
Active Integrity Constraints: from Theory to
Implementation

Lúıs Cruz-Filipe1, Michael Franz1, Artavazd Hakhverdyan1, Marta Ludovico2,
Isabel Nunes2, and Peter Schneider-Kamp1

1 Department of Mathematics and Computer Science
University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

lcf@imada.sdu.dk, mf@bfdata.dk, artavazd19@gmail.com,

petersk@imada.sdu.dk
2 Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa, Portugal
marta.al.ludovico@gmail.com, in@fc.ul.pt

Abstract. The problem of database consistency relative to a set of in-
tegrity constraints has been extensively studied since the 1980s, and is
still recognized as one of the most important and complex in the field. In
recent years, with the proliferation of knowledge repositories (not only
databases) in practical applications, there has also been an effort to de-
velop implementations of consistency maintenance algorithms that have
a solid theoretical basis.
The framework of active integrity constraints (AICs) is one example of
such an effort, providing theoretical grounds for rule-based algorithms for
ensuring database consistency. An AIC consists of an integrity constraint
together with a specification of actions that may be taken to repair a
database that does not satisfy it. Both denotational and operational
semantics have been proposed for AICs.
In this paper, we describe repAIrC, a prototype implementation of the
algorithms previously proposed targetting SQL databases, i.e., the most
prolific type of databases. Using repAIrC, we can both validate an SQL
database with respect to a given set of AICs and compute possible re-
pairs in case the database is inconsistent; the tool is able to work with
the different kinds of repairs that have been considered, and achieves
optimal asymptotic complexity in their computation. It also implements
strategies for parallelizing the search for repairs, which in many cases
can make untractable problems become easily solvable.

1 Introduction

Databases are among the most prolific software items in today’s world, being
components of virtually every non-trivial software system used in practice – from
mobile apps to enterprise management systems. Besides facilitating efficient stor-
age and retrieval of data, one of the main tasks of database management systems
is ensuring data integrity, i.e., guaranteeing semantic relationships between data
not captured by the syntactic structure of the database hold at all times.

Typical database management systems allow the user to specify integrity con-
straints on the data as logical statements that are required to be satisfied at any
given point in time. The typical database consistency tasks include guarantee-
ing that such constraints still hold after updating databases [1], and determining
what repairs have to be made when the constraints are violated [13], without
making any assumptions about how the inconsistencies came about. Repairing
an inconsistent database is a highly complex process; also, it is widely accepted
that human intervention is often necessary to choose an adequate repair [10].
That said, every progress towards automation in this field is nevertheless an
important contribution, and criteria to choose among different possible repairs
allow for a reasonable level of semi-automation.

In particular, the framework of active integrity constraints [5, 11] was intro-
duced more recently with the goal of giving operational mechanisms to compute
repairs of inconsistent databases. This framework has subsequently been ex-
tended to consider preferences [3] and to find “best” repairs automatically [7]
and efficiently [6]. Active integrity constraints (AICs) are expressive enough to
encompass the majority of integrity constraints that are typically found in prac-
tice, and they allow the definition of preferred ways to calculate repairs, through
specific actions to be taken in specific inconsistent situations.

To the best of our knowledge, no real-world implementation of an AIC–
enhanced database system exists today. This paper presents a prototype tool
that implements the tree–based algorithms for computing repairs presented in [5,
7]. While not yet ready for productive deployment, this implementation can work
successfully with virtually any database management system supporting access
through SQL, and is readily extendible to other (nearly arbitrary) database
management systems thanks to its modular design.

This paper is structured as follows. We summarize related work in Section 1.1.
Section 2 recapitulates previous work on active integrity constraints and repair
trees. Section 3 introduces our tool, repAIrC, and describes its implementation,
focusing on the new theoretical results that were necessary to bridge the gap
between theory and practice. Section 4 then discusses how parallel computation
capabilities are incorporated in repAIrC to make the search for repairs more effi-
cient. The discussion in these two sections is illustrated by a non-trivial running
example. Section 5 summarizes our achievements and gives a brief outlook into
future developments. This paper extends the work previously described in [8].

1.1 Related Work

The problem of maintaining data consistency when changing a database has
been the focus of intensive research for over three decades. The survey paper [1],
which extensively describes the state of the art in 1988, remains actual in its
characterization of the concept of “good” update, and identification of three
main change operations: insertion of new facts, deletion of existing facts, and
modification of information.

Database changes can be caused by two distinct scenarios, which lead to the
distinct notions of database update and database revision [10, 13]. A database

update occurs whenever the world changes and the database needs to be up-
dated to reflect this fact; a database revision happens when new knowledge is
obtained about a world that did not change. This distinction is especially rele-
vant in deductive databases and open-world knowledge bases, where the known
information is not assumed to be complete. In spite of their conceptual differ-
ence, updates and revisions can in practice be addressed by similar techniques.
In particular, they both often demand changes that conflict with the integrity
constraints, and the database must be repaired in order to regain consistency.

Over the years, several authors have proposed alternative approaches to the
problem of how to repair an inconsistent database. One possibility is to read
integrity constraints as rules that suggest possible actions to repair inconsis-
tencies [1]; another is to express database dependencies through logic program-
ming, namely in deductive databases [14, 16, 17]. A more algorithmic approach
uses event-condition-action rules [19, 20], where actions are triggered by specific
events, for which a procedural semantics has been defined. This paper focuses
on the formalism of active integrity constraints [11], which will be described in
more detail in the next section.

Several algorithms for computing repairs of inconsistent databases have been
proposed and studied throughout the years, focusing on the different ways in-
tegrity constraints are specified and on the different types of databases under
consideration [12, 14, 15, 17]. This multitude of approaches is not an accident:
deciding whether an inconsistent database can be repaired is typically a ΠP

2 -
or co-ΣP

2 - complete problem, and there is no reason to believe in the existence
of general-purpose algorithms for this problem, but one should rather focus on
developing specific algorithms for particular interesting cases [10]. The formal-
ism of active integrity constraints also establishes a hierarchy of database (weak)
repairs, which can be used to define preferences among these and obtain more
automation in the process [5].

2 Active integrity constraints

Active integrity constraints (AICs) were introduced in [11] and further explored
in [4, 5], which define the basic concepts and prove complexity bounds for the
problem of repairing inconsistent databases. These authors introduce declarative
semantics for different types of repairs, obtaining their complexity results by
means of a translation into revision programming. In practice, however, this does
not yield algorithms that are applicable to real-life databases; for this reason, a
direct operational semantics for AICs was proposed in [7], presenting database-
oriented algorithms for finding repairs. The present paper describes a tool that
can actually execute these algorithms in collaboration with an SQL database
management system.

2.1 Syntax and Declarative Semantics

For the purpose of this work, we can view a database simply as a set of atomic
formulas over a typed function-free first-order signature Σ, which we will assume

throughout to be fixed. Let At be the set of closed atomic formulas over Σ. A
database I entails literal L, I |= L, if L ∈ At and L ∈ I, or if L is not a with
a ∈ At and a /∈ I.

An integrity constraint is a clause

L1, . . . , Lm ⊃ ⊥

where each Li is a literal over Σ, with intended semantics that ∀(L1 ∧ . . .∧Lm)
should not hold. As is usual in logic programming, we require that if Li contains a
negated variable x, then x already occurs in L1, . . . , Li−1. We say that I satisfies
integrity constraint r, I |= r, if, for every instantiation θ of the variables in r,
it is the case that I 6|= Lθ for some L in r; and I satisfies a set η of integrity
constraints, I |= η, if it satisfies each integrity constraint in η.

If I 6|= η, then I may be updated through update actions of the form +a
and −a, where a ∈ At, stating that a is to be inserted in or deleted from I,
respectively. A set of update actions U is consistent if it does not contain both
+a and −a, for any a ∈ At; in this case, I can be updated by U , yielding the
database

U(I) = (I ∪ {a | +a ∈ U}) \ {a | −a ∈ U} .

The problem of database repair is to find U such that U(I) |= η.

Definition 1. Let I be a database and η a set of integrity constraints. A weak
repair for 〈I, η〉 is a consistent set U of update actions such that: (i) every action
in U changes I; and (ii) U(I) |= η. A repair for 〈I, η〉 is a weak repair U for
〈I, η〉 that is minimal w.r.t. set inclusion.

The distinction between weak repairs and repairs embodies the standard princi-
ple of minimality of change [21].

The problem of deciding whether there exists a (weak) repair for an inconsis-
tent database is NP-complete [5]. Furthermore, simply detecting that a database
is inconsistent does not give any information on how it can be repaired. In or-
der to address this issue, those authors proposed active integrity constraints
(AICs), which guide the process of selection of a repair by pairing literals with
the corresponding update actions.

In the syntax of AICs, we extend the notion of update action by allowing
variables. Given an action α, the literal corresponding to it is lit(α), defined as
a if α = +a and not a if α = −a; conversely, the update action corresponding
to a literal L, ua(L), is +a if L = a and −a if L = not a. The dual of a is not a,
and conversely; the dual of L is denoted LD. An active integrity constraint is
thus an expression r of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where the Li (in the body of r, body (r)) are literals and the αj (in the head of
r, head (r)) are update actions, such that{

lit(α1)D, . . . , lit(αk)D
}
⊆ {L1, . . . , Lm} .

The set lit(head (r))D contains the updatable literals of r. The non-updatable

literals of r form the set nup(r) = body (r) \ lit (head (r))
D

.
The natural semantics for AICs restricts the notion of weak repair.

Definition 2. Let I be a database, η a set of AICs and U be a (weak) repair for
〈I, η〉. Then U is a founded (weak) repair for 〈I, η〉 if, for every action α ∈ U ,
there is a closed instance r′ of r ∈ η such that α ∈ head (r′) and U(I) |= L for
every L ∈ body (r′) \

{
lit(α)D

}
.

The problem of deciding whether there exists a weak founded repair for
an inconsistent database is again NP-complete, while the similar problem for
founded repairs is ΣP

2 -complete. Despite their natural definition, founded repairs
can include circular support for actions, which can be undesirable; this led to
the introduction of justified repairs [5].

We say that a set U of update actions is closed under r if nup(r) ⊆ lit(U)
implies head (r) ∩ U 6= ∅, and it is closed under a set η of AICs if it is closed
under every closed instance of every rule in η. In particular, every founded weak
repair for 〈I, η〉 is by definition closed under η.

A closed update action +a (resp. −a) is a no-effect action w.r.t. (I,U(I))
if a ∈ I ∩ (U(I)) (resp. a /∈ I ∪ (U(I))). The set of all no-effect actions w.r.t.
(I,U(I)) is denoted by neI(U). A set of update actions U is a justified action
set if it coincides with the set of update actions forced by the set of AICs and
the database before and after applying U [5].

Definition 3. Let I be a database and η a set of AICs. A consistent set U of
update actions is a justified action set for 〈I, η〉 if it is a minimal set of update
actions containing neI(U) and closed under η. If U is a justified action set for
〈I, η〉, then U \ neI(U) is a justified weak repair for 〈I, η〉.

In particular, it has been shown that justified repairs are always founded [5].
The problem of deciding whether there exist justified weak repairs or justified
repairs for 〈I, η〉 is again a ΣP

2 -complete problem, becoming NP-complete if one
restricts the AICs to contain only one action in their head (normal AICs).

2.2 Operational Semantics

The declarative semantics of AICs is not very satisfactory, as it does not capture
the operational nature of rules. In particular, the quantification over all no-
effect actions in the definition of justified action set poses a practical problem.
Therefore, an operational semantics for AICs was proposed in [7], which we now
summarize.

Definition 4. Let I be a database and η be a set of AICs.

– The repair tree for 〈I, η〉, T〈I,η〉, is a labeled tree where: nodes are sets of
update actions; each edge is labeled with a closed instance of a rule in η; the
root is ∅; and for each consistent node n and closed instance r of a rule in
η, if n(I) 6|= r then for each L ∈ body (r) the set n′ = n ∪

{
ua(L)D

}
is a

child of n, with the edge from n to n′ labeled by r.

– The founded repair tree for 〈I, η〉, T f〈I,η〉, is constructed as T〈I,η〉 but requir-

ing that ua(L) occur in the head of some closed instance of a rule in η.

– The well-founded repair tree for 〈I, η〉, Twf〈I,η〉, is also constructed as T〈I,η〉
but requiring that ua(L) occur in the head of the rule being applied.

– The justified repair tree for 〈I, η〉, T j〈I,η〉, has nodes that are pairs of sets of

update actions 〈U ,J 〉, with root 〈∅, ∅〉. For each node n and closed instance r
of a rule in η, if Un(I) 6|= r, then for each α ∈ head (r) there is a descendant
n′ of n, with the edge from n to n′ labeled by r, where: Un′ = Un ∪ {α}; and
Jn′ = (Jn ∪ {ua(nup(r))}) \ Un.

The properties of repair trees are summarized in the following results, whose
detailed proofs can be found in [7].

Theorem 1. Let I be a database and η be a set of AICs. Then:

1. T〈I,η〉 is finite.
2. Every consistent leaf of T〈I,η〉 is labeled by a weak repair for 〈I, η〉.
3. If U is a repair for 〈I, η〉, then there is a branch of T〈I,η〉 ending with a leaf

labeled by U .
4. If U is a founded repair for 〈I, η〉, then there is a branch of T f〈I,η〉 ending

with a leaf labeled by U .
5. If U is a justified repair for 〈I, η〉, then there is a branch of T j〈I,η〉 ending

with a leaf labeled by U .
6. If η is a set of normal AICs and 〈U ,J 〉 is a leaf of T j〈I,η〉 with U consistent

and U ∩ J = ∅, then U is a justified repair for 〈I, η〉.

Not all leaves will correspond to repairs of the desired kind; in particular, there
may be weak repairs in repair trees. Also, both T f〈I,η〉 and T j〈I,η〉 typically contain

leaves that do not correspond to founded or justified (weak) repairs – otherwise
the problem of deciding whether there exists a founded or justified weak repair
for 〈I, η〉 would be solvable in non-deterministic polynomial time. The leaves of
the well-founded repair tree for 〈I, η〉 correspond to a new type of weak repairs,
called well-founded weak repairs, not considered in the original works on AICs.

2.3 Parallel Computation of Repairs

The computation of founded or justified repairs can be improved by dividing the
set of AICs into independent sets that can be processed independently, simply
merging the computed repairs at the end [6]. Here, we adapt the definitions given
therein to the first-order scenario. Two sets of AICs η1 and η2 are independent
if the same atom does not occur in a literal in the body of a closed instance of
two distinct rules r1 ∈ η1 and r2 ∈ η2. If η1 and η2 are independent, then repairs
for 〈I, η1 ∪ η2〉 are exactly the unions of a repair for 〈I, η1〉 and 〈I, η2〉.

When one considers founded, well-founded or justified repairs, this notion
can be made stronger. Since those semantics use the information in the heads of
the rules, rather than in the bodies, we can obtain similar results by considering

strong independence: η1 and η2 are strongly independent if, for each r1 ∈ η1 and
r2 ∈ η2, there is no atom occurring both in the head of a closed instance of r1
and in the body of a closed instance of r2, or conversely.

If an atom occurs in a literal in the body of a closed instance of a rule in η2
and in an action in the head of a closed instance of a rule in η1, but not conversely,
then we say that η1 precedes η2. Founded/justified (but not well-founded) repairs
for η1∪η2 can be computed in a stratified way, by first repairing I w.r.t. η1, and
then repairing the result w.r.t. η2.

Splitting a set of AICs into independent sets or stratifying it can be solved
using standard algorithms on graphs, as we describe in Section 4.

3 The tool

The tool repAIrC is implemented in Java, and its simplified UML class diagram
can be seen in Figure 1. Structurally, this tool can be split into four main separate
components, centered on the four classes marked in bold in that figure.

– Objects of type AIC implement active integrity constraints.
– Implementations of interface DB provide the necessary tools to interact with a

particular database management system; currently, we provide functionality
for SQL databases supported by JDBC.

– Objects of type RepairTree correspond to concrete repair trees; their exact
type will be the subclass corresponding to a particular kind of repairs.

– Class RunRepairGUI provides the graphical interface to interact with the
user.

RepairController

RunRepairGUI

SimpleNode

JustifiedNode

SimpleRepairTree

FoundedRepairTree WellFoundedRepairTree

JustifiedRepairTree

AIC

Literal Action

DBMySQL

�abstract�
RepairTree

�abstract�
Node

�interface�
DB

RepairGUI

�create�

�create�

�call� *{List}

*{List} *{List}

*{List}

*{List}

*{Set}

*{Set}

Clause

Preprocess

*{List}

Fig. 1. Class diagram for repAIrC.

An important design aspect has to do with extensibility and modularity. A
first prototype focused on the construction of repair trees, and used simple text

files to mimick databases as lists of propositional atoms, in the style of [5, 7].
Later, parallelization capabilities were added (as explained in Section 4), requir-
ing changes only to RepairController – the class that controls the execution
of the whole process. Likewise, the extension of repAIrC to SQL databases and
the addition of the stratification mechanism only required localized changes in
the classes directly concerned with those processes.

The next subsections detail the implementation of the four classes AIC, DB,
RepairTree and RunRepairTreeGUI.

3.1 Representing Active Integrity Constraints

In the practical setting, it makes sense to diverge a little from the theoretical
definition of AICs.

– Real-world tables found in DBs contain many columns, most of which are
typically irrelevant for a given integrity constraint.

– The columns of a table are not static, i.e., columns are usually added or
removed during a database’s lifecycle.

– The order of columns in a table should not matter, as they are identified by
a unique column name.

To deal pragmatically with these three aspects, we will use a more database-
oriented notation to write down atoms, namely allowing the arguments to be
provided in any order, but requiring that the column names be provided. The
special token $ is used as first character of a variable. So, for example, the
literal hasInsurance(firstName=$X, type=’basic’) will match any entry in ta-
ble hasInsurance having value basic in column type and any value in column
firstName; this table may additionally have other columns. Negative literals are
preceded by the keyword NOT, while actions must begin with + or -. Literals and
actions are separated by commas, and the body and head of an AIC are sepa-
rated by ->. The AIC is finished when ; is encountered, thus allowing constraints
to span several lines.

AICs are provided in a text file, which is parsed by a parser generated auto-
matically using JavaCC and transformed into objects of type AIC. These contain
a body and a head, which are respectively List<Literal> and List<Action>;
for consistency with the underlying theory, Literal and Action are implemented
separately, although their objects are isomorphic: they contain an object of type
Clause (which consists of the name of a table in the database and a list of pairs
column name/value) and a flag indicating whether they are positive/negated
(literals) or additions/removals (actions).

Example 1. Consider an employee database containing tables empl (employee),
categ (category), supvsr (supervisor), unsup (unsupervised) and insured, among
others. This database includes the following AICs.

empl(X), empl(Y), supvsr(X,Y), supvsr(Y,X) ⊃ −supvsr(X,Y) (r1)

empl(X), empl(Y), supvsr(X,Y), unsup(Y) ⊃ −unsup(Y) (r2)

empl(X), cat(X, junior), unsup(X) ⊃ −cat(X, junior) (r3)

empl(X), not insured(X, basic) ⊃ +insured(X, basic) (r4)

Intuitively, (r1) states that two employees cannot supervise each other, and
the preferred way to correct this error is by changing the supvsr table. Rule (r2)
states that employees who have a supervisor are not unsupervised, and its head
assumes that the information in the supvsr table is more correct. Rule (r3) states
that junior employees cannot be unsupervised, and the last rule states that all
employees must have a basic insurance.

These AICs are written in the concrete text-based syntax of the repAIrC

tool as

empl(id=$X), empl(id=$Y),

supvsr(master=$X,slave=$Y), supvsr(master=$Y,slave=$X)

-> - supvsr(master=$X,slave=$Y);

empl(id=$X), empl(id=$Y),

supvsr(master=$X,slave=$Y), unsup(empId=$Y)

-> - unsup(empId=$Y);

empl(id=$X), cat(type=junior , empId=$X), unsup(empId=$X)

-> - cat(type=’junior ’,empId=$X);

empl(id=$X), NOT insured(empId=$X, type=’basic ’)

-> + insured(empId=$X, type=’basic ’);

respectively, assuming the corresponding column names for the attributes. Note
that, thanks to our usage of explicit column naming, the order of the columns
in each table is not important.

3.2 Interfacing with the Database

Database operations (queries and updates) are defined in the DB interface, which
contains the following methods.

– getUpdateActions(AIC aic): queries the database for the instances of aic not
satisfied in its current state, and returns a Collection<Collection<Action>>

that contains the corresponding instantiations of the head of aic.
– update(Collection<Action> actions): applies all update actions in the col-

lection actions to the database (void).
– undo(Collection<Action> actions): undoes the effect of all update actions

in actions (void).
– aicsCompatible(Collection<AIC> aics): checks that all the elements of aics

are compatible with the structure of the database.

– disconnect(): disconnects from the database (void). The connection is es-
tablished when the object is originally constructed.

Some of these methods require more detailed comments. The construction
of the repair tree also requires that the database be changed interactively, but
upon conclusion the database should be returned to its original state. In theory,
this would be achievable by applying the update method with the duals of the
actions that were used to change the database; but this turns out not to be the
case for deletion actions. Since the AICs may underspecify the entries in the
database (because some fields are left implicit), the implementation of update

must take care to store the values of all rows that are deleted from the database.
In turn, the undo method will read this information every time it has to undo a
deletion action, in order to find out exactly what entries to re-add.

The method aicsCompatible is necessary because the AICs are given inde-
pendently of the database, but they must be compatible with its structure –
otherwise, all queries will return errors. Including this method in the interface
allows the AICs to be tested before any queries are made, thus significantly
reducing the number of exceptions that can occur during program execution.

Currently, repAIrC includes an implementation DBMySQL of DB, which works
with SQL databases. The interaction between repAIrC and the database is
achieved by means of JDBC, a Java database connectivity technology able to
interface with nearly all existing SQL databases. In order to determine whether
an AIC is satisfied by a database, method getUpdateActions first builds a sin-
gle SQL query corresponding to the body of the AIC. This method builds one
SELECT statement for the positive literals in the body of the AIC, and another
for the negative literals, if they occur. Each time a new variable is found, the
table and column where it occurs are stored, so that future references to the
same variable in a positive literal can be unified by using inner joins. If there
is a SELECT statement for the negative literals, it is then connected to the other
one using a WHERE NOT EXISTS condition. Variables in the negative literals must
necessarily appear first in a positive literal in the same AIC; therefore, they can
then be connected by a WHERE clause instead of an inner join.

Example 2. The bodies of the two last integrity constraints in Example 1 gen-
erate the following SQL queries.

SELECT * FROM empl t0 SELECT * FROM empl t0

INNER JOIN cat t1 WHERE NOT EXISTS

ON t0.id=t1.empId (SELECT * FROM insured t1

INNER JOIN unsup t2 WHERE t1.empId=t0.id

ON t0.id=t2.empId AND t1.type=’basic ’)

WHERE t1.type = ’junior ’

3.3 Implementing Repair Trees

The implementation of the repair trees directly follows the algorithms described
in Section 2. Different types of repair trees are implemented using inheritance,

so that most of the code can be reused in the more complex trees. The trees are
constructed in a breadth-first manner, and all non-contradictory leaves that are
found are stored in a list. At the end, this list is pruned so that only the minimal
elements (w.r.t. set inclusion) remain – as these are the ones that correspond to
repairs.

While constructing the tree, the database has to be temporarily updated and
restored. Indeed, to calculate the descendants of a node, we first need to evaluate
all AICs at that node in order to determine which ones are violated; this requires
querying a modified version of the database that takes into account the update
actions in the current node.

In order to avoid concurrency issues, we use a transaction-style methodology
to perform these updates, where we first change the database, then perform the
necessary SQL queries, and finally rollback to the original state, guaranteeing
that other threads interacting with the database during this process neither see
the modifications nor lead to inconsistent repair trees. This becomes of particular
interest when the parallel processing tools described in Section 4 are put into
place. Although this adds some overhead to the execution time, at the end of
that section we discuss why scalability is not a practically relevant concern.

After finding all the leaves of the repair tree, a further step is needed in the
case one is looking for founded or justified repairs, as the corresponding trees
may contain leaves that do not correspond to repairs with the desired property.
This step is skipped if all AICs are normal, in view of the results from [7]. For
founded repairs, we directly apply the definition: for each action α, check that
there is an AIC with α in its head and such that all other literals in its body are
satisfied by the database.

For justified repairs, the validation step is less obvious. Directly following the
definition requires constructing the set of no-effect actions, which is essentially as
large as the database, and iterating over subsets of this set. This is obviously not
possible to do in practical settings. Therefore, we use some criteria to simplify
this step.

Lemma 1. If a rule r was not applied in the branch leading to U , then U is
closed under r.

Proof. Suppose that r was never applied and assume nup(r) ⊆ neI(U). Then
necessarily head (r) ∩ neI(U) 6= ∅, otherwise r would be applicable and U would
not be a repair.

By construction, U is clearly also closed for all rules applied in the branch
leading to it.

Let U be a candidate justified weak repair. In order to test it, we need to
show that U ∪ neI(U) is a justified action set (see [7]), which requires iterating
over all subsets of U ∪ neI(U) that contain neI(U). Clearly this can be achieved
by iterating over subsets of U .

But if U∗ ⊆ U , then nup(r)∩U∗ = ∅; this allows us to simplify the closedness
condition to: if nup(r) ⊆ neI(U), then U∗ ∩ head (r) = ∅. The antecedent needs

then only be done once (since it only depends on U), whereas the consequent
does not require consulting the database.

The following result summarizes these properties.

Lemma 2. A weak repair U in a leaf of the justified repair tree for 〈I, η〉 is a
justified weak repair for 〈I, η〉 iff, for every set U∗ ⊆ U , if nup(r) ⊆ neI(U), then
U∗ ∩ head (r) = ∅.

The different implementations of repair trees use different subclasses of the
abstract class Node; in particular, nodes of JustifiedRepairTrees must keep track
not only of the sets of update actions being constructed, but also of the sets of
non-updatable actions that were assumed. These labels are stored as Set<Action>
using HashSet from the Java library as implementation, as they are repeatedly
tested for membership everytime a new node is generated.

For efficiency, repair trees maintain internally a set of the sets of update
actions that label nodes constructed so far as a Set<Node>. This is used to avoid
generating duplicate nodes with the same label. Since this set is used mainly for
querying, it is again implemented as a HashSet. Nodes with inconsistent labels
are also immediately eliminated, since they can only produce inconsistent leaves.

3.4 Interfacing with the User

The user interface for repAIrC is implemented using the standard Java GUI wid-
get toolkit Swing, and is rather straightforward. On startup, the user is presented
with the dialog box depicted in Figure 2.

Fig. 2. The initial interface screen for repAIrC, providing the user with options to
connect to a database, load a file with AICs, choose the desired type of repairs, and
compute them.

The user can then provide credentials to connect to a database, as well as
enter a file containing a set of AICs. If the connection to the database is suc-
cessful and the file is successfully parsed, repAIrC invokes the aicsCompatible

method required by the implementation of the DB interface (see Section 3.2) and
verifies that all tables and columns mentioned in the set of AICs are valid tables

and columns in the database. If this is not the case, then an error message is
generated and the user is required to select new files; otherwise, the buttons for
configuration and computation of repairs become active.

Once the initialization has succeeded, one can check the database for con-
sistency and obtain different types of repairs, computed using the repair tree
described above. As it may be of interest to obtain also weak repairs, the user
is given the possibility of selecting whether to see only the repairs computed, or
all valid leaves of the repair tree – which typically include some weak repairs.
In both cases the necessary validations are performed, so that leaves that do
not correspond to repairs (in the case of founded or justified repairs) are never
presented. A typical step in the interaction is shown in Figure 3.

Fig. 3. The interface screen for repAIrC after the connection to the database has been
successfully established. The drop-down menu is expanded, illustrating the different
possibilities.

Example 3. We illustrate the usage of repAIrC with the set of AICs from Ex-
ample 1, over a database in the following state.

EMPL
jane
john
mark

CAT
jane boss
john clerk
mark junior

SUPVSR
jane john
john jane
john mark

UNSUP
jane
mark

INSURED
jane gold
john basic

Observe the inconsistencies in this database: john and jane mutually supervise
each other; mark is both supervised by john and marked as unsupervised; he is
also a junior employee marked as unsupervised. Finally, neither jane nor mark
have a basic insurance.

An example output screen after successful computation of the founded repairs
for this database can be seen in Figure 4. The four repairs are:

{+ insured(empId=$jane , type=’basic ’),

-supvsr(master=$john , slave=$jane),

-unsup(empId=$mark),

+insured(empId=$mark , type=’basic ’)}

{+ insured(empId=$jane , type=’basic ’),

-cat(type=’junior ’, empId=$mark),

-supvsr(master=$john , slave=$jane),

-supvsr(master=$john , slave=$mark),

+insured(empId=$mark , type=’basic ’)}

{+ insured(empId=$jane , type=’basic ’),

-supvsr(master=$jane , slave=$john),

-unsup(empId=$jane),

-unsup(empId=$mark),

+insured(empId=$mark , type=’basic ’)}

{+ insured(empId=$jane , type=’basic ’),

-cat(type=’junior ’, empId=$mark),

-supvsr(master=$jane , slave=$john),

-supvsr(master=$john , slave=$mark),

-unsup(empId=$jane),

+insured(empId=$mark , type=’basic ’)}

Observe that constants included in the original AICs are marked with quotes,
whereas those obtained by instantiating variables are marked with a dollar sign.

Fig. 4. Possible founded weak repairs of the inconsistent database w.r.t. the AICs from
Example 1.

4 Parallelization and Stratification

As described in Section 2.3, it is possible to parallelize the search for repairs of
different kinds by splitting the set of AICs into independent sets; in the case of
founded or justified repairs, this parallelization can be taken one step further by
also stratifying the set of AICs. Even though finding partitions and/or stratifi-
cations is asymptotically not very expensive (it can be solved in linear time by

the well-known graph algorithms described below), it may still take noticeable
time if the set of AICs grows very large.

Since, by definition, partitions and stratifications are independent of the ac-
tual database, it makes sense to avoid repeating their computation unless the
set of AICs changes. For this reason, parallelization capabilities are implemented
in repAIrC in a two-stage process. Inside repAIrC, the user can switch to the
Preprocess tab, which provides options for computing partitions and stratifica-
tions of a set of AICs. This results in an annotated file which still can be read
by the parser; in the main tab, parallel computation is automatically enabled
whenever the input file is annotated in a proper manner. Figure 5 shows the
base view of the preprocessing tab.

Fig. 5. Interface for computing parallelization and stratification of AICs.

4.1 Parallelization

Computing optimal partitions in the spirit of [6] is not feasible in a setting where
variables are present, as this would require considering all closed instances of all
AICs – but it is also not desirable, as it would also result in a significant increase
of the number of queries to the database. Instead, we work with the definition of
strong independency given in Section 2. Given a set of AICs, repAIrC constructs
the adjacency matrix for the undirected graph whose nodes are AICs and such
that there is an edge between r1 to r2 iff r1 and r2 are not independent. A
partition is then computed simply by finding the connected components in this
graph by a standard graph algorithm. The pseudo-code for the corresponding
method partition, which takes a set of AICs and returns the set of its partition
into independent subsets, is given in Figure 6.

The partitions computed can then be written to a file. Each partition begins
with the line

#PARTITION_BEGIN_[NO]#

where [NO] is the number of the current partition, and ends with

#PARTITION_END#

and the AICs in each partition are inserted in between, in the standard format.

procedure partition(aics)

visited[v] ← ⊥ (∀ v∈ aics)
partitions ← []

foreach v ∈ aics do
if ¬visited[v] then

part ← []

findCC(v,part,aics,visited)

partitions += [part]

procedure findCC(u,part,

aics,visited)

part += [u]

visited[u] ← >
foreach v ∈ aics do

if ¬visited[v] and u� v then
findCC(v,part,aics,visited)

Fig. 6. Algorithm for partitioning a set of AICs into independent subsets. The test
u � v is done by reading the previously computed adjacency matrix.

Example 4. The AICs in Example 1 can be split in three independent classes,
which can be processed in parallel. Figure 7 shows the result of applying the
parallelization algorithm to the AICs in Example 1. The three classes correspond
to {r1, r2}, {r3} and {r4}.

Computing the founded repairs of our example database using this paral-
lelized set of AICs yields the same results as in Example 3, albeit in a different
order, but takes approx. 0.43 seconds, whereas the unparallelized version required
approx. 6 seconds.

Fig. 7. Parallelization of the set of AICs from Example 1.

As pointed out in Section 2, we can only split a set of AICs into strongly
independent sets if we are computing founded, well-founded or justified repairs.
Therefore, if repAIrC is given a set of partitioned AICs and asked to compute
all repairs, it will produce a warning message and ignore the parallelization.

4.2 Stratification

To compute the partitions for stratification, we need to find the strongly con-
nected components of a similar graph. This is now a directed graph where there
is an edge from r1 to r2 if r1 precedes r2. The implementation is a variant
of Tarjan’s algorithm [18], adapted to give also the dependencies between the
connected components; the pseudo-code is given in Figure 8.

The computed stratification is then presented in a similar syntax to the pre-
vious one, to which a dependency section is added, between the special delimiters
#DEPENDENCIES_BEGIN# and #DEPENDENCIES_END#, and it can again be written to a
file. The dependencies are included in this section as a sequence of strings X -> Y,
one per line, where X and Y are the numbers of two partitions and Y precedes X.

Example 5. The two AICs r1 and r2 in Example 1 cannot be parallelized, as was
seen in Example 4, since they both use the supvsr table, which can be changed
by r1. They can however be stratified, as r2 only changes unsup, which is not used
by r1. Preprocessing this example by repAIrC returns the output in Figure 9.
Now each AIC is indeed in a separate set, and there is a dependency r1 ≺ r2 –
meaning that we can repair the database w.r.t. r1 before considering r2.

Computing the founded repairs of our example database using this stratified
set of AICs now takes only approx. 0.07 seconds.

These examples illustrate the practical speedup obtained by splitting the set
of AICs. Indeed, the independence of the several AICs in Example 1 is very clear
in the repairs computed in Example 3, as they all share common parts corre-
sponding to repairing r3 and r4. By processing all AICs separately we drastically
reduce the size of the trees we need to build: parallelization allows us to build
three trees instead of one single tree whose branches are all possible interleavings
of the branches in the three (necessarily smaller) trees. Likewise, stratification
again replaces one tree by two smaller ones, eliminating some interleavings of
branches. In general, by stratifying AICs, we get an exponential decrease on the
size of the repair trees being built – and therefore also on the total runtime.

However, as mentioned in Section 2, stratification only works when com-
puting founded or justified repairs. If repAIrC is fed a stratified set of AICs
and asked to compute e.g. well-founded repairs, it will warn the user that these
options are incompatible and ignore the stratification.

In addition to alleviating the exponential blowup of the repair trees, par-
allelization and stratification also allow for a multi-threaded implementation,
where repair trees are built in parallel in multiple concurrent threads. To en-
sure that the dependencies between the partitions are respected, the threads
are instructed to wait for other threads that compute preceding partitions. In

procedure stratify(aics)

visited[v] ← ⊥ (∀ v∈ aics)
lowlink ← empty map

dependencies ← ∅
partitions ← []

i ← 0

foreach v ∈ aics do
if ¬visited[v] then

findSCC(v,aics,i,lowlink,visited,partitions,[])

foreach u,v ∈ aics do
if u � v and p[u] 6= p[v] then

dependencies ← dependencies ∪ (p[u],p[v])

procedure findSCC(v,aics,i,lowlink,visited,partitions,stack)

visited[v] ← >
lowlink[v] ← i

i++

push v into stack

isRoot ← >
foreach w ∈ aics do

if v � w and ¬visited[w] then
findSCC(w,aics,i,lowlink,visited,partitions,stack)

if lowlink[v] > lowlink[w] then
lowlink[v] ← lowlink[w]

isRoot ← ⊥
if isRoot then

part ← []

do
pop x from stack

part += [x]

lowlink[x] ← ∞
while x 6= v

partitions += [part]

Fig. 8. Algorithm for stratifying a set of AICs. In procedure stratify, the notation
p[u] denotes the (only) element of partitions containing u.

Fig. 9. Partitions computed by repAIrC for the AICs in Example 1.

Example 5, the thread processing partition 2 would be instructed to first wait
for the thread processing partition 1 to finish.

Our example showed that significant speedups were observable even when
processing small parallelizable sets of AICs. For larger sets of AICs, paralleliza-
tion and stratification are necessary to obtain feasible runtimes. In one test case,
which allowed for 15 partitions to be processed independently, the stratified ver-
sion computed the founded repairs in approximately 1 second, whereas the se-
quential version did not terminate within a time limit of 15000 seconds. This
corresponds to a speedup of at least four orders of magnitude, demonstrating
the practical impact of the contributions of this section.

4.3 Practical Assessment

In the theoretical worst case, parallelization and stratification will have no im-
pact on the construction of the repair tree, as it is possible to construct a set of
AICs with no independent subsets. However, the worst case is not the general
case, and it is reasonable to expect that real-life sets of AICs will actually have
a high parallelization potential.

Indeed, integrity constraints typically reflect high-level consistency require-
ments of the database, which in turn capture the hierarchical nature of relational
databases, where more complex relations are built from simpler ones. Thus, when
specifying active integrity constraints there will naturally be a preference to cor-
rect inconsistencies by updating the more complex tables rather than the most
primitive ones.

Furthermore, in a real setting we are not so much interested in repairing a
database once, but rather in ensuring that it remains consistent as its information
changes. Therefore, it is likely that inconsistencies that arise will be localized to
a particular table. The ability to process independent sets of AICs separately
guarantees that we will not be repeatedly evaluating those constraints that were
not broken by recent changes, focusing only on the constraints that can actually
become unsatisfied as we attempt to fix the inconsistency.

For the same reason, scalability of the techniques we implemented is not a
relevant issue: there is no practical need to develop a tool that is able to fix
hundreds of inconsistencies efficiently simultaneously, since each change to the
database will likely only impact at most a few AICs.

5 Conclusions and Future Work

We described a prototype implementation of repAIrC, a tool to check the in-
tegrity of real-world SQL databases with respect to a given set of active integrity
constraints. Furthermore, repAIrC implements a set of previously published al-
gorithms to compute repairs of inconsistent databases, being able to deal with
the different semantics for active integrity constraints that have been proposed
so far. It can also split a set of AICs using known results on parallelization and
stratification and perform parallel computations of independent repairs, thereby
achieving a practical improvement that can reach several orders of magnitude.
The theoretical soundness of repAIrC follows from results previously published
in [3, 5–7, 11]. We believe that it is the first step towards an implementation of
consistency maintenance features in database management systems based on a
strong theoretical background.

We could go one step further in the automation process and instruct repAIrC
to apply repairs to the database automatically. However, this does not seem a
good strategy: in general, there are several possible repairs, and it has long been
pointed out [10] that there will always be some instances where human interven-
tion is necessary to sort out among the different possibilities. On the contrary,
the design of repAIrC is such that the computation of repairs is isolated from
and transparent to other concurrent uses of the database. This is accomplished
by using standard SQL transaction and rollback mechanisms.

For real-world applications, the next logical step is to move beyond databases
into more generic reasoning systems. There are currently several models for
heterogeneous knowledge management systems, of which the framework of het-
erogeneous nonmonotonic multi-context systems [2] is one of the most general
that have been positively received by the community. Multi-context systems are
nowadays used in practice, as implementations already exist, and they are flexi-
ble enough to adapt to several different usage scenarios. A subset of the authors
of this paper is currently working on defining integrity constraints for multi-
context systems [9], which we plan to extend to active integrity constraints in
the near future. Extending repAIrC to this more encompassing framework would

then be the natural next step. We believe the modularity embedded in its design
will be a key ingredient towards this task.

Finally, on the more technical side, we also intend to increase repAIrC’s per-
formance by means of the integration of a local database cache. In this way,
repAIrC will be able to execute the repeated update/undo actions required dur-
ing the construction of the different repair trees without interacting with the
external database, thereby reducing the significant overhead introduced by that
connection.

Acknowledgments. This work was supported by the Danish Council for Indepen-
dent Research, Natural Sciences, and by FCT/MCTES/PIDDAC under centre
grant to BioISI (Centre Reference: UID/MULTI/04046/2013). Marta Ludovico
was sponsored by a grant “Bolsa Universidade de Lisboa / Fundação Amadeu
Dias”. The authors would also like to thank Graça Gaspar and Patŕıcia Engrácia
for many interesting discussions on the topic of active integrity constraints.

References

1. Serge Abiteboul. Updates, a new frontier. In Marc Gyssens, Jan Paredaens, and
Dirk van Gucht, editors, ICDT, volume 326 of LNCS, pages 1–18. Springer, 1988.

2. Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic
multi-context systems. In AAAI, pages 385–390. AAAI Press, 2007.

3. Luciano Caroprese, Sergio Greco, and Cristian Molinaro. Prioritized active in-
tegrity constraints for database maintenance. In Kotagiri Ramamohanarao,
P. Radha Krishna, Mukesh K. Mohania, and Ekawit Nantajeewarawat, editors,
DASFAA, volume 4443 of LNCS, pages 459–471. Springer, 2007.

4. Luciano Caroprese, Sergio Greco, and Ester. Zumpano. Active integrity constraints
for database consistency maintenance. IEEE Transactions on Knowledge and Data
Engineering, 21(7):1042–1058, 2009.

5. Luciano Caroprese and Miroslaw Truszczyński. Active integrity constraints and
revision programming. Theory and Practice of Logic Programming, 11(6):905–952,
November 2011.

6. Lúıs Cruz-Filipe. Optimizing computation of repairs from active integrity con-
straints. In Christoph Beierle and Carlo Meghini, editors, FoIKS, volume 8367 of
LNCS, pages 361–380. Springer, 2014.

7. Lúıs Cruz-Filipe, Patŕıcia Engrácia, Graça Gaspar, and Isabel Nunes. Computing
repairs from active integrity constraints. In Hai Wang and Richard Banach, editors,
TASE, pages 183–190. IEEE, 2013.

8. Lúıs Cruz-Filipe, Michael Franz, Artavazd Hakhverdyan, Marta Ludovico, Isabel
Nunes, and Peter Schneider-Kamp. repAIrC: A tool for ensuring data consis-
tency by means of active integrity constraints. In Ana Fred, Jan Dietz, David
Aveiro, Kecheng Liu, and Joaquim Filipe, editors, IC3K, volume 3, pages 17–26.
SCITEPRESS, November 2015.

9. Lúıs Cruz-Filipe, Isabel Nunes, and Peter Schneider-Kamp. Integrity constraints
for general-purpose knowledge bases. In FoIKS. Springer, 2016. Accepted for
publication.

10. Thomas. Eiter and Georg Gottlob. On the complexity of propositional knowledge
base revision, updates, and counterfactuals. Artificial Intelligence, 57(2–3):227–
270, 1992.

11. Sergio Flesca, Sergio Greco, and Ester Zumpano. Active integrity constraints. In
Eugenio Moggi and David Scott Warren, editors, PPDP, pages 98–107. ACM, 2004.

12. Antonis C. Kakas and Paolo Mancarella. Database updates through abduction.
In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors, VLDB, pages
650–661. Morgan Kaufmann, 1990.

13. Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updating
a knowledge base and revising it. In James F. Allen, Richard Fikes, and Erik
Sandewall, editors, KR, pages 387–394. Morgan Kaufmann, 1991.

14. V. Wiktor Marek and Miroslaw Truszczynski. Revision programming, database
updates and integrity constraints. In Georg Gottlob and Moshe Y. Vardi, editors,
ICDT, volume 893 of LNCS, pages 368–382. Springer, 1995.

15. Enric Mayol and Ernest Teniente. A survey of current methods for integrity con-
straint maintenance and view updating. In Peter P. Chen, David W. Embley,
Jacques Kouloumdjian, Stephen W. Liddle, and John F. Roddick, editors, ER
(Workshops), volume 1727 of LNCS, pages 62–73. Springer, 1999.

16. Shamim A. Naqvi and Ravi Krishnamurthy. Database updates in logic program-
ming. In Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, PODS
1988, pages 251–262. ACM, 1988.

17. Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules.
J. Log. Program., 30(2):125–143, 1997.

18. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

19. Ernest Teniente and Antoni Olivé. Updating knowledge bases while maintaining
their consistency. VLDB J., 4(2):193–241, 1995.

20. Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

21. Marianne Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1990.

