 from 2014 [13] has been touted as one of the largest mathe-
matical proofs and produced approx. 13 GB of proof witnesses. Such large-scale



proofs are extremely challenging for formal verification. Given the current state
of theorem provers and computing equipment, it is unthinkable to use Claret et
al.’s approach [5] of importing an oracle based on the proof witnesses into Coq,
a process clearly prohibitive for such large-scale proofs as we consider.

The last years have seen the appearance of untrusted oracles, e.g. for a verified
compiler [14] or for polyhedral analysis [10]. Here, the verified proof tool is
relegated to a checker of the computations of the untrusted oracle, e.g., by using
hand-written untrusted code to compute a result and verified (extracted) code
to check it before continuing the computation.

The termination proof certification projects IsaFoR/CeTA [17], based on Is-
abelle/HOL, and A3PAT [7], based on Coq, go one step further, and use an
offline untrusted oracle approach, where different termination analyzers provide
proof witnesses, which are stored and later checked. However, a typical termi-
nation proof has 10-100 proof witnesses and totals a few KB to a few MB of
data, and recent work [16] mentions problems were encountered when dealing
with proofs using “several hundred megabytes” of oracle data. In contrast, the
proof of size-optimality of sorting networks with 8 inputs requires dealing with
1.6 million proof witnesses, totalling more than 300 MB of oracle data.

2 Optimal-Size Sorting Networks

A comparator network C with n channels and size k is a sequence of comparators
C = (i1, j1); . . . ; (ik, jk), where each comparator (i`, j`) is a pair of channels
1 ≤ i` < j` ≤ n. If C1 and C2 are comparator networks with n channels, then
C1;C2 denotes the comparator network obtained by concatenating C1 and C2.
An input x = x1 . . . xn ∈ {0, 1}n propagates through C as follows: x0 = x, and
for 0 < ` ≤ k, x` is the permutation of x`−1 obtained by interchanging x`−1i`

and

x`−1j`
whenever x`−1i`

> x`−1j`
. The output of the network for input x is C(x) =

xk, and outputs(C) =
{
C(x)

∣∣x ∈ {0, 1}n }
. The comparator network C is a

sorting network if all elements of outputs(C) are sorted (in ascending order).

(a)

(b)

The zero-one principle [12] implies that a sorting network
also sorts sequences over any other totally ordered set,
e.g. integers. Images (a) and (b) on the right depict sort-
ing networks on 4 channels, each consisting of 6 com-
parators. The channels are indicated as horizontal lines
(with channel 4 at the bottom), comparators are indi-
cated as vertical lines connecting a pair of channels, and input values propa-
gate from left to right. The sequence of comparators associated with a picture
representation is obtained by a left-to-right, top-down traversal. For example,
the networks depicted above are: (a) (1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3) and
(b) (1, 2); (3, 4); (2, 3); (1, 2); (3, 4); (2, 3).

2.1 Optimal Size Sorting Networks

The optimal-size sorting network problem is about finding the smallest size,
S(n), of a sorting network on n channels. In 1964, Floyd and Knuth presented



sorting networks of optimal size for n ≤ 8 and proved their optimality [9]. Their
proof required analyzing huge state spaces by means of a computer program, and
the combinatorial explosion involved implied that there was no further progress
on this problem in the next fifty years, until the proof that S(9) = 25 [6]. The
best currently known upper and lower bounds for S(n) are given in the following
table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
upper bound for S(n) 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60
lower bound for S(n) 0 1 3 5 9 12 16 19 25 29 33 37 41 45 49 53

Given an n channel comparator network C = (i1, j1); . . . ; (ik, jk) and a per-
mutation π on {1, . . . , n}, π(C) is the sequence (π(i1), π(j1)); . . . ; (π(ik), π(jk)).
Formally, π(C) is not a comparator network, but rather a generalized compara-
tor network : a comparator network that may contain comparators (i, j) with
i > j, which order their outputs in descending order instead of ascending. A
generalized sorting network can always be transformed into a (standard) sort-
ing network with the same size and depth by means of a procedure we will call
standardization: if C = C1; (i, j);C2 is a generalized sorting network with C1

standard and i > j, then standardizing C yields C1; (j, i);C ′2, where C ′2 is ob-
tained by (i) interchanging i and j and (ii) standardizing the result. We write
C1 ≈ C2 (C1 is equivalent to C2) iff there is a permutation π such that C1

is obtained by standardizing π(C2). The two networks (a) and (b) above are
equivalent via the permutation (1 3)(2 4).

Lemma 1. If C is a generalized sorting network, then standardizing C yields a
sorting network.

The proof of this result, proposed as Exercise 5.3.4.16 in [12], is an induc-
tion proof that requires manipulating permutations and reasoning about the
cardinality of outputs(C).

2.2 The generate-and-prune approach

Conceptually, one could inspect all n-channel comparator networks of size k one-
by-one to determine if any of them is a sorting network. However, even for small
n such a naive approach is combinatorically infeasible. There are n(n−1)/2 com-
parators on n channels, and hence (n(n− 1)/2)k networks with k comparators.
For n = 9, aiming to prove that there does not exist a sorting network with 24
comparators would mean inspecting approximately 2.25× 1037 comparator net-
works. Moreover, checking whether a comparator network is a sorting network
is known to be a co-NP complete problem [15].

In [6] we propose an alternative approach, generate-and-prune, which is
driven just as the naive approach, but takes advantage of the abundance of
symmetries in comparator networks, formalized via the notion of subsumption.
Given two comparator networks on n channels Ca and Cb, we say that Ca
subsumes Cb, and write Ca � Cb, if there exists a permutation π such that



π(outputs(Ca)) ⊆ outputs(Cb). If we need to make π explicit, we will write
Ca ≤π Cb.

Lemma 2 ([6]). Let Ca and Cb be comparator networks on n channels, both of
the same size, and such that Ca � Cb. Then, if there exists a sorting network
Cb;C of size k, there also exists a sorting network Ca;C ′ of size k.

Lemma 2 implies that, when adding a next comparator in the naive approach,
we do not need to consider all possible positions to place it. In particular, we
can omit networks that are subsumed by others.

The generate-and-prune algorithm iteratively builds two sets Rnk and Nn
k of

n channel networks of size k. First, it initializes Rn0 to consist of a single element:
the empty comparator network. Then, it repeatedly applies two types of steps,
Generate and Prune, as follows.

1. Generate: Given Rnk , construct Nn
k+1 by adding one comparator to each

element of Rnk in all possible ways.
2. Prune: Given Nn

k+1, construct Rnk+1 such that every element of Nn
k+1 is

subsumed by an element of Rnk+1.

The algorithm stops when a sorting network is found, which will make |Rnk | = 1.
To implement Prune, we loop onNn

k and check whether the current network is
subsumed by any of the previous ones; if this is the case, we ignore it. Otherwise,
we add it to Rnk and remove any networks already in this set that are subsumed
by it. This yields a double loop Nn

k where at each iteration we need to find
out whether a subsumption exists – which, in the worst case, requires looping
through all n! permutations. For n = 9, the largest set Nn

k is N9
15, with over

18 million elements, and there are potentially 300× 1012 subsumptions to test.
These algorithms are straightforward to implement, test and debug. The

implementation from [6], written in Prolog, can be applied to reconstruct all of
the known values for S(n) for n ≤ 6 in under an hour of computation on a single
core and, after several optimizations and parallelization as described in [6], was
able to obtain the new value of S(9).

Soundness of generate-and-prune follows from the observation that Nn
k (and

Rnk ) are complete for the optimal size sorting network problem on n channels: if
there exists an optimal size sorting network on n channels, then there exists one
of the form C;C ′ for some C ∈ Nn

k (or C ∈ Rnk ), for every k.

2.3 Checking the Proof using Proof Witnesses

Even though all of the mathematical claims underlying the design of the generate-
and-prune algorithm were proved and the correctness of the Prolog implementa-
tion was carefully checked, it is reasonable to question the validity of the final re-
sult. In [6], use was made of the de Bruijn criterion [3]: every computer-generated
proof should be verifiable by an independent small program (a “checker”). The
code was therefore augmented to produce a log file of successful subsumptions



during execution, and an independent Java verifier was able to re-check the re-
sult without needing to replicate the expensive search steps in just over 6 hours
of computational time.1

However, we may again question the validity of the checker, and enter into an
endless loop of validations. In this paper, we propose a different goal: to obtain a
correct-by-design checker by extracting it from a formalized proof of the theory
of sorting networks. The reason for aiming at extracting a checker, rather than
the full generate-and-prune algorithm, is that by using the log as an (untrusted)
oracle we again gain a speedup of several orders of magnitude, as we completely
avoid all the search steps.

In total, for 9 inputs we have logged proof witnesses for approx. 70 mil-
lion subsumptions, yielding a 27 GB log file. For the smaller case of 8 inputs, we
logged 1.6 million subsumptions, yielding over 300 MB of data. Developing a for-
malization allowing the extraction of an efficient checker that uses an untrusted
oracle of even this smaller magnitude is an exciting challenge that, to the best
of our knowledge, has not been tackled before. We proceed in two stages. First,
we formalize the theory of optimal-size sorting networks directly following [12],
including the new results from [15,6]. Then we implement generate-and-prune
with an oracle in Coq, prove its soundness, and extract a certified checker able
to verify all results up to 8 inputs.

3 Formalizing sorting networks

Formalizing the theory of sorting networks presents some challenges relating to
the very finite nature of the domain. All the relevant notions are parameterized
on the number n of inputs, and thus the domain for most concepts is the finite
set {0, 1, . . . , n− 1}.

Directly working with this set in Coq is very cumbersome due to the ensuing
omnipresence of proof terms – every number required as argument has to be
accompanied by a proof that it is in the adequate range. Furthermore, these
proof terms are completely trivial, since the order relations on natural numbers
are all decidable. Therefore, we chose to define all relevant concepts in terms
of natural numbers, and define additional properties specifying that particular
instances fall in the appropriate range. For example, a comparator is simply
defined as a pair of natural numbers:

Definition comparator : Set := (prod nat nat).

and we define with predicates stating that a particular comparator is a (stan-
dard) comparator on n channels:

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition comp_std (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

1 The logs and the Java verifier are available from: http://imada.sdu.dk/~petersk/
sn/

http://imada.sdu.dk/~petersk/sn/
http://imada.sdu.dk/~petersk/sn/


Likewise, the type CN of comparator networks is defined as list comparator,
and there are predicates stating that a comparator network spans n channels,
and that it is standard (which simply state that all comparators in the list have
the corresponding comparator property).

Comparator networks act on binary sequences, and we define these as a
dependent type, similar to Vector.

Inductive bin_seq : nat -> Set :=

| empty : bin_seq 0

| zero : forall n:nat, bin_seq n -> bin_seq (S n)

| one : forall n:nat, bin_seq n -> bin_seq (S n).

We then define two operations get and set, such that (get n s) returns the
element (0 or 1) in position n of s, and (set n s k) sets position n of s to 0, if k
is 0, and 1 otherwise. Setting an index larger than the length of a sequence leaves
the sequence unchanged, while attempting to get the value in an index out of
range returns 2. The contexts where these functions are used ensure that these
situations do not occur, so these options are immaterial for the formalization.

A sequence is sorted if its first element is 0 and the remaining sequence is
sorted, or if it consists entirely of 1s.

Fixpoint all_ones (n:nat) (x:bin_seq n) : Prop := match x with

| empty => True

| zero _ _ => False

| one _ y => all_ones _ y

end.

Fixpoint sorted (n:nat) (x:bin_seq n) : Prop := match x with

| empty _ => True

| zero _ y => sorted _ y

| one _ y => all_ones _ y

end.

Sequences propagate through comparator networks as expected; a sorting
network is a comparator network that sorts all inputs.

Fixpoint apply (c:comparator) n (s:bin_seq n) :=

let (i,j):=c in let x:=(get s i) in let y:=(get s j) in

match (le_lt_dec x y) with

| left _ => s

| right _ => set (set s j x) i y

end.

Fixpoint full_apply (S:CN) n (s:bin_seq n) := match S with

| nil => s

| cons c S’ => full_apply S’ _ (apply c s)

end.

Definition sorting_network (n:nat) (S:CN) :=

(channels n S) /\ forall s:bin_seq n, sorted (full_apply S s).



We also define an alternative characterization of sorting networks in terms
of their sets of outputs and prove its equivalence to this one, but for space
constraints we will not present it here.

A posteriori, this characterization is actually quite close to the corresponding
mathematical definition: the comparator network {(0, 2); (2, 5)} is a network on 6
channels, but it is also a network on 9 or 11 channels, or indeed on n channels for
any n ≥ 6. So this implementation option does not only make the formalization
easier, but it is also a good model of the way we think about these objects.

3.1 Proof methodology

As discussed above, we completely separate between objects and proof terms.
This option is dictated by the constructive nature of the theory of sorting net-
works. The key results underlying the pruning step of the generate-and-prune
algorithm are all of the form “If there is a sorting network N , then there is
another sorting network N ′ such that. . . ”, and the published proofs of these
results [6,12,15] all proceed by explicitly describing how to construct N ′ from
N . We formalize these results as operators in order to simplify their reuse: in-
stead of proving statements of the form ∀N.ϕ(N) → ∃N ′.ψ(N ′) we first define
some transformation T and prove that ∀N.ϕ(N)→ ψ(T (N)) from which we can
straightforwardly prove the original statement.

Keeping the proof terms separated from the definitions and formalizing ex-
istential proofs as operators has several advantages:

– it is much easier to define these operators and then prove that they satisfy
the required properties than including proof terms in their definition;

– the hypotheses underlying the properties themselves become much more ex-
plicit – e.g. renumbering channels yields a network on the same number of
channels and of the same size, and these two results are independent;

– later, we can use the operators directly together with the relevant lemmas,
rather than repeatedly applying inversion on an existential statement;

– additional properties of the operators that are needed later are easy to add
as new lemmas, instead of requiring changes to the original theorem;

– we automatically get proof irrelevance, as proof terms are universally quan-
tified in lemmas.

As an example, recall the definition of standardization: given a comparator
network C, pick the first comparator (i, j) for which i > j, replace it with (j, i)
and exchange i with j in all subsequent comparators, then iterate the process
until a fixpoint is reached. Standardization is the key ingredient in Lemma 2,
and it is formalized using well-founded recursion as follows.

Function std (S:CN) {measure length S} : CN := match S with

| nil => nil

| cons c S’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: std S’)

| right Hxy => (y[<]x :: std (permute x y) S’))

end end.



We then prove that standardizing a comparator network on n channels yields
a standard comparator network on n channels. This is not completely trivial,
because of the permutation in the recursive step: permuting channel labels x and
y preserves the total number channels n only if x < n and y < n. While these hy-
potheses trivially hold (x and y are channels in an n-channel network), requiring
the corresponding proof terms in the definition of comparator would make the
definition of std unreadable. In later results, we can use the std operator when
needed. There are in total seven different properties that are needed in different
places in the formalization, and all but two are proven independently. If we did
not have std as an operator, they would have to be formalized together as one
gigantic result stating that for every network C there exists another network C ′

satisfying the seven necessary properties.

3.2 Permutations

The soundness of the checker essentially depends on the proof of Lemma 2.
This lemma is proved directly: if Ca ≤π Cb and Cb;C is a sorting network, then
Ca; std(π(C)) is a sorting network. The key ingredient in this proof is comparing
the effect of C and π(C) on the same input string, which requires extensive
manipulation of permutations.

Permutations are therefore an essential part of the formalization. Represent-
ing them in Coq is a challenging problem, and there are several common alterna-
tives. The standard library includes an inductive type stating that two lists are
permutations of each other; but manipulating it is cumbersome. Furthermore,
we are not interested in developing a theory of permutations, but rather in prov-
ing results about comparator networks whose channels are renamed by means
of a permutation of the numbers 0, . . . , n− 1, which we will hereafter refer to as
“a permutation of [n]”. Therefore we want a definition that makes it easy and
efficient to apply permutations to objects.

For this reason, we chose to represent permutations as finite functions. A
permutation P is a list of pairs of natural numbers, with the intended meaning
that (i, j) ∈ P corresponds to P mapping i into j. We assume that P does not
change i if there is no pair (i, j) ∈ P – this makes it much simpler to represent
transpositions, which are the only permutations we need to represent explicitly
in the formalization. In order for P to be a valid permutation of [n], several
conditions have to hold:

1. all pairs (i, j) ∈ P must satisfy i < n and j < n;
2. no number may occur twice either as the first or as the second element of

distinct pairs in P ; and
3. the sets of numbers occuring as first or second elements of the pairs in P

must coincide.

As before, we separate the datatype of permutations from the property of
being a permutation. Here, NoDup is the Coq standard library predicate stating
that a list does not have duplicate elements, and all_lt(n,l) is an inductive
predicate stating that all elements of l are smaller than n.



Definition permut := list (nat*nat).

Definition dom (P:permut) := map (fst (A:=nat) (B:=nat)) P.

Definition cod (P:permut) := map (snd (A:=nat) (B:=nat)) P.

Definition permutation n (P:permut) :=

NoDup (dom P) /\ all_lt n (dom P) /\

forall i, In i (dom P) <-> In i (cod P).

As a sanity-check, we prove the relationship with the permutations in the
Coq standard library.

Lemma permutation_Permutation : Permutation (dom P) (cod P).

All properties of permutations are added to the core hint database, so that
Coq can automatically prove most properties of permutations required during
the formalization.

We provide mechanisms to define permutations in four different ways, three of
which correspond to the usage of permutations in proofs, and another one which
will be necessary for interacting with the oracle. The former are as follows.

1. The identity permutation is simply the empty list, and it is easily shown to
be a permutation of [n] for any n.

2. Given a permutation P, we construct its inverse (inverse_perm P) by re-
versing all pairs in P. If P is a permutation of [n], then so is (inverse_perm P).

3. The transposition (transposition i j) is the permutation that switches
i and j, leaving all other values unchanged. This transposition is defined as
the list {(i, j), (j, i)}, and in order for it to be a permutation it is necessary
that i 6= j (otherwise the list {i, j} contains duplicate elements). This con-
dition therefore shows up in some results about transpositions; it is never
a problem, though, as all transpositions arise from the standardization

function, where i and j are obtained from a comparator (i, j).

We also need to get permutations from the oracle, and here we use a different
representation for efficiency reasons. The log files record permutations as their
output on the set [n], so for example the transposition over [4] exchanging 0
and 2 would be represented as {2, 1, 0, 3}. Since we want to be skeptic about
the oracle, we do not assume anything about the lists we are given; rather, we
show that the property of a list of natural numbers corresponding to a permuta-
tion on [n] is decidable. We then define a function make_perm to translate lists
of natural numbers into (syntactic) permutations, and show that the resulting
object satisfies permutation if the original list corresponds to a permutation.

Variable n:nat.

Variable l:list nat.

Definition pre_perm := NoDup l /\ all_lt n l /\ length l = n.

Lemma pre_perm_dec : {pre_perm} + {~pre_perm}.

Lemma pre_perm_lemma : pre_perm -> permutation n (make_perm l).



Thus, our checker will be able to get a list of natural numbers from the oracle,
test whether it corresponds to a permutation, and in the affirmative case use this
information.

One might question whether we could not have represented permutations
uniformly throughout. The reason for not doing so is that we have two distinct
objectives in mind. While formalizing results, we are working with an unknown
number n of channels, and it is much simpler to represent permutations by only
explicitly mentioning the values that are changed, as this allows for uniform
representations of transpositions and the identity permutation. Also, computing
the inverse of a permutation is very simple with the finite function representation,
but not from the compact list representation given by the oracle. When running
the extracted checker, however, we are concerned with efficiency. The oracle
will provide information on millions of subsumptions, so it is of the utmost
importance to minimize its size.

4 Formalizing generate-and-prune

Soundness of the generate-and-prune algorithm relies on the notion of a complete
set of filters. When formalizing this concept, we needed to make two changes:
the element C of R being extended must be a standard comparator network
with no redundant comparators2; and (as a consequence) the size of the sorting
network extending C is at most k, since there is an upper bound on how many
non-redundant comparisons we can make on n inputs.

Definition size_complete (R:list CN) (n:nat) := forall k:nat,

(exists C:CN, sorting_network n C /\ length C = k) ->

exists C’ C’’:CN, In C’ R /\ standard n (C’++C’’)

/\ (forall C1 c C2, (C’++C’’) = (C1++c::C2) -> ~redundant n C1 c)

/\ sorting_network n (C’++C’’) /\ length (C’++C’’) <= k.

These changes were discovered during the formalization of the original sound-
ness proof [6], which implicitly used the fact that the elements of the complete
sets of filters constructed were not redundant.

We prove that the set {∅} is complete, and that if there is a complete set of
filters R whose elements all have size k, then all sorting networks on n channels
have size at least k. This key property does not hold for the previous informal
definition of size completeness.

Lemma empty_complete : forall n, size_complete (nil::nil) n.

Lemma complete_size : forall R n k, size_complete R n ->

(forall C, In C R -> length C = k) ->

forall S, sorting_network n S -> length S >= k.

2 Comparator (i, j) in comparator network C; (i, j);C′ is redundant if xi < xj for all
x ∈ outputs(C) – in other words, (i, j) never changes its inputs.



4.1 The generation step

The formalization of the generation step proceeds in two phases. First, we define
the simple function adding a comparator at the end of a comparator network
in all possible ways, and Generate simply maps it into a set. The function
all_st_comps produces a list of all standard comparators on n channels.

Definition add_to_all (cc:list comparator) (C:CN) :=

map (fun c => (C ++ (c :: nil))) cc.

Fixpoint Generate (R:list CN) (n:nat) := match R with

| nil => nil

| cons C R’ => (add_to_all (all_st_comps n) C) ++ Generate R’ n

end.

Then, we use the fact that redundancy of the last comparator is decidable
to define an optimized version that removes redundant networks.

Definition last_red (n:nat) (C:CN) : Prop :=

exists C’ c, redundant n C’ c /\ C = (C’ ++ c :: nil).

Lemma last_red_dec : forall n C, {last_red n C} + {~last_red n C}.

Fixpoint filter_nred (n:nat) (R:list CN) := match R with

| nil => nil

| (C :: R’) => match last_red_dec n C with

| left _ => filter_nred n R’

| right _ => C :: filter_nred n R’

end end.

Definition OGenerate (R:list CN) (n:nat) := filter_nred n (Generate R n).

Both Generate and its optimized version map size complete sets into size
complete sets, as long as the input set does not already contain a sorting network
(in which case OGenerate would return an empty set).

Theorem OGenerate_complete : forall R n, size_complete R n ->

(forall C, In C R -> ~sorting_network n C) ->

size_complete (OGenerate R n) n.

The extracted code for these two functions coincides with their Coq defini-
tion, since they use no proof terms, and matches the pseudo-code in [6].

4.2 The pruning step

For the pruning step, we need to work with the untrusted oracle. We define an
oracle to be a list of subsumption triples 〈C,C ′, π〉, with intended meaning that
C ≤π C ′. Using the oracle, we then define the pruning step as follows.



Function Prune (O:Oracle) (R:list CN) (n:nat) {measure length R}

: list CN := match O with

| nil => R

| cons (C,C’,pi) O’ => match (CN_eq_dec C C’) with

| left _ => R

| right _ => match (In_dec CN_eq_dec C R) with

| right _ => R

| left _ => match (pre_perm_dec n pi) with

| right _ => R

| left A => match (subsumption_dec n C C’ pi’ Hpi) with

| right _ => R

| left _ => Prune O’ (remove CN_eq_dec C’ R) n

end end end end end.

The successive tests in Prune verify that: C 6= C ′; C ∈ R; π is a permutation;
and C ≤π C ′. If any of these fail, this subsumption is skipped, else C ′ is removed
from R. For legibility, we wrote pi’ for the actual permutation generated by pi

and Hpi for the proof term stating that this is indeed a permutation. The Java
verifier from [6] did not validate that the permutations in the log files were
correct permutations.

The key result states that this is a mapping from complete sets of filters
into complete sets of filters, regardless of the correctness of the oracle, as long
as the input set contains only standard comparator networks with no redundant
comparators, and all are of the same size.

Theorem Prune_complete : forall O R n, size_complete R n ->

(forall C, In C R -> standard n C) ->

(forall C C’ c C’’, In C R -> C = C’++c::C’’ -> ~redundant n C’ c) ->

(forall C C’, In C R -> In C’ R -> length C = length C’) ->

size_complete (Prune O R n) n.

This implementation is simpler than the pseudo-code in [6], as the oracle
allows us to bypass all search steps – both for permutations and for possible
subsumptions.

4.3 Coupling everything together

We now want to define the iterative generate-and-prune algorithm and prove
its correctness. Here we deviate somewhat from the original presentation. Our
algorithm will receive as inputs two natural numbers (the number of channels
n and the number of iterations m) and return one of three possible answers:
(yes n k), meaning that a sorting network of size k was found and that no
sorting network of size (k− 1) exists; (no n m R H1 H2 H3), meaning that R is
a set of standard (H3) comparator networks of size m (H2), with no duplicates
(H1); or maybe, meaning that an error occurred. The proof terms in no are
necessary for the correctness proof, but they are all removed in the extracted
checker. They make the code quite complex to read, so we present a simplified
version where they are omitted.



Inductive Answer : Set :=

| yes : nat -> nat -> Answer

| no : forall n k:nat, forall R:list CN, NoDup R ->

(forall C, In C R -> length C = k) ->

(forall C, In C R -> standard n C) -> Answer

| maybe : Answer.

Fixpoint Generate_and_Prune (n m:nat) (O:list Oracle) := match m with

| 0 => match n with

| 0 => yes 0 0

| 1 => yes 1 0

| _ => no n 0 (nil :: nil) _ _ _

end

| S k => match O with

| nil => maybe

| X::O’ => let GP := (Generate_and_Prune n k O’) in

match GP with

| maybe => maybe

| yes p q => yes p q

| no p q R _ _ _ => let GP’ := Prune X (OGenerate R p) p in

match (exists_SN_dec p GP’ _) with

| left _ => yes p (S q)

| right _ => no p (S q) GP’ _ _ _

end end end end.

In the case of a positive answer, the network constructed in the original proof
is guaranteed to be a sorting network; therefore we do not need to return it. Note
the elimination over exists_SN_dec, which states that we can decide whether
a set contains a sorting network.

Lemma exists_SN_dec : forall n l, (forall C, In C l -> channels n C) ->

{exists C, In C l /\ sorting_network n C} +

{forall C, In C l -> ~sorting_network n C}.

The correctness of the answer is shown in the two main theorems: if the
answer is (yes n k), then the smallest sorting network on n channels has size
k ≤ m; and if the answer is (no n m), then there is no sorting network on n
channels with size m or smaller. These results universally quantify over O, thus
holding regardless of whether the oracle gives right or wrong information.

Theorem GP_yes : forall n m O k, Generate_and_Prune n m O = yes n k ->

(forall C, sorting_network n C -> length C >= k) /\

exists C, sorting_network n C /\ length C = k.

Theorem GP_no : forall n m O R HR0 HR1 HR2,

Generate_and_Prune n m O = no n m R HR0 HR1 HR2 ->

forall C, sorting_network n C -> length C > m.

The full Coq formalization consists of 102 definitions and 405 lemmas, with
a total size of 206 kB, and the extracted program is around 650 lines of Haskell
code. The formalization and its generated documentation are available from
http://imada.sdu.dk/~petersk/sn/.

http://imada.sdu.dk/~petersk/sn/


5 Running the extracted program

We extracted the certified checker to Haskell using Coq’s extraction mecha-
nism. The result is a file Checker.hs containing among others a Haskell func-
tion generate_and_Prune :: Nat -> Nat -> (List Oracle) -> Answer. In
order to run this extracted certified checker, we wrote an interface that calls
generate_and_Prune function with the number of channels, the maximum size
of the networks, and the list of the oracle information, and then prints the an-
swer. This interface includes conversion functions from Haskell integers to the
extracted naturals and a function implementing the oracle, as well as a definition
of Checker.Answer as an instance of the type class Show for printing the result.

It is important to stress that we do not need to worry about soundness
of almost any function defined in the interface, as the oracle is untrusted. For
example, a wrong conversion from natural numbers to their Peano representation
will not impact the correctness of the execution (although it will definitely impact
the execution time, as all subsumptions will become invalid). We only need to
worry about the function printing the result, but this is straightforward to verify.

The extracted checker was able to validate the proofs of optimal size up to
and including n = 8 in around one day – roughly the same time it took to
produce the original proof, albeit without search. This required processing more
than 300 MB of proof witnesses for the roughly 1.6 million subsumptions. To the
best of our knowledge, it constitutes the first formal proof of the results in [9].

Experiments suggested that, using this extracted checker, the verification
of the proof that S(9) = 25 would take around 20 years. Subsequent work in
optimizing its underlying algorithm [8], without significantly changing the for-
malization herein described, was able to reduce this time to just under one week.

6 Conclusions

We have have presented a formalization of the theory of size-optimal sorting
networks, extracted a verified checker for size-optimality proofs, and used it to
show that informal results obtained in previous work are correct.

Our main contribution is a formalization of the theory of size-optimal sorting
networks, including an intuitive and reusable formalization of comparator net-
works and a new representation of permutations more suitable for computation.

Another immediate contribution is a certified checker that directly confirmed
all the values of S(n) quoted in [9], and that was subsequently able also to verify
that S(9) = 25 [8]. We plan to apply the same technique – first formalize, then
optimize – to other computer-generated proofs where formal verification has been
prohibitively expensive so far. We also plan to formalize the results from [18] in
order to obtain a formal proof of S(10) = 29.
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