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Abstract

We solve a 40-year-old open problem on depth optimality of sorting networks. In 1973, Donald E. Knuth
detailed sorting networks of the smallest depth known for n ≤ 16 inputs, quoting optimality for n ≤ 8
(Volume 3 of “The Art of Computer Programming”). In 1989, Parberry proved optimality of networks with
9 ≤ n ≤ 10 inputs. We present a general technique for obtaining such results, proving optimality of the
remaining open cases of 11 ≤ n ≤ 16 inputs. Exploiting symmetry, we construct a small set Rn of two-layer
networks such that: if there is a depth-k sorting network on n inputs, then there is one whose first layers
are in Rn. For each network in Rn, we construct a propositional formula whose satisfiability is necessary
for the existence of a depth-k sorting network. Using an off-the-shelf SAT solver we prove optimality of the
sorting networks listed by Knuth. For n ≤ 10 inputs, our algorithm is orders of magnitude faster than prior
ones.

1. Introduction

General-purpose sorting algorithms are based on comparing and exchanging pairs of inputs. If the order
of these comparisons is predetermined by the number of inputs to sort and does not depend on their concrete
values, then the algorithm is said to be data oblivious. Such algorithms are well-suited for e.g. parallel sorting
or secure multi-party computations, unlike standard sorting algorithms, such as QuickSort, MergeSort or
HeapSort, where the order of comparisons performed depends on the input data.

Sorting networks are a classical formal model for data-oblivious algorithms [19], where n inputs are fed
into networks of n channels connected pairwise by comparators. Each comparator takes the two inputs
from its two channels, compares them, and outputs them sorted back to the same two channels. A set of
consecutive comparators can be viewed as a “parallel layer” if no two comparators act on the same channel.
A comparator network is a sorting network if the output on the n channels is always the sorted sequence of
the inputs.

Ever since sorting networks were introduced, there has been a quest to find optimal sorting networks:
optimal size (minimal number of comparators), as well as optimal depth (minimal number of layers) networks.
In their celebrated result, Ajtai, Komlós and Szemerédi [1] give a construction for sorting networks with
O(n log n) comparators in O(log n) parallel levels. These AKS sorting networks are a classical example of
an algorithm optimal in theory, but highly inefficient in practice. Although they attain the theoretically
optimal O(n log n) number of comparisons and O(log n) depth, the AKS networks are infamous for the large
constants hidden in the big-O notation. On the other hand, already in 1968, Batcher [4] gave a simple
recursive construction that, even though it creates networks of depth O(log2 n), is superior to AKS networks
for all practical values of n.
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It is of particular interest to construct optimal sorting networks (both in size and in depth) for specific
small numbers of inputs. Such networks can be used as building blocks to construct more efficient networks
on larger numbers of inputs, for example by serving as base cases in recursive constructions such as Batcher’s
odd-even construction.

Already in the fifties and sixties various constructions appeared for small sorting networks on few inputs.
In the 1973 edition of “The Art of Computer Programming” [19] (vol. 3, Section 5.3.4), Knuth detailed the
smallest sorting networks known at the time with n ≤ 16 inputs.

However, showing their optimality has proved to be extremely challenging. For n ≤ 8 inputs, optimality
was established by Knuth and Floyd [16] in 1973. No further progress had been made on the problem
until 1989, when Parberry [28] showed that the networks given for n = 9 and n = 10 are also optimal.
Parberry obtained this result by implementing an exhaustive search with pruning based on symmetries in
the first two parallel steps in the sorting networks, and executing the algorithm on a Cray-2 supercomputer.
Despite the great increase in available computational power in the two and a half decades since, his algorithm
would still not be able to handle the case n = 11 or bigger. More recently, there were additional attempts [27]
at solving the n = 11 case, but we are not aware of any successful one.

In this paper, some 40 years after the publication of the networks by Knuth, we finally prove their
optimality by settling the remaining open cases of 11 ≤ n ≤ 16 inputs. Our approach combines two
methodologies: symmetry breaking and Boolean satisfiability.

Symmetry Breaking. We show how to construct a small set Rn of two-layer networks on n channels such
that: if there is a sorting network on n channels of a given depth, then there is one whose first two
layers are in this set. We first show how each two-layer network can be represented by a graph, with
isomorphic graphs corresponding to equivalent networks. By defining a notion of “relative strength”
between networks that takes into account their effects on the inputs, we further restrict the set of
two-layer networks. We show how to characterize the strongest networks using context-free grammars,
which enables us to construct the sets Rn for up to n = 40 inputs within two hours of computation.
For example, R11 consists of 28 networks, enabling us to solve the optimal-depth problem for n = 11
in terms of only 28 independent cases, as opposed to over one billion cases of all two-layer networks
on 11 channels. Similarly, we show that |R13| = 117.

Boolean Satisfiability. With the first two layers restricted to a small set, we construct a family of propo-
sitional formulas whose satisfiability is necessary for the existence of sorting networks of a given size.
Using an off-the-shelf SAT solver we show that all the constructed formulas are unsatisfiable, and
hence we conclude that for n ≤ 16 inputs the networks listed in [19] are indeed optimal. A similar
construction, without restricting the first two layers, is able to find optimal-depth sorting networks
for n ≤ 10 inputs and prove them optimal, thus providing independent confirmation of the previously
known results.

We obtained all our results using an off-the-shelf SAT solver running under Linux on commodity hard-
ware. It is noteworthy that our algorithm required a few seconds to prove the optimality of networks with
n ≤ 10 inputs, whereas for n = 10 the algorithm described in [28] was estimated to take hundreds of hours
on a supercomputer, and the algorithm described in [27] took more than three weeks on a desktop computer.

The work we describe is another success in the history of computer-assisted proofs. Since the proof of the
four-color theorem [2, 3], in 1976, several mathematical results have been proven with the help of a computer.
Nearly all of these have only been proved by exhaustively analyzing an extremely large search space and
using clever reduction techiques, as in our case. SAT-solving has been a key tool in some recent successes
in this area, such as the proof of Erdős’ discrepancy conjecture for C = 2 [20], the proof that the Ramsey
number R(3, 3, 4) is equal to 30 [14], and the solution to the Boolean Pythagorean Triples Problem [18].

This paper is an extended version of [5] and [12]. The first paper presents the theory and experiments
for calculating optimal sorting networks. In the current paper we construct even smaller sets of “non-
isomorphic” two-layer networks using a much faster algorithm (the construction in [5] does not scale beyond
n = 13 inputs). This new algorithm is a culmination of the work presented in the second paper [12].
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However, that paper deals only with computing the sets of “relevant” two-layer networks, and not with
computing the optimal sorting networks as we do in this paper.

2. Preliminaries on sorting networks

An example of a comparator network on 4 channels is shown in Figure 1. The figure introduces the
graphical notation used throughout the paper to depict comparator networks. Channels are indicated as
horizontal lines (with channel 4 at the bottom), comparators are indicated as vertical lines connecting a pair
of channels, and layers are separated by dashed lines. The figure further shows how the inputs 〈5, 2, 0, 7〉
and 〈0, 1, 0, 1〉 propagate from left to right through the network.
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Figure 1: The comparator network {(1, 2), (3, 4)}; {(1, 3), (2, 4)}; {(2, 3)} with 4 channels, 5 comparators, and depth 3. On
the left, the input 〈5, 2, 0, 7〉 propagates through the network to give the output 〈0, 2, 5, 7〉; on the right, the input 〈0, 1, 0, 1〉
propagates through the network to give the output 〈0, 0, 1, 1〉.

Formally, a comparator network C with n channels and depth d is a sequence C = L1; . . . ;Ld of d layers.
Each layer Lk is a set of comparators (i, j), joining the channels i and j, with 1 ≤ i < j ≤ n. In every layer
Lk, each channel i is used by at most one comparator, i.e.

∣∣{ j ∣∣ (i, j) ∈ Lk ∨ (j, i) ∈ Lk

}∣∣ ≤ 1 for each i.
The size of C is the total number of comparators in all its layers. Given comparator networks C1 and C2,
let C1;C2 denote the comparator network obtained by concatenating the layers of C1 and C2. If C1 has m
layers, then it is an m-layer prefix of C1;C2.

An input to C is a sequence x̄ = 〈x1, . . . , xn〉 of numbers. The input is propagated through the network,
each comparator (i, j) outputting the smaller of its inputs on channel i and the larger of the inputs on
channel j.

Denote by C(x̄, k, i) the value of channel 1 ≤ i ≤ n at layer 0 ≤ k ≤ d given input x̄. Then we take
C(x̄, 0, i) = xi (input), and for 0 ≤ k < d we define:

C(x̄, k + 1, i) =


min(C(x̄, k, i), C(x̄, k, j)) if (i, j) ∈ Lk+1

max(C(x̄, k, i), C(x̄, k, j)) if (j, i) ∈ Lk+1

C(x̄, k, i) otherwise.

The output of C on x̄ is the sequence C(x̄) = 〈C(x̄, d, 1), C(x̄, d, 2), . . . , C(x̄, d, n)〉. A comparator network is
called a sorting network if the output C(x̄) is sorted (ascendingly) for all input sequences x̄. The comparator
network depicted in Figure 1 is a sorting network. The figure further indicates the values C(x̄, k, i) on each
channel i after each layer k for x̄ = 〈5, 2, 0, 7〉 (on the left) and for x̄ = 〈0, 0, 1, 1〉 (on the right).

Given sufficient parallel computational power (e.g., assuming the networks are directly implemented in
hardware), independent comparators can be evaluated in parallel, and hence the depth of a sorting network
corresponds to the number of parallel steps needed to sort n inputs. Thus, given number of channels n, we
focus on finding sorting networks of minimal depth.1 We denote the smallest depth of a sorting network on
n channels by T (n).

Prior to this paper, the precise values of T (n) were known only for n ≤ 10: the values for n ≤ 8 are
given in [19], and those for n = 9, 10 are reported by Parberry in [29]. These, and the best previously known
bounds for n ≤ 16, are summarized in Table 1.

1In general, it is possible to construct a sorting network with fewer comparators, albeit larger depth, than the one that
achieves T (n). We refer the readers interested in the minimum number of comparators needed to sort n channels to [19] and [9]
where the optimal values are presented for n ≤ 8 and n = 9, 10, respectively.
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n 1 2 3,4 5,6 7,8 9,10 11,12 13,14,15,16
T (n) ≤ 0 1 3 5 6 7 8 9
T (n) ≥ 0 1 3 5 6 7 7 7

Table 1: The best previously known upper and lower bounds for T (n).

In this paper, we prove optimality of the upper bounds of T (n) for 11 ≤ n ≤ 16. For example, we show
that T (11) ≥ 8. To prove such a result, we have to establish that none of the 7-layer, 11-channel comparator
networks is a sorting network.

Each comparator joins two distinct channels, and hence one can view each layer of an n-channel compara-
tor network as a matching on n elements [29]. It turns out that there are 35,696 matchings on 11 elements.2

So, to establish the lower bound T (11) ≥ 8, we have to show that none of the 35,6967 ≥ 1031 comparator
networks on 11 channels with 7 layers is a sorting network. Similarly, establishing that T (13) ≥ 9 requires
showing that none of the 568,5048 ≥ 1046 comparator networks on 13 channels with 8 layers is a sorting
network. These numbers immediately make any form of exhaustive search infeasible.

In the first part of this paper, we show how to reduce the size of this search space. Then, in Section 5,
we reduce the existence of a sorting network to the problem of propositional satisfiability.

In full, our algorithm to determine whether a sorting network of a given depth exists consists of four
phases. In the first phase, we extend the approach introduced by Parberry in [29], and partition of the
set of two-layer comparator networks into equivalence classes. We then select representatives of some of
these equivalence classes so that, if there is a sorting network of the given size, then there is one with the
first two layers equal to some chosen representative. In the next phase, we reduce the existence of a sorting
network beginning with one of the calculated representatives to satisfiability of a corresponding propositional
formula. Finally, we determine the satisfiability of the obtained formulas using a SAT solver.

On the face of it, to determine whether a given n-channel candidate comparator network is a sorting
one it seems necessary to try all possible permutations of {1, . . . , n} as inputs. The following classical result
states that it suffices to consider only Boolean inputs, i.e. sequences of 0 and 1s. This reduces the size of
the set of inputs from n! permutations to 2n Boolean inputs.

Lemma 1 (The zero-one principle [19]). A comparator network C is a sorting network if and only if C
sorts all Boolean inputs.

In the remainder of the paper, we consider only comparator networks with Boolean inputs. We will
write Bn = {0, 1}n to denote the set of Boolean inputs, and, given a comparator network C, we define
outputs(C) =

{
C(x̄)

∣∣ x̄ ∈ Bn }
. Hence, C is a sorting network if and only if all elements of outputs(C)

are sorted (in ascending order).

3. Equivalence of comparator networks

A first step in reducing the search space of all comparator networks can already be found in the work
of Parberry [29]. A layer on n channels is called maximal if it contains

⌊
n
2

⌋
comparators, i.e., no further

comparators can be added to the layer.

Lemma 2 (Parberry [29]). Let L be any maximal layer on n channels. If there is a sorting network on
n channels with depth d, then there is one whose first layer is L.

This lemma implies that, when searching for an optimal-depth sorting network, the first layer can be
fixed to any maximal first layer, effectively reducing the problem by one layer. In this paper we consider
the following choice of the first layer of n-channel sorting networks:

Fn =
{

(2i− 1, 2i)
∣∣ 1 ≤ i ≤

⌊
n
2

⌋ }
2Sequence A000085 of the the On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.
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See for example the network of Figure 1, whose first layer is F4.
Assuming the first layer has been fixed to some maximal layer, Parberry also states [29] that one need

not consider second layers which are identical modulo permutations of channels. Let π be a permutation on
{1, . . . , n}. For a comparator (i, j) we define π((i, j)) = (π(i), π(j)). Then for a layer L, we define

π(L) =
{

(π(i), π(j))
∣∣ (i, j) ∈ L

}
.

If i < j for each (i, j) ∈ π(L), then π(L) is also a layer, otherwise we say that π(L) is a generalized layer.
The definition naturally extends to a network C = L1; · · · ;Lk by applying the permutation on each layer
independently: π(C) = π(L1); · · · ;π(Lk), yielding a generalized comparator network. It is well known (see
e.g. Exercise 5.3.4.16 of [19]) that a generalized sorting network can always be “untangled” into a standard
sorting network of the same dimensions (see Figure 2 for an example). Furthermore, this operation preserves
the “standard prefix”, i.e., the longest prefix of the network that does not have generalized layers. Formally,
if E is a comparator network and F is a generalized comparator network such that E;F is a generalized
sorting network, then there is a comparator network F ′ of the same depth as F so that E;F ′ is a sorting
network.

Figure 2: The 4-channel networks to the left and to the right are equivalent via the permutation (1 3)(2 4). The middle network
is the generalized comparator network obtained by applying the permutation to the left comparator network. The right network
can then be obtained by untangling the middle network.

Taking into account that the first layer is fixed (Lemma 2), Parberry [29] considered permutations that
leave the first layer intact.

Lemma 3 (Theorem 5.4 of [29]). Let L1 and L2 be layers on n channels. Let π be a permutation such
that L1 is maximal, π(L1) = L1, and π(L2) is a layer. Then there is a depth-d sorting network of the form
L1;L2;C if and only if there is one of the form L1;π(L2);C ′.

The proof of depth optimality for sorting networks with 9 channels described in [29] is based on the
application of Lemma 3 together with a brute force algorithm that first partitions the set of two-layer
networks with a fixed maximal first layer into equivalence classes modulo permutations that fix the first
layer. The “small” number of equivalence classes for n ≤ 10 channels is computed in this way and reported
in [29]. However, when partitioning networks into equivalence classes using a brute-force approach, one must
consider the rapidly increasing number of permutations, and this approach does not scale as the number of
channels grows. Furthermore, even if these equivalence classes were given, the search algorithm described
in [29] does not scale for larger numbers of channels.

The main theme of the first half of this paper is a better computation and exploitation of symmetries in
the first two levels of comparator networks. Using the terminology of the definition below, we aim to find
as small as possible complete sets of filters. For example, for n = 16 we reduce the number of second layers
that must be considered from 46,206,736 to only 211.

Definition 1. A set F of comparator networks on n channels is a complete set of filters for the optimal-
depth sorting network problem if there exists an optimal-depth sorting network on n channels of the form
C;C ′ for some C ∈ F .

We now introduce a notion of equivalence of comparator networks that is stronger than the one considered
by Parberry [29]. Let C be a comparator network on n channels. The graph representation of C is a
directed and labeled graph G(C) = (V,E), where each node in V corresponds to a comparator in C and
E ⊆ V × {1, 2} × V . Let c(v) denote the comparator corresponding to a node v. Then (u, 1, v) ∈ E if the
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minimum output of c(u) is an input of c(v), and (u, 2, v) ∈ E if the maximum output of c(u) is an input of
c(v). Note that the number of channels cannot be inferred from this representation, as channels that are
unused are not represented.

Figure 3 illustrates the graph representations of the left and right networks from Figure 2, where the
comparators are labeled alphabetically in order of occurrence (left-to-right, top-down). Note that these two
graphs can be seen to be isomorphic by mapping the vertices as a 7→ b′, b 7→ a′, c 7→ c′, d 7→ d′, e 7→ e′ and
f 7→ f ′.
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Figure 3: Graph representations of the two networks in Figure 2.

Clearly, graphs representing comparator networks are acyclic, and the degrees of their vertices are
bounded by 4. The strong relationship between equivalence of comparator networks and isomorphism
of their corresponding graphs is reflected in Lemma 4 below, which implies that the comparator network
equivalence problem is polynomially reduced to the bounded-valence graph isomorphism problem.

Definition 2. Let C1 and C2 be n-channel comparator networks. Then we write C1 ≈ C2 if G(C1) and
G(C2) are isomorphic.

Lemma 4 (Choi & Moon [6], Proposition 2). Let C = C1;D and C2 be n-channel comparator networks
such that C1 and C2 have the same depth and G(C1) ≈ G(C2). If C is a sorting network, then there is an
n-channel comparator network D′ of the same depth as D such that C2;D′ is a sorting network.

The graph isomorphism problem is one of a very small number of problems belonging to NP that are
neither known to be solvable in polynomial time nor known to be NP-complete. However, it is known that
the isomorphism of graphs of bounded valence can be tested in polynomial time [21], so the comparator
network equivalence problem can be efficiently solved.

4. Complete sets of two-layer filters

Recall that our goal is for given n to compute as small as possible complete sets of filters consisting of
two-layer networks on n channels. We now show how to exploit the graph representation to compute such
a set.

4.1. A Symbolic Representation

The obvious approach for finding all two-layer prefixes modulo symmetry is to generate all two-layer
networks, and then apply graph isomorphism to find canonical representatives of the equivalence classes.
We evaluated this approach using the popular graph isomorphism tool nauty [22], but found that the
exponential growth in the number of two-layer prefixes prevents this approach from scaling. Therefore, we
opted for a symbolic representation of these graphs that captures isomorphism.

For the special case of two-layer networks, the vertices in the resulting graphs always have degree 1 or 2.
Therefore, they always consist of sets of “sticks” and “cycles”, and they are completely characterized by the
maximal-length simple paths they contain. Moreover, this representation can be determined directly from
the network, as illustrated in Figure 4.

It is useful to adopt the following terminology on channels. A channel in a comparator network is called
a min-channel (respectively, a max-channel) if it is the smaller (resp. larger) channel in some comparator
of the first layer. We will also occasionally refer to a min- or max- channel at a layer d with the obvious
meaning. A channel of a comparator network is called a free channel if it is not used in the first layer.
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Definition 3. A path in a two-layer network C is a sequence 〈p1p2 . . . pk〉 of distinct channels such that
each pair of consecutive channels is connected by a comparator in C.

The word corresponding to 〈p1p2 . . . pk〉 is 〈w1w2 . . . wk〉, where:

wi =


0 if pi is the free channel

1 if pi is a min-channel

2 if pi is a max-channel

A path is maximal if it is a simple path (with no repeated nodes) that cannot be extended (in either
direction). A network is connected if its graph representation is connected.

Definition 4. Let C be a connected two-layer network on n channels. Then word(C) is defined as follows,
where there are three kinds of words.

Head-word. If n is odd, then word(C) is the word corresponding to the maximal path in C starting with
the (unique) free channel.

Stick-word. If n is even and C has two channels not used in layer 2, then word(C) is the lexicographically
smallest of the words corresponding to the two maximal paths in C starting with one of these unused
channels (which are reverse to one another).

Cycle-word. If n is even and all channels are used by a comparator in layer 2, then word(C) is the
lexicographically smallest word corresponding to a maximal path in C that begins with two channels
connected in layer 1.

The set of all possible words (not necessarily minimal with respect to lexicographic ordering) can be
described by the following BNF-style grammar.

Word ::= Head | Stick | Cycle Stick ::= (12 + 21)+ (1)

Head ::= 0(12 + 21)∗ Cycle ::= 12(12 + 21)+

To avoid ambiguity, we annotate each word with a tag from the set {h, s, c} to indicate whether it is a Head-,
Stick- or Cycle-word, respectively. In Figure 4, the three two-layer networks a–c lead to the generation of a
word of each kind resulting from the paths shown in a′–c′, respectively.

Definition 5. The word representation of a two-layer comparator network C, word(C), is the multi-set
containing word(C ′) for each connected component C ′ of C; we will denote this set by the “sentence”
w1;w2; . . . ;wk, where the words are in lexicographic order (including their tags).

In particular, a connected network will be represented by a sentence with only one word, so there is
no ambiguity in the notation word(C). The requirement that the first layer is maximal corresponds to the
requirement that the multi-set word(C) has at most one Head-word. Figure 4(d) illustrates the case of a
multi-component two-layer network.

Conversely, a word w defines a two-layer network as follows.

Definition 6. Let w be a word in the language of Equation (1), and n = |w|. The two-layer network net(w)
has first layer Fn and second layer defined as follows.

1. If w is a Stick-word or a Cycle-word, ignore the first character; then, for k = 0, . . . ,
⌊
n
2

⌋
− 1, take

the next two characters xy of w and add a second-layer comparator between channels 2k + x and
2(k + 1) + y. Ignore the last character; if w is a Cycle-word, connect the two remaining channels at
the end.

2. If w is a Head-word, proceed as above but start by connecting the free channel to the channel indicated
by the second character.
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(a) (b) (c) (d)

(a′) (b′) (c′) (d′)

Figure 4: Networks and paths. Networks (a–c) correspond to the three cases in Definition 4, and (a′–c′) depict the corresponding
maximal paths. Path (a′) starts from the free channel, with corresponding word 01221h. Path (b′) starts from a free channel
at layer 2, corresponding to the word 21212112s; the reverse path corresponds to the smaller word 21121212s, which represents
network (b). For the cycle in (c′), the smallest word is 121221c, obtained on the reverse path starting from channel 1.
Network (d) consists of three connected components (the sets of channels {1, 4, 6, 9}, {2, 5, 7, 10} and {3, 8}), corresponding to
the first two layers of the 10-channel sorting network from Figure 49 of [19]. The first two components contain cycles represented
by 1221c, and the third yields the Stick-word 12s. The network is thus represented by the sentence 12s; 1221c; 1221c. In turn,
this sentence generates the equivalent network (d′).
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n 3 4 5 6 7 8 9 10 11 12 13 14
|Gn| 4 10 26 76 232 764 2,620 9,496 35,696 140,152 568,504 2,390,480
|R(Gn)| 4 8 16 20 52 61 165 152 482 414 1,378 1,024

n 15 16 17 18 19
|Gn| 10,349,536 46,206,736 211,799,312 997,313,824 4,809,701,440
|R(Gn)| 3,780 2,627 10,187 6,422 26,796

Table 2: Values of |Gn| and |R(Gn)| for n ≤ 19. Besides the values given in the table, |R(G20)| = 15,906 was computed in a
few seconds, and |R(G30)| = 1,248,696 in under a minute.

To generate a network from a sentence, we simply generate the networks for each word in the sentence
and compose them in the same order. Figure 4(d′) illustrates this construction.

The following lemma shows that abstracting networks to words captures network equivalence.

Lemma 5. Let C and C ′ be two-layer comparator networks on n channels. Then C ≈ C ′ if and only if
word(C) = word(C ′).

Proof. The “if” part follows from the observation that, for two-layer networks, C ≈ C ′ means that there
is a permutation π such that C ′ equals π(C) with possibly some comparators reversed in the second layer.
Thus, any path obtained in C beginning at channel j can be obtained in C ′ by beginning at channel π(j),
and vice versa. The “only if” part is straightforward.

Remark 1. In algebraic terms, the functions word and net form an adjunction between the preorders of
words (with lexicographic ordering) and two-layer comparator networks (with equivalence). The function
word can be seen as a “forgetful” functor that forgets the specific order of channels in a net, whereas net
generates the “free” network with first layer Fn from a given word. Furthermore, word always returns the
minimum element in the fiber net−1(w), whence lexicographic minimal words can be used to characterize
equivalent networks.

Remark 2. Note that Definition 6 can be adapted to any choice of a maximal first layer.

Definition 6 fixes the first layer of a two-layer comparator network net(w) to Fn. Denote the set of all
possible second layers (in a two-layer network whose first layer is Fn) by Gn. We denote the equivalence
classes of the two-layer networks whose first layer is Fn and whose second layer is a member of Gn by R(Gn).
We view R(Gn) as a set of representatives of the equivalence classes. So R(Gn) is viewed as a maximal set
of non-equivalent networks.

Theorem 1. For any n ≥ 3, the set R(Gn) of two-layer comparator networks is a complete set of filters for
the optimal-depth sorting network problem.

As a consequence of Lemma 5, R(Gn) can be constructed simply by generating all multi-sets of words with
at most one Head-word yielding exactly n channels. This procedure has been implemented straightforwardly
in Prolog, resulting in the values in Table 2.

As mentioned in Section 2, |Gn| corresponds to the number of matchings in a complete graph with n
nodes, since every comparator joins two channels. The sequence |R(Gn)| does not appear to be known
already, and it does not appear to have a simple description. The following property is interesting to note.

Theorem 2. For odd n, |R(Gn)| = |R(Gn−1)|+ 2 |R(Gn−2)|.

Proof. The proof is based on the word representation of the networks. If n is odd, then word(C) contains
exactly one word beginning with 0. If this word is 0h, then removing it yields a network with n−1 channels,
and this construction is reversible. Otherwise, removing the two last letters in this word yields a network
with n− 2 channels; since the removed letters can be 12 or 21, this matches each network on n− 2 channels
to two networks on n channels.

9



4.2. Saturation

We now introduce a notion that further restricts the set of networks we need to consider when searching
for optimal sorting networks. Instead of just looking at the structure of the comparators (modulo per-
mutation), we further take into account the actual effect of the network on its inputs, and focus only on
those networks that achieve the “most” amount of sorting. Similar to the way that we use grammars to
characterize isomorphic networks, here too we first define the desired semantic property, and later provide
a syntactic characterization in terms of a grammar. The following lemma makes precise what we mean by
achieving the “most” amount of sorting.

Lemma 6. Let C = P ;S be a sorting network of depth d and Q be a comparator network such that P and
Q have the same depth, and outputs(Q) ⊆ outputs(P ). Then Q;S is a sorting network of depth d.

Proof. Since P and Q have the same depth, the depth of Q;S is d. Let x̄ ∈ Bn be an arbitrary input.
Then Q(x) ∈ outputs(Q) ⊆ outputs(P ). Hence, there is y ∈ Bn such that Q(x) = P (y). Thus, (Q;S)(x) =
S(Q(x)) = S(P (y)) = (P ;S)(y) = C(y), which is sorted since C is a sorting network.

Lemma 6 generalizes, so that it suffices that there exists a permutation mapping the set of outputs of
one network into the set of outputs of the other network.

Lemma 7. Let C = P ;S be a sorting network of depth d and Q be a comparator network such that P and
Q have the same depth, and outputs(Q) ⊆ π(outputs(P )) for some permutation π on n channels. Then there
exists a sorting network of the form Q;S′ of depth d.

Proof. Let C = P ;S be a sorting network of depth d. Then π(C) = π(P );π(S) is a generalized sorting
network. Since outputs(Q) ⊆ π(outputs(P )) = outputs(π(P )), Lemma 6 implies that Q;π(S) is also a
generalized sorting network. Untangling π(S), we obtain S′ such that Q;S′ is a sorting network of depth d.

For comparator networks Ca and Cb, if outputs(Cb) ⊆ π(outputs(Ca)) for some permutation π, we write
Cb � Ca, and say that Cb subsumes Ca. Note that this relation includes equivalence. By Lemma 7, it
suffices to consider two-layer networks that are minimal with respect to subsumption.

Corollary 1. The set of equivalence classes of two-layer networks that are minimal with respect to sub-
sumption is a complete set of filters.

Suppose one wishes to compute these minimal (up to the subsumes relation) elements directly. Having
fixed the first layer to some maximal layer (e.g., Fn), there are still |Gn| many possibilities for the second
layer (see Table 2), the size of their output sets is potentially exponential, and there are n! permutations to
consider, per pair of output sets, to determine subsumption. So this problem quickly becomes intractable.
One might consider clever optimizations to reduce the computation time, but such an approach does not
scale well either.

Instead, we shall define a new class of networks, which we call saturated two-layer networks. This class,
as it turns out, has a simple syntactical characterization using the notion of words. Moreover, we shall
prove that it forms a complete set of filters. We experimentally verify for small values of n that the class of
saturated two-layer networks is precisely the set of minimal two-layer networks with respect to subsumption.
We conjecture that the equality holds for all values of n. Note that our results on the depth-optimality of
sorting networks do not depend on this conjecture as we only require that the class of saturated two-layer
prefixes forms a complete set of filters, which we prove in Theorem 6.

Before we introduce saturated networks formally, we point out that restricting attention to such networks
significantly reduces the number of two-layer prefixes we need to consider. The numbers |Sn| of saturated
two-layer networks and |R(Sn)| of their equivalence classes modulo graph isomorphism are given in Table 3.
For example, for n = 16, we reduce the number of two-layer prefixes to consider from 2,627 to 323.
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Definition 7. A comparator network C is redundant if there exists a network C ′ obtained from C by
removing a comparator such that outputs(C ′) = π(outputs(C)) for some permutation π. A network C is
saturated if it is non redundant, and every network C ′ obtained by adding a comparator to C satisfies
outputs(C ′) 6⊆ π(outputs(C)) for every permutation π.

For example, any comparator network that contains comparators between the same two channels at
consecutive layers is redundant. The notion of saturation is a generalization of Parberry’s work in the first
layer [28]: Lemma 2 can be restated as saying that the first layer of a saturated comparator network on n
channels always contains

⌊
n
2

⌋
comparators.

The following property quantifies the impact of removing redundant two-layer prefixes.

Theorem 3. The number of non-equivalent redundant two-layer networks on n channels is |R(Gn−2)|.

Proof. The proof is based on the word representation of the networks. If C is a redundant net, then
the sentence word(C) contains the word 12c. Removing one occurrence of this word yields a sentence
corresponding to a network with n − 2 channels. This construction is reversible, so there are |R(Gn−2)|
words corresponding to redundant networks on n channels.

In order to characterize saturated networks syntactically, we adopt the notion of a pattern. A pattern
P is a partially specified network: it is a set of channels connected by comparators, but it may also include
“external” comparators (represented as a singleton node) that are connected to one channel in P and one
channel not in P . A comparator network C contains a pattern P of depth d on m channels if there are
a depth-d prefix C1 of C and distinct channels c1, . . . , cm of C1 such that: (i) if P contains a comparator
between channels i and j at layer 1 ≤ k ≤ d, then C1 contains a comparator between channels ci and
cj at layer k; (ii) if P contains an external comparator touching channel i at layer 1 ≤ k ≤ d, then C1

contains a comparator between channel ci and a channel c 6∈ {c1, . . . , cm} at layer k; (iii) C1 contains no
other comparators connecting to or between channels c1, . . . , cm.

Figure 5 depicts two patterns (a) and (b) and two networks (c) and (d). The depth 2, 3-channel pattern
depicted in (a) occurs in network (c) but not in (d), while the pattern in (b) does not occur in either
network (c) or (d): its third channel is never used, while all channels of (c) and (d) are used in the first two
layers.

(a) (b) (c) (d)

Figure 5: Two patterns (a, b) and two networks (c, d).

Theorem 4. Let C be a saturated two-layer network. Then C contains none of the two-layer patterns in
Figure 6.

(1a) (1b) (1c) (2) (3a) (3b)

Figure 6: Patterns forbidden in a saturated two-layer network.
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Proof. In all cases we show how to find i and j such that outputs(C; (i, j)) ⊆ outputs(C) whenever C contains
one of the patterns in Figure 6. Depending on how the pattern is embedded in C, (i, j) may be a generalized
comparator; in that case, outputs(C; (j, i)) ⊆ outputs(π(C)) for π = (i j).

1. Assume by contradiction that C includes the pattern (1a) and let the channels corresponding to
those in the pattern be a, b and c, from top to bottom. Define C ′ = C; (c, b) and let x̄ ∈ Bn. If
C ′(x̄) 6= C(x̄), then C(x̄, 1, c) = 1 and C(x̄, 1, b) = 0. Since b is a max-channel, this means that
C(x̄, 0, a) = C(x̄, 0, b) = 0 and C(x̄, 0, c) = 1. Then C(x̄′) = C ′(x̄) for the input x̄′ obtained from x̄
by exchanging the values in positions c and b. Therefore outputs(C ′) ⊆ outputs(C), contradicting the
fact that C is saturated.
Case (1b) is similar, adding a comparator (a, c), and either construction applies to case (1c).

2. Assume by contradiction that C includes the pattern (2), and let the channels corresponding to those
in the pattern be a, b, c and d, from top to bottom. Define C ′ = C; (a, d), and let x̄ ∈ Bn. If
C ′(x̄) 6= C(x̄), then C(x̄, 1, a) = 1 and C(x̄, 1, d) = 0. Since a is a min-channel and d is a max-channel,
this means that C(x̄, 0, a) = (x̄, 0, b) = 1 and (x̄, 0, c) = (x̄, 0, d) = 0. Then C(x̄′) = C ′(x̄) for the input
x̄′ obtained from x̄ by exchanging the values in positions a and d. Therefore outputs(C ′) ⊆ outputs(C),
contradicting the fact that C is saturated.

3. Assume by contradiction that C includes the pattern (3a), and let the channels corresponding to
those in the pattern be a, b, c and d, from top to bottom. Define C ′ = C; (b, d), and let x̄ ∈ Bn. If
C ′(x̄) 6= C(x̄), then C(x̄, 1, b) = 1 and C(x̄, 1, d) = 0. Then C(x̄′) = C ′(x̄) for the input x̄′ obtained
from x̄ by exchanging the values in positions a and b with the values in positions c and d, respectively.
Note that this will permute C(x̄, 1, a) and C(x̄, 1, c), but it will not affect the final values on channels
a and c. Therefore outputs(C ′) ⊆ outputs(C), contradicting the fact that C is saturated.
Case (3b) is similar.

In all three cases, it is straightforward to verify that the inclusion outputs(C ′) ⊆ outputs(C) is strict.

In fact, the patterns in Figure 6 are actually all of the patterns that make a comparator network non-
saturated.

Theorem 5. If C is a non-redundant two-layer comparator network on n channels containing none of the
patterns in Figure 6, then C is saturated.

Proof. Let C be a non-redundant two-layer comparator network, and assume that the second layer of C has
at least two unused channels (otherwise there is nothing to prove). If one of these channels were unused at
layer 1, then the network would contain pattern (1a), (1b) or (1c). Thus, the two channels are necessarily
used in a comparator in layer 1 by Theorem 4. From the same theorem, they must be both min-channels or
both max-channels, otherwise the network would contain pattern (2); and the channels they are connected
to at layer 1 cannot be connected at layer 2, otherwise the network would contain pattern (3a) or (3b).

There are eight different cases to consider. We detail the cases where the two unused channels are max
channels. Assume that the four relevant channels are adjacent, labeled a, b, c and d from top to bottom,
with first-layer comparators (a, b) and (c, d). This does not lose generality, but makes the presentation
simpler: for the general case, just apply the permutation that brings any network to this particular form to
the reasoning below. This transformation can always be done preserving the standard comparator network
form.

Let k be the number of channels above a and m be the number of channels below d. Let C ′ be obtained
from C by adding the comparator (b, d) at layer 2. The four possibilities depend on whether channels a
and c are min- or max-channels at layer 2, and are represented in Figure 7.

(Min/min) Channel a and b are min-channels at layer 2, so the network looks as in Case (i) of Figure 7.

Consider the input string 1k11001m. Since C ′(1k11001m) = 1k10011m, we have 1k10011m ∈ outputs(C ′).
We now show that 1k10011m 6∈ outputs(C). Because of the comparator (a, b) at layer 1, to obtain the
0 on channel b the input string would necessarily have a 0 on channel a. But then the output would
also have a 0 on channel a, hence it could not be 1k10011m.
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d

c

b

a

(i) (ii) (iii) (iv)

Figure 7: Possible cases for channels a and c in the proof of Theorem 5. To obtain C′, add a comparator between channels b
and d.

(Min/max) The network now looks as in Case (ii) of Figure 7, and the argument is similar. Choose an
input x̄ such that C ′(x̄) has 1001 on channels a–d; this is possible by placing 0s on the two positions
that may be compared to c at layer 2 and 1s on the two positions that may be compared to a at
layer 2. Then the argument from the previous case again shows that C ′(x̄) 6∈ outputs(C).

(Max/min) The network now looks as in Case (iii) of Figure 7. This can be reduced to the previous case
by interchanging a and b with c and d, respectively.

(Max/max) The network now looks as in Case (iv) of Figure 7 and the reasoning is a bit more involved.

Consider once more the input string 1k11001m. Channel c is now a second-layer max-channel connected
to some channel j ≤ k, and C ′(1k11001m) = 1j−101k−j10111m. In order to obtain this output with
network C, it is again necessary to have inputs 0 on channels a and b; but since there are only two
0s in the output, this means that channel a must also be connected to channel j on layer 2, which is
impossible.

The cases where a and c are the unused (min) channels are similar.

(Min/min) Similar to the case (Max/max) above, using the input string 0k11000m and analyzing the
result on channel c.

(Min/max) Similar to the case (Min/max) above, using an input string that produces an output of the
form v1001w, and analyzing the result on channel c.

(Max/min) This can be reduced to the previous case by interchanging a and b with c and d, respectively.

(Max/max) Similar to the case (Min/min) above, using the input string 0k11000m, and analyzing the
result on channel c.

As a corollary of Theorems 4 and 5, we show that we can always assume the first two layers of a sorting
network to be saturated.

Corollary 2. Let L1 and L2 be layers on n channels such that L1 is maximal. Then there is a layer S such
that outputs(L1;S) ⊆ outputs(L1;L2) and L1;S is saturated.

Proof. By removing comparators if necessary, we can assume that L1;L2 is nonredundant. If L1;L2 is
not saturated, then, by Theorem 5, it must contain some of the patterns from Figure 6. Now, for each
pattern occurring in L1;L2, the argument in the proof of Theorem 4 tells us how to eliminate it by adding
comparators to L2. Denote the obtained layer by S. The argument in the proof of Theorem 4 further
ensures that outputs(L1;S) ⊆ π(outputs(L1;L2)).

By construction, the network L1;S does not contain any of the patterns from Figure 6, and so, by
Theorem 5, it is saturated.

The above Corollary together with Lemma 7 imply that if there is a sorting network of a given size,
then there is one whose first two layers are saturated, i.e., the set of all saturated two-layer networks is a
complete set of filters.
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Theorem 6. For every n, both the set Sn of two-layer saturated networks and the set of representatives of
its equivalence classes R(Sn) are complete sets of filters on n channels.

Proof. Corollary 2 and Lemma 7 imply that Sn is a complete set of filters. By Lemma 4, R(Sn) is also a
complete set of filters.

We conjecture that in fact the following result holds.

Conjecture 1. If networks C1 and C2 on n channels are both saturated and non-equivalent, then outputs(C1) 6⊆
outputs(C2) for any permutation π.

Particular cases of Conjecture 1 are implied by Theorem 5, but the general case remains open. The
conjecture has been verified experimentally for n ≤ 15.

The characterization of saturation given by Theorem 5 is straightforward to translate in terms of the
word associated with a network.

Corollary 3. Let C be a two-layer network. Then C is saturated if w = word(C) satisfies the following
properties.

1. If w contains 0h or 12s, then all other words in w are cycles.

2. No stick w has length 4.

3. Every stick in w begins and ends with the same symbol.

4. If w contains a head or stick ending with x, then every head or stick in w ends with x, for x ∈ {1, 2}.

Thus, the set of saturated two-layer networks can be generated by using the following restricted grammar.

Word ::= Head | Stick | Cycle Stick ::= 12 | eStick | oStick (2)

Head ::= 0 | eHead | oHead eStick ::= 12(12 + 21)+21

eHead ::= 0(12 + 21)∗12 oStick ::= 21(12 + 21)+12

oHead ::= 0(12 + 21)∗21 Cycle ::= 12(12 + 21)+

Furthermore, sentences are multi-sets M such that:

• if M contains the words 0h or 12s, then all other elements of M are cycles;

• if M contains an eHead or eStick, then it contains no oHead or oStick.

With these restrictions, generating all saturated networks for n ≤ 20 can be done almost instantaneously.
The numbers |Sn| of saturated two-layer networks and |R(Sn)| of equivalence classes modulo permutation
are given in rows two and four of Table 3.

4.3. Reflections

In the previous section, we have shown that it suffices to consider only representatives of saturated
networks, where two (saturated) networks are equivalent if their corresponding graphs are isomorphic. In
this section, we extend the notion of equivalence by noting that a (vertical) reflection of a sorting network
is also a sorting network.

Formally, the reflection of a comparator network C on n channels is the network CR obtained from C
by replacing each comparator (i, j) with (n − j + 1, n − i + 1). Note that this operation preserves the size
and the depth of C. Figure 8 shows a two-layer, 6-channel comparator network and its reflection. These
networks are both elements of R(S6), corresponding to the two different words 211212s and 121221s, and
as such are not equivalent using the theory developed so far.

Given a vector x̄ ∈ Bn, denote by x̄R the vector obtained from x̄ by reversing and complementing each
bit. For example, 100R = 110.
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n 3 4 5 6 7 8 9 10 11 12 13 14
|Gn| 4 10 26 76 232 764 2,620 9,496 35,696 140,152 568,504 2,390,480
|Sn| 2 4 10 28 70 230 676 2,456 7,916 31,374 109,856 467,716
|R(Gn)| 4 8 16 20 52 61 165 152 482 414 1,378 1,024
|R(Sn)| 2 2 6 6 14 15 37 27 88 70 212 136
|Rn| 1 2 4 5 8 12 22 21 48 50 117 94

n 15 16 17 18 19
|Gn| 10,349,536 46,206,736 211,799,312 997,313,824 4,809,701,440
|Sn| 1,759,422 7,968,204 31,922,840 152,664,200 646,888,154
|R(Gn)| 3,780 2,627 10,187 6,422 26,796
|R(Sn)| 494 323 1,149 651 2,632
|Rn| 262 211 609 411 1,367

Table 3: Values of |Gn|, |R(Gn)|, |Sn|, |R(Sn)| and |Rn| for n ≤ 19.

(a) (b)

Figure 8: A two-layer, 6-channel comparator network (a) and its reflection (b).

Lemma 8. Let C be a comparator network on n channels and CR be its reflection. Then x̄ ∈ outputs(C) if

and only if x̄R ∈ outputs(CR).

Proof. By induction on the size of C. For the empty network the result is trivial. Assume the result holds
for C and consider the network C; (i, j). Let x̄ ∈ Bn and ȳ = C(x̄); the induction hypothesis guarantees that

ȳR ∈ outputs(CR). Then, the comparator (i, j) will change ȳ if and only if the comparator (n−j+1, n−i+1)

changes ȳR, interchanging the corresponding positions in both sequences. This establishes the thesis for
C; (i, j).

It follows from Lemma 8 that C can be extended to a sorting network of some depth d if and only if
CR can be extended to a sorting network of depth d. Thus, we can further reduce the number of candidate
two-layer prefixes by eliminating those that are reflections of others.

Corollary 4. Let S′n be any subset of saturated two-layer networks on n channels containing only one of C
and CR for each C ∈ Sn. Then both S′n and R(S′n) form complete set of filters.

Yet again, particular sets S′n and R(S′n) can be constructed syntactically by considering the word rep-
resentation. Let C be a saturated network such that word(C) contains at least one Head or Stick word.
Reflection transforms min-channels into max-channels and vice-versa, so the reflection of an oHead (respec-
tively oStick) is an eHead (resp. eStick), and conversely. We can thus restrict the grammar defining saturated
two-layer networks (2) to the following, which allows neither eHeads nor eSticks.

Word ::= 0 | oHead | 12 | oStick | Cycle (3)

oStick ::= 21(12 + 21)+12

oHead ::= 0(12 + 21)∗21

Cycle ::= 12(12 + 21)+
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This handles the case of Head- and Stick-words. It remains to consider the reflections of Cycle-words.
Since reflection transforms min-channels into max-channels and conversely, the word corresponding to the
reflection of a cycle can be obtained by interchanging 1s and 2s in the word corresponding to the cycle, and
then shifting and possibly reversing the result to obtain the lexicographically smallest representative of that
cycle. As it turns out, this will typically yield the original word; in particular, for n < 12, this is always the
case, as the lemma below states.

Given a word w, denote by w the word obtained by interchanging 1s and 2s in w, and by wR the reverse
word to w.

Lemma 9. Let C be a network on an even number n of channels consisting of a connected cycle. If n < 12,
then C is equivalent to CR.

Proof. Every Cycle-word can be written as w = 12(12)
k121(12)

k221 . . . 21(12)
kn . Then wR is the word

(12)
kn21 . . . 21(12)

k221(12)
k112, and it can always be shifted into w unless k1, k2 and k3 are all distinct.

The shortest word where k1, k2 and k3 are all distinct is 122112211212, where k1 = 0, k2 = 1 and k3 = 2,
corresponding to a cycle on 12 channels.

Call a word w asymmetric if word(net(w)R) 6= w. The previous result states that the shortest asymmetric
Cycle-word has length 11. Table 4 indicates the number An of asymmetric cycles on n channels, modulo
reflection. These values are computed by generating all Cycle-words of length n using the grammar in
Equation (3) and testing whether they are asymmetric.

This sequence has been described previously in [23], which describes the computation of the number of
possible crystal structures with particular kinds of symmetries. Sequence An above corresponds precisely
to the cardinality of the space group P63/mc, which is computed by a symbolic representation whose
specification exactly matches that of An. The values given in [23] however differ from ours for the values
36 + 6k, for integers k ≥ 0. We believe that this is due to errors in the original computations described
in [23].

n 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
An 1 1 4 7 18 31 70 126 261 484 960 1,800 3,515 6,643 12,852

Table 4: Number of asymmetric Cycle-words on n channels, modulo reflection.

Definition 8. The set of two-layer representative prefixes Rn is the set of all networks generated from
sentences s such that:

• all words w ∈ s are generated from the grammar in Equation (3);

• all Stick-words w ∈ s satisfy w < wR;

• all Cycle-words w ∈ s satisfy w = word(net(w));

• if s contains 0h or 12s, then all other words in s are Cycle-words;

• if s does not contain oHead or oStick words and k is the shortest length for which s contains only
one asymmetric Cycle-word w of length k (possibly with high multiplicity), then w < word(net(w)R).

Theorem 7. The set Rn contains a representative for all equivalence classes of networks on n channels
up to reflection. Furthermore, if Rn contains two networks that are equivalent up to reflection, then those
networks are represented by a sentence s such that:

• s contains only Cycle-words;

• for every length k, the number of distinct asymmetric words of length k in s is not 1.
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Proof. By construction, Rn contains one network from each equivalence class in Gn modulo reflection.
Furthermore, since oSticks and oHeads are reflected to eSticks and eHeads, no network containing any of
these words can be represented together with its reflection. Likewise, if a network containing only cycles
contains only one asymmetric cycle of some length, then the last condition will guarantee that either itself
or its reflection will not be included in Rn.

Corollary 5. For every n, the set Rn is a complete sets of filters on n channels.

It is possible to find two asymmetric cycles A and B of the same length such that word(A) < word(B)
and word(BR) < word(AR), hence for some n the set Rn still may contain redundancy. However, any
network with two such cycles has at least 32 channels, since each such cycle requires at least 16 channels.
In particular, for n ≤ 31 the sets Rn contain no redundancy.

The last line of Table 3 shows the number of representatives, |Rn|, one needs to analyze to solve the
optimal-depth problem for sorting networks of size up to 19. We can compute the sets Rn efficiently (in
under two hours) for n ≤ 40. For greater n, the execution time begins to grow due to the complexity of
the test for asymmetric cycles. This could be reduced by techniques such as tabling; however, the interest
of such optimizations is limited, since 40 is well beyond the scope of current techniques for solving the
optimal-depth problem.

The sets of comparator networks, Rn, for n ≤ 16 can be downloaded from http://www.cs.bgu.ac.il/

~mcodish/Papers/Appendices/SortingNetworks/.

5. Propositional Encoding of Sorting Networks

In the previous section, we showed how to compute a set of two-layer networks, Rn, that is complete
when looking for optimal-depth sorting networks on n channels. In this section, we employ this result to
represent existence of sorting networks of a given depth by propositional formulas. Using a SAT solver on
the obtained formulas, we can both find the optimal-depth sorting networks for n ≤ 16 channels and prove
their optimality.

For experimentation we used a cluster of Intel E8400 cores clocked at 2 GHz each. Each of the cores in
the cluster has computational power comparable to a core on a standard desktop computer. Although we
used all of the cores of the cluster in our experimentation, each individual instance was run on a single core.
All of the times indicated in all of our results, detailed in the following, are obtained using a single core of
the cluster.

Morgenstern et al. [27] observed that an n-channel comparator network of a given depth d can be
represented by a propositional formula such that the existence of a depth-d, n-channel, sorting network
is equivalent to that formula’s satisfiability. We improve upon the work in [27], and give a more natural
translation to propositional formulas. In contrast to the encoding proposed in [27], which did not prove
sufficient to solve any open instances beyond n = 10, ours facilitates the search for optimal-depth sorting
networks with up to 16 channels.

The encoding uses (similarly to the one in [27]) the zero-one principle (Lemma 1), which states that,
when checking whether a comparator network is a sorting network, it suffices to consider only its outputs on
Boolean inputs. We can represent the effect of a comparator on Boolean values x, y ∈ B as min(x, y) = x∧y
and max(x, y) = x ∨ y.

5.1. Optimal-depth sorting networks

We now describe the construction of a propositional formula Ψ(n, d) that is satisfiable if and only if an
n-channel sorting network of depth d exists. Moreover, the formula Ψ(n, d) has the property that: if the
formula is satisfiable, then an n-channel sorting network of depth d can be easily extracted from a satisfying
assignment.

The formula uses the following set of Boolean variables, specifying the position of the comparators in
the network:

Vdn =
{
c`i,j
∣∣ 1 ≤ ` ≤ d, 1 ≤ i < j ≤ n

}
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where the intention is that c`i,j is true if and only if the network contains a comparator between channels i
and j at depth `.

Further, to facilitate the specification of the encoding, we introduce an additional set of Boolean variables
capturing which channels are “used” at a given layer:

Udn =
{
u`k
∣∣ 1 ≤ ` ≤ d, 1 ≤ k ≤ n

}
where the intention is that u`k is true if and only if there is some comparator on channel k at level `.

The following formula enforces the relation between the variables in Udn and in Vdn:

ϕused
n,d =

∧
1 ≤ ` ≤ d
1 ≤ k ≤ n

u`k ↔
∨
incident`k(Vdn)

where incident`k(Vdn) denotes, for each channel k and level `, which variables in Vdn correspond to comparators
incident to channel k at layer `:

incident`k(Vdn) =
{
c`i,j
∣∣ c`i,j ∈ Vdn, i = k or j = k

}
Now, a representation of a comparator network is valid if at each layer every channel is used by at most

one comparator. This is enforced by the following formula:

ϕvalid
n,d =

∧
1 ≤ ` ≤ d
1 ≤ k ≤ n

at most one(incident`k(Vdn))

where for any set of Boolean variables B = {b1, . . . , bn}, the formula at most one(B) signifies that at most
one of the variables in B takes the value true. We adopt the straightforward encoding:

at most one({b1, . . . , bn}) =
∧
i<j

(¬bi ∨ ¬bj)

Given sets of Boolean variables x̄ = {x1, . . . , xn} and ȳ = {y1, . . . , yn}, we use the following formula to
express that {y1, . . . , yn} is obtained from {x1, . . . , xn} by applying the `-th layer of the network:

ϕ`
n,d(x̄, ȳ) =

∧
i<j

c`i,j →
(∧ yi ↔ xi ∧ xj

yj ↔ xi ∨ xj

)
︸ ︷︷ ︸

a

∧
∧
k

¬u`k → (xk ↔ yk)︸ ︷︷ ︸
b

The left part (a) specifies that the outputs of a comparator on channels i and j are the minimum and
maximum of its inputs; the right part (b) specifies that, if a channel is not incident to any comparator, then
its output is equal to its input.

To express that the network sorts the input b̄ = {b1, . . . , bn}, we introduce Boolean variables x̄i =
{xi1, . . . , xin} for 0 ≤ i ≤ d, where x̄i shall denote the values on the n channels after the ith layer of the
network. We set x̄0 = b̄, denote by b̄′ the result of sorting the given vector b̄, and write:

ϕsort
n,d (b̄) =

d∧
`=1

ϕ`
n,d(x̄i−1, x̄i) ∧

n∧
i=1

x̄di ↔ b̄′i

Then, given a set of Boolean inputs X ⊆ Bn, the following formula is satisfiable if and only if there is a
depth-d, n-channel network sorting all inputs from X:

Ψ(n, d,X) = ϕused
n,d ∧ ϕvalid

n,d ∧
∧
b̄∈X

ϕsort
n,d (b̄) (4)

A sorting network must sort all Boolean inputs. Hence, the following result holds.
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Lemma 10. There exists a sorting network with n channels and depth d if and only if the formula Ψ(n, d,Bn)
is satisfiable.

Later we show how to modify an encoding based on the formula in Equation (4) to make use of the
results from Section 4. First, to improve the performance of an actual SAT solver on such an encoding, we
introduce several additional optimizations which we now briefly describe.

No redundant comparators If a comparator occurs in two consecutive layers of a network, then the
second one has no effect. To prevent the placement of redundant comparators, we introduce the
following symmetry breaking formula:

σ1 =
∧

1 ≤ ` < d
1 ≤ i < j ≤ n

¬c`i,j ∨ ¬c`+1
i,j

Eager comparator placement If a comparator is positioned on a pair of channels at level ` that are not
used at level ` − 1, then it can be “slided to the previous layer”. To prevent the placement of such
sliding comparators, we introduce the following symmetry breaking formula:

σ2 =
∧

1 < ` ≤ d
1 ≤ i < j ≤ n

c`i,j → u`−1
i ∨ u`−1

j

All adjacent comparators Exercise 5.3.4.35 in [19] states that all comparators of the form (i, i+ 1) must
be present in a sorting network. To this end, we add the following (redundant) formula:

σ3 =
∧

1 ≤ i < n

(
c1i,i+1 ∨ c2i,i+1 ∨ · · · ∨ cdi,i+1

)
Only unsorted inputs Let Bnun denote the subset of Bn consisting of unsorted sequences. Then it is

possible to refine the formula in Lemma 10 by replacing the set of all Boolean inputs Bn with the set
of unsorted inputs Bnun. This is the case as sorted sequences are unchanged regardless of the positioning
of the comparators. Observe that |Bnun| = 2n − n− 1, and as noted by Chung and Ravikumar [7], this
is the size of the smallest test set possible needed to determine whether a comparator network is a
sorting network.

Optimized CNF generation Our encodings are generated using the BEE finite-domain constraint com-
piler. BEE is described in several recent papers [24, 25, 26]. BEE facilitates solving finite-domain
constraints by encoding them to CNF and applying an underlying SAT solver. In BEE constraints are
modeled as Boolean functions which propagate information about equalities between Boolean literals.
This information is then applied to simplify the CNF encoding of the constraints. BEE is written in
Prolog, and applies (in our configuration) the underlying SAT solver CryptoMiniSAT [30].

Experiment I

In our first experiment, we used the encoding of Equation (4). Here, the formula Ψ(n, d,X), together
with the above described optimizations, is instantiated for various values of n, d and X. Table 5 presents
the results, where each instance (2 per line in the table) is run on a single thread of the cluster. For each n
(number of channels) with 5 ≤ n ≤ 12, there is a row in the table that indicates: the depth of the network
we seek (d and d′), the encoding time (using BEE), the size of the resulting CNF (number of clauses and
variables), and the SAT-solving time. Times are indicated in seconds. The left side of the table details
satisfiable instances where we seek a sorting network of optimal depth d. For 1 ≤ n ≤ 10, we take for d the
known optimal depth, and for n > 10 we take the best known upper bound (see Table 1). The right side of
the table details the (suspected to be) unsatisfiable instances, where d′ is one less than the value d.
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Observe that, when n = 12, in the search for a sorting network of depth 8, the encoding creates a CNF
with circa 8.9 million clauses, and a solution is found after about 3.5 hours. On the other hand, for n = 11
the SAT solver is not able to prove unsatisfiability of Ψ(11, 7,B11

un) even after one week of computation,
and similarly for Ψ(12, 7,B12

un). So this encoding suffices to prove depth optimality of networks on up to 10
channels. We now show how to extend it to handle more channels.

5.2. Optimal-depth sorting networks given a prefix

Recall that, to show the existence of a sorting network of a given size, it suffices to restrict attention to
networks with a fixed first layer (Lemma 2). Furthermore (Corollary 5), it suffices to focus on second layers
from the set Rn.

We now show how to capitalize on these results. In general, let n be the number of channels and d be the
depth of a particular comparator network. Then, given a prefix C consisting of layers C = L1;L2; · · · ;Ld′

we can encode the property that the prefix of the network is C by the following formula:

ϕfixed(n, d, C) =
∧

1 ≤ ` < d′

1 ≤ i < j ≤ n

c`i,j ↔ (i, j) ∈ L` (5)

where the conjuncts fix the values of the Boolean variables c`i,j in Vdn to correspond to the positions of the
comparators in the given prefix C.

Given a set of Boolean inputs X ⊆ Bn, there is an n-channel, depth-d network with prefix C sorting all
inputs from X if and only if the following formula is satisfiable.

ΨC(n, d,X) = Ψ(n, d,X) ∧ ϕfixed(n, d, C) (6)

Note that Boolean sequences sorted after the application of C remain sorted regardless of the positioning of
the comparators in the subsequent layers. Thus, to show that there is a sorting network on n channels with
depth d that begins with prefix C, it suffices to restrict the set X to Boolean sequences that are unsorted
after application of the prefix C. Letting Bnun(C ) ⊆ B

n denote the set of such sequences, the following result
holds.

Lemma 11. There exists a sorting network on n channels with depth d and prefix C if and only if the

formula ΨC

(
n, d,Bnun(C )

)
is satisfiable.

Experiment II

According to Lemma 2 we can fix the first level of the network, and thus apply the encoding ΨC

(
n, d,Bnun(C )

)
where C consists of a single maximal layer on n channels. We take C to be F ′n =

{
(i, n− i+ 1)

∣∣ 1 ≤ i ≤
⌊
n
2

⌋ }
.

Table 6 illustrates the results for the appropriate instances of the formula ΨC

(
n, d,Bnun(F ′

n)

)
. Each instance

(2 per line in the table) is run on a single thread of the cluster. As in Table 5, the satisfiable instances are
described on the left and the unsatisfiable instances on the right.

optimal sorting networks (sat) smaller networks (unsat)
n d BEE #clauses #vars SAT d′ BEE #clauses #vars SAT
5 5 0.09 4965 761 0.01 4 0.08 3702 550 0.01
6 5 0.31 15353 1911 0.04 4 0.23 11417 1374 0.03
7 6 1.14 55758 5946 0.14 5 0.83 44330 4634 0.97
8 6 3.55 153125 14058 1.35 5 2.47 121639 10946 1.83
9 7 10.06 487489 39761 9.51 6 8.56 404176 32544 629.04
10 7 25.17 1247335 90589 93.40 6 22.02 1033821 74136 925.30
11 8 85.42 3643870 240258 518.61 7 64.59 3110693 203313 ∞
12 8 234.39 8899673 533226 12343.21 7 185.27 7596239 451212 ∞

Table 5: SAT-solving for n-channel, depth-d sorting networks: each instance runs on a single thread, BEE compile times and
SAT-solving times are in seconds (timeout is 1 week of computation).
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optimal sorting networks (sat) smaller networks (unsat)
n d BEE #clauses #vars SAT d′ BEE #clauses #vars SAT
5 5 0.04 1366 238 0.00 4 0.01 915 151 0.00
6 5 0.09 3137 441 0.01 4 0.04 2083 276 0.01
7 6 0.48 12699 1509 0.06 5 0.15 9487 1089 0.03
8 6 0.97 26414 2682 0.17 5 0.35 19680 1930 0.06
9 7 3.34 90846 8150 1.25 6 1.41 72337 6353 1.00
10 7 6.23 177067 14091 17.15 6 2.81 140847 10978 1.83
11 8 18.11 547708 39386 104.16 7 9.89 454563 32245 282.04
12 8 38.84 1018902 66206 211.51 7 17.02 845232 54192 521.62
13 9 112.81 2927622 174766 1669.88 8 49.26 2500930 147902 ∞
14 9 110.95 5264817 288609 56654.37 8 90.63 4496413 244234 ∞

Table 6: SAT-solving for n-channel, depth-d sorting networks with 1-layer filters: each instance runs on a single thread, BEE
compile times and SAT-solving times are in seconds (timeout is 1 week of computation).

Note that the CNFs for this experiment are smaller than in the previous experiment as fixing the first
layer of the network reduces the set of unsorted inputs considered to Bnun(F ′

n). This derives from the fact

that, as discussed before, sorted inputs (here, to the second layer) can be ignored in the encoding. For
example, for n = 12 we reduce the CNF sizes from 8.9 and 7.6 million (see Table 5) to 1.02 and 0.8 million
clauses, respectively.

Observe that the encoding based on one layer filters suffices to prove depth optimality of networks for
n = 11 and n = 12 channels in under 10 minutes with computational power equivalent to that of a standard
desktop computer.

Experiment III

In our third experiment, we capitalize on Corollary 5, which states that Rn is a complete set of two layer
filters on n channels, i.e. that there exists an n channel sorting network of depth d if and only if there exists
one that extends one of the prefixes C ∈ Rn.

As an example, for n = 13, |R13| = 117, and so, to determine whether there exists a 13-channel,
depth-8 sorting network, it suffices to determine whether any one of 117 independent SAT instances

ΨC

(
n, d,Bnun(C )

)
, for C ∈ R13, is satisfiable.

In Table 7 we illustrate results for the instances with optimal depth d for 1 ≤ n ≤ 10, and the best
known upper bound d for 11 ≤ n ≤ 16. We consider the two-layer filters in the sets Rn as described in
Section 4. For the row corresponding to n channels, we have |Rn| instances, and each instance is run on a
single thread from the cluster. The left part of the table describes the fastest satisfiable instance from the
|Rn| instances. The instance number given in the third column indicates a particular filter C ∈ Rn (the
instances are detailed at http://www.cs.bgu.ac.il/~mcodish/Papers/Appendices/SortingNetworks/

twoLayerFilters.pl). When running the instances with the full capacity of the cluster, we can abort
the computation as soon as the first satisfiable instance is found. The right part of the table specifies the

optimal depth: fastest satisfiable instance total solving times
n |Rn| d ins. BEE #clauses #vars SAT BEE SAT
5 4 5 3 0.01 534 97 0.00 0.03 0.01
6 5 5 5 0.01 1047 156 0.00 0.04 0.01
7 8 6 3 0.06 4537 569 0.01 0.49 0.08
8 12 6 10 0.07 6952 740 0.02 1.01 0.18
9 22 7 5 0.38 26019 2447 0.06 10.52 4.66

10 21 7 19 0.61 50573 4216 0.36 2.28 2.02
11 48 8 10 2.67 171357 13129 0.60 126.99 753.71
12 50 8 43 2.77 206776 14088 4.08 57.07 481.13
13 117 9 112 13.28 922363 56679 10.71 1711.99 38185.55
14 94 9 86 37.80 1124987 64318 123.13 6206.11 ∞(43)
15 262 9 169 84.90 2684977 139181 19737.38 33176.39 ∞(1)
16 211 9 188 116.36 3179978 155456 30509.58 46968.71 ∞(1)

Table 7: SAT-solving for n-channel, depth-d sorting networks with 2-layer filters. These are the satisfiable instances (at least for
one C ∈ Rn): fastest satisfiable instances detailed on the left; and total costs on the right: BEE compile times and SAT-solving
times are in seconds. Here, ∞(k) indicates that k instances terminated within 24 hours (each on a single core).
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d′ < optimal depth: slowest (unsat) instance total solving times
n |Rn| d′ ins. w BEE #clauses #vars SAT BEE SAT
5 4 4 1 2 0.00 268 44 0.00 0.02 0.00
6 5 4 1 2 0.01 511 67 0.00 0.02 1.00
7 8 5 6 2 0.04 2965 348 0.01 0.30 1.04
8 12 5 4 3 0.09 4423 458 0.01 0.80 4.09
9 22 6 16 3 0.20 14716 1416 0.05 4.16 0.75

10 21 6 1 4 0.41 20027 1815 0.09 6.35 5.08
11 48 7 46 4 0.73 52365 4314 1.41 53.79 52.26
12 50 7 21 5 1.02 62051 4826 2.39 93.79 72.56
13 117 8 77 3 14.68 464035 29958 749.27 1047.93 35726.26
14 94 8 16 4 20.27 448903 27473 2627.60 2342.96 81533.49
15 262 8 189 7 8.32 278312 18217 746.42 3491.06 127062.36
16 211 8 112 7 22.85 453810 27007 1756.29 4448.66 152434.55

Table 8: SAT-solving for n-channel, depth-d′ sorting networks with 2-layer filters. These are the unsatisfiable instances (for all
C ∈ Rn): slowest instances detailed on the left; and total costs on the right: BEE compile times and SAT-solving times are in
seconds; and w is window size.

total cost of the computation, and indicates the time required for each value of n on a single core. Here, we
indicate the total compile times and SAT-solving times for all |Rn| instances. Each instance was limited to
run for 24 hours on a single core, and ∞(k) indicates that k instances terminated within 24 hours (each on
a single core).

For the unsatisfiable instances, we introduce one additional optimization. Consider again Equation (6).
A sorting network with prefix C must sort all of its unsorted inputs Bnun(C ). However, if we consider any
specific subset of B ⊆ Bnun(C ) and show that there is no comparator network that sorts the elements of B,
then there is also no comparator network that sorts all the unsorted inputs.

In particular, we consider length-n Boolean sequences that have sufficiently long prefixes of zeroes and
suffixes of ones. Given an integer w < n and a set B ⊆ Bn, we denote by B�w the set

B�w =
{
b ∈ B

∣∣ b = 0`1 .Bn−w.1`2 , `1 + `2 = w
}
,

which we refer to as the windows of size w of B.
Table 8 depicts results for the instances with the set of inputs equal to Bnun(C )�w and depth d′ = d− 1

where d is the known optimal depth for 1 ≤ n ≤ 10, and the best known upper bound d for 11 ≤ n ≤ 16.
We consider the two-layer filters in the sets Rn as described in Section 4. For the row corresponding to n
channels, we again have |Rn| instances, and each instance is run on a single thread from the cluster. The left
part of the table describes the slowest unsatisfiable instance from the |Rn| instances, including the largest
window size w for which unsatisfiability is obtained. The table also specifies, in the fourth column, the index
of the slowest instance. For the unsatisfiable instances, we need to run all instances to determine that all
are unsatisfiable, and the parallel cost is the time of the slowest instance (in the left part of the table). The
right part of the table specifies the total cost of the computation, indicating the time required for each value
of n on a single core. Here we indicate the total compile times and SAT-solving times for all |Rn| instances.

While we used multiple threads on a cluster for our experiments, the two instances relevant for our
results, n = 11 and n = 13, could be run on a single thread on a desktop computer in 2 minutes and
10 hours, respectively. Once we show that T (11) = 8, it follows from the known bounds (Table 1) that
also T (12) = 8, because T is monotonic. Likewise, once we show that T (13) = 9, it follows that also
T (14) = T (15) = T (16) = 9. The motivation for also computing them was to show that this approach
actually scales up to n = 16.

6. Conclusions and future work

We have shown that T (11) = T (12) = 8 and T (13) = T (14) = T (15) = T (16) = 9, i.e., we have proven
that the previously known upper bounds on the optimal depth of n-channel sorting networks are tight for
11 ≤ n ≤ 16. This closes the six smallest open instances of the optimal-depth sorting network problem,
thereby proving depth optimality of the sorting networks for n ≤ 16 given in [19] more than four decades
ago.
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These results have revived sorting networks as an active area of research. Ehlers and Müller [15] have
already improved on the SAT encoding, and combined with new theoretical results [13] been able to discover
a depth 10 sorting networks on 17 channels and prove its optimality [8]. These successes have also encouraged
recent progress on the related optimal-size problem [10], which however required a quite different approach.
The practical importance of studying optimal sorting networks was demonstrated by using them as base
cases to improve the performance of general purpose sorting algorithms [17, 11].

The encoding into SAT that we propose in this paper is of size exponential in the number of channels, n.
This is also the case for the encoding presented in [27]. The encoding is of the form ∃∀ϕ (does there exist a
network that sorts all of its inputs), and is easily shown to be in ΣP

2 . We expect that, similar to the problem
of circuit minimization [31], it is also complete in ΣP

2 , although we have not succeeded to prove this. We do
not expect that there exists a polynomial size encoding to SAT.
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