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Abstract

The combination of logic program-style rules with other reasoning systems has been a fertile topic of research
in the last years, with the proposal of several different systems that achieve this goal. In this work, we look
at two of these systems, dl-programs and multi-context systems, which address different aspects of this
combination, and include different, incomparable programming constructs. We prove that every dl-program
can be transformed into a multi-context system in such a way that the different semantics for each paradigm
are naturally related. As a consequence, constructions developed for dl-programs can be automatically
ported to multi-context systems. In particular, we show how to model default rules over ontologies with the
usual semantics.
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1. Introduction

Several approaches combining rules and ontologies have been proposed in the last years for semantic
web reasoning, e.g. [4, 14, 17, 18, 28, 35]. Ountologies are typically expressed through decidable fragments of
function-free first-order logic with equality, offering a very good ratio expressiveness/complexity of reason-
ing [2]. By extending ontologies with rule capabilities, together with non-monotonic features (in particular,
the negation-as-failure operator from logic programming), one obtains a very powerful framework for se-
mantic web reasoning where it is possible to write more expressive queries.

In this paper, we look at two of these systems: dl-programs [17, 18] and multi-context systems (MCSs) [4],
which address different aspects of this combination, and include incomparable programming constructs.
These two paradigms differ in their essence — a dl-program is essentially a logic program that can query
a single description logic knowledge base £ and may “feed” its view of £ with newly inferred facts, while
MCSs consist of several knowledge bases, possibly expressed in different languages, each declaring additional
rules that allow communication with the others.

We show that every dl-program can be transformed into a multi-context system. Although this transfor-
mation has been informally described earlier [5], the contribution of this work is not only making it precise,
but also studying its theoretical properties, namely regarding semantic aspects, and discussing some practi-
cal implications. To the authors’ knowledge, these aspects have never been addressed before. In particular,
we show that our translation preserves the various existing semantics for each paradigm: answer sets for
dl-programs become grounded equilibria for multi-context systems, whereas the well-founded semantics of
a dl-program corresponds to the notion of well-founded belief set of a multi-context system. These results
rely on a new definition of how to view a description logic knowledge base as a context of a multi-context
system.

Translations between different knowledge representation formalisms have been studied by several au-
thors [20, 29, 32, 36]. Such translations formally establish a precise relationship between the expressive
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power of two formalisms. More importantly, they allow for the reuse of tools and techniques developed for
the more expressive formalism to the less expressive one, by means of the translation. In our case, our trans-
lation makes it possible to apply reasoners for multi-context systems also to the translation of dl-programs,
without needing dedicaded tools to deal with dl-programs. This is also the idea behind the implementation
of the DL-plugin for dlvhex [21], which uses a translation of dl-programs into HEX-programs. On the other
direction, constructions that were originally proposed for the less expressive formalism can be analyzed into
the more general one by means of the translation. We illustrate this potential by showing how the original
encoding of default rules in dl-programs [18] can be directly translated into MCSs, yielding a correspondence
between extensions in default logic and equilibria in MCSs. Likewise, this translation could be applied e.g. to
the systematic constructions for dl-programs described in [10] to yield similar techniques for MCSs.

The structure of the paper is as follows. Section 2 summarizes previous work on dl-programs and
introduces our running example. Section 3 introduces multi-context systems and presents a translation from
dl-programs to these, together with proofs of equivalence between the different semantics of both systems.
Section 4 discusses in more detail two aspects of the translation: how to extend it to a more expressive
variant of dl-programs; and how to use it to extend the encoding of default rules in dl-programs from [18]
to the framework of MCSs. Section 5 concludes the presentation.

This article extends work previously published in [9, 11], namely by including the proofs of all results
and a more detailed formal analysis of the design options and their consequences.

1.1. Related work

Combining description logics (DLs) with rules has been a leading topic of research for the past 15 years.

Description logic programs, or dl-programs [17, 19], are heterogeneous combinations of rules and ontolo-
gies, which are loosely coupled: the set of rules and the ontology are kept separate. The connection between
these two components is achieved through the inclusion of di-atoms in rule bodies, which perform queries to
the knowledge base, possibly modifying it (adding facts) for the duration/purpose of each individual query.
In particular, [17, 19] illustrate this approach for the logics of OWL-LITE and OWL-DL. The semantics of
dl-programs extends two different semantics for ordinary normal logic programs — answer-set semantics and
well-founded semantics.

A number of encouraging results for dl-programs are also presented in [17]: (i) data complexity is
preserved for dl-programs reasoning under well-founded semantics as long as dl-queries in the program
can be evaluated in polynomial time, and (ii) reasoning for dl-programs is first-order rewritable (and thus
in LOGSPACE under data complexity) when the evaluation of dl-queries is first-order rewritable and the
dl-program is acyclic. These nice results are a consequence of the use of Datalog: complexity of query
evaluation on both Datalog and stratified Datalog™ programs is data complete for PTIME and program
complete for EXPTIME, as shown in [12].

There are other formalisms that allow combination of different reasoning systems. Hybrid MKNF knowl-
edge bases [32] are a homogeneous approach, in the sense that the rules and the description logic knowledge
base are not kept separate, as in dl-programs; for this reason, this formalism lacks modularity. On the
other hand, various heterogeneous proposals have emerged to cope with several components, allowing to
deal with information coming from different sources. HEX-programs [20], which generalize dl-programs, are
higher-order logic programs with external atoms that may pose queries to systems using different languages.

In contrast with these approaches, where communication between system components is centralized in the
logic program part of the system, multi-context systems [4] (MCSs) were originally designed to bring together
characteristics of both heterogeneous monotonic [24, 31] and homogeneous non-monotonic systems [7, 34],
capitalizing on both worlds.

Multi-context systems are similar to HEX-programs, in that they are heterogeneous non-monotonic sys-
tems, whose components (called contexts) are knowledge bases that can be expressed in different logics (e.g.,
a theory in classical logic, a description logic knowledge base, a set of modal or temporal logic formulas, or
a non-monotonic formalism such as a logic program under answer set semantics, or a set of default logic
rules). Unlike HEX-programs, however, MCSs’ inter-component communication is distributed among the
contexts via sets of (non-monotonic) bridge rules.



Since they were originally proposed, several variations of MCSs have been studied that add to their
potential fields of application. Managed MCS [5] generalize bridge rules by allowing arbitrary operations on
contexts (e.g. deletion or revision operators) to be freely defined. Relational MCSs [22] introduce variables
and aggregate expressions in bridge rules, allowing a formal first-order syntax, and extending the semantics
of MCSs accordingly. Dynamic MCSs [13] are designed to cope with situations where knowledge sources
and their contents may change over time and are not known a priori. Evolving MCSs [26] extend this idea
by incorporating knowledge resulting from dynamic observations through different belief change operations
with different levels of persistence. This framework is further extended in [25] with the notion of evolving
bridge rules.

A different line of research addresses techniques for dealing with inconsistency (non-existence of a model)
within MCSs. The authors of [15] propose a declarative policy language, together with methodologies to
apply it, to provide a means to create policies to avoid or repair inconsistencies in MCSs in a controlled way
(e.g. specifying which inconsistencies can be repaired automatically, and which ones need external input by
a human operator).

(Partial) translations between formalisms are an important tool to compare their expressive power and
to allow transfer of technology from one formalism into another. Thus, hybrid MKNF knowledge bases can
be translated into MCSs [29], providing a way for agents to reason with the former without the need for
specialized Hybrid MKNF reasoners, whereas MCSs and HEX-programs are essentially incomparable [20].
In turn, the semantics of dl-programs has been captured within the framework of several, well-known,
nonmonotonic logics, e.g. Autoepistemic Logic [8], Equilibrium Logic [23] (a logic-based version of Answer
Set Semantics), Reiter’s Default Logic [36], and MKNF [32]. Our results enrich this line of work by formally
showing that dl-programs can be embedded into MCSs via a semantics-preserving translation.

Using our translation, we show how we can adapt the encoding of default rules in dl-programs from [18]
to the more general scenario of multi-context systems, and illustrate our construction for the particular case
of ontologies viewed as contexts. Our syntax of default rules is inspired by that of [3], although with some
restrictions dictated by the limitations as to what we can write in the syntax of MCSs. We take Reiter’s
characterization of extensions as fixpoints as the definition in the ontology scenario, again following [3], and
show that extensions can be characterized as particular models of the corresponding MCS.

Several frameworks for combining reasoning systems have been implemented. In particular, dlvhex,
available at http://www.kr.tuwien.ac.at/research/systems/dlvhex/, is a prototype application for
computing models of HEX-programs [20]. Its DL-Plugin simulates the behaviour of dl-programs by means
of a rewriter that processes the syntax of dl-atoms, allowing the use of dlvhex directly as a reasoner for dl-
programs. Both dlvhex and the DL-Plugin are implemented in C++, using RACER [27] as a DL reasoning
engine to process OWL-DL ontologies.

A prototypical implementation of a fully distributed algorithm to compute semantics of MCSs, dmcs, is
also available at http://sourceforge.net/projects/dmcs/. Another plug-in for dlvhex, MCS-IE (MCS
Inconsistency Explainer), is also available at http://www.kr.tuwien.ac.at/research/systems/mcsie/.
This tool provides reasons for inconsistency in MCSs as described in [4].

Several other mechanisms for combining rules and ontologies have been proposed, but are outside the
scope of this paper. The interested reader can find a more comprehensive overview of the different approaches
in the introduction of [32].

2. Description logic programs

Description logic programs (dl-programs) are at the core of the work presented in this article. This
section summarizes the most relevant concepts and results about them, originally published in [17, 18],
together with an example that is used throughout.

2.1. Description logics and ontologies

Description logics (DLs) are extensively used to express ontologies in the Semantic Web due to their
nice behaviour — almost all of them are decidable fragments of function-free first-order logic with equality,
offering a very good ratio expressiveness/complexity of reasoning [2].
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In description logics, predicates are restricted to having arity at most 2; unary predicates are called
concepts and binary predicates are called roles. Concepts and roles can be atomic or built using concept
and role constructors. FKach description logic allows a particular set of constructors, which determines its
expressivity and complexity of reasoning.

We detail the concept constructors we use in our examples. Given concepts C' and D and a role R, C is
the complement of C; CM D and C'UD are the intersection and union of C' and D, respectively; {a1,...,a,}
is the set containing exactly a1, ..., a,; IR.C denotes the concept of being in relation R with another element
satisfying concept C' (in mathematical notation: {z | Jy.R(z,y) A C(y)}); > n.R and denotes the concept
of being in relation R with at least n other elements; L is the empty concept.

The only role construct we use is inverse: R denotes the inverse relation of R. Other typical role
constructs include intersection and union (defined as for roles), composition and transitive closure.

An ontology is a set of axioms in a description logic. These axioms are typically divided in two groups:
terminological axioms (which are collectively called the T-Boz) and assertion axioms (the A-Box). Termi-
nological axioms express inclusions between concepts C' and D and roles R and S, written C C D or R C S,
equivalence (C'= D or R = S) is shorthand for inclusion in both directions. Assertion axioms are of the
form C(a) or R(a,b), where a and b are constants. Since description logics do not follow the Unique Name
Assumption (distinct constants correspond to distinct individuals), we can also have assertions a = b and
a # b between individuals.

In this work, we also refer to ontologies as description logic knowledge bases (or simply “knowledge
bases”), and ignore the distinction between the T-Box and the A-Box.

Example 1. We introduce our running example: a travel ontology ¥ containing a series of travel-related
concepts. This ontology is a restriction of the Travel Ontology travel. owl, available at http: //protege.
stanford. edu/ontologies/ travel. owl.

The concepts in 3 are mostly related to destinations (Destination) and particular types of destina-
tions (Beach, UrbanArea, RuralArea, City, Capital, NationalPark, Town, Farmland, QuietDest, FamilyDest,
BackpackersDest, BudgetHotelDest). There are also some concepts related to activities (Hiking, Museum,
Sports, Adventure) and types of accommodation that may be offered at different destinations (Campground,
Hotel, LuxuryHotel, BudgetAccomm). The roles in ¥ are hasActivity, hasAccommodation, hasPart.

The relation among the different types of destinations are expressed in the T-Box by means of the following
axioms.

RuralArea C Destination Farmland C RuralArea  NationalPark C FhasActivity.Hiking
UrbanArea C Destination NationalPark C RuralArea  NationalPark C JFhasAccommodation.Campground
Beach C Destination City C UrbanArea City C dhasAccommodation.LuxuryHotel
RuralArea M UrbanArea T L Town C UrbanArea Capital C dhasActivity.Museum
Capital C City

According to the interpretation of concept constructs, axiom RuralArea M UrbanArea T | expresses that

RuralArea and UrbanArea are disjoint (their intersection is included in the emptyset), while aziom City C

JhasAccommodation.LuxuryHotel states that every City is related by hasAccommodation to ¢ LuxuryHotel.
Some concepts can be defined by more complex formulas.

QuietDest = Destination M FamilyDest
BackpackersDest = Destination M (3hasAccommodation.BudgetAccomm) M (3hasActivity.(Sports LI Adventure))
FamilyDest = Destination M (> 1.hasAccommodation) M (> 2.hasActivity)
BudgetHotelDest = Destination M (3hasAccommodation.(BudgetAccomm M Hotel))



The A-Box contains the following instances.

RuralArea(Woomera) Town(Coonabarabran) NationalPark(BlueMountains)
Capital(Canberra) NationalPark(Warrenbungles) RuralArea(CapeYork)
Capital(Sydney) hasAccommodation(Sydney, FourSeasons)  LuxuryHotel(FourSeasons)
hasPart(Sydney, BondiBeach) hasPart(Sydney, CorrawongBeach) Beach(BondiBeach)
Beach(CorrawongBeach) City(Cairns)

We assume that ¥ does not contain any individuals not included in this list.

2.2. Syntaz of dl-programs

Dl-programs extend logic programs with special atoms that communicate with an external description
logic knowledge base (hereafter simply called “knowledge base”), in the spirit of other generalizations of
logic programs. The key ingredient of dl-programs is the notion of di-atom. A dl-atom over a knowledge
base ¥ and a function-free first-order signature ® has the form

DL[PI 0p1p17~~~7Pm Opmpan](%)

where m > 0, each P; is either a concept or role of ¥, or a special symbol in {=,#}; op, € {W,,A}; each
p; is a unary or binary predicate symbol of ®, according to whether the corresponding P; is a concept or a
role; and Q(t) is a dl-query, that is, it is either a concept inclusion axiom F or its negation =F', or of the
form C(t), =C(t), R(t1,t2), ~R(t1,t2), =(t1,t2), #(t1,t2), where C is a concept, R is a role, ¢, t; and t2
are terms — constants from either ¥ or ®, or variables. The sequence Py opy p1, ..., Pm 0p,, Pm is the input
context of the dl-atom; we use the greek letter y to denote generic input contexts.

A di-rule over 3 and ® is a clause that may contain dl-atoms, i.e. it has the form

a <+ by,...,bg,not bgiy,...,n0t by,

where a is a logical atom and by, ..., b,, are either logical atoms or dl-atoms — where the logical atoms are
again built using terms from ® and constants from Y. As usual, the head of r is a and the body of r is
bi,...,bg,not bii1,...,n0t b,,. A dl-program over @ is a pair KB = (X, P) where ¥ is a knowledge base
and P is a finite set of dl-rules over ¥ and ® (also referred to, in this context, as a generalized logic program);
the signature @ is usually left implicit. Negation in P is the usual negation-as-failure, whereas ¥ has the
usual open-world semantics of description logic knowledge bases.

The operators W, & and A are used to extend ¥ in the context of the current dl-query. Intuitively,
P, W pg (resp. Py U pi) adds to Py (resp. —Py) all instances of (pairs of) terms for which py holds — the
extension of py —, before evaluating the query. Likewise, P, A pi adds to =P all instances of terms for
which pi does not hold. This intuitive meaning of these operators is made precise in the formal semantics
given below. These extensions do not change X, only affecting P’s current view of ¥. Therefore, the two
components are kept separate, giving dl-programs nice modularity properties, and there is a bidirectional
flow of information via dl-atoms.

The operator A makes the theory of dl-programs more complex, and for this reason it was not always
included in subsequent work on this topic. For the sake of simplicity, we also omit it in the remainder
of this section and in the presentation of the translation to multi-context systems in the next section. In
Section 4.1, we show how our results can be generalized to the full language of dl-programs including A.

We adopt some notational conventions throughout this paper. Variables are capital letters in math font
(X), while constants and terms are in sans serif. Predicate names (from the generalized logic program)
always begin with a lowercase letter, while concepts and roles (from the knowledge base) are written exactly
as they are defined in the source ontologies (we use an example ontology that is freely available online). We
do not use different fonts for objects of P and objects of X, since these sets are not necessarily disjoint (the
constants of ¥ may be used in P); for the sake of clarity, in examples we however abstain from using the
same name for a predicate in P and a concept or role in X.
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Example 2. We introduce our running example of dl-program. The ontology X is the travel ontology from
Ezample 1. The generalized logic program P extends % with three predicates, defined by the following rules.

wineDest(Tasmania) + (r1)
wineDest(TamarValley) « (ra)
wineDest(Sydney) + (r3)
overnight(X) < DL[; hasAccommodation](X,Y) (ryq)

oneDayTrip(X) < DL[Destination & wineDest; Destination](X),
not overnight(X) (rs5)

The interesting rule is rule (r5), which identifies destinations that are only suitable for one-day trips.
These destinations are selected not only from the information originally in %, but by (i) extending the
concept Destination of ¥ with all instances of wineDest from P and then (ii) querying this extended view of
3 for all instances of Destination. The three instances of wineDest correspond to three wine regions that are
interesting tourist destinations. The result is then filtered using the predicate overnight defined in (r4) as the
set of destinations for which some accommodation is known. This rule uses role hasAccommodation of X,
where hasAccommodation (t1,t2 ) holds whenever t; is a Destination and ta an accommodation facility located
in t1. The reason for resorting to (r4) is the usual one: the operational semantics of negation-as-failure
requires that all variables in a negated atom also appear non-negated in the body of the same rule.

Since Sydney is an individual of 3, the first three rules have different impacts on the program: while (ry)
and (r2) add new constants to the domain of KB, rule (r3) adds information about an individual already
in X. In this particular case, Sydney is also an instance of Destination in 3, so the input context in (ry)
actually adds only two new instances to this concept. Without the extended query in (rs), we would not be
able to infer e.g. oneDayTrip(Tasmania) without modifying ontology %.

2.3. Semantics of dl-programs

Semantics for dl-programs use the notion of Herbrand base of a logic program P over ®, denoted HBp
— the set of all ground atoms consisting of predicate symbols and terms from ®. Since ® does not contain
function symbols, HBp is always finite. The Herbrand base of a dl-program ICB = (X, P), denoted HBxg,
is similarly defined, except that constant symbols may also come from the vocabulary of X, and is likewise
always finite.

A subset I of HBip is called an interpretation of KB relative to P. We say that I is a model of a ground
atom or dl-atom a under X, or I satisfies a under X, denoted I |=yx a, in the following cases:

o if a € HBxp, then I |y a iff a € I;

e if a is a ground dl-atom DL[x;Q](t) with x = Py op; p1,--., P 0p,,, Pm, then I Ex a iff (I;x) E
Q(%), where |= denotes usual first-order entailment, X(I;x) = LU J;~, A;(I) and, for 1 <i <m,

n HP@E In@E e}, opi=u
AZ(I) {{_‘Pv(e) |p7(é) c 1}7 op; = U

An interpretation I is a model of a ground dl-rule r iff T |=x, H(r) whenever I =x [ for all | € B(r),
where H(r) and B(r) are the head and the body of rule r, respectively; I is a model of KB iff I is a model
of all ground instances of the rules of P. See Section 4.1 for the extension of these semantics to the full
language including A .

Example 3. The Herbrand base of the dl-program KB of Example 2 contains all ground atoms built from
applying wineDest, overnight and oneDayTrip not only to the constants of P — Tasmania, TamarValley and



Sydney — but also to all individuals of . Thus, HBxg contains e.g.

wineDest(Tasmania) overnight(Tasmania) oneDayTrip(Canberra)

wineDest(FourSeasons) overnight(Sydney) oneDayTrip(Sydney), ...

The presence of e.g. wineDest (FourSeasons) does not fit well with the intended interpretation of wineDest;
but this is a well-known side-effect of the absence of types in logic programming.
Examples of interpretations for KB are:

I = {wineDest(Tasmania), wineDest(Sydney), wineDest(TamarValley)}
I, = {wineDest(Tasmania), wineDest(Sydney), wineDest(TamarValley) } U
U {oneDayTrip(Tasmania), oneDayTrip(TamarValley)} U
U {oneDayTrip(t) | ¥ |= Destination(t), ¢ # Sydney} U {overnight(Sydney)}

To understand whether these interpretations are models of KB, we recall that the only instance of
hasAccommodation in X, is hasAccommodation(Sydney, FourSeasons). Therefore, I is not a model of KB,
since it does not satisfy rule (ry) with X = Sydney, but I is a model of KB.

A dl-program KB = (3, P) is positive if the rules in P do not contain negations. Positive dl-programs
enjoy the usual properties of positive logic programs, namely they have a unique least model My that can
be constructed by computing the least fixed-point of the Herbrand transformation Txpg, defined as the usual
one-step consequence operator for logic programs, resorting to X to evaluate dl-atoms. The dl-program in
Example 2 is not a positive program because of the negation in rule (r5).

Answer-set semantics. The answer-set semantics of dl-programs is defined again in analogy to that of logic
programs. The presence of A allows for two possible generalizations [18]; since we omit this operator at
this stage, we only present what those authors called “strong answer-set semantics”, and omit the adjective
“strong”.

Given a dl-program KB = (X, P), we can obtain a positive dl-program by replacing P with its di-
transform sPL relative to X and an interpretation I C HBxp. This is obtained by grounding every rule in
P and then (i) deleting every dl-rule r such that I =5 a for some default negated a in the body of r, and
(ii) deleting from each remaining dl-rule the negative body. The informed reader will recognize this to be
a generalization of the Gelfond-Lifschitz reduct. Since KBt = (>, sPé) is a positive dl-program, it has a
unique least model Mygr. An answer set of KB is an interpretation I that coincides with Mp:.

Example 4. Consider again the dl-program KB and the interpretations defined above. We can verify that
Iy is an answer set for KB.

First, we need to compute sPZ. Rules (r1), (r2) and (r3) are already ground rules, so they are included
mn 57%2 unchanged. For rule (r4), sPéz contains all of its ground instances (obtained by replacing X and Y
by all constants from both > and P).

Consider now the ground instances of (r5). The only one case when Iy |= overnight(X) requires X to
be Sydney, so this instance is removed from sPéQ, while not overnight(t) is removed from all other closed
instances of (r5). Thus, sPZ contains (r1), (r2) and (r3), together with

overnight (1) < DL[; hasAccommodation] (1, t2) for every t1,ta € HBkp
oneDayTrip(t) +— DL[Destination W wineDest; Destination](t) fort € HBxp \ {Sydney}

Now we can compute the least model of S'PXI:2 by iterating the Herbrand transform, and check that the
result coincides with Is. Therefore, Is is an answer set for KB — actually the only one, as we show below.



Well-founded semantics. The well-founded semantics for logic programs can also be generalized to dI-
programs [17], but only when A is absent. There are several equivalent ways to define this semantics;
in this paper, we define it again by means of the Herbrand transform. For a dl-program B = (3, P) define
vis(I) to be the least model of the positive dl-program KB! defined above. The operator YiB 1s anti-
monotonic (if I C J, then vics(I) 2 yxcs(J)), so 725 is monotonic and therefore it has least and greatest
fixpoints, denoted Ifp (’y,%g) and gfp (W,QCB), respectively. An atom a € HBp is well-founded if a € Ifp (7,%3)
and unfounded if a & gfp (7,%3); the well-founded semantics of ICB is the set containing all well-founded
atoms (which are true in every model of XB) and the negations of all unfounded atoms (which are false in
every model of KB). Unlike answer sets, the well-founded semantics of KB needs not be a model of KB.

Example 5. We quickly illustrate the essential steps in computing the well-founded semantics of the dl-
program KB from Example 2.

First, we compute the least fived point of vig. Beginning with Jo =0, we compute ngO. This program
contains (1), (r2) and (r3) together with all ground instances of (r4) and, for every t, the rule

oneDayTrip(t) < DL[Destination W wineDest; Destination](t) .
The least model of KB’ is

J1 = {wineDest(Tasmania), wineDest(Sydney), wineDest(TamarValley)} U
U {oneDayTrip(Tasmania), oneDayTrip(TamarValley) } U
U {oneDayTrip(t) | ¥ |= Destination(t)} U {overnight(Sydney)}

Now we compute 377'2]1. As discussed in Example 4, since the reduct of KB only depends on the instances
of overnight included in the interpretation, we have that SPéI = sPéz with Iy as before. The least model of
KBt is therefore Jo = I, and this coincides with v25(Jo)-

Continuing this process, we compute 577;2, which is again 57%2, and conclude that its least model is
Js = Jy = Iy. Therefore I = Ifp (yicg); hence, I = vip(l2) = v25(L2) is also the least fized point of V.

One can also verify that the greatest fived point of Y5 coincides again with I. Therefore, the well-
founded semantics of KB contains all atoms in Iy together with the negations of all other closed atoms
i HBxp. In this case, negation is acyclic, which implies that all closed atoms are either well-founded or
unfounded, so in particular there is only one answer set (as mentioned earlier), and the positive part of this
well-founded semantics (I2) is a model of KB — see Theorem 5.9 of [17] for details.

2.4. Syntax of multi-context systems

We now turn to multi-context systems, summarizing their syntax and different semantics. As before, we
use a running example to illustrate these concepts.
The notion of multi-context system is defined in several layers. We summarize the definitions from [4].

Definition 1.

1. A logic is a triple ¥ = (KB, BS, ACC) where KB is the set of well-formed knowledge bases of ¥; BS
is the set of possible belief sets; and ACC : KB — 289 is a function assigning to each element of KB
a set of acceptable sets of beliefs.

2. Given a set of logics {X1,...,3,}, where each ¥; = (KB;, BS;, ACC;), a Yi-bridge rule, with 1 <
k <mn, has the form

s« (r1:p1),...,(rj i pj),not(rjpr i pjs), ..., nOb(Tm : Piy)
where 1 < 1y < n; pg is an element of some belief set of X,,; and kbU {s} € KBy, for each kb € KBy,.

3. A multi-context system (MCS) M = (C1,...,Cy) is a collection of contexts C; = (X;, kb;, br;), where
Y, = (KB, BS;, ACC;) is a logic, kb; € KB; is a knowledge base, and br; is a set of X;-bridge rules
over {¥1,...,35,}.



In order to make these notions as general as possible, the definition of logic does not make any assumptions
about what exactly knowledge bases or belief sets are. The former are part of the syntax of the language,
their precise definition being left to 3, while the latter intuitively represent the sets of syntactical elements
representing the beliefs an agent may adopt. Likewise, ACC' is an abstract description of the semantics of
the logic.

Example 6. We introduce a running example of multi-context system that we use throughout the remainder
of this section. It is an MCS M = (Cy,Cs,C3) defined as follows, where A is a set of constants (including
at least john and jack) that we assume fized.

e (1 is a database context with a single unary relation student. [Its underlying logic is defined by
KBy = BS; = p{student(t) | t € A}, where p denotes the powerset operator, and ACC1(kb) = {kb}.
Furthermore, kb; = {student(john), student(jack)} and bry = 0.

e (5 is an ontology with a single axiom Student T Person and empty A-Box; intuitively, the A-Box
will be filled from C4’s knowledge base by means of bridge rules. We assume a very simple de-
scription logic with no concept or role constructs and no megation, so its set of formulas is simply
F = {Student(t), Person(t),t = t' | t,t' € A} U {Student C Person, Person C Student}.

Its underlying logic has KBy = BSs = p(F) and ACCy(kb) = {Th(kb)}, where Th(kb) contains all
formulas entailed by kb in the given description logic. Furthermore, kba = {Student C Person} and
bra = {(2 : Student(t)) <— (1 : student(t)) | t € A}.

For readibility and succinctness, it is customary to write bridge rules with variables as a shorthand

notation for all their ground instances [5]. We adopt this practice in this presentation; thus, the above
definition of bro can be simplified to bro = {(2 : Student(X)) + (1 : student(X))}.

o (3 is a view context with a binary relation tutor, with intended meaning that every student should have
either anne or kate as a tutor. Its underlying logic is defined similarly to that of C1: KBs = BS3 =
p{tutor(ty,t2) | t1 € Aty € {anne, kate}} and ACC3(kb) = {kb}.

Furthermore, kbs = () and brs contains the two rules

(3 : tutor(X, anne)) < (1 : student(X)), not(3 : tutor(X, kate)) (r6)
(3 : tutor(X, kate)) < (1 : student(X)), not(3 : tutor(X, anne)) (r7)

2.5. Semantics of multi-context systems
The semantics for multi-context systems are defined in terms of the semantics for the logics in the
individual contexts.

Definition 2. Let M = (Cy,...,Cy) be a multi-context system, where, for each 1 < ¢ < n, C; =
<ZZ‘, kbi, b’l“i>.

1. A belief state for M is a collection S = (Sy,...,Sy) of belief sets for each context, i.e. S; € BS; for
each 1 <1 <n.

2. A bridge rule s <= (r1 : p1),...,(rj : pj),not(rjy1 : pjt1),...,n0t(ry, : py) is applicable in a belief
state S = (S1,...,5n) iff pi € Sy, for 1 <i<jandpy & Sy, forj+1<k<m.

3. A belief state S = (S1,...,Sn) of M is an equilibrium iff the condition S; € ACC;(kb; U{H(r) | r €
br; is applicable in S}) holds for 1 <i <n, where H(r) denotes the head of rule r as usual.

Belief states are “candidate” models, in the sense that they are well-formed potential models of each
context. Information is transported between different contexts by means of bridge rules, and the notion of
equilibrium guarantees that all belief states not only are models of the local information at each context,
but also reflect the relationships imposed by the bridge rules. These are interpreted as logical implications:
if a bridge rule is applicable in an equilibrium, then the information in its head must be included in the
corresponding belief set, but if that rule is not applicable then this information may or may not be included.
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Example 7. In the setting of Ezample 6, consider the belief states S, = (S, 8% 53), S, = (St, S?, Sg’) and
S. = (S, 52, 83) with:

S' = kby = {student(john), student(jack)}
S? = {Student(john), Student(jack), Person(john), Person(jack), Student C Person}
53 = {tutor(jack,anne)}
S? = {tutor(jack, anne), tutor(john, anne)}

S3 = {tutor(jack, anne), tutor(john, anne), tutor(jack, kate)}

Here, Sy is an equilibrium for M, but S, and S. are not. In the case of Sy, the heads of the applica-
ble bridge rules in brs give exactly the atoms already in Sp, and Sp € ACCy (Sg’) In the case of S,
both (r¢) and (r7) are applicable with X = john, and (rg) is also applicable with X = jack; however,
S3 ¢ ACCs5 ({tutor(jack, anne), tutor(john, anne), tutor(john, kate)}). In the case of S., none of the rules is
applicable with X = jack, (rg) is applicable with X = john, and again S2 ¢ ACC5({tutor(john, anne)}).

Minimal and grounded equilibria. As in logic programming, there are often too many equilibria for a given
multi-context system. For this reason, several particular kinds of equilibria are defined in [4], reflecting
different kinds of preferences one may adopt to choose among them. These categories closely follow the
usual hierarchy for models of logic programs, as well as of dl-programs.

The basic concept is that of minimal equilibrium. This is a relative notion, since (as discussed in [4]) it
may not make sense to minimize the belief sets for all contexts.

Definition 3. Let M = (C4,...,C,) be a multi-context system and C* C {C4,...,Cy,} be the set of contexts
of M whose models should be minimized. An equilibrium S = (S1,...,S,) of M is C*-minimal if there is
no equilibrium S’ = (S7,...,S.) of M such that:

1. SI CS; for all C; € C*;
2. 5. CS; for some C; € C*;
3. S =8, for all C; & C*.

In most examples hereafter, we use C* = M; in this case, we simply refer to minimal equilibria, which
the reader should understand to mean M-minimal equilibria.

Example 8. In Example 7, Sy is a minimal equilibrium: both S' and S? are the unique possible belief states
for C1 and Cy in an equilibrium, and the bridge rules in brs imply that no subset of S can be part of an
equilibrium (by a reasoning similar to the one showing that S, is not an equilibrium).

Other minimal equilibria for M exist, namely corresponding to all belief states for C3 in which both john
and jack have exactly one tutor.

Minimal equilibria (or even C*-equilibria) do not necessarily exist. In logic programming, it is shown
that least models always exist for positive programs, a result that holds also for dl-programs [17]. In MCSs,
this class corresponds to that of definite multi-context systems.

Definition 4. 1. A logic ¥ is monotonic if ACCx(kb) is always a singleton set, and kb C kb' implies
that the only element of ACCx(kb) is a subset of the only element of ACC's(kb"). This coincides with
the usual notion of monotonic logic.

2. A logic £ = (KBs, BSs, ACCs,) is reducible if

(a) there is KBS, C KBy such that the restriction of ¥ to KB% is monotonic;

(b) there is a reduction function reds : KBy x BSy — KBY, such that for each k € KBy and
S, S’ € BSx:

10



o redy(k,S) = k whenever k € KB5;;

o redy is anti-monotonic in the second argument, that is, reds(k,S) C reds(k,S’) whenever
S' C S, where 8" C S holds if S = (S1,...,5n), S"=(S,...,S,) and S} C S; for all i;

o S e ACCx(k) iff ACCx(redxn(k,S)) = {S}.

3. A context C = (X, kb, br) is reducible if

(a) ¥ is reducible;
(b) for all HC {H(r) | r € br} and belief sets S, reds,(kb U H,S) = reds(kb, S) U H.

4. A multi-context system is reducible if all of its contexts are reducible.
Example 9. All contexts in Example 6 are monotonic, and therefore trivially reducible with KB* = KB.

The proof of Lemma 1, in Section 3.3, includes a more interesting example of a reducible MCS.

A definite MCS is a reducible MCS in which bridge rules are monotonic (that is, they do not contain
not) and knowledge bases are in reduced form (that is, kb; = red;(kb;,S) for all i and every S € BS;).
Every definite MCS has a unique minimal equilibrium [4], which we denote by Eq(M). The semantics of
non-definite MCSs is defined via a generalization of the Gelfond-Lifschitz reduct to the multi-context case.

Definition 5. Let M = (C1,...,Cy) be a reducible MCS, where context C; has a reduction function reds,,
and let S = (Sy,...,Sy,) be a belief state of M.

The S-reduct of M is M® = (C{,...,C%), where CF = (¥;, redy, (kb;, S;), brf) and, for each i, brf
is obtained from br; by (1) deleting every rule with some not (k : p) in the body such that p € Sy, and
(2) deleting all not literals from the bodies of remaining rules.

If S = Eq(M®), then S is a grounded equilibrium of M.

This definition only makes sense if M* is definite. It has been shown [4] that this is always the case. In
particular, if M is a definite MCS, then its minimal equilibrium is its only grounded equilibrium. In other
cases, several grounded equilibria (or none) may exist. It is also easy to verify that grounded equilibria of
M are indeed equilibria of M.

Example 10. Consider again the MCS M from FExample 6 and equilibrium S, from Example 7. We assume
A = {john,jack}. Since in this case KB, = KB, the first condition imposed on reduction functions requires
that they all be projections: red;(k,S) = k for all k € KB;. As a consequence, M and M%« can only differ in
the sets of bridge rTules in their contexts. Furthermore, the bridge rules in C7 and Cy do not have negations
in their bodies, so brf“ = bry and bTQS“ = brsy.

The case of bT3S“ is more interesting. For rule (rg), we always have that tutor(X,kate) ¢ S3, so by
condition (2) of the above definition we keep both instances of this rule, but delete their negative literal. For
rule (r7), since tutor(jack,anne) € S3, we remove the instance where X = jack, by condition (1), and keep
the instance where X = john, removing its negative literal. Thus brg?“ contains

(3 : tutor(X, anne)) < (1 : student(X)) and (3 : tutor(john, kate)) <— (1 : student(john))

Well-founded semantics. The well-founded semantics for reducible MCSs is also defined in [4]. As usual,
this semantics is based on the operator vy/(S) = Eq(M*). Since v, is anti-monotonic, 72, is monotonic as
usual. However, one can only guarantee the existence of its least fixpoint by the Knaster—Tarski theorem if
BS; has a least element for each logic ¥; in any of M’s contexts. If this is the case, then the well-founded
semantics of M is WFS(M) = Ifp (v3,).

As in logic programming (and dl-programs), WFS(M) is not necessarily an equilibrium: informally, it
contains the knowledge that is common to all grounded equilibria, but being an equilibrium is not preserved
by intersection.
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Example 11. Consider the multi-context system M from Example 6. As discussed in FExample 10, S-reducts
of M only differ from M in brs. Starting with So = (0,0,0), we keep all rules but delete their negative parts,
so that bry® contains

(3 : tutor(t,anne)) + (1 : student(t)) and (3 : tutor(t, kate)) < (1 : student(t)) for allt € A
in brs. The minimal equilibrium for this MCS is
Eq (MSO) = 81 = (S, 8%, {tutor(john, anne), tutor(john, kate), tutor(jack, kate), tutor(jack, anne)}) .

Now we compute M. We have to remove from brs all rules involving john or jack, as the negated atom
in their bodies is always in S1’s third component; thus, br? ' becomes

(3 : tutor(t, anne)) « (1 : student(t)) and (3 : tutor(t, kate)) <— (1 : student(t)) for all t € A\ {john,jack}

and Eq (Msl) = ’Y%/I(SU) =Sy = (Sl,S2,Q]>.

Iterating this construction is very similar: M = M9 and Eq (MS2) = Ss is similar to S1, but
containing S® in its second component. Then MS* = M and Eq (MSS) = Sy = Ifp(ym). Thus S =
(81,582, 0) is the well-founded semantics of M. Observe that this belief state is not an equilibrium of M.

3. From dl-programs to multi-context systems

In this section, we define the (syntactic) translation from dl-programs to MCSs. Then, we prove the
correspondence results that relate the semantics of a dl-program and the corresponding MCS. We illustrate
this construction by applying it to the dl-program from Example 2.

The converse translation is trivially not possible — MCSs are far more general than dl-programs, since
they are prepared to handle any kind of reasoning system.

3.1. The syntactic translation

There are two essential differences between dl-programs and MCSs: the former only allow the combination
of a logic program with a description logic knowledge base, whereas the latter allow any kind of different
systems to be joined together; and the former allow for local changes to the knowledge base, via input
contexts in dl-atoms, whereas the interaction within the latter is global, since inferences derived from bridge
rules can be used in further inferences in other contexts.

A third aspect concerns the way dl-programs and MCSs interact with the outside world. In both cases,
we are faced with several independent components connected by a set of rules — a logic program, in the case
of dl-programs, and the sets of bridge rules, in multi-context systems. However, all components of an MCS
are observable from the outside world, since models of MCSs contain models of each individual component,
whereas interaction with dl-programs must always be made via its logic program.

Because of these differences, the two systems have different kinds of expressiveness. In spite of this, it
is simple to translate a dl-program into an MCS, as we now show. Given a dl-program KB = (X, P), there
are two steps in the process of generating an MCS from B.

1. We split P into its purely logical part and its communication part, translating rules that contain
dl-atoms into bridge rules.

2. For each distinct input context x appearing in P, we create a different copy of the knowledge base,
corresponding to the view of the knowledge base within the dl-atoms containing .

Although the idea behind this syntactic construction is suggested in [5], it is not defined precisely therein,
neither are its semantic implications discussed — so even though the authors use it to justify that MCSs
generalize dl-programs, this claim is not substantiated beyond an intuitive perspective. Here, we not only
make this syntactic correspondence precise, but discuss in detail the semantic correspondences it entails.

The first step is to encapsulate a description logic knowledge base in a context.
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Definition 6. A description logic L induces the logic L(L) = (KB, BS;, ACC ), where KB is the set of
all well-formed knowledge bases of L; BSy is the set of all sets of dl-queries (defined as for dl-programs) in
the language of L; and ACC (kb) is the singleton set containing the set of queries Q(t) such that kb = Q(1),
also denoted kb™.

The context induced by a knowledge base X over L is Ctx(X) = (L(L), X, 0).

Since description logics have open-world semantics, a query such as —=C(a) is only in kb= if —C(a) can
be proved from kb (and not, as in databases, simply if C(a) cannot be proved). As a consequence, the belief
sets (the elements of BS ;) need not be categorical: they may contain neither C(a) nor —C(a) for a particular

concept C and individual a. Also, since description logics are monotonic, if kb C kb’, then kb= C k'

Definition 7. Let KB = (X, P) be a dl-program and x1,...,Xn be the distinct input contexts occurring in
dl-atoms in P.

1. The translation oxg of literals and dl-atoms is defined as follows:

(0:a) if a is an atom

not(0 : b) a =notb for some atom b
(i: Q1)) a = DL[x;; QJ(t)

not(i: Q(t)) a=mnot DL[x;;Q](¥)

U}CB(a) =

2. The translation of P is the context Cy = (Lo, kbg, bro) where:

e Lo = (KBy, BSo, ACCy) is the logic underlying P, where KBy is the set of all logic programs
over P’s signature, BSq is the power set of HBp, and ACCy assigns each program to the set of
its first-order models (restricted to HBp );

e kbg is P~, the set of rules of P that do not contain any dl-atoms;

e brg contains p « oxp(l1),...,ocs(lm) for each rule p <11, ..., Ly in P\ P~.

3. Each input context x; = Py op; p1,. .., Pr op P, withi = 1,...,n, generates a context C; = (L(L), X, br;)
where br; contains all ground instances of the bridge rules P;(X) < (0 : p;(X)), if P; is a concept and
op; =4, or = P;(X) < (0: p;(X)), if Pj is a concept and op; =, or Pj(X,Y) « (0:p;(X,Y)),
if P; is a role and op; = W, or ~P;(X,Y) + (0 : p;(X,Y)), if P; is a role and op; = U, for
J=1,... k.

4. The multi-context system generated by KB is M(KB) = (Cy, Ch1,...,Ch).

Recall that bridge rules with variables are shorthand notation for all their ground instances (see Exam-
ple 6).

In Section 4.1 we describe how this translation can be extended to the full language of dl-programs
including A.

The first context in M(KB) is a logic program with the same underlying language of P. This implies that
any interpretation I of P is an element of BSy, and vice-versa. We use this fact hereafter without mention.

Example 12. Recall the dl-program KB from Ezxample 2. For the purpose of generating an MCS from KB,
observe that there are two different input contexts in this program, x1 = € and x2 = Destination W wineDest.
Rules (1), (r2) and (r3) do not include dl-atoms, so they belong to P~.

Rules (r4) and (rs), which contain di-atoms, are translated as the following bridge rules.

overnight(X) « (1 : hasAccommodation(X,Y)) (r})
oneDayTrip(X) < (2 : Destination(X)), not(0 : overnight(X)) (rf)

The generated multi-context system M(KB) is thus (Cy, C1, Cs), where:
13



o C'0 = <L0,{T1,T2,T3},{Ti,7‘é}>
[ 01 = <L, E, ®>
e Cy = (L, Y, {Destination(X) < (0 : wineDest(X))})

As stated earlier, M(KB) actually contains the ground versions of the bridge rules given here.

3.2. Relating the semantics

Just as we can generate a multi-context system M(KB) from any dl-program KB, we can generate a
belief state for M(XB) from any interpretation of KB.

Definition 8. Let KB = (X, P) be a dl-program and I be an interpretation of KBB. The belief state generated
by I is Skcp(I) = (SE,SE, ..., S of M(KB), where S{ = I and, fori=1,...,n, SI is

(SULP@ |1 F o), Pp e X UL-P@) |1 F o), PY pex)

Intuitively, S} simply corresponds to the view of the knowledge base by extending > with the information
from the input context x;.

It is straightforward to verify that Sicg(I) is a belief state of M(XB). When there is only one dl-program
under consideration, we omit the subscript in Sgp.

Example 13. Recall the interpretations for the dl-program KB from Example 3. The belief states generated
by these interpretations all contain the interpretation itself as the belief set for Cy and XF as belief set for
Cy (since x1 = 0 and this is the knowledge base corresponding to 3). Furthermore, YF is a subset of the
belief set for Co in all cases, by monotonicity of ¥’s underlying logic.

Interpretation I; satisfies wineDest(Tasmania), wineDest(Sydney) and wineDest(TamarValley), whence
Destination(Tasmania), Destination(Sydney) and Destination(TamarValley) are included in the belief set for
Cy — Destination(Sydney) was actually already there. Since there are no axioms involving Destination in X,
these are the only new elements of this belief set. Thus:

S(I;) = (I, kb™, kb U {Destination(Tasmania), Destination(TamarValley)})
The case of I is similar, and
S(I) = (I, kb", kb= U {Destination(Tasmania), Destination(TamarValley)})

In the previous example, one can check that S(I3) is the only belief state that is also an equilibrium of
M(KB), and I, was also the only model of KB. This suggests that there are very close connections between
I and S(I), which we now formally state and prove.

Lemma 1. Let KB = (X,P) be a dl-program and DL[x;; Q](t) be a ground dl-atom in P.
1. For any interpretation I, I |=x; DL[x:; Q](%) iff Q(f) € Si.

2. If S = <597517~~~7Sn> is an equilibrium of M(KB) and 1 < i < n, then Q(t) € S; iff So Es=
DLxi; Q(t).

Proof. The first equivalence is straightforward, since the construction of S mimics the definition of the
semantics of KB.

For the second equivalence, Sy s DL[x;; Q](f) holds iff ¥(Sop;x:) E Q(F) iff £, extended with every
instance P(€) such that p(€) € Sy, if PWp € x;, and every instance —P(€) such that p(€) & So, if P U p € x;,
satisfies Q(%). This last condition is equivalent to

Q) € (SULP®) | T p@), Popexi} U-PO | TEpd) PYpex))
which is the only element of ACC); since S is an equilibrium, this set concides with S;. O
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Theorem 1. Let KB = (X, P) be a dl-program.
1. If I is a model of KB, then S(I) is an equilibrium of M(KB).
2. If S = (So,...,Sn) is an equilibrium of M(KB), then Sy is a model of KB.

Proof. 1. Suppose that I is a model of KB and let S(I) = (SE, S{,...,SL) be the belief state generated by
I. For each i, we need to show that S/ is an acceptable belief set for kb; and that s € S/ whenever the
bridge rule s «— o(l1),...,0(lx) € br; is applicable in S(I).

Consider first the case i = 0. Since S = I is a model of all the rules in P, it follows that I satisfies
every rule in kbg = P~. Let s «+ oxgp(l1),...,0x5(lr) be a bridge rule in brg; this must originate from
arule s < l1,...,l in P\ P~. Assume that the bridge rule is applicable in S(I); for each ;, there are
three possibilities: (1) I; is a regular literal, and then I |=1;; (2) I; is DL[xm; Q](f) and Q(f) € S}, whence
I =S} = 1; by Lemma 1; (3) I; is not DL[x,; Q](f) and Q(f) ¢ S%,, whence I = S{ ¥~ DL[x.,; Q](f) by
Lemma 1, and therefore I |=I;. Thus, I satisfies the body of the rule, hence S{ = I = s.

Suppose now that i # 0. By construction, S/ is the only element of ACC;(XU{P(t) | I = p(t),PWp €
Xi} U{=P@®) | I Ep(t),P Y p € x;}), which is precisely the belief set containing all queries Q(f) that X,
extended with the heads of the bridge rules applicable in S([), satisfies.

Therefore S(I) is an equilibrium of M(KCB).

2. Suppose that S = (Sp, S1,...,5,) is an equilibrium of M(KB). Since Sy is a model of kby extended
with the heads of bridge rules in bry which are applicable in S, it follows that Sy satisfies all the rules of
kbo =P~.

Let p < l1,...,lx bearulein P\ P~. Then p < oxp(l1),...,0xs(lx) is a bridge rule in bry. Again, if
So satisfies the body of the rule, then the corresponding bridge rule is applicable in S: for regular literals
this is immediate (the condition is the same), while for dl-atoms and their negations this is again Lemma 1.
Hence Sy is also a model of the remaining rules in P.

Therefore Sy is a model of KB. U

In case 1 of the previous proof, nothing is said about the case when a bridge rule is not applicable: in
this situation, the definition of equilibrium poses no restrictions on whether or not its head is part of the
corresponding belief set. This can be seen e.g. in Example 13 by adding the literal oneDayTrip(Sydney) to
I5: this yields another model I of KB, and its translation is still an equilibrium for M(KB).

Furthermore, since ACC,; always yields a singleton set when ¢ > 1, equilibria for MCSs generated from
a dl-program can be uniquely derived from their first component, as expressed by the following corollary.

Corollary 1. If S = (So,...,Sn) is an equilibrium of M(KB), then S(Sp) = S.
Proof. Suppose that S is an equilibrium of M(KXB). In particular,
S; € ACC;i(kb; U{H(r) | r € br; is applicable in S})
=ACC{(EU{P(t) | So E p(t), PUp € xi} U{~P(?) | So = p(t), P U p € x;})
since kb; = X, which is precisely the i-th component in S(Sp). O
This result allows us to state all future equivalences in terms of models of P.

3.8. Answer-set semantics

Since the transformation S from interpretations of dl-programs to belief states preserves inclusions, we
also have the following relationship.

Theorem 2. Let KB = (X, P) be a dl-program. Then I is a minimal model of KB iff S(I) is a minimal
equilibrium of M(KCB).
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Proof. (=) Suppose that I is a minimal model of KB, and let S(I) = (Sp, S1,...,S5,); by 1 in Theorem 1,
S(I) is an equilibrium of M(KB). Assume that there exists another equilibrium S’ = (S}, S%,...,S5),) of
M(KB) such that S, C S; for all 4. In particular, S, C Sy = I, and by 2 in Theorem 1 S, is a model of KB5.
Since I is a minimal model of KB it follows that So = I, whence by Corollary 1 S’ = S(I). Therefore S(I)
is a minimal equilibrium for M(KB).

(<) Suppose that S(I) = (I, S1,...,S,) is a minimal equilibrium of M(KXB). By 2 in Theorem 1, I is a model
of KB. Assume that there exists another model I’ C I of KB. By 1 in Theorem 1 S(I') = (I, S1,...,5},)
is an equilibrium of M(KB). Since I’ C I, we also have that S, C S;: every bridge rule from br; that is
applicable in S(I’) is also applicable in S(I), so (X U {H(r) | r € br; is applicable in S(I")}) C (XU {H(r) |
r € br; is applicable in S(I)}), and description logics are monotonic. Since S(I) is a minimal equilibrium for
M(KCB), this implies that S(I") = S(I), and in particular I = I’. Therefore I is a minimal model of £B. O

Example 14. Recall the discussion after Theorem 1. Reconsider interpretations Iy and I, noting that
I, C I). Clearly I} is not a least model of KB, whereas I is. Correspondingly, S(I2) is a minimal equilibrium
of M(KB), but S(I}) is not: even though both belief states coincide on their second and third components,
their first components are, respectively, Is and I}, and the former is a proper subset of the latter.

We now show that answer sets for dl-programs correspond to grounded equilibria for MCSs. This is a
reasonable result, since both the dl-transform of dl-programs and the reduct of an MCS are generalizations
of the Gelfond—Lifschitz transform of ordinary logic programs.

Throughout the remainder of this section, let KB = (3, P) be a dl-program and M(XB) be the multi-
context system generated by KB, where M(KB) = (Cy, C1,...,Cy) and C; = (L;, kb;, br;) for i = 0,...,n.

Proposition 1. M(KB) is reducible, with KB;, being the set of positive programs, redo(P,S) = P, com-
puting the Gelfond-Lifschitz transform of P relative to S, and, for i > 1, KB} = KB; and red;(kb,S) = kb
being a projection function.

Proof. The logic Lg is reducible, with KB the set of positive programs and reduction function redy (P, S) =
PS, computing the Gelfond-Lifschitz transform.
The conditions for being a reducible logic are just well-known facts in logic programming, namely:

e positive logic programs are monotonic;

e the Gelfond—Lifschitz transform of a positive logic program is itself;
o if S C S, then P C PS;

e S is a model of a (general) logic program P iff it is a model of P.

Context Cy is reducible: we need to show that redo(P~UH,I) = redo(P~,I)UH, for every interpretation
I and any set H of heads of rules in brg. But H consists solely of facts (rules with empty body), which are
unaltered by the Gelfond—Lifschitz transform, hence this equality holds.

Fori=1,...,n, context C; is reducible via the identity function: since description logics are monotonic,
we can take KB} = KB;, and the identity function trivially satisfies all the reducibility conditions. O

We now look closely at the relationship between the dl-transform of P and the reduction of M(XB). The
former generates a subsystem of the latter in the following sense.

Definition 9. Consider two multi-context systems M = (C1,...,Cy) and M' = (C1,...,Cl). We say that
M’ is a subsystem of M, M' C M, if there exists an injective function ¢ : {1,...,m} = {1,...,n} such
that C} is Cyy with every index j in bryy replaced by ¢(j) for 1 <i < m.

In other words, a subsystem of M is a subset M’ of M’s contexts whose bridge rules do not refer to
contexts outside M’. In the setting of Example 6, (Cy, C3) is a subsystem of M, with ¢ the identity function.
In particular, if M’ C M, then m < n.
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Let I be an interpretation of KB, M) = <C§(1), Cf(l), ceey C,SL(I)> be the S(I)-reduct of M(XB), and

KB = (3, sPL) be the dl-transform of P relative to ¥ and I, with M’ = M(KB') = (C},C},...,C..) the
corresponding multi-context system.

Proposition 2. M’ is a subsystem of M) ; also, it is a definite multi-context system.

Proof. To see that M’ is a subsystem of M) we first characterize M’. Since the set of input contexts
X, in sPL is, in general, a subset of the X; in P (the removal of some dl-atoms and some dl-rules may
have caused some input contexts to cease to occur), the indices in M(KXB) and M’ may not coincide. Let
¢:{1,...,m} — {1,...,n} be the appropriate renaming function, i.e. such that x; = Xy

1. C} is C’g’([), with every index ¢ # 0 in brg replaced by ¢(4): this can be seen by observing that the
rules removed from P in the construction of sPé correspond precisely to the rules removed from Cj
in the construction of 05 (. Consider a ground rule r obtained from grounding a rule in P. If r does
not contain dl-atoms, then r € sPL iff r € (P~)! = redo(kbo, I).

Suppose that r contains dl-atoms. Then r is not included in sPé if r contains a negated atom or
dl-atom [ such that I}~ I. If [ is a negated atom —p, this means simply that I |= p, hence p € S§ = T;
if 1 is ~DL[x:; Q](f), then by Lemma 1 Q(f) € SI. In either case, the corresponding bridge rule
is removed from brg. This reasoning is reversible, so the converse implication also holds. If those
conditions do not hold, then 7 is included in sPL by removing its negated atoms or dl-atoms — and
since oxp transforms these into not literals, the bridge rule obtained is the same as removing all not
literals from the bridge rule derived from r.

2. Cl = C«i((f)) : the only non-trivial part of this equality regards the bridge rules. But all bridge rules in

C! are of the form (—)P <« (0 : p), which do not contain negations in their body, so they are never
removed.

This shows that M’ is a subsystem of M), The fact that it is a definite MCS is a straightforward
consequence of the definition of sP{. O

From an interpretation J of KB, we can generate belief states for M and M’; to distinguish them, we
write the subscripts in S explicitly.

Proposition 3. For any interpretation J of KB, Sxp(J) is a minimal equilibrium of M550 iff Sipi(J)
18 a minimal equilibrium of M.

Proof. The direct implication is straightforward. For the converse implication, note that from an equilibrium
S = (S0, 81, ...,5n) of MS<5() we can construct an equilibrium " = (So, Sy(1), - - -, Sp(m)) of M’. Since
M’ is definite, it has a unique minimal equilibrium, and thus Sig/(J) C S’, and in particular J = S’g C Sq.
Assume that S C Sxp(J); then in particular Sy € S§ = J, and necessarily Sy = J, whence S = Siz(J).
Thus Skp(J) is a minimal equilibrium for CB. O

The following corollary, analogous to Corollary 1, will be essential later on.
Corollary 2. Let S = (So,S1,...,S,) be a minimal equilibrium of M><5(1). Then S = Skp(Sy).

Proof. Suppose S = (Sp, S1,...,S5,) is a minimal equilibrium of M3<5(I), From S, we can construct a
minimal equilibrium S’ = <So7 So(1)r -+ S<p(m)> as in Proposition 3, which is a minimal equilibrium of M’.
By Corollary 1, S” = Sipr(Sp), whence by Proposition 3, it follows that Sicg(Sp) is also a minimal equilibrium
of M5x8()  But M58 is a definite multi-context system, so it only has one minimal equililibrium. Hence
S = Sks(So). O

Theorem 3. I is an answer set for KB iff S(I) is a grounded equilibrium of M(KB).

Proof. I is an answer set for KB iff I is the least model of KB’ iff Sip/(I) is a minimal equilibrium of M’
iff Sx5(1) is a minimal equilibrium of M3%8U) iff Sx5(I) is a grounded equilibrium of M(KXB). O
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3.4. Well-founded semantics

The definition of well-founded semantics for MCSs is very similar to that of well-founded semantics for
dl-programs — in particular, it relies on a similarly defined anti-monotonic operator. We now make this
correspondence precise. As before, let B = (X, P) be a dl-program, M = M(KB) be the MCS generated
by KB, and S be Skp; observe that Proposition 3 guarantees that this makes sense in all formulas below.

Proposition 4. For every interpretation I of KB, ya(S(I)) =S (ves(l)).

Proof. Let I be an interpretation of XB. By definition, ya7(S(I)) is the minimal equilibrium of M3() | the
reduct of M relative to S(I), hence yp(S(I)) may be written as Sigp(J) for some J. By Proposition 3,
Sk (J) is a minimal equilibrium of M(KXB'), with KB' = (%, sPL), and by Theorem 2 J is the least model
of KB', hence J = vxp(I) as we wanted to show. O

Theorem 4. [ is the well-founded semantics of KB iff S(I) is the well-founded equilibrium of M(KB).

Proof. The proof of this result amounts to showing that Ifp (’y%/[) = S(Ifp (’Y}QCB))- 1. For every interpretation
I of KB and every n > 0, v3,(S(I)) =S (vieg(1)).
For n = 1 this is simply Proposition 4. Assume the equality holds for n; then

Vi S)) = v (i (SUD))) = v (S (ks (1))
=S (s () =S (g (D)

where the second equality holds by induction hypothesis and the third by Proposition 4.
2. Let L = (0,0,...,0) be the least belief state of M. Note that it is not true, in general, that S(0)) = L,
hence we cannot invoke the previous result.

However, 1. C S(0), where C is pointwise set inclusion. By monotonicity of 73, it follows that a7 (L) C
Y3(S(®)) =S (v#5(0)) by the previous result. Therefore, Ifp (v3;) S (Ifp (vE5))-

From Corollary 2, we can write Ifp (712\/[) as S(J) for some interpretation J, since vy, is defined as the
minimal equilibrium of a reduct of M. It follows that S(J) = v3,(S(J)) = S (vEg(J)), and hence J is a
fixpoint of 7%, (since S is injective). Therefore Ifp (7,%3) C J, and by monotonicity of S it follows that

S (Ifo (vis)) E S(J) = Ifp (v))- -

4. Extensions and design options

In this section we extend our translation to dl-programs including the original A operator; and show
how the mapping from dl-programs to MCSs can be used to motivate an encoding of default reasoning in
this more general framework.

4.1. Non-monotonicity and the use of A

As discussed in Section 2.2, the original definition of dl-programs [16] included a third operator A for
building input contexts. The semantics for this operator is defined by extending the definition of A;(I)
(page 6) with the clause

Ai(I) ={~Fi(e) | pi(e) € I}
applicable when the input context x includes P; op; p;, where op, is A. Dl-atoms built using this operator
are typically non-monotonic, as extending the interpretation of p reduces that of P A p; this in turn implies
that the definition of strong answer sets becomes more involved: the Gelfond—Lifschitz transformation also
has to treat these non-monotonic atoms.

The same authors later observed [17] that A can be omitted from the language, under quite general
assumptions (that the underlying description logic satisfies the unique name assumption), without restricting
its expressiveness. Indeed, we can rewrite P A p as P U p, where p is a fresh predicate symbol defined by
means of the dl-rule

p(X) < not DL[Q ¥p; Q(X)
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(where @ is a fresh concept or role name), thereby “pushing” the non-monotonic component of the rule to
the logic program side and making all dl-atoms monotonic.

As the authors observe in [17], this translation preserves the semantics of dl-programs, in the sense that
applying this transformation does not change the set of models. For this reason, in that work they also
treat only the fragment of the language we considered in this paper. In particular, they define well-founded
semantics of dl-programs using only W and U (which they refer to as the “most relevant fragment” of the
full language). The results informally stated in that article can be summarized in the following lemma.

Lemma 2. Let KB = (X,P) be a dl-program using all three operators W, J and A, and KB' = (X, P’) be
the program using only W and J obtained by the transformation described above. Then I is a model of KB
zﬁ[ is a model of KB', where I is obtained from I by defining the interpretation of p to be the complement
of the interpretation of p, for every predicate p used in a non-monotonic subterm.

Furthermore, we also prove the following relationship.

Lemma 3. In the conditions of Lemma 2, iff is a strong answer set for KKB', then I is a strong answer set

for KB.

Proof. Let I be an interpretation and I be defined as above. Without loss of generality, assume that P is a
ground dl-program. We first focus on the predicates p for which we add p in constructing P’. In the reduct

sP'L, we include exactly
p(t)
for those ¢ for which p(f) ¢ I, hence in every model of sP’ é the interpretation of p must coincide with that
defined in I. .
Furthermore, I = sPL iff I = ’P’E' since I and I agree on all dl-atoms, the rules that were kept in SP’g
but have no counterpart in 5732 include literals in their body that are not satisfied by I (so those rules are

always satisfied by I). As for the rules that were kept both in sP’ é and sPL, the literals that were removed

in the latter but not in the former are satisfied by I, while satisfaction of the remaining literals coincides
for I and 1.
Assume that I is not a strong answer set for B; we show that I is not a strong answer set for KB'. If I

is not a model of sPL, then we already know that I is not a model of sP’ é, so it cannot be a strong answer
set. So assume that I is a model of sPL, but there is another model J C I of that program. Define J! as

the interpretation J extended to HBx g by interpreting each symbol p as in I. By construction J! C I, and
we show that J! is also a model of HBxp:. For the rules of the form —p <— this is trivial. Now let r be a

dl-rule in P that is kept in both sPL and in sP’ é Since J is a model of sPL, either J satisfies the head of
7 (and therefore so does J?) or J does not satisfy one of the literals in the body of r that were kept in sPL;
but such a literal cannot contain A, therefore it appears unchanged in the body of the corresponding rule

sP’ IE and is not satisfied by J!. Finally we consider the case where r is removed from sPL but not from

sP’é. This means that there is a (non-negated) dl-atom b in the body of r such that I [# b. But in this
case also I j£ b/, where 0 is the dl-atom obtained from b by the transformation defined above, and since
JI C Tand ¥ is a monotonic dl-atom it follows that J = v, whence J! satisfies the counterpart to 7 in

sP'%,. Therefore JI = sP'%, and therefore I is not a strong answer set for sP's,. O
The converse is however not true, as the following example shows.

Example 15. Consider the following ground dl-program over an empty description logic knowledge base
and a first-order signature containing only one constant symbol t.

a(t) — DL[P1 A b, P2 W —|P1 n Pg](t)
C(t) — DL[Pl Ad P,Wa;—P; N PQ](t)
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Then I = {a(t),c(t)} is a strong answer set for this program (its reduct simply contains the two facts a(t)

and c(t)), but I = {a(t),b(t),c(t),d(t)} is not a strong answer set for the transformed program

a(t) < DL[P, U b, Py W c; P N Py](t) b(X) + not DL[BWb; B](X)
c(t) < DL[P, U d, Py W a;—~P; N P](t) d(X) < not DL[Dwd; D](X)

as this program’s reduct w.r.t. Iis

f=all

a(t) — DL[Pl U B, Poyc, PN P2](t)
C(t) — DL[Pl G (j, Poya;—P; N PQ](t)

(X) «
(X) «

Sy

which admits {b(t),d(t)} as its minimal model.

We can use the same idea to extend the translation from dl-programs to MCSs to the full-fledged language
also including the third operator A. This requires simply adding bridge rules —P; < not(0 : p;) to the
definition of Ctx(X) whenever op, is A (item 3 in Definition 7).

This construction essentially amounts to translating the dl-program first to a dl-program without A and
then translating the result to a multi-context system (albeit avoiding the addition of an explicit name for
negated predicates). Therefore, Theorems 1 and 2 still hold. However, Theorem 3 does not hold, in view of
Example 15), and we only have the following weaker property.

Proposition 5. Let KB = (X,P) be a dl-program using all three operators W, J and A, M(KB) be the
corresponding MCS, and I be an interpretation over HBxg. If S(I) is a grounded equilibrium of M(KB),
then | is a strong answer set for KB.

Proof. Apply Theorem 3 to Lemma 3. O

Finally, it does not make sense to explore Theorem 4, since well-founded semantics for dl-programs are
only defined for the fragment containing only W and & [17]. If we take the view that those authors implicitly
defined these semantics for all dl-programs by means of this transformation, then of course Theorem 4
trivially holds.

4.2. Knowledge bases as contexts

As discussed in the introduction, having a translation from dl-programs to multi-context systems allows
us in principle to take a systematic construction over dl-programs, translate it to the MCS framework, and
examine whether it can be expressed as a general construction over MCSs. In this section, we undertake
such a task to the encoding of default rules in dl-programs [18]. We show how it induces an encoding of
default rules in MCSs, and prove that it correctly captures Reiter’s extension semantics in the setting of
ontologies.

In Reiter’s original formulation [33], a default rule has the form

A1y Q2 B1ye ey B (1)
,y )

where «;, 8; and vy are first-order formulas for all 7, j, with intended semantics that if, for some instantiation 6
of the free variables in the rule, all ;0 hold and it is consistent to assume that all 8;6 hold, then 8 is inferred.
Several semantics for default rules have been proposed [1], namely Reiter’s original semantics [33] based on
extensions — theories that are fixpoints w.r.t. the default rules. The presence of existential quantifiers in
these formulas requires them to be skolemized before extensions are computed, which poses several problems
namely in the setting of description logics [3]. Therefore, it is common to pose stronger syntactic restrictions
on them; in particular, the results in [18] are first proven for literals only, although the authors then discuss
how to relax this constraint to quantifier-free formulas where v does not contain disjunctions.

In our setting, we are interested in modelling default rules by bridge rules. More precisely, following the
idea in [18], we can encode rule (1) as the bridge rule v < (i : 1), ..., (i : ag),not(i : =51),...,not(i: =5,)
in br;, where i is the identifier of the context Ctx(3). This suggests that ai,...,ax and B4, ..., S, should
be dl-queries, while v should be a formula that can occur in a knowledge base.
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Definition 10. A default rule over an ontology ¥ is a rule of the form (1), where « is a conjunction of
dl-queries, B1, ..., B, are dl-queries and v is an assertion axiom.

Recall that an assertion axiom is of the form C(t), =C(¢), R(t1,t2), 7 R(t1,t2), t1 = t2 or t; # to, where
C' is a concept, R is a role, and t, t; and ty are constants or variables. This definition captures the intuition
that default rules should only be used to infer additional instances to be added to the A-Box [3], as well as
the restriction that v should be a literal [18].

In order to define extensions, we again follow [3] and use Reiter’s fixpoint characterization [33]. Given
an ontology %, a set of default rules I" and a set F' of assertion axioms, let £(F,0) = ¥ and E(F,i+ 1) is

obtained from £(F,i) by adding all v such that: A Aok el E(F,i) Faj;forl <j<k,
v

and —f3; ¢ F for 1 < j < n. Let & = 55 E(F,9).

Definition 11. Let Th(E) denote the set of queries satisfied by an ontology E. An extension of ¥ and T is
a set Th(E) such that Th(E) = Th(Eg).

Defining an extension as a set of queries (rather than a set of formulas) makes sense, as these are the
only formulas that our framework allows us to “observe”.

The result below makes the correspondence with the standard default semantics precise, again considering
minimal equilibria.

Proposition 6. Let 3 be an ontology and T be a set of default rules over 3. Let M be the MCS with a
single context Ctx(X) and bridge rules obtained from the rules in I'. Then S is a minimal equilibrium of M
iff S is an extension of ¥ and .

Proof. Let S be an extension of ¥ and I'. Then S = ACC(SU{H(r) |r € br; is applicable in S}), hence
S is an equilibrium of M. Conversely, if S is an equilibrium of M, then by induction £(S,i) C S: for i =0
this is trivial; for ¢ + 1 assume that £(S,4) C S and note that £(S,i + 1) is then derived from £(S,7) and
the heads of rules that are applicable in £(S,4). Hence £ C S.

Then: if S is an equilibrium of M, then £ C S is also an equilibrium of M that is simultaneously an
extension of ¥ and I'; if S is a minimal equilibrium, then necessarily £g = 5, yielding the thesis. Conversely,
if S is an extension of 3 and I', then it is an equilibrium of M, and since extensions are minimal w.r.t. set
inclusion it must be a minimal equilibrium. O

This result can be made a bit stronger; under some conditions, which often arise in practice, only minimal
equilibria exist.

Corollary 3. Let ¥, I' and M be as in Proposition 6 and suppose that, for every extension E and rule
ala"'aak:/ﬁla"'aﬁn

eI, oy € E iff a; is a consequence of 3. Then every equilibrium of M is an

Y
extension of X and I.
Proof. Under the hypothesis, a; € £(3,1) iff o; € E, and the thesis follows. O

In particular, if the rules in T" are prerequisite free [6] (i.e. kK = 0), then every equilibrium of M corresponds
to an extension of ¥ and I', and conversely. This is interesting in practice, as it corresponds to many useful
applications such as the modeling of closed-world reasoning by means of default rules [6].

Example 16. Suppose that 3 is the ontology consisting of concepts C, D and E, the axiom E= CUD, and
the single instance E(a). Then X’s models must contain at least one of C(a) or D(a). Since none of these is
guaranteed to hold in all models, ACC (%) = (. Adding closed-world semantics to C and D, by means of the
translated default rules (1: -C(X)) <= not(1: C(X)) and (1: -D(X)) < not(1 : D(X)), yields two possible
equilibria, corresponding to the two extensions of the corresponding set of default rules: {C(a),—~D(a)} and

{D(a), ~C(a)}-
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In order to obtain true closed-world reasoning (in the sense that e.g. the MCS in Example 16 would
be inconsistent, as ¥ is inconsistent with the closed-world assumption) one could define ACC; as a binary
operator, separating the original belief state from the conclusions derived from the application of bridge
rules and allowing them to be treated differently. We are currently studying the impact of this change in
the theory of MCSs.

5. Conclusions

In this paper, we showed that an arbitrary dl-program can be faithfully translated into a multi-context
system, despite the fundamental differences between these two paradigms for combining reasoning systems.
This translation induces a precise correspondence between different types of semantics for dl-programs and
MCSs. Thus, interpretations of the dl-program naturally correspond to belief states for the generated
MCS; models correspond to equilibria; least models to minimal equilibria; strong answer sets to grounded
equilibria; and well-founded semantics (for dl-programs) to well-founded semantics (for MCSs).

As a consequence of this construction, we are able to compute minimal equilibria and well-founded
semantics for an MCS that has been generated from a dl-program. This is not possible in general, since the
definition of minimal equilibrium is a declarative characterization that is not computational. Likewise, while
there is no algorithmic procedure to check that an equilibrium for an MCS is grounded, this is possible for
MCSs generated from dl-programs. This shows that the translation we presented is not only of theoretical
interest, but can also be used to derive useful practical applications.

Our translation is initially restricted to the “most relevant fragment” of the language [17]: dl-programs
where the view of the description logic knowledge base can only be updated by means of the operators W
and . This is also the fragment for which well-founded semantics is defined. We show how the translation
can be extended to the full-fledged language also including the operator A, albeit by losing the precise
correspondence between strong answer sets and grounded equilibria (which only holds in one direction).
We apply standard techniques to encode A in the {W, }-fragment of dl-programs, and we establish more
precise properties of this encoding.

The precise correspondences between semantics crucially depend on our definition of context induced
by a description logic knowledge base, which uses the set of known consequences of a knowledge base as
semantics. To illustrate the relevance of this aspect, we study the encoding of default rules into MCSs (given
by applying our translation to an encoding of default rules in dl-programs [18]). This example also shows
how the mapping between dl-programs and MCSs can be used to translate systematic constructions from
one of those frameworks to the other, widening the scope of their application: default rules in dl-programs
can only span over one knowledge base, while default rules in MCSs can range over several contexts (not
necessarily based on description logics).
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