
Grounded Fixpoints and Active Integrity
Constraints∗

Luís Cruz-Filipe

Dept. Mathematics and Computer Science, University of Southern Denmark
Campusvej 55, 5230 ODENSE M, Denmark
lcfilipe@gmail.com

Abstract
The formalism of active integrity constraints was introduced as a way to specify particular classes
of integrity constraints over relational databases together with preferences on how to repair exist-
ing inconsistencies. The rule-based syntax of such integrity constraints also provides algorithms
for finding such repairs that achieve the best asymptotic complexity.

However, the different semantics that have been proposed for these integrity constraints all
exhibit some counter-intuitive examples. In this work, we look at active integrity constraints using
ideas from algebraic fixpoint theory. We show how database repairs can be modeled as fixpoints
of particular operators on databases, and study how the notion of grounded fixpoint induces a
corresponding notion of grounded database repair that captures several natural intuitions, and
in particular avoids the problems of previous alternative semantics.

In order to study grounded repairs in their full generality, we need to generalize the notion
of grounded fixpoint to non-deterministic operators. We propose such a definition and illustrate
its plausibility in the database context.

1998 ACM Subject Classification H.2.7 Database Administration, D.1.6 Logic Programming

Keywords and phrases grounded fixpoints, active integrity constraints

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.first-page-number

1 Introduction

The classical definition of model of a logic theory requires models to be deductively closed.
An alternative phrasing of this fact is saying that models are fixpoints of some entailment
operator, and indeed the semantics of many modern logic frameworks can be described as
(minimal) fixpoints of particular operators – in particular, those of logic programs, default
logics, or knowledge representation formalisms based on argumentation.

Several of these formalisms focus on models that can be constructed “from the ground
up” (such as the minimal model of a positive logic program). Grounded fixpoints of lattice
operators, studied in [5], were proposed with the intent of capturing this notion in the formal
setting of algebraic fixpoint theory, and were shown to abstract from many useful types of
fixpoints in logic programming and knowledge representation.

In this work, we are interested in applying this intuition within the context of databases
with integrity constraints – formulas that describe logical relations between data in a database,
which should hold at all times. We focus on the particular formalism of active integrity
constraints (AICs), which not only specify an integrity constraint, but also give indications
on how inconsistent databases can be repaired. Although not all integrity constraints can be

∗ Supported by the Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247.

© Luís Cruz-Filipe;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd Int’l Conference on Logic Programming (ICLP’16).
Editors: Manuel Carro, Andy King, Marina De Vos, and Neda Saeedloei; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.first-page-number
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Grounded Fixpoints and Active Integrity Constraints

expressed in this formalism, AICs capture the class of integrity constraints that can be written
in denial clausal form, which includes many examples that are important in practice [14].
Using AICs, one can distinguish between different types of repairs that embody typical
desirable properties – minimality of change [12, 24], the common sense law of inertia [20], or
non-circular justification for repair actions [7]. These intuitions capture many aspects of the
idea of “building a model from the ground up”, present in grounded fixpoints. However, the
semantics of both founded [6] and justified repairs [7] exhibit counter-intuitive behaviors,
which led to the proposal of well-founded repairs [9]. These in turn are not modular with
respect to stratification of repairs [8], rendering their computation problematic.

In this paper we show that repairs of inconsistent databases can be characterized as
fixpoints of a particular operator, with minimality of change corresponding to being a minimal
fixpoint, and that both founded and well-founded repairs can be described as fixpoints with
additional properties. We then study grounded fixpoints of this operator, and show that
they include all founded and well-founded repair, but not all justified repairs. In particular,
grounded fixpoints avoid the circularity issues found in founded repairs, while including some
intuitive non-justified repairs.

To study at AICs in their full generality, we need to consider non-deterministic operators.
While there is currently no notion of grounded fixpoint of a non-deterministic operator, we
show that we can define this concept in the context of AICs in a manner that naturally
generalizes the deterministic definition. We then show how this in turn yields a plausible
definition of grounded fixpoints of non-deterministic operators within the general framework
of algebraic fixpoint theory.

Related work. Database consistency has long since been recognized as an important problem
in knowledge management. Especially in relational databases, integrity constraints have been
used for decades to formalize relationships between data in the database that are dictated by
its semantics [2, 4].

Whenever an integrity constraint is violated, it is necessary to change the database
in order to regain consistency. This process of bringing the database back to consistency
is known as database repair, and the problem of database repair is to determine whether
such a transformation is possible. Typically, there are several possible ways of repairing an
inconsistent database, and several criteria have been proposed to evaluate them. Minimality of
change [12, 24] demands that the database be changed as little as possible, while the common-
sense law of inertia [20] states that every change should have an underlying reason. While
these criteria narrow down the possible database repairs, human interaction is ultimately
required to choose the “best” possible repair [22].

Database management systems typically implement integrity constraints as a variant of
event-condition-action rules (ECAs, [22, 23]), for which rule processing algorithms have been
proposed and a procedural semantics has been defined. However, their lack of declarative
semantics makes it difficult to understand the behavior of multiple ECAs acting together
and to evaluate rule-processing algorithms in a principled way. Active integrity constraints
(AICs) [14] are inspired by the same principle, encoding an integrity constraint together
with preferred update actions to repair it. The update actions are limited to addition and
removal of tuples from the database, as this suffices to implement the three main operations
identified in the seminal work of Abiteboul [1]. AICs follow the tradition of expressing
database dependencies through logic programming, which is common namely in the setting
of deductive databases [17, 19, 20].

The declarative semantics for AICs [6, 7] is based on the concept of founded and justified

L. Cruz-Filipe 3

repairs, motivated by different interpretations of the common-sense law of inertia, and the
operational semantics for AICs [9] allows their direct computation by means of intuitive tree
algorithms, which have been implemented over SQL databases [10]. However, neither founded
nor justified repairs are completely satisfactory, as counter-intuitive examples have been
produced exhibiting limitations of both types of repairs. Similar flaws have been exposed for
the alternative notion of well-founded repairs [9].

Deciding whether a database can be repaired is typically a computationally hard problem.
In the framework of AICs, the complexity of this problem depends on the type of repairs
allowed, varying between NP-complete and Σ2

p. Because of this intrinsic complexity, tech-
niques to split a problem in several smaller ones are important in practice. A first step in
this direction was taken in [18], but that work explicitly forbids cyclic dependencies. A more
general study, in the context of AICs, was undertaken in [8], which studies conditions under
which a set of constraints can be split into smaller sets, whose repairs may then be computed
separately.

In the more general setting of knowledge bases with more powerful reasoning abilities,
the problem of computing repairs is much more involved than in databases, as it amounts to
solving an abduction problem [15]. In those frameworks, AICs can help greatly with finding
repairs, and we are currently investigating how this formalism can be applied outside the
database world [11].

The operational semantics for AICs proposed in [9] was inspired by Antoniou’s survey
on semantics of default logic [3]. The realization that Reiter’s original semantics for default
logic [21] defines extensions by means of what is essentially a fixpoint definition naturally
leads to the question of whether we can characterize repairs of inconsistent databases in a
similar way. Indeed, some connections between the semantics for AICs and logic programming
have been discussed in [7], and fixpoints play a crucial role in defining several semantics for
logic programs [13]. These include the standard construction of minimal models of positive
logic programs and the notion of answer sets (via the Gelfond–Lifschitz transform). Fixpoints
also abound in other domains of logic; many of these occurrences of fixpoints are summarized
in [5], and showing that several of them can be seen as instances of the same abstract notion
constitutes one of those authors’ motivation for studying grounded fixpoints.

2 Preliminaries

In this section we review the concepts and results that are directly relevant for the remainder
of the presentation: grounded fixpoints of lattice operators [5], the formalism of active
integrity constraints [14], founded [6], justified [7] and well-founded [9] (weak) repairs, and
parallelization results for these.

Grounded fixpoints. A partial order is a binary relation that is reflexive, antisymmetric
and transitive. A set L equipped with a partial order ≤ is called a poset (for partially ordered
set), and it is customary to write x < y if x, y ∈ L are such that x ≤ y and x 6= y. Given
S ⊆ L, an upper bound of S is an element x such that s ≤ x for all s ∈ S, and x is a least
upper bound (lub) or join of S if x ≤ y for all upper bounds y of S, and we write x =

∨
S.

The notion of (greatest) lower bound, or meet, is dually defined, and written
∧
S. Meets and

joins, if they exist, are necessarily unique. For binary sets, it is standard practice to write
x ∧ y and x ∨ y instead of

∧
{x, y} and

∨
{x, y}.

A complete lattice is a poset in which every set has a join and a meet. In particular,
complete lattices have a greatest element > and a smallest element ⊥. The powerset lattice of

ICLP’16 TC

4 Grounded Fixpoints and Active Integrity Constraints

a set S is 〈℘(S),⊆〉, whose elements are the subsets of S ordered by inclusion. The powerset
lattice is a complete lattice with joins given by union and meets given by intersection. Its
greatest element is S, and its smallest element is ∅.

A lattice operator is a function O : L→ L. A fixpoint of O is an element x ∈ L for which
O(x) = x. If x ≤ y for all fixpoints y of O, then x is said to be the least (or minimal fixpoint
of O. Lattice operators do not need to have fixpoints, but monotone operators (i.e. those for
which x ≤ y implies O(x) ≤ O(y)) always have a minimal fixpoint.

We will be interested in two particular kinds of fixpoints, introduced in [5]. We summarize
the definitions and Propositions 3.3, 3.5 and 3.8 from that work.

I Definition 1. Let O be an operator over a lattice 〈L,≤〉. An element x ∈ L is:
grounded for O if O(x ∧ v) ≤ v implies x ≤ v, for all v ∈ L;
strictly grounded for O if there is no y ∈ L such that y < x and (O(y) ∧ x) ≤ y.

I Lemma 2. Let O be an operator over a lattice 〈L,≤〉.
1. All strictly grounded fixpoints of O are grounded.
2. If 〈L,≤〉 is a powerset lattice, then all grounded fixpoints of O are strictly grounded.
3. All grounded fixpoints of O are minimal.
We will be working mostly in a powerset lattice, so throughout this paper we will treat the
notions of strictly grounded and grounded as equivalent.

Active integrity constraints (AICs). The formalism of AICs was originally introduced
in [14], but later simplified in view of the results in [6]. We follow the latter’s definition, with
a more friendly and simplified notation.

We assume a fixed set At of atoms (typically, closed atomic formulas of a first-order
theory); subsets of At are databases. A literal is either an atom (a) or its negation (¬a),
and a database DB satisfies a literal `, denoted DB |= `, if: ` is an atom a ∈ DB, or ` is ¬a
and a 6∈ DB. An update action α has the form +a or −a, where a ∈ At; +a and −a are
dual actions, and we represent the dual of α by αD. Update actions are intended to change
the database: +a adds a to the database (formally: it transforms DB into DB ∪ {a}), while
−a removes it (formally: it transforms DB into DB \ {a}). A set of update actions U is
consistent if it does not contain an action and its dual. A consistent set of update actions
U acts on a database DB by updating DB by means of all its actions simultaneously; we
denote the result of this operation by U(DB).

Literals and update actions are related by natural mappings lit and ua, where lit(+a) = a,
lit(−a) = ¬a, ua(a) = +a and ua(¬a) = −a. An AIC is a rule r of the form

`1, . . . , `n ⊃ α1 | . . . | αk (1)

where n, k ≥ 1 and {lit(αD1), . . . , lit(αDk)} ⊆ {`1, . . . , `n}. The intuition behind this notation
is as follows: the body of the rule, body(r) = `1, . . . , `n describes an inconsistent state
of the database. If DB |= `1 ∧ . . . ∧ `n, which we write as DB |= body(r), then r is
applicable, and we should fix this inconsistency by applying one of the actions in the head of
r, head(r) = α1 | . . . | αk. The syntactic restriction was motivated by the observation [6] that
actions that do not satisfy this condition may be removed from head(r) without changing
the semantics of AICs, which we now describe.

Generic integrity constraints were previously written as first-order clauses with empty
head (see [14]), and we can see AICs as a generalization of this concept: an integrity constraint
`1 ∧ . . . ∧ `n → ⊥ expresses no preferences regarding repairs, and thus corresponds to the
(closed instances of the) AIC `1, . . . , `n ⊃ ua(`1)D | . . . | ua(`n)D. Our presentation essentially

L. Cruz-Filipe 5

treats At as a set of propositional symbols, following [7]; for the purposes of this paper, the
distinction is immaterial (we can identify an AIC including variables with the set of its closed
instances), but our choice makes the presentation much simpler.

A set of update actions U is a weak repair for DB and a set η of AICs (shortly, for 〈DB, η〉)
if: (i) every action in U changes DB and (ii) U(DB) 6|= body(r) for all r ∈ η. Furthermore, if
U is minimal wrt set inclusion, then U is said to be a repair ; repairs are also minimal among
all sets satisfying only condition (ii), embodying the principle of minimality of change [24]
explained earlier.

I Definition 3. A set of update actions U is founded wrt 〈DB, η〉 if, for every α ∈ U , there
exists r ∈ U such that α ∈ head(r) and U(DB) |= body(r) \ {lit(αD)}. A founded (weak)
repair is a (weak) repair that is founded.

The intuition is as follows: in a founded weak repair, every action has support in the form
of a rule that “requires” its inclusion in U . We will use the (equivalent) characterization of
founded sets: U is founded iff, for every α ∈ U , there is a rule r such that α ∈ head(r) and
(U \ {α})(DB) |= body(r).

However, Caroprese et al. [7] discovered that there can be founded repairs exhibiting
circularity of support (see Example 17 below), and they proposed the stricter notion of
justified repair.

I Definition 4. Let U be a set of update actions and DB be a database.
The no-effect actions wrt DB and U are the actions that do not affect either DB or
U(DB): neffDB(U) = {+a | a ∈ DB ∩ U(DB)} ∪ {−a | a 6∈ DB ∪ U(DB)}.
The set of non-updateable literals of an AIC r is body(r) \ lit

(
head(r)D

)
, where the

functions lit and ·D are extended to sets in the natural way.
U is closed under η if, for each r ∈ η, ua(nup(r)) ⊆ U implies head(r) ∩ U 6= ∅.
U is a justified action set if it is the least superset of U ∪ neffDB(U) closed under η.
U is a justified (weak) repair if U is a (weak) repair and U ∪neffDB(U) is a justified action
set.

The notion of justified weak repair, however, is extremely complicated and unwieldy in
practice, due to its quantification over sets of size comparable to that of DB. Furthermore,
it excludes some repairs that seem quite reasonable and for which it can be argued that
the circularity of support they exhibit is much weaker (see Example 20). This motivated
proposing yet a third kind of weak repair: well-founded repairs, that are defined by means of
an operational semantics inspired by the syntax of AICs [9].

I Definition 5. Let DB be a database and η be a set of AICs. The well-founded repair tree
for 〈DB, η〉 is built as follows: its nodes are labeled by sets of update actions, with root ∅;
the descendants of a node with consistent label U are all sets of the form U ∪ {α} such that
there exists a rule r ∈ η with α ∈ head(r) and U(DB) |= body(r). The consistent leaves of
this tree are well-founded weak repairs for 〈DB, η〉.

Equivalently, a weak repair U for 〈DB, η〉 is well-founded iff there exists a sequence of actions
α1, . . . , αn such that U = {α1, . . . , αn} and, for each 1 ≤ i ≤ n, there exists a rule ri such
that {α1, . . . , αi−1}(DB) |= body(ri) and αi ∈ head(ri).

The availability of multiple actions in the heads of AICs makes the construction of repairs
non-deterministic, and a normalization procedure was therefore proposed in [7]. An AIC r

is normal if |head(r)| = 1. If r is an AIC of the form in (1), then N (r) = {`1, . . . , `n ⊃ αi |
1 ≤ i ≤ k}, and N (η) =

⋃
{N (r) | r ∈ η}. It is straightforward to check that U is a weak

ICLP’16 TC

6 Grounded Fixpoints and Active Integrity Constraints

repair (respectively, repair, founded (weak) repair or well-founded (weak) repair) for 〈DB, η〉
iff U is a weak repair (resp. repair, founded (weak) repair or well-founded (weak) repair) for
〈DB,N (η)〉; however, this equivalence does not hold for justified (weak) repairs, as shown
in [7].

Parallelization. Determining whether a database satisfies a set of AICs is linear on both
the size of the database and the number of constraints. However, determining whether an
inconsistent database can be repaired is a much harder problem – NP-complete, if any repair
is allowed, but ΣP2 -complete, when repairs have to be founded or justified. (Here, ΣP2 is the
class of problems that can be solved in non-deterministic polynomial time, given an oracle
that can solve any NP-complete problem.) This complexity only depends on the size of the
set of AICs [7]. In the normalized case, several of these problems become NP-complete; even
so, separating a set of AICs into smaller sets that can be processed independently has a
significant practical impact [8].

There are two important splitting techniques: parallelization, which splits a set of AICs
into smaller sets for which the database can be repaired independently (in principle, in
parallel); and stratification, which splits a set of AICs into smaller sets, partially ordered,
such that repairs can be computed incrementally using a topological sort of the order. We
shortly summarize the definitions and results from [8].

I Definition 6. Let η1 and η2 be two sets of AICs over a common set of atoms At.
η1 and η2 are strongly independent, η1 |= η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2,
body(r1) and body(r2) contain no common or dual literals.
η1 and η2 are independent, η1 ⊥ η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2,
lit(head(ri)) and body(r3−i) contain no common or dual literals, for i = 1, 2.
η1 precedes η2, η1 ≺ η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2, lit(head(r2)) and
body(r1) contain no common or dual literals, but not conversely.

From the syntactic restrictions on AICs, it follows that η1 |= η2 implies η1 ⊥ η2. Given two
sets of AICs η1 and η2 a set of update actions U , let Ui = U ∩ {α | α ∈ head(r), r ∈ ηi}.

I Lemma 7. Let η1 and η2 be sets of AICs, η = η1 ∪ η2, and U be a set of update actions.
1. If η1 |= η2, then U is a repair for 〈DB, η〉 iff U = U1 ∪ U2 and Ui is a repair for 〈DB, ηi〉,

for i = 1, 2.
2. If η1 ⊥ η2, then U is a founded/well-founded/justified repair for 〈DB, η〉 iff U = U1 ∪ U2

and Ui is a founded/well-founded/justified repair for 〈DB, ηi〉, for i = 1, 2.
3. If η1 ≺ η2, then U is a founded/justified repair for 〈DB, η〉 iff U = U1 ∪ U2, U1 is a

founded/justified repair for 〈DB, η1〉 and U2 is a founded/justified repair for 〈U1(DB), η2〉.

3 Repairs as Fixpoints

In this section we show how a set of AICs induces an operator on a suitably defined lattice.
This operator is in general non-deterministic; in order to reuse the results from algebraic
fixpoint theory, we restrict our attention to the case of normalized AICs, and delay the
discussion of the general case to a later section.

The operator T . Throughout this paragraph, we assume DB to be a fixed database over a
set of atoms At and η to be a set of AICs over At.

The intuitive reading of an AIC r naturally suggests an operation on sets of update
actions U , defined as “if U(DB) |= body(r) holds, then add head(r) to U”. However, this

L. Cruz-Filipe 7

definition quickly leads to inconsistent sets of update actions, which we want to avoid. We
therefore propose a slight variant of this intuition.

I Definition 8. Let U and V be consistent sets of update actions over At. The set U] V is
defined as (U ∪ {α ∈ V | αD 6∈ U}) \ {α ∈ U | αD ∈ V}.

This operation models sequential composition of repairs in the following sense: if every action
in U changes DB and every action in V changes U(DB), then (U] V)(DB) = V(U(DB)).
Furthermore, if U and V are both consistent, then so is U] V.

We can identify subsets of At with sets of update actions by matching each atom a with
the corresponding action that changes the database (i.e. −a if a ∈ DB and +a otherwize).
We will abuse notation and use this bijection implicitly, so that we can reason over the
powerset lattice 〈℘(At),⊆〉 as having sets of update actions as elements.

I Definition 9. The operator T DB
η : ℘(At)→ ℘(℘(At)) is defined as follows: U]V ∈ T DB

η (U)
iff V can be constructed by picking exactly one action from the head of each rule r such that
U(DB) |= body(r).

Each set V may contain less update actions than there are rules r for which U(DB) |= body(r),
as the same action may be chosen from the heads of different rules; and there may be rules r
for which |head(r) ∩ V| > 1. This is illustrated in the following simple example.

I Example 10. Let DB = {a, b} and η = {a, b,¬c ⊃ −a | −b; a, b,¬d ⊃ −a | −b}. Then
T DB
η (∅) = {{−a}, {−b}, {−a,−b}}: the bodies of both rules are satisfied in DB, and we can

choose −a from the heads of both, −b from the heads of both, or −a from one and −b from
the other.

The syntactic restrictions on AICs guarantee that all sets V in the above definition are
consistent: if +a,−aD ∈ V, then there are rules r1 and r2 such that ¬a ∈ body(r1) and
a ∈ body(r2) with U(DB) |= body(ri) for i = 1, 2, which is impossible. In the interest of
legibility, we will write T instead of T DB

η whenever DB and η are clear from the context.

The normalized case. In the case that η contains only normalized AICs, the set T (U) is a
singleton, and we can see T as a lattice operator over 〈℘(At),⊆〉. We will assume this to be
the case throughout the remainder of this section, and by abuse of notation use T also in
this situation. In the normalized case, we thus have

T (U) = U] {head(r) | U(DB) |= body(r)} .

Since we can always transform η in a set of normalized AICs by the transformation N
defined above, in most cases it actually suffices to consider this simpler scenario, which
warrants its study. The exception is the case of justified repairs for non-normalized AICs,
which we defer to a later section. All our results also apply to general integrity constraints
by seeing them as AICs with maximal heads and applying N to the result.

The operator T characterizes the notions of weak repair, repair, founded and well-founded
sets of update actions.

I Lemma 11. U is a weak repair for 〈DB, η〉 iff U is a fixpoint of T .

I Lemma 12. U is a repair for 〈DB, η〉 iff U is a minimal fixpoint of T .

I Lemma 13. A consistent set of update actions U is founded wrt 〈DB, η〉 iff, for all α ∈ U ,
it is the case that α ∈ T (U \ {α}).

ICLP’16 TC

8 Grounded Fixpoints and Active Integrity Constraints

I Lemma 14. A weak repair U for 〈DB, η〉 is well-founded iff there is an ordering α1, . . . , αn
of the elements of U such that αi ∈ T ({α1, . . . , αi−1}) for each i = 1, . . . , n.

The correspondence between justified repairs and answer sets for particular logic pro-
grams [7] shows that justified repairs can also be characterized in a related manner. However,
since answer sets of a logic program are models of its Gelfond–Lifschitz transform, the
corresponding characterization in terms would be as fixpoints of the corresponding operator
for a similarly derived set of AICs, rather than of T . This characteristic of justified repairs
also explains the rather unexpected behavior we will see later, in § 5.

Grounded fixpoints of T . Founded, well-founded and justified repairs were all introduced
with the purpose of characterizing a class of repairs whose actions are supported (there
is a reason for having them in the set), and that support is not circular; in particular,
these repairs should be constructible “from the ground up”, which was the motivation for
defining well-founded repairs. However, all notions exhibit unsatisfactory examples: there
exist founded repairs with circular support [7] and repairs with no circular support that
are not justified [9]; well-founded repairs, on the other hand, are not stratifiable [8], which
impacts their computation in practice.

Following the intuition in [5] that grounded fixpoints capture the idea of building fixpoints
“from the ground up”, we propose the following notion of T .

I Definition 15. A repair U for 〈DB, η〉 is grounded if U is a grounded fixpoint of T .

Since we are working within a powerset lattice, the notions of grounded and strictly
grounded fixpoints coincide. As it turns out, the latter notion is most convenient for the
proofs of our results. We thus characterize grounded repairs as repairs U such that: if V (U ,
then T (V) ∩ U 6⊆ V. Equivalently: if V (U , then T (V) ∩ (U \ V) 6= ∅.

Since all grounded fixpoints are minimal, it makes no sense to define grounded weak
repairs. The notion of grounded fixpoint therefore intrinsically embodies the principle of
minimality of change, unlike other kinds of weak repairs previously defined. Furthermore,
grounded repairs also embody the notion of “support” previously defined.

I Lemma 16. Every grounded repair for 〈DB, η〉 is both founded and well-founded.

However, the notion of grounded repair is strictly stronger than both of these: the
first example, from [9], also shows that some forms of circular justifications are avoided by
grounded repairs.

I Example 17. Let DB = {a, b} and η = {a,¬b ⊃ −a; a,¬c ⊃ +c; ¬a, b ⊃ −b; b,¬c ⊃
+c}. Then U = {−a,−b} is a founded repair that is not grounded: V = ∅ satisfies T (V)∩U =
{+c} ∩ U = ∅ ⊆ V. The more natural repair U ′ = {+c} is both founded and grounded.

I Example 18. Let DB = ∅ and η = {a,¬b,¬c ⊃ +c; ¬a,¬b ⊃ +b; ¬a ⊃ +a}. There
are two well-founded repairs for 〈DB, η〉: U1 = {+a,+c} (obtained by applying the last rule
and then the first) and U2 = {+b,+a} (obtained by applying the second rule and then the
last). However, U2 is not founded (+b is not founded), so it cannot be grounded: indeed,
V = {+a} is a strict subset of U2, and T (V) ∩ U = {+a,+b} ∩ U = ∅ ⊆ V.

Also in this last example the grounded repair (U1) is somewhat more natural.
We now investigate the relation to justified repairs, and find that all justified repairs are

grounded, but not conversely – confirming our earlier claim that the notion of justified repair
is too strong.

L. Cruz-Filipe 9

I Lemma 19. Every justified repair for 〈DB, η〉 is grounded.

This result is not very surprising: justified weak repairs are answer sets of a particular
logic program (Theorem 6 in [7]), and in turn answer sets of logic programs are grounded
fixpoints of the consequence operator (see remark at the top of § 5 in [5]). However, the
translation defined in [7] is from logic programs to databases with AICs (rather than the
other way around), so Lemma 19 is not a direct consequence of those results.

The notion of justified repair is also stricter than that of grounded repair, as the following
example from [7] shows.

I Example 20. Let DB = {a, b} and η = {a, b ⊃ −a; a,¬b ⊃ −a; ¬a, b ⊃ −b}. Then
U = {−a,−b} is not justified (see [7]), but it is grounded: if −a ∈ V (U , then T (V) ∩ U
contains −b ∈ U \ V, else T (V) ∩ U contains −a ∈ U \ V.

This example was used in [9] to point out that justified repairs sometimes eliminate “natural”
repairs; in this case, the first rule clearly motivates the action −a, and the last rule then
requires −b. This is in contrast to Example 17, where there was no clear reason to include
either −a or −b in a repair. So grounded repairs avoid this type of unreasonable circularities,
without being as restrictive as justified repairs.

We thus have that grounded repairs are always founded and well-founded; the next
example shows that they do not correspond to the intersection of those classes.

I Example 21. Assume that DB = ∅ and η contains the following integrity constraints.

¬a,¬b ⊃ +a a,¬b ⊃ +b ¬a, b ⊃ −b a, b,¬c ⊃ +c a,¬b, c ⊃ +b ¬a, b, c ⊃ +a

Then U = {+a,+b,+c} is a repair for 〈DB, η〉: the first three constraints require +a and +b
to be included in any repair for 〈DB, η〉, and the last three state that no 2-element subset of
U is a repair. Furthermore, U is founded (the three last rules ensure that) and well-founded
(starting with U , the rules force us to add +a, +b and +c, in that order).

However, U is not strictly grounded for T : if V = {+b}, then V (U , but T (V) ∩ U =
∅ ∩ U = ∅ ⊆ V.

In this situation, U actually seems reasonable; however, observe that the support for its
actions is circular: it is the three rules in the second row that make U founded, and none
of them is applicable to DB. Also note that V(DB) is a database for which the given set η
behaves very awkwardly: the only applicable AIC tells us to remove b, but the only possible
repair is actually {+a,+c}.

We do not feel that this example weakens the case for studying ground repairs, though:
the consensual approach to different notions of repair is that they express preferences. In this
case, where 〈DB, η〉 admits no grounded repair, it is sensible to allow a repair in a larger class
– and a repair that is both founded and well-founded is a good candidate. The discussion in
§ 8 of [7] already proposes such a “methodology”: choose a repair from the most restrictive
category (justified, founded, or any). We advocate a similar approach, but dropping justified
repairs in favor of grounded repairs, and preferring well-founded to founded repairs.

The relations between the different classes of repairs are summarized in the picture below.

F
6=

(
G (J

WF
(

We conclude this section with a note on complexity.

ICLP’16 TC

10 Grounded Fixpoints and Active Integrity Constraints

I Theorem 22. The problem of deciding whether there exist grounded repairs for 〈DB, η〉 is
ΣP2 -complete.

This result still holds if we allow a truly first-order syntax for AICs, where the atoms can
include variables that are implictly universally quantified.

4 Parallelism

Lemma 7 shows that splitting a set of AICs into smaller ones transforms the problem of
deciding whether an inconsistent database can be repaired (and computing founded or
justified repairs) into smaller ones, with important practical consequences. The goal of this
section is to show that grounded repairs enjoy similar properties. This is even more relevant,
as deciding whether grounded repairs exist is presumably1 more complex than for the other
cases, in view of Theorem 22. For parallelization, we will go one step further, and propose a
lattice-theoretical concept of splitting an operator into “independent” operators in such a
way that strictly grounded fixpoints can be computed in parallel.

We make some notational conventions for the remainder of this section. We will assume
as before a fixed database DB and set of AICs η over the same set of atoms At. Furthermore,
we will take η1 and η2 to be disjoint sets with η = η1 ∪ η2, and write Ti for T DB

ηi
. Also, we

write ı̂ for 3− i (so ı̂ = 1 if i = 2 and vice-versa).

Independence. We begin with a simple consequence of independence.

I Lemma 23. If η1 ⊥ η2, then T1 and T2 commute and T = T1 ◦ T2 = T2 ◦ T1.

The converse is not true.

I Example 24. Let η1 = {a, b ⊃ −b} and η2 = {¬a,¬b ⊃ +b}. Then η1 6⊥ η2, but
T1 and T2 commute: if a ∈ U(DB), then T1(T2(U)) = T1(U) = T2(T1(U)); otherwise,
T1(T2(U)) = T2(U) = T2(T1(U)).

I Lemma 25. A set of update actions U is a grounded repair for 〈DB, η〉 iff U = U1 ∪ U2
and U1 is a grounded repair for 〈DB, η1〉 and U2 is a grounded repair for 〈DB, η2〉.

These properties are actually not specific to operators induced by AICs, but can be
formulated in a more general lattice-theoretic setting.

I Definition 26. Let 〈L,≤〉 be a complete distributive lattice with complements. An operator
O : L→ L is an (u, v)-operator, with u ≤ v ∈ L, if, for every x ∈ L,

O(x) = (O(x ∧ v) ∧ u) ∨ (x ∧ ū) .

Intuitively, an (u, v)-operator only depends on the “v-part” of its argument, and the result
only differs from the input in its “u-part”. In this context, Proposition 3.5 of [5] applies, so
grounded and strictly grounded fixpoints coincide; furthermore, we can extend the definition
of independence to this setting and generalize Lemmas 23 and 25.

Observe that, by construction, Tη is a (U ,V)-operator with U = {head(r) | r ∈ η} and
V = {ua(l) | l ∈ body(r), r ∈ η}.

1 I.e., assuming that P 6= NP.

L. Cruz-Filipe 11

I Definition 27. Two operators O1,O2 : L → L are independent if each Oi is an (ui, vi)-
operator with ui ∧ vı̂ = ⊥.

I Lemma 28. If O1 and O2 are independent, then O1 and O2 commute. In this case, if O
is their composition, then x ∈ L is (strictly) grounded for O iff x = (x ∧ v1) ∨ (x ∧ v2) and
x ∧ vi is (strictly) grounded for Oi.

This provides an algebraic counterpart to the parallelization of AICs, albeit requiring
that the underlying lattice be distributive and complemented: we say that O is parallelizable
if there exist O1 and O2 in the conditions of Lemma 28, with O = O1 ◦ O2. As in the
original work [8], it is straightforward to generalize these results to finite sets of independent
operators.

Stratification. We now consider the case where η1 and η2 are not independent, but rather
stratified, and show that part 3 of Lemma 7 also applies to grounded repairs.

I Lemma 29. Suppose that η1 ≺ η2. Then U is a grounded repair for 〈DB, η〉 iff U = U1∪U2,
U1 is a grounded repair for 〈DB, η1〉, and U2 is a grounded repair for 〈U1(DB),U2〉.

Unlike parallelization, there is no clear generalization of these results to a more general
setting: the definition of T2 is dependent of the particular fixpoint for T1, and to express this
dependency we are using the sets η1 and η2 in an essential way.

5 General AICs and Non-deterministic Operators

We now return to the original question of defining grounded repairs for databases with arbit-
rary (not necessarily normal) sets of active integrity constraints. This requires generalizing
the definition of (strictly) grounded element to non-deterministic lattice operators, a question
that was left open in [5]. We propose possible definitions for these concepts, and show that
they exhibit desirable properties in our topic of interest.

Let O : L → L be a lattice operator, and define its non-deterministic counterpart
O↑ : L→ ℘(L) by O↑(x) = {O(x)}. A reasonable requirement is that x should be (strictly)
grounded for O↑ iff x is (strictly) grounded for O. Furthermore, in the case of AICs we can
also define a converse transformation: since every set of AICs η can be transformed into
a normalized set N (η), we will also require that U be a grounded repair for Tη iff U is a
grounded repair for TN (η).

I Definition 30. Let O : L→ ℘(L) be a non-deterministic operator over a complete lattice
L. An element x ∈ L is:

grounded for O if (
∨
O(x ∧ v)) ≤ v implies x ≤ v;

strictly grounded for O if there is no v < x such that (
∨
O(v)) ∧ x ≤ v.

Clearly these definitions satisfy the first criterion stated above: given O : L→ L,
∨

(O↑(x)) =
O(x) for every x ∈ L. The choice of a join instead of a meet is motivated by the second
criterion, which we will show is satisfied by this definition. Furthermore, all grounded
elements are again strictly grounded, and the two notions coincide over powerset lattices –
the proofs in [5] are trivial to adapt to this case.

As before, we assume that the database DB is fixed, and omit it from the superscript in
the operators below.

I Lemma 31. For every U , TN (η)(U) ⊆
⋃
Tη(U).

ICLP’16 TC

12 Grounded Fixpoints and Active Integrity Constraints

Note that the set {
⋃

head(r) | U(DB) |= body(r), r ∈ η} is consistent, due to the syntactic
restrictions on AICs and the fact that all rules are evaluated in the same context.

I Example 32. The inclusion in Lemma 31 is, in general, strict: consider DB = ∅, U = {+a},
and let η = {a,¬b ⊃ −a | +b}. Then N (η) contains the two AICs a,¬b ⊃ −a and a,¬b ⊃ +b.
In this case, Tη(U) = {∅, {+a,+b}} and TN (η)(U) = {+b}.

I Lemma 33. U is strictly grounded for Tη iff U is strictly grounded for TN (η).

A fixpoint of a non-deterministic operator O : L → ℘(L) is a value x ∈ L such that
x ∈ O(L) (see e.g. [16]). From the definition of Tη, it is immediate that U ∈ Tη(U) iff
T (U) = {U}. Furthermore, Lemmas 11 and 12 still hold in this non-deterministic case,
allowing us to derive the following consequence of the previous lemma.

I Corollary 34. U is a grounded repair for 〈DB, η〉 iff U is a grounded repair for 〈DB,N (η)〉.

Since repairs, founded repairs and well-founded repairs for η and for N (η) also coincide, we
immediately obtain generalizations of Lemma 16 for the general setting, and the parallelization
and independence results from § 4 also apply.

As observed in [7], normalization does not preserve justified repairs. Therefore, Lemma 19
does not guarantee that justified repairs are always grounded in the general case. Indeed,
the next example shows that this is not true.

I Example 35. Let DB = ∅ and take η to be the following set of AICs.

a, b,¬c ⊃ −a | −b | +c (1) a,¬b ⊃ −a (3) ¬a, b, c ⊃ +a | −b | −c (5)
¬a, b,¬c ⊃ +a | −b | +c (2) a,¬b, c ⊃ +b | −c (4) ¬a,¬b, c ⊃ +a | +b | −c (6)

¬a,¬b,¬c ⊃ +a | +b | +c (7)

Then U = {+a,+b,+c} is the only repair for 〈DB, η〉, and it is justified. Indeed, if V ⊆ U
is such that V ∪ neffDB(U) is closed under η, then V must contain an action in the head of
each of rules (1), (2), (5), (6) and (7). Since V ⊆ U , it follows that +c ∈ V (by (1)) and that
+a ∈ V (by (5)). But then V contains the actions corresponding to the non-updatable literals
in rule (4) (namely, +a), and hence also +b ∈ V, so V = U .

However, U is not a strictly grounded fixpoint of T : taking V = {+a}, we see that
the only rule applicable in V(DB) is rule (3), and thus T (V) = {∅}, from which trivially
(
⋃
T (V)) ∩ U ⊆ V.

An examination of the conditions under which 〈DB, η〉 may admit a justified repair
that is not strictly grounded shows that this example is among the simplest possible. It is
important to point out that U is also not a justified repair for 〈DB,N (η)〉, either, which
seems to suggest that origin of the problem lies in the standard interpretation of AICs with
non-singleton heads. We plan to look further into the semantics of repairs for non-normal
AICs in future work.

6 Conclusions and Future Work

We have presented a formalization of the theory of active integrity constraints in lattice
theory, by showing how a set of AICs η over a database DB induces an operator T DB

η over
a suitably defined lattice of database repairs. We characterized the standard notions of
(weak) repairs, founded and well-founded repairs in terms of this operator. By studying
the grounded fixpoints of T DB

η in the normalized case, we showed that we obtain a notion

L. Cruz-Filipe 13

of repair that is stricter than founded or well-founded repairs, but more general than the
problematic notion of justified repairs. Furthermore, by suitably extending the notions of
grounded and strictly grounded fixpoint of a lattice operator to the non-deterministic case,
we gained a general notion of grounded repair also in the non-normalized case. We also
showed that grounded repairs are preserved under normalization, and that they share the
parallelization and stratification properties of founded and justified repairs that are important
for their practical applications.

Conversely, we were able to state some of the results in the database setting more generally.
Thus, not only did we propose an extension of the notion of (strictly) grounded fixpoint to
the case of non-deterministic lattice operators, but we also defined what it means for an
operator to be parallelizable, and showed that several properties of parallelizable operators
are not specific to the database case.

We believe the concept of grounded repair to be the one that better captures our intuitions
on what a “good” repair is, in the framework of AICs. We plan to use this notion as the
basis for future work on this topic, namely concerning the extension of AICs to more general
knowledge representation formalisms, following the proposals in [11].

References
1 Serge Abiteboul. Updates, a new frontier. In Marc Gyssens, Jan Paredaens, and Dirk van

Gucht, editors, ICDT, volume 326 of LNCS, pages 1–18. Springer, 1988.
2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison

Wesley, 1995.
3 Grigoris Antoniou. A tutorial on default logics. ACM Computing Surveys, 31(3):337–359,

1999.
4 Catriel Beeri and Moshe Y. Vardi. The implication problem for data dependencies. In

Colloquium on Automata, Languages and Programming, pages 73–85, London, UK, 1981.
Springer.

5 Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their applic-
ations in knowledge representation. Artif. Intell., 224:51–71, 2015.

6 Luciano Caroprese, Sergio Greco, Cristina Sirangelo, and Ester Zumpano. Declarative
semantics of production rules for integrity maintenance. In Sandro Etalle and Miroslaw
Truszczynski, editors, ICLP, volume 4079 of LNCS, pages 26–40. Springer, 2006.

7 Luciano Caroprese and Miroslaw Truszczynski. Active integrity constraints and revision
programming. Theory Pract. Log. Program., 11(6):905–952, November 2011.

8 Luís Cruz-Filipe. Optimizing computation of repairs from active integrity constraints. In
Christoph Beierle and Carlo Meghini, editors, FoIKS, volume 8367 of LNCS, pages 361–380.
Springer, 2014.

9 Luís Cruz-Filipe, Patrícia Engrácia, Graça Gaspar, and Isabel Nunes. Computing repairs
from active integrity constraints. In Hai Wang and Richard Banach, editors, TASE, pages
183–190. IEEE, July 2013.

10 Luís Cruz-Filipe, Michael Franz, Artavazd Hakhverdyan, Marta Ludovico, Isabel Nunes,
and Peter Schneider-Kamp. repAIrC: A tool for ensuring data consistency by means of
active integrity constraints. In Ana L.N. Fred, Jan L.G. Dietz, David Aveiro, Kecheng Liu,
and Joaquim Filipe, editors, KMIS, pages 17–26. SciTePress, 2015.

11 Luís Cruz-Filipe, Isabel Nunes, and Peter Schneider-Kamp. Integrity constraints for general-
purpose knowledge bases. In Marc Gyssens and Guillermo Ricardo Simari, editors, FoIKS,
volume 9616 of LNCS, pages 235–254. Springer, 2016.

12 Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge base
revision, updates, and counterfactuals. Artif. Intell., 57(2–3):227–270, 1992.

ICLP’16 TC

14 Grounded Fixpoints and Active Integrity Constraints

13 Melvin Fitting. Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci.,
278(1–2):25–51, 2002.

14 Sergio Flesca, Sergio Greco, and Ester Zumpano. Active integrity constraints. In Eugenio
Moggi and David Scott Warren, editors, PPDP, pages 98–107. ACM, 2004.

15 Ahmed Guessoum. Abductive knowledge base updates for contextual reasoning. J. Intell.
Inf. Syst., 11(1):41–67, 1998.

16 Mohammed A. Khamsi, Vladik Kreinovich, and Driss Misane. A new method of proving
the existence of answer sets for disjunctive logic programs. In Proceedings of the Workshop
on Logic Programming with Incomplete Information, 1993.

17 V. Wiktor Marek and Miroslav Truszczynski. Revision programming, database updates
and integrity constraints. In Georg Gottlob and Moshe Y. Vardi, editors, ICDT, volume
893 of LNCS, pages 368–382. Springer, 1995.

18 Enric Mayol and Ernest Teniente. Addressing efficiency issues during the process of integrity
maintenance. In Trevor J.M. Bench-Capon, Giovanni Soda, and A Min Tjoa, editors,
DEXA, volume 1677 of LNCS, pages 270–281. Springer, 1999.

19 Shamim A. Naqvi and Ravi Krishnamurthy. Database updates in logic programming. In
Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, PODS, pages 251–262. ACM,
1988.

20 Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules. J. Log.
Program., 30(2):125–143, 1997.

21 Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
22 Ernest Teniente and Antoni Olivé. Updating knowledge bases while maintaining their

consistency. VLDB J., 4(2):193–241, 1995.
23 Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and Rules

For Advanced Database Processing. Morgan Kaufmann, 1996.
24 Marianne Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, 1990.

L. Cruz-Filipe 15

A

In this appendix, we include the proofs of the results in the body of the paper.

Lemma 11. If U is a weak repair for 〈DB, η〉, then U(DB) 6|= body(r) for all r ∈ η, whence
T (U) = U . If U is not a weak repair for 〈DB, η〉, then U(DB) |= body(r) for some r ∈ η, and
T (U) differs from U in (at least) head(r). J

Lemma 12. Direct from Lemma 11 and the definition of repair. J

Lemma 13. An action α ∈ U is founded iff there is a rule r ∈ η such that U(DB) |=
body(r)\{αD}. This is equivalent to saying that (U \{α})(DB) |= body(r). But, by definition
of T , we have α ∈ T (U \ {α}) iff there is a rule r ∈ η such that (U \ {α})(DB) |= body(r),
which concludes the proof. Consistency of U is needed for the direct implication, as α is only
added to U \ {α} by T if that set does not already contain αD. J

Lemma 14. If U is well-founded, then the ordering is given by the sequence of actions
introduced at each node in the path, in the well-founded repair tree for 〈DB, η〉, going from
the root to the node with label U . Conversely, if U can be obtained in the manner described,
then it defines a valid path in that same tree ending at a leaf. J

Lemma 16. Assume that U is a grounded repair for 〈DB, η〉. For each α ∈ U , necessarily
T (U \ {α}) ∩ U ((U \ {α}), which implies that α ∈ T (U \ {α}). By Lemma 13, this
implies that U is founded.
Let U be a grounded repair for 〈DB, η〉. Construct the sequence for well-founded repairs
always choosing ui ∈ U until this is no longer possible. Letting U ′ be the last constructed
set, by construction both U ′ ⊆ U and T (U ′)∩U ⊆ U ′ (otherwise we could proceed). Since
U is grounded, it cannot be the case that U ′ (U , so U = U ′ and it is thus a well-founded
repair.

J

Lemma 19. Let U be a justified repair for 〈DB, η〉 and assume that V (U . Then V ∪
neffDB(U) is not closed under η, whence there is a rule r ∈ η such that ua(nup(r)) ⊆
V ∪ neffDB(U) and head(r) 6∈ V ∪ neffDB(U).

Since V ⊆ U , also ua(nup(r)) ⊆ U ∪ neffDB(U), whence head(r) ∈ U ∪ neffDB(U) as U is
closed under η. But head(r) 6∈ V ∪ neffDB(U), so head(r) ∈ U \ V.

Then V(DB) |= body(r): on the one hand, ua(nup(r)) ⊆ V ∪ neffDB(U) implies that
V(DB) |= nup(r), as neffDB(U) ⊆ neffDB(V); on the other hand, from head(r) ∈ U we know
that lit(head(r))D ∈ DB (all actions in U change DB), whence V(DB) |= lit(head(r)D) since
head(r) 6∈ V. As r is normalized, there are no more literals in body(r), so V(DB) |= body(r)
and therefore head(r) ∈ T (V).

We thus conclude that T (V) ∩ U 6⊆ V. By arbitrariness of V, it follows that U is
grounded. J

Theorem 22. For membership, we need to show that we can decide the problem with a
non-deterministic Turing machine with an NP oracle. Given a set of update actions U ,
checking that it is a fixpoint of T can be done in polynomial time on the size of DB and
η; the NP-oracle can then answer whether there exists V (U with T (V) ∩ U ⊆ V, thereby
establishing whether U is grounded.

For hardness, we invoke the (polynomial time) translation aic from logic programs to sets
of AICs over the empty database given § 7 of [7]. Given a logic program P , deciding whether

ICLP’16 TC

16 Grounded Fixpoints and Active Integrity Constraints

〈∅, aic(P)〉 has a grounded repair is equivalent to deciding whether P has a grounded model,
which is ΣP2 -complete by Theorem 5.7 of [5]. J

Lemma 23. Assume that η1 ⊥ η2. Then, for every U , U(DB) and T1(U)(DB) agree on
the bodies of all rules in η2, so T2(U) = U] A and T2(T1(U)) = T1(U)] A for some set A.
Likewise, T1(U) = U]B and T1(T2(U)) = T2(U)]B, and furthermore A and B are disjoint.
Therefore T1(T2(U)) = U] (A∪B) = T2(T1(U)). Furthermore, also T (U) = U] (A∪B). J

Lemma 25. Let V ⊆ U and Vi = V ∩ Ui ⊆ Ui. We can write T (V) ∩ U as

(T1(T2(V1 ∪ V2)) ∩ U2) ∪ (T2(T1(V1 ∪ V2)) ∩ U1)
= (T2(V1 ∪ V2) ∩ U2) ∪ (T1(V1 ∪ V2) ∩ U1)
= (T2(V2) ∩ U2) ∪ (T1(V1) ∩ U1)

where the first equality is justified by the fact that Ti can not change its input by elements
of Uı̂, the second by the fact that Ti’s output is not affected by changes to elements of Uı̂.
We conclude that T (V) ∩ U ⊆ V iff Ti(Vi) ∩ Ui ⊆ Vi for each i.

Assume U is a grounded repair for 〈DB, η〉, i.e. that U is a strictly grounded fixpoint of
T . Since U is founded (Lemma 16), we know by Lemma 7(ii) that U = U1 ∪ U2 and U1 and
U2 are both (founded) repairs for 〈DB, η1〉 and 〈DB, η2〉. Suppose that V1 (U1 and that
T1(V1) ∩ U1 ⊆ V . Since T2(U2) = ∅, we conclude that T (V1 ∪ U2) ∩ U ⊆ V , which contradicts
U being strictly grounded for T . A similar argument shows that U2 is a strictly grounded
fixpoint of T2.

For the converse implication, assume that each Ui is a strictly grounded fixpoint of Ti,
and let V (U be such that T (V) ∩ U ⊆ V. Then Vi (Ui for at least one of i = 1 or i = 2,
and for that value of i it is also the case that Ti(Vi) ∩ Ui ⊆ Vi, contradicting the fact that Ui
is strictly grounded for Ti. J

We omit the proof of Lemma 28, which reduces to mechanical algebraic manipulation of
lattice identities.

Lemma 29. Write T1 for T DB
η1

as before, but let T2 now denote T U1(DB)
η2 .

Assume that U is a grounded repair for 〈DB, η〉. As before, the equality U = U1 ∪ U2 is a
consequence of Lemmas 16 and 7(iii), and both U1 and U2 are fixpoints of T1 and T2.

We show that U1 is strictly grounded for T1. Suppose that V (U1. Then T (V ∪U2)∩U 6⊆
V ∪U2, whence necessarily T (V ∪U2)∩U1 6⊆ V . As above, T (V ∪U2)∩U1 = T1(V ∪U2)∩U1 =
T1(V) ∩ U1, as actions in U1 can only arise from rules in η1, and the applicability of these
does not depend on actions in U2. Therefore T1(V)∩U1 6⊆ V , and thus U1 is strictly grounded
for T1.

The argument for U2 is similar. If V (U2, then T (U1 ∪ V) ∩ U 6⊆ U1 ∪ V, whence now
T (U1 ∪ V) ∩ U2 6⊆ V. We now observe that T (U1 ∪ V) = T2(V), as U1 and V are necessarily
disjoint and thus (U1 ∪ V)(DB) = V(U1(DB)). Therefore T2(V) ∩ U2 6⊆ V, and hence U2 is
strictly grounded for T2.

Now suppose that U1 and U2 are strictly grounded fixpoints of, respectively, T1 and T2.
Again by Lemma 7(iii) we know that U is a fixpoint of T , so we only need to show that it is
strictly grounded. Let V ⊆ U ; there are two cases to consider.

If V ∩ U1 (U1, then necessarily T1(V ∩ U1) ∩ U1 6⊆ V ∩ U1, and since V \ U1 does not
change applicability of rules in η1 it also follows that T1(V) ∩ U1 6⊆ V. Since the rules in η2
cannot cancel applicability of rules in η1, it also follows that T (V) ∩ U 6⊆ V.

L. Cruz-Filipe 17

If V ∩U1 = U1, then necessarily V ∩U2 (U2. In this case, we know that T2(V ∩U2)∩U2 6⊆
V ∩ U2. Furthermore, the update actions in V \ U2 = U1 do not change U1(DB), hence
T2(V ∩ U2) = T2(V) = T (V), where the last equality is justified from the fact that no rule in
η1 is applicable to V(DB), as U1 is a repair for 〈DB, η1〉. Therefore we again conclude that
T (V) ∩ U 6⊆ V.

Thus for any V (U it is the case that T (V) ∩ U 6⊆ V, which shows that U is strictly
grounded for T . J

Lemma 31.

TN (η)(U) = U] {head(r) | U(DB) |= body(r), r ∈ N (η)}

= U]
{⋃

head(r) | U(DB) |= body(r), r ∈ η
}

⊆
⋃
Tη(U) J

Lemma 33. It suffices to show that (
⋃
Tη(V)) ∩ U ⊆ V iff TN (η)(V) ∩ U ⊆ V. The direct

implication is a direct consequence of Lemma 31. The converse implication follows from the
fact that any element in (

⋃
Tη(V)) \ TN (η)(V) must anyway be in V – as the example above

illustrates, these are actions that are in V and are cancelled by an action in the head of a
rule in η. J

ICLP’16 TC

	Introduction
	Preliminaries
	Repairs as Fixpoints
	Parallelism
	General AICs and Non-deterministic Operators
	Conclusions and Future Work

