
Sorting Nine Inputs Requires Twenty-Five Comparisons

Michael Codisha, Lúıs Cruz-Filipeb,∗, Michael Franka, Peter Schneider-Kampb

aDepartment of Computer Science, Ben-Gurion University of the Negev, Israel
bDepartment of Mathematics and Computer Science, University of Southern Denmark

Abstract

This paper describes a computer-assisted non-existence proof of 9-input sorting networks consisting of 24
comparators, hence showing that the 25-comparator sorting network found by Floyd in 1964 is optimal. As
a corollary, the 29-comparator network found by Waksman in 1969 is optimal when sorting 10 inputs.

This closes the two smallest open instances of the optimal-size sorting network problem, which have been
open since the results of Floyd and Knuth from 1966 proving optimality for sorting networks of up to 8
inputs.

1. Introduction

General-purpose sorting algorithms are based on comparing, and possibly exchanging, pairs of inputs.
If the order of these comparisons is predetermined by the number of inputs to sort and does not depend on
their concrete values, then the algorithm is said to be data-oblivious. Such algorithms are well suited for
e.g. parallel sorting or secure multi-party computations.

Sorting networks are a classical formal model for such algorithms [7, 17, 23], where n inputs are fed into
networks of n channels, which are connected pairwise by comparators. Each comparator takes the two inputs
from its two channels, compares them, and outputs them sorted back to the same two channels. Consecutive
comparators can be viewed as a “parallel layer” if no two touch the same channel. A comparator network
is a sorting network if the output on the n channels is always the sorted sequence of the inputs.

Ever since sorting networks were introduced, there has been a quest to find optimal sorting networks for
specific given numbers of inputs: optimal size (minimum number of comparators) as well as optimal depth
(minimum number of layers) networks. In this paper we focus on optimal-size sorting networks.

Optimal-size and optimal-depth sorting networks for n ≤ 8 can already be found in Section 5.3.4 of [17].
For optimal depth, in 1991 Parberry [21] proved optimality results for n = 9 and n = 10, which in 2014 were
extended by Bundala and Závodný [8] to 11 ≤ n ≤ 16. Both approaches are based on breaking symmetries
among the first (two) layers of comparators.

For optimal size, the case of n = 9 has been the smallest open problem ever since Floyd and Knuth’s
result for optimal-size sorting networks [15] in 1966. At first, this might be surprising: is optimal size really
harder than optimal depth? However, a comparison of the sizes of the search spaces for the optimal-size
and optimal-depth problems for n = 9 sheds some light on the issues. The smallest known sorting network
for 9 inputs has size 25. For proving/disproving its optimality, we need to consider all comparator networks
of 24 comparators. There are 36 = (9× 8)/2 possibilities to place each comparator on 2 out of 9 channels.

Thus, the search space for the optimal-size problem on 9 inputs consists of (36)
24 ≈ 2.2× 1037 comparator

networks.
In comparison, to show that the optimal-depth sorting network for 9 inputs is 7, one must show that

there are no sorting networks of depth 6. The number of ways to place comparators in an n-channel layer

∗Corresponding author; tel. +45 6550 2387, fax + 45 6550 2373
Email addresses: mcodish@cs.bgu.ac.il (Michael Codish), lcf@imada.sdu.dk (Lúıs Cruz-Filipe), frankm@cs.bgu.ac.il

(Michael Frank), petersk@imada.sdu.dk (Peter Schneider-Kamp)

Preprint submitted to Elsevier December 9, 2015

corresponds to the number of matchings in a complete graph with n nodes [8], and for n = 9 this number is
2,620. Thus, the search space for the optimal-depth problem on 9 inputs is “just” 2,6206 ≈ 3.2 × 1020. In
addition, the layering allows for some beautiful symmetry breaking [8, 11] on the first two layers, reducing
the search space further to approx. 1015 comparator networks.

For the optimal-depth problem, all recent attempts we are aware of [8, 20] have used encodings to the
satisfiability problem of propositional logic (SAT). Likewise, in this paper we describe a SAT encoding for the
optimal-size problem. This SAT encoding was able to reproduce all known results for n ≤ 6. Unfortunately,
the SAT encoding alone did not scale to n = 9, with state-of-the-art SAT solvers making no discernible
progress even after weeks of operation.

To solve the open problem of optimality for n = 9, we had to invent symmetry breaking techniques for
reducing the search space to a manageable size. The general idea is similar to the one taken in [8, 11] for
the optimal-depth sorting network problem, but involves the generation of minimal sets of non-redundant
comparator networks for a given number of comparators, one comparator at a time. Redundant networks
(i.e., networks that sort less than others of the same size or that are equivalent to another network already
in the set) are pruned. For each pruned network, a witness is logged, which can be independently verified.
Our symmetry breaks benefit from the idea of partitioning binary sequences according to the number of 1s
contain, which has been discussed e.g. in [6].

For n = 9, we used this method, which we call generate-and-prune, to reduce the search space from
approx. 2.2×1037 to approx. 3.3×1021 comparator networks, all of which can be obtained by extending one
of 914,444 representative 14-comparator networks. This process took a little over one week of computation,
and all of the resulting problems could be handled efficiently by our SAT encoding in less than 12 hours (in
total). All computations, if not specified otherwise, were performed on a cluster with a total of 144 Intel
E8400 cores clocked at 2 GHz each, able to run a total of 288 parallel threads.

The generate-and-prune method can also be used in isolation to decide this open problem: amongst the
set of all comparator networks (modulo equivalence and non-redundancy) there is only one single sorting
network, and it is of size 25. To obtain this result, we continued running the generate-and-prune method for
five more days in order to check the validity of the results obtained through the SAT encoding independently,
thereby instilling a higher level of trust into the computer-assisted proof. This paper presents both tech-
niques: the first one based completely on the generate-and-prune approach, and the second, hybrid, method
combining generate-and-prune with SAT encoding. It is the second approach that solves the nine-input case
in the least amount of time, and also shows the potential to scale.

Once determining that 25 comparators is optimal for 9 inputs, we move on to consider the case of 10
inputs. Using a result of Van Voorhis from 1971 [26], we know that the minimum number of comparators
for sorting 10 inputs is at least 4 larger than for 9 inputs. As a sorting network with 29 comparators on ten
inputs (attributed to Waksman) is known since 1969 [17], our result implies its optimality.

The next section introduces the relevant concepts on sorting networks together with some notations.
The generate-and-prune algorithm is introduced in Section 3, while its optimization and parallelization are
discussed in detail in Section 4. The SAT encoding is explained and analyzed in Section 5. In Section 6 we
reflect on the validity of the proof, and we conclude in Section 7. This paper is an extended version of [10].

2. Preliminaries on sorting networks

A comparator network C with n channels and size k is a sequence of comparators C = (i1, j1); . . . ; (ik, jk)
where each comparator (i`, j`) is a pair of channels 1 ≤ i` < j` ≤ n. The size of a comparator network is the
number of its comparators. If C1 and C2 are comparator networks with n channels, then C1;C2 denotes the
comparator network obtained by concatenating C1 and C2; if C1 has m comparators, it is a size-m prefix
of C1;C2. An input x̄ = x1 . . . xn ∈ {0, 1}n propagates through C as follows: x̄0 = x̄, and for 0 < ` ≤ k, x̄`

is the permutation of x̄`−1 obtained by interchanging x̄`−1
i`

and x̄`−1
j`

whenever x̄`−1
i`

> x̄`−1
j`

. The output of

the network for input x̄ is C(x̄) = x̄k, and outputs(C) =
{
C(x̄)

∣∣ x̄ ∈ {0, 1}n }
. The comparator network

C is a sorting network if all elements of outputs(C) are sorted (in ascending order).

2

Our focus on binary sequences is justified by the zero-one principle (e.g. [17]), which states that a
comparator network sorts all elements of {0, 1}n iff it sorts all sequences of length n over any totally ordered
set, e.g. integers.

(a) (b)
Images (a) and (b) on the right depict sorting networks

on 4 channels, each consisting of 6 comparators. The chan-
nels are indicated as horizontal lines (with channel 4 at the
bottom), comparators are indicated as vertical lines connecting a pair of channels, and input values are
assumed to propagate from left to right. The sequence of comparators associated with a picture represen-
tation is obtained by a left-to-right, top-down traversal. For example the networks depicted above are: (a)
(1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3) and (b) (1, 2); (3, 4); (2, 3); (1, 2); (3, 4); (2, 3).

The optimal-size sorting network problem is about finding the smallest size, S(n), of a sorting network
on n channels. In [15], Floyd and Knuth present sorting networks of optimal size for n ≤ 8 and prove their
optimality. Until today, the minimal size S(n) of a sorting network on n channels was known only for n ≤ 8;
for greater values of n, there are upper bounds on S(n) obtained e.g. by the systematic construction of
Batcher [4], or by concrete examples of sorting networks (see [17]). It should be noted that the networks
obtained by the systematic construction with the best asymptotic complexity [1] are far from optimal for
the small values of practical interest we discuss.

The previously best known upper and lower bounds for S(n) are given in [15] and reproduced in the first
two lines of Table 1. The last line shows the contribution of this paper, i.e., the improved lower bounds,
matching the upper bounds for n = 9 and n = 10. These values have been included in the latest edition
of [17], citing a draft version of this paper.

The following lemma due to Van Voorhis [26] can be used to establish lower bounds for S(n).

Lemma 1. S(n+ 1) ≥ S(n) + dlog2 ne for every n ≥ 1.

This lemma was applied in [15] to derive the values of S(6) and S(8) from those of S(5) and S(7),
respectively, and in [25] to obtain an asymptotic lower bound for S(n). Likewise, we apply Lemma 1 to
obtain the value of S(10) from our proof that S(9) = 25 and, consequently, we are able to improve the values
for S(n) for n > 10, as indicated in the third line of Table 1.

Crucial to our approach is the exploitation of symmetries in comparator networks, and these can be ex-
pressed in terms of permutations on channels. Given an n-channel comparator network C = (i1, j1); . . . ; (ik, jk),
and a permutation π on {1, . . . , n}, π(C) is the sequence (π(i1), π(j1)); . . . ; (π(ik), π(jk)). Formally, π(C) is
not a comparator network, but rather a generalized comparator network. A generalized comparator network
is defined like a comparator network, except that it may contain comparators (i, j) with i > j, which order
their outputs in descending order, instead of ascending. It is well-known (e.g. Exercise 5.3.4.16 in [17]) that
generalized sorting networks are no more powerful than sorting networks: a generalized sorting network can
always be untangled into a (standard) sorting network with the same size and depth.

We write C1 ≈ C2 (C1 is equivalent to C2) iff there is a permutation π such that C1 is obtained by
untangling the (generalized) comparator network π(C2). The two networks (a) and (b) above are equiva-
lent via the permutation (1 3)(2 4) and the application of the construction for untangling described in [17]
(Exercise 5.3.4.16).

Another important and related concept is that of a complete set of filters for the optimal-size sorting
network problem.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
upper bound 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60
old lower bound 0 1 3 5 9 12 16 19 23 27 31 35 39 43 47 51
new lower bound 25 29 33 37 41 45 49 53

Table 1: Overview of known upper and lower bounds on minimal size S(n) of a sorting network on n channels as well as our
new improved lower bounds.

3

Definition 1. A (finite) set, F , of comparator networks on n channels is a complete set of filters for the
optimal size sorting network problem on n channels if there exists an optimal-size sorting network on n
channels of the form C;C ′ for some C ∈ F .

For any given n there always exists a complete set of filters: simply take the set of all comparator
networks on n channels. In this paper we will focus on the search for “small” complete sets in which all
filters are of the same size.

3. The generate-and-prune approach

In this section we consider the task of generating the set of all n-channel comparator networks consisting
of k comparators. Given this set one could, at least conceptually, inspect the networks one-by-one to
determine if there exists an n-channel, k-comparator, sorting network. Obviously, such a naive approach is
combinatorically infeasible. With n channels, there are n(n−1)/2 possibilities for each comparator, and thus
incrementally adding comparators would produce (n(n − 1)/2)k networks with k comparators. For n = 9,
aiming to prove that there does not exist a sorting network with 24 comparators would mean inspecting
approximately 2.25 × 1037 comparator networks. Moreover, checking whether a comparator network is a
sorting network is known to be a co-NP complete problem [22].

We propose an alternative approach, generate-and-prune, which is driven just as the naive approach,
but takes advantage of the abundance of symmetries in comparator networks. It is best described after
introducing a definition and a lemma.

Definition 2. Let Ca and Cb be comparator networks on n channels. If there exists a permutation π such
that π(outputs(Ca)) ⊆ outputs(Cb) then we denote this as Ca �π Cb and we say that Ca subsumes Cb. We
also write Ca � Cb to indicate that there exists a permutation π such that Ca �π Cb.

Observe that � is a reflexive and transitive relation, and that ≈ ⊆ �.

Lemma 2. Let Ca and Cb be comparator networks on n channels, both of the same size, and such that
Ca � Cb. Then, if there exists a sorting network Cb;C of size k, there also exists a sorting network Ca;C ′

of size k.

Proof. Under the hypotheses, there exists a permutation π such that Ca �π Cb. Untangling Cb;π
−1(C) into

Cb;C
′ yields the desired sorting network (see the proof of the similar Lemma 7 in [8] for details).

Lemma 2 implies that, when adding a next comparator in the naive approach, we do not need to consider
all possible positions to place it. In particular, we can omit networks which are subsumed by others.

The generate-and-prune algorithm, depicted in Figure 1, is as follows, where Rnk and Nn
k are sets of n-

channel networks each consisting of k comparators. First, initialize the set Rn0 to consist of a single element:
the empty comparator network. Then, repeatedly apply two types of steps, Generate and Prune, to add
comparators in all possible ways incrementally, and then remove those subsumed by others.

1. Generate: Given the set Rnk , derive the set Nn
k+1 containing all nets obtained by adding one extra

comparator to each element of Rnk in all possible ways.

2. Prune: Given the set Nn
k+1, derive the set Rnk+1 obtained by pruning Nn

k+1 to remove networks
subsumed by those which are not pruned.

The pruning step can thus be described as keeping only one network producing each minimal set of
outputs (under permutation). In other words, it keeps one representative of each equivalence class of
minimal networks w.r.t. �, independently of the order in which the subsumption tests are made. A direct
consequence of Lemma 2 and the construction of Nn

k and Rnk is the following lemma.

Lemma 3. For every n and k, the sets Nn
k and Rnk are complete sets of filters on n channels.

4

Note that if a set of networks includes a sorting network, then pruning that set will leave precisely one
element (a sorting network).

The algorithms Generate and Prune are both very simple. However, they operate on huge data sets,
consisting of millions of comparator networks. So, it is the small implementation details that render them
computationally feasible. We first describe their schematic implementation and then describe some of their
finer details.

The algorithm Generate takes a set, Rnk , of networks, and adds to each network in the set one new
comparator in every possible way. There are n(n − 1)/2 ways to add a comparator on n channels, hence,
the execution time of Generate is O

(
n2 × |Rnk |

)
.

The algorithm Prune basically tests each network from its input, Nn
k , keeping only those networks which

are not subsumed by any other network encountered so far. These minimal (w.r.t. subsumption) networks
are kept in the set Rnk , which after execution of the algorithm contains a complete set of filters on n channels.
The sets Rnk are initially empty, and then they grow and shrink throughout the run of the algorithm, until
finally containing only minimal elements in the order �. While in principle |Rnk | could first grow to nearly
|Nn

k | before collapsing to its final size, experimentation indicates that the intermediate sizes of Rnk are
bounded by its final size. Thus, the algorithm is posed such that the outer loop is on the elements of Nn

k ,
and the inner loop on the current set Rnk .

In this manner, the worst-case behavior of Prune is O (|Nn
k | × |Rnk | × f(n)), where f(n) is the cost of

a single subsumption test. A naive implementation to test whether Ca � Cb maintains the sets Sa =
outputs(Ca) and Sb = outputs(Cb), and iterates over the space of n! permutations to check whether there
exists a permutation π such that π(Sa) ⊆ Sb. The complexity of this implementation is O(n! × 2n) in the
worst case, and in spite of the optimizations presented in the next section, we believe that this level of
complexity is unavoidable.

These very simple algorithms, Generate and Prune, are straightforward to implement, test and debug.
Our implementation is written in Prolog and can be applied to reconstruct all of the known values for S(n)
for n ≤ 6 in under an hour of computation on a single core. Table 2 shows the values for |Rnk | when n ≤ 8;
the values for n = 7, 8 were obtained using the optimized version of our implementation described in the
next sections. Observe how in each row the first number is a “1”, signifying that it does not matter where
the first comparator is placed (all choices are equivalent). Then, the numbers first grow and then shrink.
The last number in a row is always a “1”, signifying that there is a sorting network with that number of
comparators (and it subsumes all other networks of the same size). For any k, if there is no sorting network
on n channels with k comparators, then |Rnk | > 1, since a sorting network trivially subsumes any other

comparator networks. Recall also that |Nn
k | =

n(n−1)
2

∣∣Rnk−1

∣∣.
We analyze the case n = 7 in some detail. There are 21 possibilities for the first comparator (i, j) on

a 7-channel comparator network; however, these are all equivalent by means of the permutation (i 1)(j 2).
Hence

∣∣R7
1

∣∣ = 1. We assume the single representative to be the network (1, 2). The second comparator can
again be one of the same 21 possibilities; but there are only four possibilities that are not equivalent: either

Algorithm Generate.

input: Rnk ; output: Nn
k+1;

Nn
k+1 = ∅;

Cn =
{

(i, j)
∣∣ 1 ≤ i < j ≤ n

}
for C ∈ Rnk and c ∈ Cn do

Nn
k+1 = Nn

k+1 ∪ {C; c};

Algorithm Prune.

input: Nn
k ; output: Rnk ;

Rnk = ∅;
for C ∈ Nn

k do
for C ′ ∈ Rnk do

if (C ′ � C) mark C;
if (not marked(C))

Rnk = Rnk ∪ {C};
for C ′ ∈ Rnk do

if (C � C ′) Rnk = Rnk \ {C ′};

Figure 1: The Generate and Prune algorithms.

5

it is again (1, 2), or it is of the form (1, j) with j 6= 2, or of the form (2, j) with j > 2, or of the form (i, j)
with 2 < i < j. The first possibility yields a comparator network that is subsumed by any of the others.
For the other three possibilities, suitable permutations can map the second comparator to (1, 3), (2, 3) or
(3, 4), respectively. Therefore,

∣∣R7
2

∣∣ = 3, and the representatives can be chosen to be net (1, 2); (1, 3), net
(1, 2); (2, 3) and net (1, 2); (3, 4). A similar reasoning shows that there are only seven possibilities for the
three-comparator networks, and a representative set contains e.g.:

• (1, 2); (2, 3); (1, 2)

• (1, 2); (3, 4); (1, 3)

• (1, 2); (3, 4); (1, 4)

• (1, 2); (3, 4); (1, 5)

• (1, 2); (3, 4); (2, 4)

• (1, 2); (3, 4); (2, 5)

• (1, 2); (3, 4); (5, 6)

4. Implementing generate-and-prune

This section describes details of the implementation of the algorithms Generate and Prune and the
optimizations that, in the end, make it possible to compute the precise value of S(9) = 25. Here we keep
in mind that the values for n2, 2n, and n! where n = 9 are constants: 81, 512, and 362,880. On the other
hand, the number of elements in

∣∣N9
24

∣∣ could potentially grow to more than 1037.

4.1. Representing comparator networks

The inner loops in the algorithm Prune involve subsumption tests on pairs of networks. We implement
these in terms of the search for a permutation under which the outputs of the one network are a subset of
the outputs of the other. Moreover, as each network is tested for subsumption multiple times, we choose to
represent a comparator network, explicitly, together with the set of its outputs. It is convenient to represent
the output binary sequence x̄ = x1 . . . xn by the corresponding binary number (least significant bit first),
#x̄. With this representation, xi = (#x̄/2i−1 mod 2), where ‘/’ stands for integer division, and the result
of exchanging positions i and j in x̄ translates to computing #x̄− 2i−1 + 2j−1 when xi = 1 and xj = 0, the
only case when such an exchange is necessary. These operations can be implemented extremely efficiently,
e.g. using shifts.

As an example, consider the comparator network C = (1, 2); (3, 4); (1, 3) on four channels, which has
outputs(C) = {0000, 0001, 0011, 0100, 0110, 0101, 0111, 1111} represented as {0, 8, 12, 2, 6, 10, 14, 15}. Con-
sider the output x̄ = 0101, for which #x̄ = 10. Denoting the bits of x̄ as x1, . . . , x4, we have x1 =
(10/20 mod 2) = 0 and x2 = (10/21 mod 2) = 1, and likewise x3 = 0 and x4 = 1. Since x2 > x3, applying
the comparator (2, 3) to x̄ yields the sequence ȳ such that #ȳ = #x̄ − 21 + 22 = 12, namely 0011. In the
same way, it is easy to check that outputs(C; (2, 3)) is represented as the set {0, 8, 12, 4, 6, 14, 15}.

Given this choice, in Generate, adding a comparator (i, j) to a network C simply requires applying (i, j)
to those elements #x̄ of the set of outputs in the representation of C for which xi > xj . So, the cost of
computing output sets diminishes while adding comparators, since the sizes of the output sets decrease with

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 1
3 1 2 1
4 1 3 4 2 1
5 1 3 6 11 10 7 6 4 1
6 1 3 7 17 36 53 53 44 23 8 4 1
7 1 3 7 19 51 141 325 564 678 510 280 106 33 11 6 1
8 1 3 7 20 57 189 648 2088 5703 11669 16095 13305 6675 2216 503 77 18 9 1

Table 2: Size of the reduced sets Rn
k obtained by execution of generate-and-prune for n ≤ 8.

6

each addition. In the example above, adding the comparator (2, 3) to the network would change 10 to 12
and 2 to 4.

The algorithm Generate is implemented to produce a file where each network is tupled with the set of
its outputs (represented as numbers) and some additional information that is detailed below. Moreover, the
elements in these sets are partitioned according to the number of ones in their binary representations, as
this facilitates the optimizations described below. For instance, in the context of the previous example, we
represent C as the following triplet, where W is described in the next section.〈

{(1, 2); (3, 4); (1, 3)}︸ ︷︷ ︸
the network C

, {{0}, {2, 8}, {6, 10, 12}, {14}, {15}}︸ ︷︷ ︸
outputs(C) partitioned by number of 1s

,W

〉
(1)

Even though we are adding extra information, of size exponential in n, this is still manageable in practice.
Case in point, the largest file encountered in the proof for n = 9 contains N9

15 and is just under 11 GB in
size. We need to keep at most two files at any given point of time: to support pruning of N9

k to R9
k, and to

support extending R9
k to N9

k+1.

4.2. Implementing the test for subsumption

We implemented the subsumption test C1 � C2 in Prune as the search problem of finding a permutation
π such that π(outputs(C1)) ⊆ outputs(C2). For 9 channels, this might involve considering 362,880 permu-
tations. We illustrate why, in many cases, it is computationally easy to detect the non-existence of such
a permutation, and how we restrict the search space considerably in the other cases. This optimization is
crucial to move beyond the case of 6 channels.

Let S1 = P0] . . .] Pn and S2 = Q0] . . .] Qn be two sets of length-n binary sequences partitioned
according to the number of 1s in the sequences, where we use] to emphasize that all these sets are disjoint.
A basic observation that can be applied to refine the search for a suitable permutation π is that π(S1) ⊆ S2

if and only if (π(P0) ⊆ Q0) ∧ · · · ∧ (π(Pn) ⊆ Qn). Moreover, there are several easy-to-check criteria which
apply to determine that no such π exists. We introduce these through an example.

no. of 1s 0 1 2 3 4 5

C1 00000
00001
00010

00011
00110
01010

00111
01011
01110

01111
11110

11111

C2 00000
00001
00010

00011
00101
00110
01001

00111
01011
01101

01111
10111

11111

C3 00000
00001
00010
00100

00011
00101
00110

00111
01110
10110

01111
10111
11110

11111

Figure 2: Three 5-channel comparator networks with their partitioned output sets.

Figure 2 details three 5-channel comparator networks together with the sets of their outputs partitioned
according to their number of ones. Focusing on the column detailing the output sequences with two 1s, it
is clear that C2 6� C1. Indeed, any permutation of outputs(C2), must have four sequences with two 1s each,
and hence π(outputs(C2)) cannot be a subset of outputs(C1), which has only three sequences with two 1s.
The same type of argument implies that C2 6� C3, C3 6� C1 (looking at outputs with four 1s) and C3 6� C2

(looking at outputs with one 1).
More formally, we state the following lemma.

7

Lemma 4. Let Ca and Cb be n-channel comparator networks. If there exists 1 ≤ k ≤ n such that the
number of sequences with k 1s in outputs(Ca) is greater than that in outputs(Cb), then Ca 6� Cb.

Experiments show that, in the context of this paper, more than 70% of the subsumption tests in the
application of Prune are eliminated based on Lemma 4.

Focusing again on Figure 2, this time on the column detailing the output sequences with three 1s, it
becomes clear that C1 6� C3. This is because the digit 0 occurs in four different positions in the sequences
for C1, and this will remain the case when applying any permutation to its elements, but only in three
different positions in the sequences for C3. To formalize this observation we introduce some notation. If C
is an n-channel comparator network, x ∈ {0, 1}, and 0 ≤ k ≤ n is an integer value, then w(C, x, k) denotes
the set of positions i such that there exists a vector x1 . . . xn in outputs(C) containing k ones, and such that
xi = x.

Lemma 5. Let Ca and Cb be n-channel comparator networks. If for some x ∈ {0, 1} and 0 ≤ k ≤ n,
|w(Ca, x, k)| > |w(Cb, x, k)| then Ca 6� Cb.

Experiments show that, in the context of this paper, around 15% of the subsumption tests in the
application of Prune that are not eliminated based on Lemma 4 are subsequently eliminated by application
of Lemma 5.

In order to apply this criterion efficiently, the sets w(C, x, k), for x ∈ {0, 1} and 0 ≤ k ≤ n, are computed
when C is generated and maintained as part of the representation of C. This is the third element, W , in
the triplet of Equation (1).

In the following lemma, we observe that the information in the sets w(C, x, k) is also helpful in restricting
the search space for a suitable permutation.

Lemma 6. Let Ca and Cb be n-channel comparator networks and π be a permutation. If π(outputs(Ca)) ⊆
outputs(Cb), then π(w(Ca, x, k)) ⊆ w(Cb, x, k) for all x ∈ {0, 1}, 1 ≤ k ≤ n.

Implementing these optimizations in Prune reduces the computation time for 6 channels by a factor of
over 200, and allows the verification of the known results for n = 7 in a few minutes and for n = 8 in a
few hours. For n = 7, the largest set of reduced networks that has to be considered is R7

9, which contains
678 elements. Of the 33 million subsumption tests performed in the whole run, more than 27 million were
solved by application of Lemma 4 and another approx. 600 thousand by Lemma 5.

4.3. Avoiding redundant comparators

Let us come back to the operation of incrementally adding comparators as specified in Generate. In
some cases, it is easy to identify that a comparator is redundant and not to add it in the first place. Networks
obtained by adding a redundant comparator would anyway be removed by Prune, but that involves the more
expensive subsumption test.

Consider a comparator network of the form C; (i, j);C ′. We say that (i, j) is redundant if xi ≤ xj
for all sequences x1 . . . xn ∈ outputs(C). This notion of redundant comparators is simpler than the one
proposed in Exercise 5.3.4.51 of [17] (credited to R.L. Graham), but equivalent for standard sorting networks.
Since comparator networks are represented explicitly together with their output sets, this condition is
straightforward to check.

In the loop of Generate, we refrain from adding redundant comparators to the networks being extended,
thus guaranteeing that there are no redundant comparators in Rnk . Correctness of not adding redundant
comparators follows in the same way as in the context of Exercise 5.3.4.51 of [17]. Let C; (i, j);C ′ be a
sorting network obtained by extending C; (i, j). If (i, j) is redundant, then C;C ′ is also a sorting network,
and smaller. Implementing this optimization, depicted as Algorithm Generate′ in Figure 3, the values of
|Nn

k | drop significantly, especially as k increases. Typically, the highest value of |Nn
k | is reduced by more

than 40%; subsequent values drop even more, but their impact on computation time is less pronounced.
As a result, the total execution time for generate-and-prune is reduced to about one half for each value of
n ≤ 8. The size of the largest |Nn

k | is given in Table 3 for n = 6, 7 and 8, without any optimizations and

8

Algorithm Generate′.
input: Rnk ; output: Nn

k+1;
Nn
k+1 = ∅;

Cn =
{

(i, j)
∣∣ 1 ≤ i < j ≤ n

}
for C ∈ Rnk and c ∈ Cn do

if (¬redundant(C,c))
Nn
k+1 = Nn

k+1 ∪ {C; c};

Figure 3: Optimized algorithm for extending networks by one comparator.

n k original no redundancies relative reduction
6 7 795 457 42.5%
7 10 14,238 7,438 47.8%
8 12 450,660 253,243 43.8%

Table 3: Effect of the optimizations on the size of the largest set
∣∣Nn

k

∣∣ for n = 6, 7, 8.

when refraining from adding redundant comparators. The optimal sorting networks for sizes 5 to 8 found
by our optimized generate-and-prune algorithm are depicted in Figure 4.

The execution of generate-and-prune for n = 9, k ∈ {0, . . . , 25} remains a daunting task. To see this,
consider that the growth of the values of

∣∣N9
k

∣∣ and
∣∣R9

k

∣∣ (which for k = 14 turned out to be 18,420,674 and
914,444, respectively) requires more than 10 trillion subsumption checks, each in the worst-case requiring
to check 9! = 362,380 permutations. On a positive note, the optimizations described up to here allow the
algorithms to be run for n = 9 within the life span of a human being (more precisely, an expected approx.
9 years of computation on a single core).

4.4. Parallelization

In order to reduce the total execution time of generate-and-prune for n = 9 to a feasible value, we
developed parallelized versions of both algorithms. We consider a distributed-memory architecture consisting
of p processing elements. For Generate, the parallelization is straightforward, as the the extension of each
network in Rnk can be performed independently, i.e., the set can be split into |Rnk | singleton sets, which
can be processed by Generate in parallel. In addition, the resulting extensions are all pairwise different,
so set union can be implemented as a simple merge-by-concatenation of the extensions. As the number
of networks to extend is typically considerably larger than the number of processing elements p, and both
splitting and merging incur some overhead, in practice we divided Rnk into p sets of equal size. As the
sequential algorithm is linear in |Rnk | and there is no communication overhead in the parallel version, the
latter has constant isoefficiency [16]. Figure 5 presents this straightforward parallelization of Generate,
where for||p indicates a parallel for-each loop using p processing elements at the same time.

The parallelization of Prune is less trivial, as each network from Nn
k needs to be checked against all

networks in the current set of minimal (w.r.t. subsumption) networks. In order to make best use of the

Figure 4: Optimal-size sorting networks on 5, 6, 7 and 8 channels found by generate-and-prune.

9

Algorithm Parallel-Generate.

input: Rnk ; output: Nn
k+1;

split Rnk into sets R1, . . . , Rp
for||p i ∈ {1, . . . , p} do

Si = Generate′(Ri);
Nn
k+1 =

⊎
1≤i≤p Si;

Generate

split merge

Rnk

Nn
k+1

Ri Si

Figure 5: Parallelization of Generate. The diagram on the right schematizes this process for p = 4.

processing elements, we divide the parallel execution into two phases. In the first phase, we split Nn
k evenly

into m × p sets S1, . . . , Sm×p, where for m we choose a multiplier for p such that the individual sets have
a practically manageable size. Then we execute Prune on these sets in parallel. In the second phase, for
each set Si we still have to remove all networks that are subsumed by networks in any other set Sj . To this
end we define the algorithm Remove (see Figure 6), which is a variant of Prune where subsumption is only
considered in one direction.

After Remove has finished, we replace set Si by the new (usually smaller) set S′i. Now, we observe
that calling Remove for sets Si and Sj can be performed in parallel to calling it for sets Sk and Sj . Thus,
in our parallelization approach, we start by using the first set to remove networks from all other sets in
parallel, then we use the second set to remove networks from the first and all following sets, etc. A graphical
representation with p = 4 is given in Figure 6, where the sets Sj are shaded in the applications of Remove.
After all sets have been used as set Sj in Remove, the pruned set Rnk is obtained by merge-by-concatenation
of all of the final sets Si.

The idea of the two phase version of Prune is formalized in the algorithm Parallel-Prune, also detailed
in Figure 6. This algorithm has an isoefficiency of O(p2 log2 p), meaning that if we wanted to use twice as

Algorithm Remove.

input: Si and Sj ; output: S′i;
S′i = ∅
for C ∈ Si do

for C ′ ∈ Sj do
if (C ′ � C) mark C

if (not marked(C))
S′i = S′i ∪ {C};

Algorithm Parallel-Prune.

input: Nn
k and m× p; output: Rnk ;

split Nn
k into sets S1, . . . , Sm×p

for||p i ∈ {1, . . . ,m× p} do
Si = Prune(Si);

for j ∈ {1, . . . ,m× p} do
for||p i ∈ {1, . . . ,m× p} \ {j} do

Si = Remove(Si, Sj);
Rnk =

⊎
1≤i≤m×p Si;

Prune RemoveRemove Remove Remove

split merge

Nn
k

Rnk

Si Si Si Si Si Si

Figure 6: Algorithms Remove and Parallel-Prune (top), and a graphical representation of the case m = 1 and p = 4 (bottom).
At each stage of Prune, the set Sj is shaded.

10

k 1 2 3 4 5 6 7 8 9 10 11 12 13

|R9
k| 1 3 7 20 59 208 807 3,415 14,343 55,991 188,730 490,322 854,638

k 14 15 16 17 18 19 20 21 22 23 24 25

|R9
k| 914,444 607,164 274,212 94,085 25,786 5,699 1,107 250 73 27 8 1

Table 4: Sizes of the sets R9
k for 1 ≤ k ≤ 25.

many processors while maintaining efficiency, we would have to increase the problem size by a factor a little
greater than 4. This result is obtained using the techniques presented in [16].

In this way, p processing elements can complete the first phase with m calls to Prune per processing
element. The second phase, with a total of m×p× (m×p−1) calls to Remove, requires approximately m2p2

calls per processing element. Although the comparisons in Parallel-Prune are not made in the same order
as in the original Prune, experiments show that the total number of comparisons made is roughly the same,
while overhead grows with m. Thus, in order to enhance overall performance, we can focus on minimizing
overhead, i.e., m should be chosen to be minimal. In other words, m should be 1 as long as the resulting sets
fit into memory for application of Prune. As an additional measure to keep overhead low, minimum sizes
of 1000 and 5000 comparator networks were imposed when splitting up the sets in Parallel-Generate and
Parallel-Prune, respectively.

The optimizations described in this section made it possible to compute the sets R9
k for 1 ≤ k ≤ 14 in just

over one week (more precisely, in 7 days, 17 hours, and 58 minutes) using values p = 288 and m = 1 in all
runs of Parallel-Prune. The sizes of the sets R9

k are shown in Table 4. At this stage, |R9
14| = 914,444, and

we continued our efforts on two alternative paths. On one path, we continued to run the generate-and-prune
approach to compute R9

k for 15 ≤ k ≤ 25. After five additional days of computation, we obtained a singleton
set for R9

25 containing the minimal nine-channel sorting network depicted in Figure 7. The most expensive
step of the computation was computing R9

14: at this stage each thread started with |N9
14|/288 ≈ 64,000

networks, which were pruned down to ≈ 25,000 per thread, and the first deletion step requires storing
≈ 50,000 networks – both of which require less than 1 GB of RAM per thread, or 24 GB per node. At the
end of each iteration we also wrote the sets R9

k to disk in their enriched representation, requiring around
50 GB in total – with the peak again at 11 GB for R9

14. Note that we did not make any effort to reduce
memory and disk consumption, as the bottleneck in our algorithm was clearly execution time.

On the other path, we turned to consider the use of a SAT solver to encode the search for an optimal-size
sorting network on 9-channels. Given the set R9

14, this required less than half a day of computation on 288
threads (instead of 5 days), which is the topic of the next section.

Figure 7: Optimal-size sorting network on 9 channels found by generate-and-prune.

5. The SAT encoding approach

In recent years, Boolean SAT-solving techniques have improved dramatically, and SAT is currently
applied to solve a wide variety of hard and practical combinatorial problems, often outperforming dedicated

11

algorithms. The general idea is to encode a hard problem instance, µ, to a Boolean formula, ϕµ, such
that the satisfying assignments of ϕµ correspond to the solutions of µ. Given such an encoding, a SAT
solver can be applied to solve µ. Recent attempts to attack open instances of the optimal-depth sorting
network problem, such as those described in [20, 8], consider encodings to SAT. However, these encodings
do not readily apply to the optimal-size sorting network problem. In fact, we are not aware of any previous
attempts to encode the optimal-size sorting network problem in SAT.

The encoding we propose in this paper is of size exponential in the number of channels, n. This is
also the case for all previous SAT encodings for the optimal-depth sorting network problem. Both of these
problems are naturally expressed in the form ∃∀ϕ (does there exist a network that sorts all of its inputs?),
and are easily shown to be in ΣP2 . We expect that, similar to the problem of circuit minimization, they
are also ΣP2 -hard, although we have not succeeded to prove this. We do not expect that there exists a
polynomial-size encoding to SAT.

5.1. Encoding the search for a sorting network

We describe here a SAT encoding of the following decision problem, which we term the (n, k) sorting
network problem: does there exist a sorting network of size k on n inputs? We introduce this encoding
as a finite domain constraint model such that the encoding to conjunctive normal form (CNF) of each
constraint in the model is straightforward. At the implementation level, we apply the BEE compiler [19],
which performs this encoding together with a range of “compile-time” optimizations.

We represent a size k comparator network Network with n channels as a sequence of the form Network =
〈c(I1, J1), . . . , c(Ik, Jk)〉 where the Ii and Ji are finite domain integer variables with domain [1, n] and
Ii < Ji for each i. The conjunction of the following constraints encodes that Network is a valid comparator
network on n channels.

validn(Network) =

k∧
i=1

new int(Ii, 1, n) ∧
new int(Ji, 1, n) ∧
int lt(Ii, Ji)

A constraint of the form new int(I, 1, n) specifies that I is the bit-level representation of an integer variable
with domain [1, n]. A constraint of the form int lt(I, J) specifies that the integer value represented by I

is less than that represented by J. Below, we also consider the constraint int eq(I, i), which specifies that
the integer value represented by I is equal to the constant i. The specific representation of integers is not
important – any of the standard integer representations works. In our implementation, we adopt a unary
representation in the order encoding (see e.g. [12, 2]).

The conjunction of the following constraints encodes the impact of a single comparator c(I, J) in terms
of the vectors of Boolean variables x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , yn〉, representing the values on the
n channels before and after the comparator. The first conjunction, ϕI,J(x̄, ȳ), specifies that when integer
variables (I, J) take the values (i, j), then yi = xi ∧ xj and yj = xi ∨ xj , i.e., the minimum goes to yi and
the maximum to yj . The second conjunction, ψI,J(x̄, ȳ), specifies that xi = yj for all channels i different
from the values I and J .

ϕI,J(x̄, ȳ) =
∧

1≤i<j≤n

(
int eq(I, i) ∧ int eq(J, j)→

(yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj)

)
ψI,J(x̄, ȳ) =

∧
1≤i≤n

(
¬int eq(I, i) ∧ ¬int eq(J, i)→ xi ↔ yi

)
The following encodes that the comparator Network = 〈c(I1, J1), . . . , c(Ik, Jk)〉 sorts b̄ ∈ Bn. Let x̄0 = b̄, x̄k
be equal to the vector obtained by sorting b̄, and let x̄1, . . . , x̄k−1 be length n vectors of Boolean variables.
Then,

sorts(Network, b̄) =

k∧
i=1

ϕIi,Ji(x̄i−1, x̄i) ∧ ψIi,Ji(x̄i−1, x̄i)

12

A sorting network with k comparators on n channels must sort all of its inputs. Hence, a sorting network
with k comparators on n channels exists if and only if the following formula is satisfiable.

sortern(Network) =
validn(Network) ∧∧
b̄∈Bn sorts(Network, b̄)

(2)

Our implementation of the above encoding introduces several additional optimizations. We list these
here briefly, for Network = 〈c(I1, J1), . . . , c(Ik, Jk)〉.

• No redundant neighbors. For each 1 ≤ i < k, we add the constraint: Ii 6= Ii+1 ∨ Ji 6= Ji+1.

• Independent comparators in ascending order. For each 1 ≤ i < k, we add the constraint: Ii 6=
Ii+1 ∧ Ii 6= Ji+1 ∧ Ji 6= Ii+1 ∧ Ji 6= Ji+1 → Ii < Ii+1.

• All adjacent comparators. Following Exercise 5.3.4.35 of [17], we add the constraint that states that
all comparators of the form (i, i+ 1) must be present in every standard sorting network.

• Only unsorted inputs. Let Bnun denote the subset of Bn consisting of unsorted sequences. Then it
is possible to refine the conjunction in Equation (2) replacing Bn with the smaller Bnun. Moreover,
observe that |Bnun| = 2n − n− 1, and as noted by Chung and Ravikumar in [9], this is the size of the
smallest test set possible in order to determine that Network is a sorting network.

Table 5 shows the results obtained with our implementation of the SAT encoding described above. The
left part of the table concerns the search for sorting networks of optimal size; and the right part, the “proof”
that smaller networks do not exist. The columns labeled “BEE” detail the compilation times (in seconds) to
generate the CNF and to perform optimizations prior to SAT solving. The columns labeled “SAT” detail the
SAT-solving times (in seconds) for the satisfiable instances, on the left, and for the unsatisfiable instances,
on the right. The ∞ symbol indicates a time-out: these instances did not terminate even after one week of
computation. We observe that the sizes of these SAT instances, even those that we cannot solve, are not
excessive: all instances contain less than one million clauses, and less than one quarter of a million variables.

optimal sorting networks (sat) smaller networks (unsat)
n k BEE #clauses #vars SAT k BEE #clauses #vars SAT
4 5 0.18 1916 486 0.01 4 0.15 1480 356 0.01
5 9 1.03 10159 2550 0.03 8 0.90 8963 2221 1.27
6 12 4.55 35035 8433 2.45 11 3.99 32007 7657 242.02
7 16 21.68 114579 26803 16.70 15 19.04 107227 25000 ∞
8 19 82.93 321445 73331 ∞ 18 73.34 304145 69221 ∞
9 25 452.55 977559 219950 ∞ 24 406.67 937773 210715 ∞

Table 5: SAT solving for n-channel sorting networks with k comparators: BEE compile times and SAT solving times are in
seconds.

The optimal sorting networks for sizes 5 to 7 found by this algorithm are represented in Figure 8.

5.2. Searching from a complete set of comparator networks

Since the methodology presented above does not scale beyond n = 6, we will now show how to capitalize
on the results from Section 4. Therefore, we focus on the following variant of the previous problem, which we
term the (n, k, S) sorting network problem: given a (complete) set of comparator networks, S on n channels,
is there a network C ∈ S that can be extended to a sorting network of size k?

To solve this problem, we consider each element C ∈ S separately. We encode the corresponding
(n, k) sorting network problem in terms of Network = 〈c(I1, J1), . . . , c(Ik, Jk)〉, and we fix the values of
the comparator positions in the prefix of Network to match the positions of those in C. Even this small

13

Figure 8: Optimal-size sorting network on 5, 6 and 7 channels found by the SAT encoding.

difference turns out to provide one key ingredient to solve the optimal-size sorting network problem; the
other key ingredient is to make sure that the set S is as small as possible.

With the SAT encoding of Equation (2), we are not able to show that there is no sorting network of
size 15 on 7 channels (even given a week of computation time). Recall Lemma 3, and consider n = 7. The
set R7

3 consists of 7 comparator networks and is complete. So, there exists an optimal-size sorting network
on 7 channels if and only if there exists one of the form C;C ′ for some C ∈ R7

3. Solving the (7, 15, R7
3)

sorting network problem reveals that there is no sorting network on 7 channels with 15 comparators. The
computational cost of this proof sums up to approximately 10 minutes of parallel computation (on 7 cores),
or less than 1 hour in total of sequential computation.

Solving the SAT and UNSAT cases for 8 channels is more involved. Here we consider R8
5, which is a

complete set of comparator networks with 5 comparators each and consists of 57 elements. For the UNSAT
case, computation requires just under 1.36 hours on 57 cores (the time to complete the slowest instance),
or a total of 33.83 hours on a single core. For the SAT case, computation requires 0.35 of an hour (on 57
cores), which is the time until the first satisfiable instance terminates.

There is one further optimization, adopted from [8], that we consider when encoding the search for a
sorting network that extends a given comparator network. Consider again Equation (2). A sorting network
must sort all of its (unsorted) inputs and hence the conjunction of all b̄ ∈ Bn (or the smaller set Bnun).
However, if we consider any specific subset of B ⊆ Bn and show that there is no comparator network that
sorts the elements of B, then surely there is also no comparator network that sorts the elements of Bn.
In particular, we consider the set Bns , which we call the set of windows of size s, of all unsorted length n
binary sequences of the form 0`1 .w.1`2 such that `1 + `2 = s. If the encoding of Equation (2) is unsatisfiable
when replacing Bn with Bns , then it is unsatisfiable also in its original form. Solving the UNSAT case for
8 channels and 18 comparators using this optimization reduces the total solving time from 33.83 hours to
27.52 hours. From the 57 instances that need be shown unsatisfiable, 50 are found so with s = 3; a further
4 with s = 2; and the remaining 3 with s = 1.

To solve the optimal-size sorting network problem for n = 9 channels, we consider the (9, 24, R9
14)

sorting network problem, where R9
14 is the complete set of 914,444 comparator networks obtained using

the technique described in Section 4. We show that each of the corresponding propositional formulae is
unsatisfiable, implying that there is no extension of an element of R9

14 to a 24 comparator sorting network.
The average solving time (per instance) is 4.09 seconds for compilation and 7.83 seconds for the SAT solver.
The total solving time for all instances (compilation and SAT solving) is 3028 hours. There is an additional
overhead of 333 hours for using the windows optimization (the cost of resolving with a smaller window when
an instance is satisfiable). Running 288 threads on 144 cores requires just under 12 hours of computation.
From the 914,444 instances, 675,736 (74%) were found unsatisfiable using a window of size 4, 233,400 (25%)
were found unsatisfiable using a window of size 3, 4,979 (less than 1%) were found unsatisfiable using a
window of size 2, and the remaining 329 (less than 1%) were found unsatisfiable using a window of size 1.

6. Proving optimality of 25 comparators for 9 inputs

The results of Sections 4 and 5 provide two alternative proofs that S(9) = 25, both of which rely on
first computing the set R9

14 (a little over one week of computation). For the first alternative, using the
techniques of Section 4 we apply the generate-and-prune approach continuing from R9

14 until termination

14

with |R9
25| = 1 (an additional 5 days of computation). For the second alternative, using the techniques of

Section 5, we apply a SAT solver to solve the (9, 24, R9
14) sorting network problem, showing that no element

of R9
14 can be extended to a 24-comparator sorting network (less than half a day of computation).

In both cases, the implementation relies on a Prolog program to compute the sets R9
k. The second

alternative involves also a Prolog implementation of the SAT encoding, the BEE constraint compiler, and
the state-of-the-art SAT solver CryptoMiniSAT [24]. We use SWI-Prolog 6.6.1.

While it is reassuring to have two alternative proofs, they both share the computation of R9
14. Although

we have proved all of the mathematical claims underlying the design of the proof algorithm and have carefully
checked the correctness of the Prolog implementation, there is always the potential for errors in computer
programs. The objective of this section is to provide further confidence on the correctness of our results.

One of the key aspects of computer-assisted proofs is guaranteeing their validity. Barendregt and
Wiedijk [3] introduced the de Bruijn criterion: every computer-assisted proof should be verifiable by an
independent small program (a “verifier”). We now summarize how our approach meets this criterion.

Verifiers for SAT encodings are, in our case, more complex, as the instances we need to verify are all
unsatisfiable. While satisfiable instances have concrete assignments as their witnesses, for unsatisfiable
instances we would have to verify 914,444 (minimal) unsatisfiable cores. Hence, we focus our validity
argument on the generate-and-prune approach, which involves two critical points. We must guarantee
that: (1) when extending a network with k comparators to one with k + 1 comparators, all extensions are
considered, and (2) when eliminating a network, this is sound.

In order to verify our result independently from the Prolog implementation, the code is augmented to
produce a log file during execution. We then verify that the information in this file provides a sound and
complete basis for the reconstruction of our proof that there is no 9-channel sorting network consisting of
24 comparators. To this end, an independent Java implementation of the generate-and-prune algorithm is
provided, with one main important difference to the Prolog implementation: it performs no search, and is
aware only of the information available in the log file.

The log file contains lines of the form “killed(C1, C2, π)”, specifying that network C1 is pruned because
it is subsumed by a network C2 with permutation π (namely, that C2 �π C1). Such lines are introduced
both when extending a network with a redundant comparator (with the identity permutation) and when
pruning.

The verifier reconstructs the computation of all of the sets R9
k, starting from R9

0 which consists of the
empty comparator network. When extending R9

k to R9
k+1 it first performs a naive extension to N9

k+1, adding
all comparators in all possible positions, and then computes R9

k+1 using the log file only. Namely, for each
row of the form killed(C1, C2, π), we first verify that indeed π(outputs(C2)) ⊆ outputs(C1), and then remove
C1 from N9

k+1. By soundness, we mean that whenever a network is eliminated, we have verified that the
logged permutation π is indeed a witness to its redundancy. By completeness, we mean that after pruning
we have a complete set of comparator networks. In order to ensure completeness, we additionally verify
that the logged subsumption information is acyclic. Otherwise, it would be possible, for example, that there
were two networks, C1 and C2 such that both C1 ≤π1

C2 and C2 ≤π2
C1, and that both were eliminated.

Using this tool, we verified the computer-assisted proof of n = 7 in 4 seconds, the one for n = 8 in 2
minutes, and the one for n = 9 in just over 6 hours of computational time. The logs (approx. 27 GB) and
the Java verifier are available from http://imada.sdu.dk/~petersk/sn/

In order to ensure a further degree of confidence in our results, we took to formalizing the theory of size-
optimal sorting networks in the theorem prover Coq [5], together with a formal description of a checker that
can verify optimality proofs based on the logs we generated with our Prolog code [13]. Using the program
extraction mechanism of Coq [18], we obtained a Haskell checker similar to our Java verifier: given the
number n of inputs, the number k of iterations and the name of the file containing the logs, it will execute
the generate-and-prune algorithm and return either the size of the smallest sorting network found within k
iterations, or the answer “No”. Furthermore, this checker comes with soundness proofs, guaranteeing that
the answer it returns is correct, again regardless of the correctness of the logs. The verification of the actual
proof for 9 channels required some additional optimizations on the checker, which preserve its soundness
properties, as described in [14].

15

http://imada.sdu.dk/~petersk/sn/

7. Conclusions

We have shown that S(9) = 25, i.e., the minimum number of comparators needed to sort nine inputs
is 25. This closes the smallest open instance of the optimal-size problem for sorting networks, which was
open since 1964. As a corollary, given the result from [17] that states that S(10) ≤ 29, and applying the
inequality S(n+ 1) ≥ S(n) + dlog2 ne from [26], we now also know that S(10) = 29.

This result was obtained by an implementation of a simple generate-and-prune in Prolog, which was
semi-independently verified by encoding part of the problem in a SAT solver. Most of the time in the
execution of the program was spent searching for permutations with particular properties, and by logging
these we were able to verify our results by an independent, handwritten Java program, and by a correct-by-
construction checker obtained by program extraction from a formalization in a constructive theorem prover.
We thus have four validations of the result, ensuring its correctness beyond any reasonable doubt.

Acknowledgement

We thank Carsten Fuhs and Donald E. Knuth for their constructive comments on draft versions of this
paper. Likewise, we extend our thanks to the anonymous reviewers of the IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2014) for their feedback.

This research was supported by the Israel Science Foundation, grant 182/13 and by the Danish Council for
Independent Research, Natural Sciences. Computational resources provided by an IBM Shared University
Award (BGU).

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An o(n log n) sorting network. In D. S. Johnson, R. Fagin, M. L. Fredman,
D. Harel, R. M. Karp, N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas, editors, Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages
1–9. ACM, 1983.

[2] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality constraints. In CP2003, pages 108–122, 2003.
[3] H. Barendregt and F. Wiedijk. The challenge of computer mathematics. Transactions A of the Royal Society,

363(1835):2351–2375, 2005.
[4] K. E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Conference, volume 32 of

AFIPS Conference Proceedings, pages 307–314. Thomson Book Company, 1968.
[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Texts in Theoretical Computer

Science. Springer, 2004.
[6] J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient generation of the binary reflected gray code and its applications.

Commun. ACM, 19(9):517–521, 1976.
[7] R. Bose and R. Nelson. A sorting problem. J. ACM, 9(2):282–296, 1962.
[8] D. Bundala and J. Závodný. Optimal sorting networks. In A. H. Dediu, C. Mart́ın-Vide, J. L. Sierra-Rodŕıguez, and

B. Truthe, editors, LATA 2014, volume 8370 of LNCS 8370, pages 236–247. Springer, 2014.
[9] M. J. Chung and B. Ravikumar. Bounds on the size of test sets for sorting and related networks. Discrete Mathematics,

81(1):1–9, 1990.
[10] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp. Twenty-five comparators is optimal when sorting nine

inputs (and twenty-nine for ten). In ICTAI 2014, pages 186–193. IEEE, Dec. 2014.
[11] M. Codish, L. Cruz-Filipe, and P. Schneider-Kamp. The quest for optimal sorting networks: Efficient generation of two-

layer prefixes. In F. Winkler, V. Negru, T. Ida, T. Jebelan, D. Petcu, S. Watt, and D. Zaharie, editors, SYNASC 2014,
pages 359–366. IEEE, 2015.

[12] J. M. Crawford and A. B. Baker. Experimental results on the application of satisfiability algorithms to scheduling problems.
In AAAI, pages 1092–1097. AAAI Press / The MIT Press, 1994.

[13] L. Cruz-Filipe and P. Schneider-Kamp. Formalizing size-optimal sorting networks: Extracting a certified proof checker.
In C. Urban and X. Zhang, editors, Interactive Theorem Proving – 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings, volume 9236 of LNCS, pages 154–169. Springer, 2015. DOI 10.1007/978-3-319-
22102-1 10.

[14] L. Cruz-Filipe and P. Schneider-Kamp. Optimizing a certified proof checker for a large-scale computer-generated proof.
In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Intelligent Computer Mathematics – International
Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015, Proceedings, volume 9150 of LNAI, pages 55–70.
Springer, 2015. DOI 10.1007/978-3-319-20615-8 4.

[15] R. W. Floyd and D. E. Knuth. The Bose–Nelson sorting problem. In A survey of combinatorial theory, pages 163–172.
North-Holland, 1973.

16

[16] A. Grama, A. Gupta, and V. Kumar. Isoefficiency: measuring the scalability of parallel algorithms and architectures.
IEEE P&DT, 1(3):12–21, 1993.

[17] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 1973.
[18] P. Letouzey. Extraction in Coq: An overview. In A. Beckmann, C. Dimitracopoulos, and B. Löwe, editors, CiE 2008,

volume 5028 of LNCS, pages 359–369. Springer, 2008.
[19] A. Metodi, M. Codish, and P. J. Stuckey. Boolean equi-propagation for concise and efficient sat encodings of combinatorial

problems. J. Artif. Intell. Res. (JAIR), 46:303–341, 2013.
[20] A. Morgenstern and K. Schneider. Synthesis of parallel sorting networks using SAT solvers. In MBMV 2011, pages 71–80.

OFFIS-Institut für Informatik, 2011.
[21] I. Parberry. A computer-assisted optimal depth lower bound for nine-input sorting networks. Mathematical Systems

Theory, 24(2):101–116, 1991.
[22] I. Parberry. On the computational complexity of optimal sorting network verification. In PARLE (1), volume 505 of

LNCS, pages 252–269. Springer, 1991.
[23] I. Parberry. The pairwise sorting network. Parallel Processing Letters, 2:205–211, 1992.
[24] M. Soos. CryptoMiniSAT, v2.5.1. http://www.msoos.org/cryptominisat2, 2010.
[25] D. C. Van Voorhis. An improved lower bound for sorting networks. IEEE Transactions on Computers, 21(6):612–613,

1972.
[26] D. C. Van Voorhis. Toward a lower bound for sorting networks. In Complexity of Computer Computations, The IBM

Research Symposia Series, pages 119–129. Springer US, 1972.

17

http://www.msoos.org/cryptominisat2

	Introduction
	Preliminaries on sorting networks
	The generate-and-prune approach
	Implementing generate-and-prune
	Representing comparator networks
	Implementing the test for subsumption
	Avoiding redundant comparators
	Parallelization

	The SAT encoding approach
	Encoding the search for a sorting network
	Searching from a complete set of comparator networks

	Proving optimality of 25 comparators for 9 inputs
	Conclusions

