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Abstract. We introduce a formalism to couple integrity constraints over
general-purpose knowledge bases with actions that can be executed to re-
store consistency. This formalism generalizes active integrity constraints
over databases. In the more general setting of multi-context systems,
adding repair suggestions to integrity constraints allows defining simple
iterative algorithms to find all possible grounded repairs – repairs for
the global system that follow the suggestions given by the actions in the
individual rules. We apply our methodology to ontologies, and show that
it can express most relevant types of integrity constraints in this domain.

1 Introduction

Integrity constraints (ICs) for databases have been an important topic of research
since the 1980s [1]. An early survey [26] already identified over 90 relevant types
of integrity constraints. Since then, significant effort has been focused not only
on identifying inconsistencies, but also on repairing inconsistent databases.

The same problem has been studied in other domains of knowledge represen-
tation. Integrity constraints for deductive databases [2] were also considered in
the 1980s. More recently, interest for integrity constraints has arisen in the on-
tology domain, with several approaches on how to define them and how to check
their satisfaction [14, 19, 21]. Given its challenges, the more complex problem of
repairing inconsistent knowledge bases has not received as much attention.

In this paper, we address the problem of computing repairs by combining two
ideas: clausal-form integrity constraints for multi-context systems (MCSs) [11]
and active integrity constraints (AICs) for relational databases [16]. We demon-
strate the expressiveness of our formalism and show how it can be used to com-
pute repairs for inconsistent MCSs in general, and for ontologies, in particular.

Contribution. The main contribution of this paper is a notion of AIC for MCSs,
which enables us to compute repairs for inconsistent MCSs automatically, requir-
ing only decidability of entailment in the individual contexts. Particularized to
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ontologies, our framework is expressive enough to capture all types of integrity
constraints identified as relevant in [14], as we exemplify in the text.

The step from ICs for MCSs to AICs for MCSs is inspired by the similar step
in the database case [16]. However, we draw more significant benefits in this more
general setting. AICs are ICs that also specify possible repair actions in their
head. In the database case, every clausal IC can be transformed into an AIC
automatically. The goal, though, is to restrict in order to establish preferences
among different possible repairs. In the general case, such a transformation would
require solving complex abduction problems [17].

Using AICs, we can automatically compute repairs for inconsistent MCSs,
bypassing the need to solve such reasoning problems. The price to pay is the
need to prove that an AIC is valid (Definition 4). The key observation here is
that AICs should be written with a very clear semantic idea in mind, typically
by an engineer with a deep knowledge of the underlying system, who should be
able to show their validity formally. Thus, in practice, the complexity involved
in computing each repair is moved to a one-time verification of validity of AICs.

Structure. We review previous work in Section 2, summarizing the key notions
from [5, 8, 11]. Section 3 introduces AICs for MCSs, showing that they generalize
the corresponding notion for relational databases, and studies their properties in
general. Section 4 focuses on the case of ontologies and evaluates our formalism
against the classes of integrity constraints identified in [14]. Section 5 discusses
how algorithms to compute repairs in the database setting can be adapted to
the general case of MCSs. We conclude in Section 6.

1.1 Related work

Database repairs. ICs for databases have been extensively studied throughout
the last decades, and we restrict ourselves to works most directly related to ours.

Integrity constraints are typically grouped in different syntactic categories [26].
Many important classes can be expressed as first-order formulas, and can also
be written in denial (clausal) form – the fragment expressable in our formalism.

Whenever an integrity constraint is violated, the database must be repaired
to regain consistency. The problem of database repair is to determine whether
such a transformation is possible, and many authors have invested in algorithms
for computing database repairs efficiently. Typically, there are several possible
ways of repairing an inconsistent database, and several criteria have been pro-
posed to evaluate them. Minimality of change [13, 27] demands that the database
be changed as little as possible, while the common-sense law of inertia [23] states
that every change should have an underlying reason. While these criteria nar-
row down the possible database repairs, it is commonly accepted that human
interaction is ultimately required to choose the “best” possible repair [25].

Active integrity constraints (AICs). The formalism of AICs, introduced in [16],
addresses the issue of choosing among several possible repairs. An AIC specifies
not only an integrity constraint, but it also gives indications on how inconsistent



databases can be repaired through the inclusion of update actions, which can
be addition and removal of tuples from the database – a minimal set that can
implement the three main operations of database updates [1].

The original, declarative, semantics of AICs defined founded repairs [5], in
which every action is supported : it occurs in the head of a constraint that is
violated if that action is not included. Despite this characterization, there are
unnatural founded repairs where two actions mutually support each other, but
do not have support from other actions. The same authors then proposed justi-
fied repairs [7], which however are not intuitive and pose further problems [9].
Furthermore, justified repairs are intrinsically linked to the syntactic structure of
databases, and cannot be adapted to other knowledge representation formalisms.

Grounded repairs [8] form a middle ground between both semantics, requiring
support for arbitrary subsets of the repair. They are grounded fixed points of
the intuitive operation of “applying one action from the head of each AIC that
is not satisfied”, which is in line with the intuitive motivation for studying AICs.

Founded and justified repairs can be computed via revision programming [7].
Alternatively, an operational semantics for AICs [9] was implemented for SQL
databases [10]. There, repairs are leaves of particular trees, yielding a semantics
equivalent to the declarative one when existence of a repair is an NP-complete
problem. For grounded and justified repairs, where this existence problem is ΣP
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complete, the trees still contain all repairs, but may also include spurious leaves
– requiring a post test that brings the overall complexity to the theoretical limit.

Multi-context systems (MCSs). MCSs, as defined in [3], can be informally de-
scribed as collections of logic knowledge bases – the contexts – connected by
Datalog-style bridge rules. Since their introduction, several variants of MCSs
have been proposed that add to their potential fields of application. Relational
MCSs [15] were proposed as a way to allow a formal first-order syntax, intro-
ducing variables and aggregate expressions in bridge rules, and extending the
semantics of MCSs accordingly. Managed MCSs [4], which we describe in Sec-
tion 2, further generalize MCSs by abstracting from the possible actions that
change individual knowledge bases. Other variants, which are not directly rele-
vant for this work, are discussed in [11]. A different line of research deals with
repairing logical inconsistency of an MCS (non-existence of a model) [12].

ICs in ontologies. Integrating ICs with ontology-based systems poses several
challenges, mainly due to the open-world assumption and the absence of the
unique name assumption [14, 20, 22, 24]. In this context, ICs are conventionally
modelled as T-Box axioms [19], but variants based on hybrid knowledge bases,
auto-epistemic logic, modal logic, and grounded circumscription have recently
been proposed. For an overview of these proposals see Section 2 in [21]. For details
on how some of these can be expressed by ICs over MCSs, using a systematic
interpretation of ontologies as MCSs, see Section 4.5 in [11]. The interpretation
we use in Section 4 is a variant of the one presented therein.



2 Background

AICs for databases. Let Σ be a first-order signature without function symbols. A
database is a set of ground atoms over Σ, and an update action is an expression
of the form +a or −a, where a is a ground atom over Σ. An active integrity
constraint (AIC) over a database DB is a rule r of the form

p1, . . . , pm, not (pm+1), . . . , not (p`) =⇒ α1 | · · · | αk (1)

where each pi is an atom over the database’s signature, every variable free
in pm+1, . . . , p` occurs in p1, . . . , pm, and each update action αi is either −pj
for some 1 ≤ j ≤ m or +pj for m < j ≤ `.1 The body of r is body(r) =
p1, . . . , pm, not (pm+1), . . . , not (p`), and the head of r is head(r) = α1 | . . . | αk.

If r is ground, then DB satisfies r, denoted DB |= r, if DB 6|= pi for some
1 ≤ i ≤ m or DB |= pi with m < i ≤ `. In general, DB |= r if DB satisfies all
ground instances of r. Otherwise, r is applicable in DB [16]. If η is a set of AICs,
then DB |= η if DB |= r for every r ∈ η.

A set of update actions U is consistent if it does not contain both +a and
−a for any ground atom a. Given a consistent U , we write U(DB) for the result
of applying all actions in U to DB, and say that U is a weak repair for 〈DB, η〉 if:
(i) every action in U changes DB and (ii) U(DB) |= η. U is a repair if V(DB) 6|= η
for every V ( U [5], and U is grounded if, for every V ( U , there exists a ground
instance r of a rule in η such that V(DB) 6|= r and head(r) ∩ (U \ V) 6= ∅ [8].

Multi-Context Systems. We now describe the variant of multi-context systems
we use: managed multi-context systems (also abbreviated to MCSs) [4].

A relational logic L is a tuple 〈KB,BS,ACC, Σ〉, where KB is the set of well-
formed knowledge bases of L (sets of well-formed formulas), BS is a set of possible
belief sets (candidate models), ACC : KB → 2BS is a function assigning to each
knowledge base a set of acceptable belief sets (its models), and Σ is a signature
generating first-order sublanguages of

⋃
KB and

⋃
BS.

A managed multi-context system is a collection of managed contexts {Ci}ni=1,
with each Ci = 〈Li, kbi, bri, Di,OPi,mngi〉 where: Li = 〈KBi,BSi,ACCi, Σi〉 is
a relational logic; kbi ∈ KBi; Di (the import domain) is a set of constants from
Σi; OPi is a set of operation names; mngi : ℘(OPi ×

⋃
KBi) × KBi → KBi is a

management function; and bri is a set of managed bridge rules, with the form

(i : o(p))← (i1 : p1), . . . , (iq : pq), not (iq+1 : pq+1), . . . , not (im : pm) (2)

such that o ∈ OPi, p ∈
⋃
KBi, 1 ≤ i, ij ≤ n, and each pj is a belief2 of Lcj .

Intuitively, kbi is the knowledge base of context Ci and OPi are the names
of the operations that can be applied to change it. The management function

1 In [16], existentially quantified variables can also occur in negative literals. This was
not discussed in subsequent work, and we ignore it for simplicity of presentation.

2 Technically, Pp is a relational element of Cip : it can include variables, which when
instantiated yield elements of

⋃
BSip – see [4] for details.



defines the semantics of these operations: mngi(O, kb) is the result of applying
the operations in O to kb. Bridge rules govern the interaction between contexts.3

A belief state for an MCS M = {Ci}ni=1 is a set S = {Si}ni=1 such that each
Si ∈ BSi. A ground instance of bridge rule (2) is applicable in S if pi ∈ Si
for 1 ≤ i ≤ q and pi 6∈ Si for q < i ≤ m; the variables in the rule can only be
instantiated by elements of the import domain Di. A belief state is an equilibrium
for M if it is stable under application of all bridge rules, i.e.:

Si ∈ ACCi(mngi({head(r) | r ∈ bri applicable in S}, kbi))

In general, M can have zero, one or several equilibria; if at least one exists, then
M is logically consistent. We present examples of MCSs in the next sections.

Integrity constraints for general-purpose knowledge bases. ICs for MCSs [11]
generalize clausal ICs to a generic framework for reasoning systems – covering not
only relational databases, but also deductive databases, peer-to-peer systems and
ontologies, among others. Syntactically, ICs are bridge rules with empty head,
forming an added layer on top of an MCS that does not affect its semantics.

As MCSs may have several equilibria, satisfaction of a set of ICs η can be
weak – there is an equilibrium satisfying all rules in η – or strong – all equilibria
satisfy all rules in η. In order to avoid vacuous quantifications, strong satisfaction
only holds for logically consistent MCSs. In general these properties are unde-
cidable [11], but if entailment in every context is decidable then satisfaction of
a set of ICs is in most cases as hard as the hardest entailment decision problem.

In this paper, we do not explicitly mention the set of ICs when clear from the
context. Moreover, our development applies both to weak and strong satisfaction,
and we simply say that an MCS is consistent if it satisfies the given set of ICs.
We explicitly write “logical consistency” for existence of an equilibrium.

3 Active Integrity Constraints

We begin by defining active integrity constraints over multi-context systems.

Definition 1. An AIC over an MCS M = {Ci}ni=1 is a rule r of the form

(i1 : P1), . . . , (im : Pm), not (im+1 : Pm+1), . . . , not (i` : P`)

=⇒ (j1 : α1) | · · · | (jk : αk) (3)

where 1 ≤ ip, jq ≤ n, each Pp is a belief in Cip , each update action αq ∈
OPjq ×

⋃
KBjq , and all variables in Pm+1, . . . , P` occur in P1, . . . , Pm.

This definition follows the one for databases (1), and we define body and head
of r similarly. Equation (3) also generalizes ICs for MCSs: each AIC corresponds

3 For the sake of presentation, we simplified the management function, which in the
original work is allowed to return several possible effects for each action.



to an IC by ignoring its head, immediately yielding notions of weak and strong
satisfaction for an AIC. We also say that r is applicable to an MCS M if M 6|= r.
Intuitively, in this case M should be repaired by applying actions in head(r).

The reasoning capabilities of MCSs dictate that we cannot restrict the actions
in the head of an AIC syntactically (as in the database world, see Section 2).
We thus relax this requirement by only demanding that the actions are capable
of solving the inconsistency. It is also not reasonable to require that every ac-
tion in head(r) be able to solve every inconsistency detected by body(r): since
inconsistencies may be triggered by derived information, they may have different
origins, and the different actions may be solutions for those different causes.

We are interested in sets of update actions that are applied simultaneously,
i.e. the order in which actions are executed should be irrelevant. This corresponds
to the consistency requirement usually considered in databases.

Definition 2. Let M = {Ci}ni=1 be an MCS, U be a finite set of update actions,
and Ui be the set of actions in U affecting Ci.
Ui is consistent w.r.t. kbi if, for every permutation α1, . . . , αk of the ele-

ments of Ui, mngi(Ui, kbi) = mngi(α1,mngi(. . . ,mngi(αk, kbi) . . .)). U is consis-
tent w.r.t. M if each Ui is consistent w.r.t. kbi, and in this case we write U(M)
for the result of applying each Ui to each kbi.

Example 1. We consider a concrete toy example of a deductive database with
two unary base relations p and q, a view consisting of a relation r such that
r(x)↔ p(x) ∨ q(x), and the integrity constraint ¬r(a).

We formalize this as an MCS M = 〈CE , CI〉 where CE is an extensional
database including predicates p and q (but not r), CI is the view context includ-
ing predicate r (but not p or q), and they are connected by the bridge rules

(I : r(X))← (E : p(X)) (I : r(X))← (E : q(X)) .

Furthermore, mngE allows addition and removal of any tuples to CE , using
operations add and del, while mngI does not allow any changes. (See [11] for
details of this construction.)

From the structure of M , we know that r(a) can only arise as a deduction
from p(a) or q(a) (or both), so it makes sense to write an AIC

(I : r(a)) =⇒ (E : del(p(a))) | (E : del(q(a))) .

The actions on the head of this AIC solve the problem in all future states of M ,
since CI cannot change. However, restoring consistency may require performing
both actions (if the database contains both p(a) and q(a)).

This example also illustrates an important point: repair actions are written
with a particular structure of the MCS in mind.

Definition 3. The set of variants to an MCS M , denoted vrt(M), is

vrt(M) = {U(M) | U is a finite set of update actions over M} .



Restrictions on the actions in the head of AICs only range over vrt(M), which
contains all possible future evolutions of M .

Definition 4. An AIC r of the form (3) is valid w.r.t. an MCS M if:

– for every logically consistent M ′ ∈ vrt(M) such that M ′ 6|= r, there is U ⊆
head(r) with U(M ′) |= r;

– for every α ∈ head(r), there is M ′ ∈ vrt(M) with M ′ 6|= r and α(M ′) |= r.

These conditions require that the set of suggested actions be complete (it can
solve all inconsistencies) and that it does not contain useless actions.

Example 2. The AIC in Example 1 is valid: the only possible changes to M are
in kbE , which only contains information about p and q, thus, in any element of
vrt(M) the only way to derive r(a) is still from either p(a) or q(a). The second
condition follows by considering M ′ with kbE = {p(a)} and kbE = {q(a)}.

Proposition 1. Deciding whether an AIC is valid is in general undecidable.

Proof (sketch). Let L be a logic with an undecidable entailment problem, C be
a context over L with add ∈ OPC such that mngC(add(ϕ), Γ ) = Γ ∪ {ϕ}, and
M = {C}. Assume also that vrt(M) includes all knowledge bases over L. Then
(C : ¬B) =⇒ (C : add(A)) is valid iff A |=L B. ut

In practice, proving validity of AICs should not pose a problem: AICs are
written by humans with a very precise semantic motivation in mind, and this
means that the conditions in Definition 4 should be simple for a human to prove.

We now show that the framework we propose generalizes the database case.
A database DB can be seen as an MCS M(DB), defined as having a single context
over first-order logic, whose knowledge base is DB, with management function
allowing addition (+) or removal (−) of facts, and where the only set of beliefs
admissible w.r.t. a given database is the set of literals that are true in that
database (see [11] for a detailed definition).

Proposition 2. Every AIC over a database DB yields a valid AIC over M(DB).

Proof (sketch). We write a generic AIC over a database (1) as the AIC

(1 : p1), . . . , (1 : pm), not (1 : pm+1), . . . , not (1 : p`) =⇒ (1 : α1) | · · · | (1 : αk)

over M(DB). If DB does not satisfy the body of (1), then it can always be
repaired by performing exactly one of the actions in its head [6], establishing
both conditions for validity. ut

Definition 5. Let M = {Ci}ni=1 be an MCS, η be a set of AICs over M and U
be a finite set of update actions. U is a weak repair for 〈M,η〉 if U is consistent
w.r.t. M and U(M) |= η. Furthermore, U is grounded if: for every V ( U , there
is an AIC r ∈ η such that V(M) 6|= r and head(r) ∩ (U \ V) 6= ∅.

The definitions of weak and grounded repair directly correspond to those for the
database case (Section 2). The notion of grounded repair implies, in particular,
minimality under inclusion [8].



4 Application: the Case of Ontologies

This section is devoted to examples illustrating how our framework can be ap-
plied to the particular case of integrity constraints over ontologies.

Previous work [3, 11] shows how to view an ontology as a context of an MCS.
In the present work, we refine this interpretation by representing an ontology as
two contexts: one for the A-Box, one for the T-Box, connected by bridge rules
that port every instance from the former into the latter. (This is reminescent
of how deductive databases are encoded in MCSs, see [11].) This finer encoding
allows us, in particular, to reason about asserted instances (which are given in
the A-Box) and those that are derived using the axioms (see Example 5).

We further assume that the A-Box only contains instances of atomic concepts
or roles (C(t) or R(t, t′)). This option does not restrict the expressive power of
the ontology, but it helps structure AICs: to include instance axioms about
e.g. C t D, one instead defines a new concept E = C t D in the T-Box and
includes instance axioms about E in the A-Box (see also Example 7).

Definition 6. A description logic L is represented as the relational logic LL =
〈KBL,BSL,ACCL, ΣL〉, where:

– KBL contains all well-formed knowledge bases of L;
– BSL contains all sets of queries in the language of L;
– ACCL(kb) is the singleton set containing the set of queries to which kb an-

swers “Yes”.
– ΣL is the first-order signature underlying L.

An ontology O = 〈T,A〉 based on L induces the multi-context system M(O) =
〈Ctx(T ),Ctx(A)〉 where Ctx(T ) = 〈LL, T, brT , Σ0, ∅, ∅〉 with

– brT contains all rules of the form (T : C)(X) ← (A : C)(X) where C is a
concept, and (T : R)(X,Y )← (A : R)(X,Y ) where R is a role;

– Σ0 is the set of constants in ΣL;

and Ctx(A) = 〈LL, A, ∅, Σ0, OP,mng〉 where OP and mng are the set of allowed
update operation names and their definition.

The management function does not allow changes to the T-Box; the particular
operations in the A-Box depend on the concrete ontology. This is in line with
our motivation that writing AICs requires knowledge of the system’s deductive
abilities (expressed by the T-Box), which should not change.

We now evaluate the expressivity of our development by showing how to
formalize several types of ICs over ontologies. We follow the classification in
Section 4.5 of [14], which describes families of ICs determined by OWL engineers
and ontologists as the most interesting, as well as other types of ICs considered
in the scientific literature. Several classes of ICs are syntactically similar, so we
do not include examples for all categories in [14], but explain in the text how
the missing ones can be treated.



Most of our examples are adapted from [14], which frames them in a vari-
ant of the Lehigh University Benchmark [18], an ontology designed with the
goal of providing a realistic scenario for testing. This ontology considers con-
cepts student, gradStudent, class and email, and roles hasEmail, enrolled and
webEnrolled. Our semantics is: class is a concept including all classes of a common
course; enrolled(c, s) holds if student s is enrolled in course s; and webEnrolled
holds if the student is furthermore to be contacted only electronically.4 The ac-
tual contents of the A-Box are immaterial for our presentation, and we restrict
ourselves to the fragment of the T-Box containing the following axioms.

gradStudent v student ∃enrolled.student v class

webEnrolled v enrolled ∃hasEmail.email v student

∃webEnrolledR.class v ∃hasEmail

4.1 Functional dependencies

Functional dependencies are one of the most frequently occurring families of
ICs: requirements that certain relations be functional on one argument. In our
example, this applies to hasEmail: two distinct students cannot have the same
e-mail.

Since ontologies do not have the Unique Name Assumption, we cannot dis-
tinguish individuals by checking name equality (as in databases), but must query
the ontology instead. Furthermore, while in the database world such violations
can only be repaired by removing one of the offending instances, in ontologies,
we can also add the information that two individuals are the same.

Example 3. Suppose that the management function includes operations add and
del to add or remove a particular instance from the A-Box, as well as assertEqual,
establishing equality of two individuals. Under these assumptions, we can express
funcionality of e-mail as the following AIC.

(A : hasEmail(X,Z)), (A : hasEmail(Y,Z)), not (T : (X = Y ))

=⇒ (A : del(hasEmail(X,Z))) | (A : assert(X = Y )) (4)

Observe that, if T explicitly proves that X 6= Y , then only the first action can
be used, as asserting equality between X and Y would lead to an inconsistency.
However, if this is not the case then the second action is also a repair possibility,
and hence this AIC is valid. There are several possibilities for the implementation
of assert: it can add the equalityX = Y to the A-Box, but it can also syntactically
replace every occurrence of one of them for the other.

Several other types of dependencies (e.g. key constraints, uniqueness con-
straints, functionality constraints) are expressed by similar formulas. Likewise,
max-cardinality constraints can be represented as AICs with similar types of
actions in the head (deleting some instances or unifying some individuals).

4 This semantics is slightly changed from that of [14], in order to make some aspects
of our example more realistic.



4.2 Property domain constraints

This family of ICs specifies that the domain of a role should be a subset of a
particular concept. In case such a constraint is violated, the offending element
has to be added as an instance of that concept. The treatment of these ICs is
thus very similar to the database case.

Example 4. To model that only students can be enrolled in courses, we write
the following AIC.

(T : enrolled(X,Y ), not (T : student(Y )) =⇒ (A : add(student(Y ))) (5)

We could also add the action (A : del(enrolled(X,Y ))) to the head of this AIC;
note that it would only restore consistency in the case where this fact is explicitly
stated in the A-Box and not otherwise derivable. Property range constraints
(restricting the range of a role) can be similarly treated.

4.3 Specific type constraints

In many applications, it is interesting to minimize redundancy in the A-Box.
In particular, in the presence of inclusion axioms, it is often desirable only to
include instances pertaining to the most specific type class of each individual.

Example 5. Since gradStudent v student, we guarantee that the A-Box only
contains instances of the most specific class a student belongs to by writing:

(A : gradStudent(X)), (A : student(X)) =⇒ (A : del(student(X))) (6)

Thus, if the A-Box contains e.g. student(john) and gradStudent(john), then
the axiom student(john) will be removed. The system will still be able to derive
student(john), but only in context CT (using the information in the T-Box). The
separation of the A-Box and T-Box in different contexts is essential to express
this integrity constraint in our formalism. Constraints that distinguish between
assertions explicitly stated in the A-Box and derived ones have been considered
e.g. in [22].

4.4 Min-cardinality constraints

We now consider a more interesting type of ICs: min-cardinality constraints.
Inconsistencies arising from the violation of such constraints are hard to repare
automatically, as such a repair requires “guessing” which instances to add. Using
AICs and adequate management functions, we can even specify the construction
of “default” values that may depend on the actual ontology.

Example 6. We want to express that each class must have a minimum of 10
students. Classes with less enrolled students should be closed, and those students
moved to the smallest remaining class using an operation redistribute.

(T : (≤ 10.enrolled)(X)) =⇒ (A : redistribute(¬class(X))) (7)



For this AIC to be valid, redistribute must check whether students are enrolled
or webEnrolled and change the appropriate instance in the A-Box. This also uses
the knowledge that instances of enrolled cannot be derived in other ways.

A similar kind of constraints are totality constraints, which require that a
role be total on one of its arguments. In our example, we could require every
student to be enrolled in some class, and use an adequate management function
to add non-enrolled students to e.g. the smallest class.

4.5 Missing property value constraints

We now turn our attention to a kind of ICs that is also very common in ontolo-
gies: disallowing unnamed individuals for particular properties [22].

Example 7. Our ontology specifies that all students that are webEnrolled in a
class must have an e-mail address. However, for the purpose of contacting these
individuals, this e-mail address must be explicitly provided. We address this
issue with the following AIC.

(T : (∃hasEmail)(X)), not (T : hasEmail(X,Y ))

=⇒ (A : unregister(¬∃webEnrolledR(X))) (8)

Here, unregister replaces the axiom webEnrolled(X) with enrolled(X), as it makes
sense to keep the student enrolled in the course. Validity of this AIC follows from
observing that the only possible ways to derive ∃hasEmail(X) are either from an
explicit assertion hasEmail(X,Y ) or indirectly from webEnrolled(Z,X).

This example also justifies our requirement that the A-Box can only contain
instances of atomic concepts or roles. If the A-Box were allowed to contain
e.g. ∃hasEmail(john), then AIC (8) would no longer be valid. By restricting to
atomic concepts, the only way to perform a similar change would be by defining a
new concept as equivalent to ∃hasEmail – and this information would be present
in the T-Box, making it clear that AICs should consider it.

4.6 Managing unnamed individuals

Finally, we illustrate how we can write AICs in different ways to control whether
they range over all individuals of a certain class, or only over named ones.

Example 8. For ecological reasons, we want all students with an e-mail address
to be enrolled in the web version of courses. We can write this as follows.

(T : (hasEmail)(Y,Z)), (T : enrolled(X,Y )), not (T : webEnrolled(X,Y ))

=⇒ (A : webEnroll(webEnrolled(X,Y ))) (9)

Operation webEnroll will replace enrolled(X,Y ) with webEnrolled(X,Y ), dually
to unregister in the previous example.



Alternatively, we could consider writing

(T : (∃hasEmail)(Y )), (T : enrolled(X,Y )), not (T : webEnrolled(X,Y ))

=⇒ (A : webEnroll(webEnrolled(X,Y ))) (10)

In this particular context, this formulation is undesirable, as it will also affect
individuals who do not have a known e-mail address. By writing an explicit
variable in the first query of the body, as in (9), we guarantee that we only
affect those individuals whose e-mail address is known.

Similar considerations about the two possible ways to formulate this type of ICs
can be found in [22].

5 Computing Repairs

In [9], we showed how to use active integrity constraints to compute repairs for
inconsistent databases, by using the actions in the head of unsatisfied AICs to
build a repair tree whose leaves were the repairs. We showed how the construction
of the tree could be adapted to the different types of repairs considered originally
in [7]; in particular, for the case of grounded repairs (which is the one we are
interested in this work), it is enough to expand each node with the actions in
the heads of the AICs that are not satisfied in that node.

We adapt this construction to the framework of AICs over MCSs. As we will
see, the algorithms have to be adapted to this more general scenario, but we can
still construct all grounded repairs for a given (inconsistent) MCS automatically,
as long as entailment in all contexts is decidable.

Definition 7. Let M be an MCS and η be a set of integrity contraints over M .
The repair tree for 〈M,η〉, T〈M,η〉, is defined as follows.

– Each node is a set of update actions.
– A node n is consistent if: (i) n(M) is logically consistent and (ii) if n′ is the

parent of n, then n is a consistent set of update actions w.r.t. n′(M).
– Each edge is labeled with a closed instance of a rule.
– The root of the tree is the empty set ∅.
– For each consistent node n and rule r, if n(M) 6|= r then n′ = n ∪ U is

a child of n if (i) U ⊆ head(r), (ii) n′(M) |= r and (iii) if U ′ ⊆ U then
(n ∪ U ′)(M) 6|= r.

In the database case [9], it is straightforward to show that repair trees are
finite, since the syntactic restrictions on database AICs guarantee that each rule
can only be applied at most once in every branch. In the general MCS case, this
is not true, as the following example shows.

Example 9. Consider an ontology (represented as an MCS as in Section 3) with
four concepts B1, B2, B3 and D. The T-Box contains axioms

B1 v D and B2 uB3 v D



and the A-Box is {B1(a), B3(a)}. Furthermore, we have integrity constraints

(T : D)(a) =⇒ (A : del(B1)(a)) | (A : del(B3)(a)) (r1)

not (T : B1)(a), not (T : B2)(a) =⇒ (A : add(B2)(a)) (r2)

∅
r1��

{del(B1)(a)}
r2��

{del(B1)(a), add(B2)(a)}
r1��

{del(B1)(a), add(B2)(a), del(B3)(a)}

Following this construction, we
obtain the tree on the right, and its
leaf is a grounded repair.

Lemma 1. T〈M,η〉 is finite.

Proof. By definition, every node of
T〈M,η〉 has a finite number of descen-
dants, since there are only finitely
many ground instances of AICs with a
finite number of actions in each one’s
head. By construction, in every branch the labels of the nodes form an increasing
sequence (w.r.t. set inclusion), and each node is again a subset of the (finite)
set of all actions in the heads of all rules. Therefore, T〈M,η〉 has finite depth and
finite degree, hence it is finite. ut

Lemma 2. Every grounded repair for 〈M,η〉 is a leaf of T〈M,η〉.

Proof. Let U be a grounded repair for M and η. By definition of grounded repair,
if U ′ ⊆ U then there is a ground instance r of an AIC such that: there exists
V ⊆ head(r)∩U such that (U ′ ∪V)(M) |= r. This directly yields a branch of the
repair tree ending at U . ut

(This is essentially the same argument for showing that, in the database case,
grounded repairs are well-founded, see [8].)

T〈M,η〉 is constructed as the well-founded repair tree in the database case [9].5

In both cases, this tree may, in general, contain leaves that are not grounded
repairs [8]. Under the assumption that P 6= NP, this cannot be avoided, since
existence of grounded repairs for databases is a ΣP

2 -complete problem [8].

Complexity. The proof of Lemma 1 shows that the depth of T〈M,η〉 is polynomial
in the size of the grounded instances of η. Therefore, given an oracle that decides
whether an MCS satisfies a set of AICs, the problem of existence of a grounded
repair for 〈M,η〉 is ΣP

2 -complete: T〈M,η〉 can be built in non-deterministic poly-
nomial time (guessing which rule to apply at each node and using the oracle to
decide whether the descendant is a leaf), and the validation step can be done in
co-NP time (if the leaf is not a grounded repair, then we guess the subset that
violates the definition and use the oracle to confirm this).

5 There is also a notion of repair tree for databases in [9], but it relies on the ability
of inferring heads of AICs automatically, which does not exist in the MCS setting.



6 Discussion and Conclusions

Validity. At the end of Example 1, we pointed out that restoring consistent
w.r.t. an AIC r may require applying several actions in head(r). This suggests
allowing sets of actions (rather than actions) in the heads of AICs. Besides in-
creasing the complexity of our development, it is not clear that this change would
bring significant benefits. In terms of computing repairs, we already cover those
cases, since we add sets of actions when going from a node to its descendents.
Also, it is not clear that there exists a situation when every possible inconsistent
MCS requires a set of actions to repair.

One could also remove the second condition of validity of an AIC, i.e. allow
the actions in the head to be insufficient to restore consistency of some MCSs.
This would remove some burden from the programmer who has to specify the
AICs, and would not affect the performance of the algorithms in Section 5.
However, it would contradict the original motivation for AICs [16]: that the
actions in the head of a rule should provide the means for restoring consistency.

Variants of AICs. The authors of [16] also considered conditioned active integrity
constraints, where the actions on the head of AICs are guarded by additional
conditions that have to be satisfied. In their setting, conditioned AICs do not
add expressive power to the formalism, as they can be split into several uncon-
ditioned AICs (with more specific bodies) preserving the notions of consistency
and repairs. In our setting, this transformation is not possible, and it would
thus be interesting to study conditioned active integrity constraints over multi-
context systems. However, we point out that the management function can use
information about the actual knowledge bases in its implementation, so some
conditions can actually be expressed in our setting (see Example 6).

Conclusion. We proposed active integrity constraints for multi-context systems
and showed that, using them, we can compute grounded repairs for inconsistent
MCSs automatically. Although validity of AICs is in general undecidable, we
showed that we can cover the most common types of ICs in our framework.
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