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Abstract. Integrity constraints in databases have been studied exten-
sively since the 1980s, and they are considered essential to guarantee
database integrity. In recent years, several authors have studied how the
same notion can be adapted to reasoning frameworks, in such a way that
they achieve the purpose of guaranteeing a system’s consistency, but are
kept separate from the reasoning mechanisms.

In this paper we focus on multi-context systems, a general-purpose frame-
work for combining heterogeneous reasoning systems, enhancing them
with a notion of integrity constraints that generalizes the corresponding
concept in the database world.

1 Introduction

Integrity constraints in databases have now been around for decades, and are
universally acknowledged as one of the essential tools to ensure database consis-
tency [2]. The associated problem of finding out how to repair an inconsistent
database — i.e., change it so that it again satisfies the integrity constraints — was
soon recognized as an important and difficult one [1], which would unlikely be
solvable in a completely automatic way [18].

Since the turn of the century, much focus in research has moved from classi-
cal databases to more powerful reasoning systems, where information is not all
explicitly described, but may be inferred by logical means. In this setting, an
important topic of study is how to combine the reasoning capabilities of different
systems, preferrably preserving the properties that make them useful in practice
— e.g. consistency, decidability of reasoning, efficient computation. One of the
most general frameworks to combine reasoning systems abstractly is that of het-
erogeneous nonmonotonic multi-context systems [5]. Besides being studied from
a theoretical perspective, these have been implemented, and many specialized
versions have been introduced to deal with particular aspects deemed relevant
in practice [7, 15,23, 31]. In this work, we will work with relational multi-context
systems [20], a first-order generalization of the original, propositional-based sys-
tems, which we will refer to simply as multi-context systems, or MCSs.

As a very simple kind of reasoning system, databases can naturally be viewed
as particular cases of MCSs. In this paper we propose to define integrity con-
straints in MCSs in a way that naturally generalizes the usual definitions for



relational databases. Some authors have previously discussed modelling integrity
constraints in MCSs, but their approach differs substantially from the typical
database perspective, as integrity constraints are embedded into the system,
thereby becoming part of the reasoning mechanism — unlike the situation in
databases, where they form an independent layer that simply signals whether
the database is in a consistent state. We argue that integrity constraints for
MCSs should also follow this principle, and show how our approach is also in
line with investigations on how to add integrity constraints to other reasoning
frameworks, namely description logic knowledge bases [19, 26]. Due to the richer
structure of MCSs, we can define two distinct notions of consistency with respect
to integrity constraints, which coincide for the case of databases.

We also address the problem of repairing an MCS that does not satisfy its
integrity constraints by moving to managed multi-context systems (mMCSs) [7],
which offer additional structure that helps defining the notion of repair.

Contributions. Our main contribution is a uniform notion of integrity constraint
over several formalisms. We define integrity constraints over an MCS, together
with notions of weak and strong satisfaction of these. We show that the problem
of deciding whether an MCS satisfies a set of integrity constraints is polynomial-
time reducible to the problem of deciding whether an MCS is logically consistent
(i.e., it has a model). We show how our definition captures the traditional notion
of integrity constraints over relational databases, and how it naturally generalizes
this concept to distributed databases and deductive databases. We also compare
our definition with existing proposals for integrity constraints over ontology lan-
guages. Finally, we define repairs, and show how our definition again generalizes
the traditional concept in databases.

Outline. In Section 2 we introduce the framework of multi-context systems. In
Section 3 we define integrity constraints over MCSs, together with the notions
of weak and strong satisfaction. We show how we can encode an MCS with in-
tegrity constraints as a different MCS, and obtain decidability and complexity
results for satisfaction of integrity constraints by reducing to the problem of log-
ical consistency. In Section 4 we justify our definition of integrity constraint, by
showing that it generalizes the usual concept in relational databases, as well as
other authors’ proposals for ontology languages [26] and peer-to-peer systems [9].
We also show that it induces a natural concept of integrity constraint for dis-
tributed databases, as well as providing a similar notion for deductive databases
that is more expressive than the usual one; and provide complexity results for
these concrete cases. In Section 5 we recall the notion of a database repair, and
show how repairs can be naturally defined in a simple extension of MCSs. We
conclude with an overview of our results and future directions in Section 6.

1.1 Related work

The topic of integrity constraints has been extensively studied in the literature.
In this section, we discuss the work that we feel to be more directly relevant to
the tasks we carry out in this paper.



Integrity constraints and updates — ways of repairing inconsistent databases
— were identified as a seminal problem in database theory almost thirty years
ago [1]. The case for viewing integrity constraints as a layer on top of the
database, rather than as a component of it, has been made since the 1980s.
The idea is that the data inconsistencies captured by integrity constraints need
to be resolved, but they should not interfere with the ability to continue using
the database. In this line, much work has been done e.g. in query answering from
inconsistent databases [3,30], by ensuring that the only answers generated are
those that hold in minimally repaired versions of the database.

The first authors to consider deductive databases [4,22] also discussed this
issue. They identify three ways to look at deductive databases: by viewing the
whole system as a first-order theory; by viewing it as an extensional database
together with integrity constraints; and a mixed view, where some rules are
considered part of the logic theory represented by the database, and others
as integrity constraints identifying preferred models. In [4], it is argued that
this third approach is the correct one, as it cleanly separates rules that are
meant to be used in logic inferencing from those that only specify consistency
requirements.

More recently, authors have considered adding integrity constraints to open-
world systems such as ontologies. Although integrity constraints can be written
in the syntax of terminological axioms, the authors of [26] discuss why they
should still be kept separate from the logical theory. Therefore, they separate
the axioms in the T-Box (the deductive part of an ontology) into two groups: rea-
soning rules, which are used to infer new information, and integrity constraints,
which only verify the consistency of the knowledge state without changing it.

The setting of multiple ontologies was considered in [19], which considers
the problem of combining information from different knowledge sources while
guaranteeing the overall consistency, and preserving this consistency when one
of the individual ontologies is changed. This is achieved by external integrity
constraints, written in a Datalog-like syntax, which can refer to knowledge in
different ontologies in order to express relationships between them. Again, the
purpose of these rules is uniquely to identify incompatibilities in the data, and
not to infer new information.

By contrast, the authors who have discussed multi-context systems have not
felt the need to take a similar approach. Integrity constraints appear routinely
in examples in e.g. [6,7,17,28], but always encoded within the system, so that
their violation leads to logical inconsistency of the global knowledge base. Their
work focuses rather on the aspect of identifying the sources of inconsistencies —
integrity constraints being only one example, not given any special analysis —
and ways in which it can be repaired.

Although we believe this last work to be of the utmost importance, and show
how satisfaction of integrity constraints can be reduced to consistency checking
(which in turn implies that computing repairs can be reduced to restoring con-
sistency), we strive for the clean separation between integrity constraints and



reasoning that is present in other formalisms, and believe our proposal to be an
important complement to the analysis of inconsistency in MCSs.

2 Background

We begin this section with a summary of the notion of relational multi-context
system [20]. Intuitively, these are a collection of logic knowledge bases — the con-
texts — connected by Datalog-style bridge rules. The formal definition proceeds
in several layers. The first notion is that of relational logic, an abstract notion
of a logic with a first-order sublanguage.

Definition 1. Formally, a relational logic L is a tuple (KBp,BSr,ACCyp, X1),
where KBy is the set of well-formed knowledge bases of L (sets of well-formed
formulas), BSy, is a set of possible belief sets (models), ACCy, : KBy — 2852 s q
function assigning to each knowledge base a set of acceptable sets of beliefs (i.e.,
its models), and Xy, is a signature consisting of sets PEB and PLBS of predicate

names (with associated arity) and a universe Uy, of object constants, such that
UrnN (PLKB UPES) =0.

If p € PXB has arity k and ¢y, ..., cx € Ur, then p(cy, . .., cx) must be an element
of some knowledge base, and if p € PES, then p(cy, ..., c;) must be an element of
some belief set. Therefore, we can view X'y, as a first-order signature generating a
sublanguage of L. The elements in this sublanguage are called relational ground
elements, while the remaining elements of knowledge bases or belief sets are
called ordinary.

Ezample 1. We can see first-order logic over a first-order signature Yro_ as a
logic FOL = (KBgoL, BSroL, ACCroL, XroL), where KBgoL is the set of sets of
well-formed formulas over Xk, BSroL is the set of first-order interpretations
over YroL, and ACCgoL maps each set of formulas to the set of its models. This
logic only contains relational elements.

Definition 2. LetJ be a finite set of indices, {L;},.5 be a set of relational logics,
and V be a set of (first-order) variables distinct from predicate and constant
names in any L;. A relational element of L; has the form p(ti,...,tx), where
pE PLKiB U PRS has arity k and each t; is a term from VU Ur,, for1 < j < k.
A relational k-bridge rule over {L;},.5 and V is a rule of the form

(k:s)«(c1:p1),---,(cq : pg),n0t (Cqt1 : Pg1),---,N0t (€ i D) (1)

such that k,c; € 3, s is an ordinary or a relational knowledge base element of
Ly and p1, ... ,pm are ordinary or relational beliefs of L., .

The notation (¢ : p) indicates that p is evaluated in context c. These rules
intuitively generalize logic programming rules, and as usual in that context we
impose a safety condition: all variables occurring in pg1, . .., py, must also occur
at least once in pq,...,py.



Definition 3. A relational multi-context system is a collection M = {C;},; 5 of
contexts C; = (Li, kb;, bry, D;), where L; is a relational logic, kb; is a knowledge
base, br; is a set of relational i-bridge rules, and D; is a set of import domains
Di,j; wlth] S j, such that Di,j - Uj.

Import domains define which constants are exported from one context to an-
other: as the underlying logic languages can be different, these sets are essential
to allow one context to reason about individuals introduced in another. We will
assume that D; ; is the finite domain consisting of the object constants appearing
in kb; or in the head of a relational bridge rule in br;, unless otherwise stated.

Ezxample 2. Let Cy and Cs be contexts over the first-order logic FOL with R and
Rt binary predicates in XroL, and let kb; = kby = (). We can use the following
bridge rules in bry to define Rt in C5 as the transitive closure of R in Cf.

(2:Rt(z,y)) + (1:R(z,vy)) (2:Rt(z,y)) «+ (1:R(z,2)),(2: Rt(z,v))
We will use the MCS M = (Cy, C3) to exemplify the concepts we introduce.

The semantics of relational MCSs is defined in terms of ground instances of
bridge rules: the instances obtained from each rule r € br; by uniform substi-
tution of each variable X in r by a constant in () D; ;, with j ranging over the
indices of the contexts to which queries containing X are made in 7.

Definition 4. A belief state for M is a collection S = {S;},., where S; € BS;
for each i € 3 —i.e., a tuple of models, one for each context. The ground bridge
rule (1) is applicable in a belief state S if p; € Se, for 1 <i < q and p; € S, for
q < i< m. The set of the heads of all applicable ground instances of bridge rules
of context C; w.r.t. S is denoted by app;(S). An equilibrium is a belief state S
such that S; € ACC;(kb; U app,(9)).

Particular types of equilibria (minimal, grounded, well-founded) [5] can be de-
fined for relational MCSs, but we will not discuss them here.

Ezample 3. In the setting of the previous example, all equilibria of M will have
to include the transitive closure of R in S; in the interpretation of Rt in Ss.
For example, if we take S = (S7,S52) with S;1 = {R(a,b),R(b,c)} and Sy =
{Rt(a,b),Rt(b,c),Rt(a,c)}, then S is an equilibrium. However, S’ = (S, 5%)
with S} = {Rt(a,b),Rt(b,c)} is not an equilibrium, as it does not satisfy the
second bridge rule.

Checking whether an MCS has an equilibrium is known as the consistency
problem in the literature. We will refer to this property as logical consistency
(to distinguish from consistency w.r.t. integrity constraints, defined in the next
section) throughout this paper. This problem has been studied extensively [6,
16,17, 35]; its decidability depends on decidability of reasoning in the underlying
contexts. The complexity of checking logical consistency of an MCS M depends
on the context complexity of M — the highest complexity of deciding consistency
in one of the contexts in M (cf. [17] for a formal definition and known results).



3 Integrity constraints on multi-context systems

In their full generality, integrity constraints in databases can be arbitrary first-
order formulas, and reasoning with them is therefore undecidable. For this rea-
son, it is common practice to restrict their syntax in order to regain decidability;
our definition follows the standard approach of writing integrity constraints in
denial clausal form.

Definition 5. Let M = (C4,...,C,) be an MCS. An integrity constraint over
an MCS M (in denial form) is a formula

— (21 : Pl), ey (Zm : Pm), not (im+1 : Pm+1)7. .., not (’Lg : Pz) (2)

where M = (C1,...,Cy), ix € {1,...,n}, each Py is a relational element of C;, ,
and the variables in Py41,..., P all occur in Py, ..., Py,.

Syntactically, integrity constraints are similar to “headless bridge rules”.
However, we will treat them differently: while bridge rules influence the seman-
tics of MCSs, being part of the notion of equilibrium, integrity constraints are
meant to be checked at the level of equilibria.

Ezxample 4. Continuing the example from the previous section, we can write
an integrity constraint over M stating that the relation R (in context C1) is
transitive.

< (2: Rt(z,y)),not (1:R(z,y)) (3)

The restriction on variables again amounts to the usual Logic Programming
requirement that bridge rules be safe. To capture general tuple-generating de-
pendencies we could relax this constraint slightly, and allow P,41,...,FP; to
introduce new variables, with the restriction that they can be used only once in
the whole rule. This generalization poses no significant changes to the theory,
but makes the presentation heavier, and we will therefore assume safety.

Definition 6. Let M = (Cy,...,Cy) be an MCS and S = (Sy,...,5,) be a
belief state for M. Then S satisfies the integrity constraint (2) if, for every
instantiation 0 of the variables in Py, ..., Py, either Py0 & Sy for some 1 < k <
m or Py0 € Sy for some m < k < (.

In other words: equilibria must satisfy all bridge rules (if their body holds,
then so must their heads), but they may or may not satisfy all integrity con-
straints. In this sense, integrity constraints express preferences among equilibria.

Ezxample 5. The equilibrium S from Example 3 does not satisfy the integrity
constraint (3), thus M does not strongly satisfy this formula. However, M weakly
satisfies (3), as seen by the equilibrium S” = (5], 5%) where S} is as above and
S1 ={R(a,b),R(b,c),R(a,c)}.

Definition 7. Let M be an MCS and n be a set of integrity constraints.



1. M strongly satisfies n, M =4 0, if: (1) M is logically consistent and (i) every
equilibrium of M satisfies all integrity constraints in 1.

2. M weakly satisfies ), M =, n, if there is an equilibrium of M that satisfies
all integrity constraints in 1.

We say that M is (strongly /weakly) consistent w.r.t. a set of integrity constraints
n if M (strongly/weakly) satisfies . These two notions express different inter-
pretations of integrity constraints. Strong satisfaction views them as necessary
requirements, imposing that all models of the MCS to satisfy them. Examples
of these are the usual integrity constraints over databases, which express se-
mantic connections between relations that must always hold. Weak satisfaction
views integrity constraints as expressing preferences: the MCS may have several
equilibria, and we see those that do satisfy the integrity constraints as “better”.

The distinction is also related to the use of brave (credulous) or cautious
(skeptical) reasoning. If M strongly satisfies a set of integrity constraints 7, then
any inferences we draw from M using brave reasoning are guaranteed to hold
in some equilibrium that also satisfies 7. If, however, M only weakly satisfies 7,
then this no longer holds, and we can only use cautious reasoning if we want to
be certain that any inferences are still compatible with 7.

Both strong and weak satisfaction require M to be logically consistent, so
M ¢ n implies M |, n. This implies that deciding whether M =, n and
M =, n are both at least as hard as deciding whether M has an equilibrium —
thus undecidable in the general case.! When logical consistency of M is decidable
and its set of equilibria is enumerable, weak satisfaction is semi-decidable (if
there is an equilibrium that satisfies 7, we eventually encounter it), while strong
satisfaction is co-semi-decidable (if there is an equilibrium that does not satisfy
7, we eventually encounter it). The converse also holds.

Theorem 1. Weak satisfaction of integrity constraints is reducible to logical
consistency.

Proof. To decide whether M &, 1, construct M’ by extending M with a context
Co where KBy = p({*}), kbg = 0, ACCy(0) = {0}, ACCo({*}) = 0, and the bridge
rules obtained by adding (0 : %) to the head of the rules in n. Then M’ has an
equilibrium iff M =, n: any equilibrium of M not satisfying n corresponds to
a belief state of M’ where app,(S) = {*}, which is never an equilibrium of M’;
but equilibria of M satisfying 7 give rise to equilibria of M’ taking Sq = 0. O

Theorem 2. Strong satisfaction of integrity constraints is reducible to logical
imconsistency.

Proof. Construct M’ as before, but now defining ACCy(0) = 0, ACCo({*}) =
{{*}}. If M is inconsistent, then M F=, n. If M is consistent, then any equilibrium
of M satisfying n corresponds to a belief state of M’ where app,(S) = @, which
can never be an equilibrium of M’; in turn, equilibria of M not satisfying 7 give

L If consistency of one of M’s contexts is undecidable, then clearly the question of
whether M has an equilibrium is also undecidable.



cc(M) | P NP XP PSPACE EXPTIME
ME,n | NP NP %7 DPSPACE EXPTIME
Ml=sn | A A% AP PSPACE EXPTIME

Table 1. Complexity of integrity checking of an MCS in terms of its context complexity.

rise to equilibria of M’ taking So = {*}. So if M is consistent, then M =, n iff
M’ is inconsistent. o

Combining the two above results with the well-known complexity results for
consistency checking (Table 1 in [17]), we directly obtain the following results.

Corollary 1. The complezity of deciding whether M =, n or M =4 1, depend-
ing on the context complexity of M, CC(M), is given in Table 1.

These results suggest an alternative way of modelling integrity constraints
in MCSs: adding them as bridge rules whose head is a special atom interpreted
as inconsistency. This approach was taken in e.g. [16]. However, we believe that
integrity constraints should be kept separate from the data, and having them as
a separate layer achieves this purpose. In this way, we do not restrict the models
of MCSs, and we avoid issues of logical inconsistency. Furthermore, violation of
integrity constraints typically is indicative of some error in the model or in the
data, which should result in an alert and not in additional inferences.

These considerations are similar to those made in Section 2.7 of [26] and in
[19], in the (more restricted) context of integrity constraints over description
logic knowledge bases. Likewise, the approach taken for integrity constraints in
databases is that inconsistencies should be brought to the users’ attention, but
not affect the semantics of the database [1,18]. In particular, it may be mean-
ingful to work with reasoning systems not satisfying integrity constraints (see
[30] for databases and [28] for description logic knowledge bases). Our approach
is also in line with [7], where it is argued that in MCSs it is important to “dis-
tinguish data from additional operations on it”.

4 Applications of ICs for MCSs

In this section we look at particular cases of MCSs with integrity constraints.
We begin by showing that our notion generalizes the usual one for standard
databases. Then we look into other types of databases and show how we obtain
interesting notions for these systems.

4.1 Relational databases

Integrity constraints in relational databases can be written as first-order formulas
in denial clausal form [21] — which are essentially equivalent in form to bridge
rules with no head.



Definition 8. Let DB be a database. The context generated by DB, Ctx(DB),
is defined as follows.

The underlying logic is first-order logic.

Belief sets are sets of ground literals.

The knowledge base is DB.

For all kb, the only belief set compatible with kb is ACC(kb) = kb™ = kb U
{—a | a & kb}.

— The set of bridge rules is empty.

We can see any database DB as a single-context MCS consisting of exactly the
context Ctx(DB); we will also denote this MCS by Ctx(DB), as this poses no
ambiguity. The only equilibrium for Ctx(DB) is DB' itself, corresponding to
the usual closed-world semantics of relational databases. Previous work (cf. [7,
17]) implicitly treats databases in this way, although Ctx is not formally defined.

Let DB be a database and r be an integrity constraint over DB in denial
clausal form. We can rewrite r as an integrity constraint over Ctx(DB): if r is
V(Ai A .NAg A=By Ao A=By, — L), then br(r) is

— (1:A7),...,(1: Ag),not (1: By),...,not (1: B,,).

Note that general tuple-generating dependencies require allowing singleton vari-
ables in the B;s, as discussed earlier. The following result is straightforward to
prove. If we assume first-order logic with equality, we can also write equality-
generating constraints, thus obtaining the expressivity used in databases.

Theorem 3. Let DB be a database and n be a set of ICs over DB. Then DB
satisfies all ICs in n iff Ctx(DB) = br(n) iff Ctx(DB) =4 br(n), where br is
extended to sets in the standard way.

In this setting, weak and strong satisfaction of integrity constraints coincide,
as every database has exactly one equilibrium. Furthermore, deciding whether
Ctx(DB) = br(n) can be done in time O(|DB| x|n|), where | D B| is the number of
elements in DB and |7] is the total number of literals in all integrity constraints
in 1. This means that the data complexity [34] of this problem is linear, as we
can query the database using the open bridge rules in 7, rather than considering
the set of all ground instances of those rules.

Theorem 3 could be obtained by adding integrity constraints as bridge rules
with a special inconsistency atom, as discussed earlier, and done in [16]). This
would significantly blur the picture, though, as in principle nothing would pre-
vent us from writing integrity constraints referencing the inconsistency atom in
their body, potentially leading to circular reasoning. Our approach guarantees
that there is no such internalization of inconsistencies into the database.

Our results show that the notion of integrity constraint we propose directly
generalizes the traditional notion of integrity constraints over databases [1].



4.2 Distributed DBs

Distributed databases are databases that store their information at different
sites in a network, typically including information that is duplicated at different
nodes [33] in order to promote resilience of the whole system.

A distributed database consisting of individual databases DBy, ..., DB, can
be modeled as an MCS with n contexts Ctx(DBy), ..., Ctx(DB,,). The internal
consistency of the database, in the sense that tables that occur in different D B;s
must have the same rows, can be specified as integrity constraints over this MCS
as follows. For each relation p, let v(p) be the number of columns of p and 4(p)
be the set of indices of the databases containing p. Then

{ (G p(ze,. .. 2y@p)))snot (5 :p(@1,...,2yp)) | 4,5 € 6(p),p is a relation}

logically specifies the integrity of the system. Different strategies for fixing in-
consistencies in distributed databases (e.g. majority vote or siding with the most
recently updated node) correspond to different preferences for choosing repairs
in the sense of the next section.

Again, such integrity constraints can be written as bridge rules in the form

(] :p(xlv-“vx'y(p))) A (l :p(x17""x’7(17)))'

but these significantly change the semantics of the database: instead of describing
preferred equilibria, they impose a flow of information between nodes.

Ezample 6. Consider a country with a central person register (CPR), mapping
a unique identifying number to the name and current address of each citizen
using a relation person, e.g. person(1111111118, old_lady, gjern). Furthermore,
each electoral district keeps a local voter register using a relation voter, e.g.
voter(1111111118), and a list of addresses local to the given electoral district
using a relation address, e.g. address(gjern). Then the integrity constraints

+ Skborg : voter(Id), not (CPR : person(Id)) (4)
<+ Skborg : voter(1d), CPR : person(Id, Add),not (Skborg : address(A4dd)) (5)

ensure that all voters registered in the Silkeborg electoral district are registered
in the central person register, and that they are registered with an address that
is local to the Silkeborg electoral district. Here, we are implicitly assuming that
the database is closed under projection, and overload the person relation for the
sake of simplicity. In addition, the following set of integrity constaints models
the fact that each person registered in the Silkeborg electoral district is not
registered in any other electoral districts from the set ED.

{4 Skborg : voter(Id), C; : voter(Id) | C; € ED \ {Skborg}}

This assumption of closure under projection is meaningful from a practical
point of view, and has been implemented e.g. in [12]. Alternatively, we could



define the projections as bridge rules of the MCSs, in line with the idea of
encoding views of deductive databases presented in the next section.

This section’s treatment of distributed databases is equivalent to considering
their disjoint union as a database. Consequently, there is no need to use MCSs
for distributed databases, but this mapping shows that our notion of integrity
constraints abstracts the practice in this field. Furthermore, results in previous
work [11] indicate that the processing of integrity constraints can be efficiently
parallelized in this disjoint scenario, given suitable assumptions.

4.3 Deductive DBs

We now address the case of deductive databases. These consist of two different
components: the (extensional) fact database, containing only concrete instances
of relations, and the (intensional) rule database, containing Datalog-style rules
defining new relations. Every relation must be either intensional or extensional,
unlike in e.g. full-fledged logic programming.

One standard way to see the intensional component(s) of deductive databases
is as views of the original database. The instances of the new relations defined
by rules are generated automatically from the data in the database, and these
relations can thus be seen as content-free, having a purely presentational nature.
For simplicity of presentation, we consider the case where there is one single view.

Definition 9. Let X' and X; be two disjoint first-order signatures. A deductive
database over Xg and Xt is a pair (DB, R), where DB is a relational database
over Xg and R is a set of rules of the form p < qi1,...,qn, where p is an atom
of X1 and qq,...,q, are atoms over XU X7.

More precisely, this definition corresponds to the definite deductive databases
in [22]; we do not consider the case of indefinite databases in this work. We can
view deductive databases as MCSs.

Definition 10. Let (DB, R) be a deductive database over Xg and X1. The MCS
induced by (DB, R) is M = (Cg,Cr), where Cgp = Ctx(DB) defined as above
and C; = Ctx(R) is a similar context where:

— The knowledge base is ().

— For each rule p < qi1,...,qn in R there is a bridge rule (I : p) + (i1 :
q1), .-+ (En : gn) in Ctx(R), where i, = E if qx is an atom over Xg and
i, = I otherwise.

Integrity constraints over such MCSs correspond precisely to the definition of
integrity constraints over deductive databases from [4]. By combining this with
the adequate notion of repair, we capture the typical constraints of deductive
databases — that consistency can only be regained by changing extensional pred-
icates — in line with the traditional view-update problem. More modern works [8]
restrict the syntax of integrity constraints, allowing them to use only extensional
relations; in the induced MCS, this translates to the additional requirement that
only relational elements from Cg appear in the body of integrity constraints.



Ezample 7. Consider a deductive database for class diagrams, where information
about direct subclasses is stored in the extensional database using a relation isa,
e.g. isa(list, collection) and isa(array, list). Intensionally, we model the transitive
closure of the subclass relation using a view created by the two rules sub(A, B) +
isa(A, B) and sub(A4, C) + isa(4, B),sub(B, C), thus allowing us to find out that
in our example sub(array, collection). The integrity constraint

« sub(A, A)

can then be used to state the acyclicity of the subclass relation. Integrity con-
straints restricted to the extensional database could not express this, as there
would be no way to define a fixpoint. The only (incomplete) solution would be
to add n integrity constraints disallowing cycles of length up to n. This example
illustrates our gain of expressive power compared to the approach in [8].

We can also consider databases with several, different views, each view gen-
erating a different context. Integrity constraints over the resulting MCS can then
specify relationships between relations in different views.

Yet again, the complexity of verifying whether an MCS induced by a deduc-
tive database satisfies its integrity constraints is lower than the general case.
In particular, consistency checking is reducible to query answering (all integrity
constraints are satisfied iff there are no answers to the queries expressed in their
bodies). If we do not allow negation in the definition of the intensional relations,
then there is only one model of the database as before, and consistency checking
w.r.t. a fixed set of integrity constraints is PTIME-complete [29]. In the gen-
eral case, weak and strong consistency correspond, respectively, to brave and
cautious reasoning for Datalog programs under answer set semantics, which are
known to be co-NP-complete and NP-complete, respectively.

4.4 Peer-to-peer systems

Peer-to-peer (P2P) networks are distributed systems where each node (the peer)
has an identical status in the hierarchy, i.e., there is no centralized control.
Queries can be posed to each peer, and peers communicate amongst themselves
in order to produce the desired answer. For a general overview see e.g. [27].

A particularly interesting application are P2P systems, which integrate fea-
tures of both distributed and deductive databases. We follow [9], which also
addresses the issue of integrity constraints. In this framework, P2P systems con-
sist of several nodes (the peers), each of them a deductive database of its own,
connected via mapping rules that port relations from one peer to another.

Definition 11. A peer-to-peer system P is a set of peers P = {P;} . Each
peer is a tuple (X°, DB;, R;, M;, IC;), where:

— X% is the disjoint union of three signatures X%, X% and X%, ;
— (DB, R;) is a deductive database over signatures X% and X%, where the
rules in R; may also use relations from XY, ;



— M; is a set of mapping rules of the form p <; q1,...,qm with j # i, where
p is an atom over a signature X5, and each g is an atom over X ;
— IC; is a set of integrity constraints over X°.

Intuitively, relations can be defined either extensionally (those in X'g), intension-
ally (those in X7) or as mappings from another peer (those in Xy/), and these
definitions may not be mixed. Observe that, with these definitions, negations
may only occur in the bodies of the integrity constraints.

We can view a P2P system as a MCS with integrity constraints. To simplify
the construction, we adapt the definition from the case of deductive databases
slightly, so that there is a one-to-one correspondence between peers and contexts.

Definition 12. Let P = {P;}!", be a P2P system. The MCS induced by P is
defined as follows.

— There are n contexts, where C; is constructed as Ctx(DB;) together with the
following set of bridge rules:
o (i:p)« (i:q1),...,(i:qm) for each rule p < q1,...,qm € Ry;
o (i:p)«(J:q1),...,(J: qm) for each rule p < qu,...,qm € M;.
— Fach integrity constraint < qi,...,qm n IC; is translated to the integrity
constraint < (i :q1),...,(i: gm), where we take (i : =q) to mean not (i : q).

The definition of the bridge rules from R; is identical to what one would obtain
by constructing the context Ctx(R;) described in the previous section.

This interpretation does not preserve the semantics for P2P systems given
in [9,10]. Therein, mapping rules can only be applied if they do not generate
violations of the integrity constraints. This is directly related to the real-life
implementation of these systems, where this option represents a “cheap” strategy
to ensure local enforcement of integrity constraints; as discussed in [35], the
underlying philosophy of P2P systems and MCSs is significantly different.

We now show that, while the semantics differ, there is a correspondence be-
tween P2P systems and their representation as an MCS, and the “ideal” models
of both coincide. When no such models exist, the MCS formulation can be helpful
in identifying the problematic mapping rules.

The semantics of P2P systems implicitly sees them as logic programs.

Definition 13. Let P = {P,}?_, be a P2P system and I be a Herbrand inter-
pretation over | J X*. The program P' is obtained from P by (i) grounding all
rules and (ii) removing the mapping rules whose head is not in I.

Let MM(P) denote the minimal model of a logic program. A weak model
for P is an interpretation I such that I = MM(PT).

Since integrity constraints are rules with empty head, this definition implicitly
requires weak models to satisfy them. Interpretations over a P2P system and
equilibria over the induced MCS are trivially in bijection, as the latter simply
assign each atom to the right context, and we implicitly identify them hereafter.
We can relate the “perfect” models in both systems.



Theorem 4. Let P be a P2P system, I an interpretation for P, and M the
induced MCS. Then I = MM(P) = MM(PY) iff I is an equilibrium for M
satisfying all the integrity constraints.

Proof. Since P corresponds to a positive program, the only equilibrium of M is
MM(P) (see [14]). Furthermore, for any I, MM (PT) includes the facts in all
extensional databases and satisfies all rules in R; and all integrity constraints.
Thus, it also corresponds to a belief state satisfying their counterparts in M.

Suppose that MM(P) = MM(P!). Since mapping rules are the only ones
that can add information about relations in X%, to I, the second equality implies
that no mapping rules are removed in P!. Therefore I = MM(P) satisfies
all bridge rules of M obtained from the mapping rules in P, whence I is an
equilibrium of M satisfying all integrity constraints.

Conversely, if I is an equilibrium of M and r is a mapping rule, then either
I does not satisfy the body of r or I contains its head. Since no other rules can
infer instances of relations in X%, this implies that MM (P) = MM(P!), and
being an equilibrium implies that 7 = MM (P). O

The MCS representation has an interesting connection with the notion of
weak model in general, though: if there are integrity constraints in M that
are not satisfied by MM(P), then repairing M by removing mapping rules
is equivalent to finding a weak model for P. This is again reminescent of the
view-update problem.

The MCS representation allows us to write seemingly more powerful integrity
constraints over a P2P system, as we can use literals from different contexts in
the same rule. However, this does not give us more expressive power: for example,
the integrity constraint < (1 : a), (2 : b) can be written as < (1 : a), (1 : be)
adding the mapping rule (1 : by) < (2 : b), where bs is a fresh relation in peer 1.

4.5 Description Logic Knowledge Bases

We now discuss the connection between our work and results on adding integrity
constraints to description logic knowledge bases, namely OWL ontologies.
Description logics differ from databases in their rejection of the closed-world
assumption, thereby contradicting the semantics of negation-by-failure. For this
reason, encoding ontologies as a context in an MCS is a bit different than the
previous examples. We follow the approach from [13], refering the reader to the
discussion therein of why the embeddding from e.g. [5] is not satisfactory.

Definition 14. A description logic L is represented as the relational logic Ly =
(KB, BS;,ACC, X defined as follows:

— KB, contains all well-formed knowledge bases (including a T-Box and an
A-Bozx) of L;

— BS. is the set of all possible A-Bozes in the language of L;

— ACC,(kb) is the singleton set containing the set of kb’s known consequences
(positive and negative);



— X is the signature underlying L.

Regarding the choice of acceptable belief sets (the elements of BS), the possible
A-Boxes correspond to (partial) models of £, seen as a first-order theory: they
contain concepts and roles applied to particular known individuals, or negations
thereof. However, they need not be categorical: they may contain neither C(a)
nor —~C(a) for particular C' and a. This reflects the typical open-world semantics
of ontologies. In particular, the only element of ACC.(kb) may not be a model
of kb in the classical sense of first-order logic. This is in contrast with [5], where
ACC,(kb) contains all models of kb; as discussed in [13], this is essential to model
e.g. default reasoning correctly.

Definition 15. An ontology O based on description logic L induces a context
with underlying logic L., knowledge base O, and an empty set of bridge rules.

Like in the database scenario, ontologies viewed as MCSs always have one
equilibrium, as long as they are logically consistent. Therefore, the notions of
weak and strong satisfaction of integrity constraints again coincide, and we get
the same notion of consistency w.r.t. a set of integrity constraints as that de-
fined in [26]; however, our syntax is more restricted, as we do not allow general
formulas as integrity constraints. Observe that, as in that work, our integrity
constraints only apply to named individuals (explicitly mentioned in the ontol-
ogy’s A-Box), which is a desirable consequence that yet again can only be gained
from keeping integrity constraints separate from the knowledge base.

Ezample 8. We illustrate the construction in this section with a classical exam-
ple. We assume that we have an ontology O including a concept person and a
role hasCPR, which associates individuals with their CPR number. (So we are
essentially resetting Example 6 to use an ontology, rather than a distributed
database.) We can add the integrity constraint

< (O : person(z)), not (O : hasCPR(z,y))

requiring each person to have a CPR number. Due to the semantics of ontologies,
this actually requires each person’s CPR number to be explicitly present in the
ontology: the presence of an axiom such as person = (Jperson.hasCPR) does not
yield any instance hasCPR(z, y) in the set of the ontology’s known consequences.
This also justifies our definition of ACC,: if we take the model-based approach
of [5], then this integrity constraint no longer demands the actual presence of
such a fact in the A-Box.

This integrity constraint is an example of one that does not satisfy the safety
condition (the variable y occurs only in a negated literal), but as discussed in
Section 3 our theory is easily extended to cover this case, as y only occurs once
in the formula.

Our scenario is also expressive enough to model the distributed ontology
scenario of [19], which defines integrity constraints as logic programming-style
rules with empty head whose body can include atoms from different ontologies:
we can simply consider the MCS obtained from viewing each ontology as a
separate context, and the integrity constraints as ranging over the joint system.



5 Repairs and managed multi-context systems

The definitions in the previous section allow us to distinguish between acceptable
and non-acceptable equilibria w.r.t. a set of integrity constraints, but they do
not help with the analog of the problem of database repair [1] — namely, given an
inconsistent equilibrium for a given MCS, how do we change it into a consistent
one. In order to address this issue, we turn our attention to managed multi-
context systems (mMCS) [7].

Definition 16. A managed multi-context system is a collection of managed
contexts {C;}ie 7, with each C; = (L;, kb;, br;, D;; OP;, mng,) as follows.

— L; is a relational logic, kb; is a knowledge base, and D; is a set of import
domains, as in standard MCSs.

— OP,; is a set of operation names.

— br; is a set of managed bridge rules, with the form of Equation (1), but where
s is of the form o(p) with o € OP; and p € | JKB,;.

— mng; : p(OP; x [JKB;) x KB; — KB; is ¢ management function.

The intuition is as follows: the heads of bridge rules can now contain arbitrary
actions (identified by the labels in OP;, and the management function specifies
the semantics of these labels — see [7] for a more detailed discussion. Our defini-
tion is simplified from those authors’; as they allow the management function to
change the semantics of the contexts and return several possible effects for each
action. This simplification results in a less flexible concept of mMCS, which is
however more useful for the purposes of defining repairs.

Ezxample 9. The management function can perform several manipulations of
the knowledge base in one update action. For example, considering the set-
ting of Example 6, we could include an operation replace € OPcpr such that
mng({(replace, person(Id, Name, Add))},kb) inserts the tuple (Id, Name, Add)
into the person table and removes any other tuple (Id, Name', Add’) from that
table.

Every MCS (in the sense of the previous section) can be seen as an mMCS
by taking every context to have exactly one operation add with the natural
semantics of adding its argument (the head of the rule) to the belief set associated
with the context in question. We will therefore discuss integrity constraints over
mMCS in the remainder of this section. The motivation of generalizing database
tradition also suggests that we include another operation remove that removes
an element from the specified context.

Definition 17. Let M = {C;};cz be an mMCS. An update action for M is of
the form (i : o(p)), withi € J, o € OP; and p € | JKB;.

Given a set of update actions U and an mMCS M, the result of applying
U to M, denoted U(M), is computed by replacing each kb; (in context C;) by
mng, (U;, kb;), where U; is the set of update actions of the form (i : o(p)).



Updates differ from applying (managed) bridge rules, as they actually change
one or more knowledge bases in M’s contexts before any evaluation of bridge
rules takes place. This is similar to database updates, which change the database
before and independent of the query processing. Based on this notion of update,
we can define (weak) repairs as follows.

Definition 18. Let M be an mMCS, n be a set of ICs over M, and assume that
M is inconsistent w.r.t. n. A set of update actions U is a weak repair for M
and n if U(M) is consistent w.r.t. 1. If there is no subset U' of U that is also a
weak repair for M and n, then U is a repair.

Ezxample 10. Again in the setting of Example 6, suppose that the CPR database
contains the record person(1111111118, old _lady, odense) and the Silkeborg elec-
toral database contains the records voter(1111111118) and address(gjern), but
not the record address(odense) as Odense is not in Silkeborg. The induced
mMCS is inconsistent w.r.t. the integrity constraint (5), and a possible repair is
{(CPR : add(person(1111111118, old_lady, gjern)))}. The semantics of the man-
agement function guarantee that only the new record will persist in the mMCS.

As is the case in databases, it can happen that a set of integrity constraints is
inconsistent, in the sense that no MCS can satisfy it. However, this inconsistency
can also arise from incompatibility between integrity constraints and bridge rules
— consider the very simple case where there is a bridge rule (B : b) + (4 : a)
and an integrity constraint <— (A : a),not (B : b)). Since our notion of update
does not allow one to change bridge rules, this inconsistency is unsurmountable.

In general, this interaction between integrity constraints and bridge rules
makes the problem of finding repairs for inconsistent MCSs more complex than
in the database world. However, Theorems 1 and 2 show that the problem of
finding a repair for an MCS that is inconsistent w.r.t. a set of integrity constraints
can be reduced to finding a set of update actions that will make a logically
inconsistent MCS have equilibria. The results on diagnosing and repairing logical
inconsistency in multi-context systems [16,17] can therefore be used to tackle
this problem. By considering deductive databases as MCSs, we also see the
problem of repairing an inconsistent MCS as a generalization of the view-update
problem [24, 25, 32].

Another issue is how to choose between different repairs: as in the database
case, some repairs are preferable to others. Consider the following toy example.

Ezample 11. Let M be the MCS induced by a deductive database with one
extensional relation p and one intensional relation g, both 0-ary, connected by
the rule q < p, and consider the integrity constraint (I : q).

Assume the usual operations add and remove. There are two repairs for M,
namely {(E : add(p))} and {(I : add(q))}, but only the former is valid from the
perspective of deductive databases.

The usual consensus in databases is that, in general, deciding which repair to
apply is a task that needs human intervention [18]. However, several formalisms
also include criteria to help automate such preferences. In our setting, a simple



way to restrict the set of possible repairs would be to restrict the update actions
to use only a subset of the OP;s — in the case of deductive databases, we could
simply restrict them to the operations over C'g. An alternative that offers more
fine-tuning capabilities would be to go in the direction of active integrity con-
straints [21], which require the user to be explicit about which update actions
can be used to repair the integrity constraints that are not satisfied. We plan to
pursue the study of such formalisms to discuss repairs of MCSs with integrity
constraints in future work. We also intend to study generalizations of repairs to
include the possibility of changing bridge rules.

6 Conclusions and Future Work

In this paper, we proposed a notion of integrity constraint for multi-context sys-
tems, a general framework for combining reasoning systems. We showed that our
notion generalizes the well-studied concept of integrity constraint over databases,
and studied its relation to similar notions in other formalisms. Satisfaction of
integrity constraints comes in two variants, weak and strong, related to the usual
concepts of brave and cautious reasoning.

By showing how to encode integrity constraints within the syntax of MCSs,
we obtained decidability and complexity results for the problem of whether a
particular MCS weakly or strongly satisfies a set of integrity constraints, and of
repairing it in the negative case. We argued however that by keeping integrity
constraints as an added layer on top of an MCS we are able to separate intrin-
sic logical inconsistency from inconsistencies that may arise e.g. from improper
changes to an individual context, which we want to detect and fix, rather than
propagate to other contexts. Our examples show that we indeed capture the
usual behaviour of integrity constraints in several existing formalisms.

We also defined a notion of repair, consistent with the tradition in databases,
and identified new research problems related to which repairs should be preferred
that arise in the MCS scenario. We intend to pursue this study further by de-
veloping a theory of active integrity constraints, in the style of [21].
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