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Abstract. In this paper, we show how the theory of sorting networks can be applied to synthesize optimized
general-purpose sorting libraries. Standard sorting libraries are often based on combinations of the classic
Quicksort algorithm, with insertion sort applied as base case for small, fixed, numbers of inputs. Unrolling
the code for the base case by ignoring loop conditions eliminates branching, resulting in code equivalent to
a sorting network. By replacing it with faster sorting networks, we can improve the performance of these
algorithms. We show that by considering the number of comparisons and swaps alone we are not able
to predict any real advantage of this approach. However, significant speed-ups are obtained when taking
advantage of instruction level parallelism and non-branching conditional assignment instructions, both of
which are common in modern CPU architectures. Furthermore, a close control of how often registers have
to be spilled to memory gives us a complete explanation of the performance of different sorting networks,
allowing us to choose an optimal one for each particular architecture. Our experimental results show that
using code synthesized from these efficient sorting networks as the base case for Quicksort libraries results
in significant real-world speed-ups.

Keywords: sorting algorithms, sorting networks, instruction-level parallelism, out-of-order execution

1. Introduction

General-purpose sorting algorithms are based on comparing, and possibly exchanging, pairs of inputs. If
the order of these comparisons is predetermined by the number of inputs to sort and does not depend on
their concrete values, then the algorithm is said to be data-oblivious. Such algorithms are well suited for e.g.
parallel sorting [GZ06] or secure multi-party computations (see e.g. [EGT10]).

Sorting functions in state-of-the-art programming language libraries (such as the GNU C Library) are
typically based on a variant of Quicksort, where the base cases of the recursion apply insertion sort: once the
subsequence to sort falls under a certain length M , it is sorted using insertion sort. The reasons for using
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such base cases is that, both theoretically and empirically, insertion sort is faster than Quicksort for sorting
small numbers of elements. Typical values used for M are 4 (e.g. in the GNU C library) or 8.

Generalizing this construction, we can take any sorting algorithm based on the divide-and-conquer ap-
proach (not only Quicksort, but also e.g. merge sort), and use another sorting method once the number of
elements to sort in one partition does not exceed a pre-defined limit M . The guiding idea here is that, by
supplying optimized code for sorting up to M inputs, the overall performance of the sorting algorithm can
be improved. One obvious way to supply optimized code for sorting up to M inputs is to provide a unique
optimized implementaton of sorting m elements, for each m ≤M .

This approach leads directly to the following problem: For a given fixed number M , how can we obtain
an efficient way to sort M elements on a modern CPU? Similar questions have been asked since the 1950s,
though obviously with a different notion of what constitutes a modern CPU.

Sorting networks are a classical model of comparison-based sorting that provides a framework for address-
ing such questions. In a sorting network, n inputs are fed into n channels, connected pairwise by comparators.
Each comparator compares the two inputs from its two channels, and outputs them, sorted, back to the same
two channels. A set of consecutive comparators such that no two touch the same channel can be viewed as a
“parallel layer” that can be executed simultaneously. Sorting networks are data-oblivious algorithms, as the
sequence of comparisons performed is independent of the actual input. For this reason, they are typically
viewed as hardware-oriented algorithms, where data-obliviousness is a requirement and a fixed number of
inputs is given.

In this work, we examine how the theory of sorting networks can improve the performance of general-
purpose software sorting algorithms. We show that replacing the insertion sort base case of a Quicksort
implementation similar to those in standard C libraries by optimized code synthesized from logical descrip-
tions of sorting networks leads to significant improvements in execution times. Analogous experiments with
an efficient array-based merge sort implementation [SW11] provide evidence that similar improvements also
apply to other divide-and-conquer general-purpose sorting algorithms.

The idea of using sorting networks to guide the synthesis of optimized code for base cases of sorting algo-
rithms may seem rather obvious, and, indeed, has been pursued earlier. A straightforward attempt, described
in [LCC14], has not resulted in significant improvements, though. We show that this is not unexpected, pro-
viding theoretical and empirical insight into the reasons for these rather discouraging results. In a nutshell,
we provide an average case analysis of the complexity w.r.t. measures such as number of comparisons and
number of swaps. From the complexity point of view, code synthesized from sorting networks can actually be
expected to perform slightly worse than unrolled insertion sort (where all the loops are replaced by explicit
repetition of code). However, for small numbers (asymptotic) complexity arguments are not always a good
predictor of real-world performance.

A different approach, taken in [FAN07], matches the advantages of sorting networks with the vectorization
instruction sets available in some modern CPU architectures. The authors obtain significant speedups by
implementing parallel comparators as vector operations, but they require a complex heuristic algorithm to
generate sequences of bit shuffling code that needs to be executed between comparators. Their approach is
also not fully general, as they target a particular architecture.

In this work, we combine the best of both these attempts by providing a straightforward implementation
of sorting networks that still takes advantage of the features of modern CPU architectures, while keeping
generality. Furthermore, we show how particular characteristics of the hardware (such as e.g. the number of
general purpose registers) can be taken into account, so that we systematically generate sorting networks
that are better suited to it. In this manner, we are able to obtain speedups comparable to [FAN07], with
more general requirements to the instruction set that are satisfied by virtually all modern CPUs, including
those without vector operations. The success of our approach is based on the following two observations.

• Sorting networks are data-oblivious and the order of comparisons is fully determined at compile time, i.e.,
they are free of any control-flow branching. Comparators can also be implemented without branching,
and on modern CPU architectures even efficiently so.

• Sorting networks are inherently parallel, i.e., comparators at the same level can be performed in parallel.
Conveniently, this maps directly to implicit instruction level parallelism (ILP) common in modern CPU
architectures. This feature allows parallel execution of several instructions on a single thread of a single
core, as long as they are working on disjoint sets of registers.

The potential for parallelization is enhanced by a common capability of modern CPUs, namely out-of-order
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Fig. 1. Comparison of different sorting algorithms for small numbers of inputs.

execution, which allows for executing data-independent CPU instructions in a different order than specified.
Avoiding branching and exploiting ILP are tasks also performed through program transformations by the
optimization stages of modern C compilers, e.g., by unrolling loops and reordering instructions to minimize
data-dependence between neighbouring instructions. Both of these optimizations are though restricted by the
data-dependencies of the algorithms being compiled and, consequently, of only limited use for data-dependent
sorting algorithms like insertion sort.

The remainder of the paper is organized as follows. Section 2 provides background information and
formal definitions for both sorting algorithms and hardware features. In Section 3, we theoretically compare
Quicksort and the best known sorting networks w.r.t. numbers of comparisons and swaps. Section 4 shows
that aggressively unrolling insertion sort yields a sorting network, and discusses how sorting networks can
be implemented efficiently. We then replace insertion sort by an optimal sorting network, and empirically
evaluate our contribution as a base case of both Quicksort and merge sort in Section 5. We also show that
by increasing the limit M at which we resort to the base case we can further improve the performance of
these algorithms; however, this requires considering further characteristics of the underlying hardware. In
Section 6 we show how different measures of the quality a sorting network can be taken into account to
generate performance-optimal sorting networks systematically, before concluding and giving an outlook on
future work in Section 7. This paper extends work previously presented in [CCFNSK15].

2. Background

2.1. Quicksort with Insertion Sort for Base Case

Since its first publication by Hoare [Hoa62], Quicksort has been extensively used in practice, due to its
efficiency in the average case, and several modifications have been suggested to improve it further. Examples
are the clever choice of the pivot, or the use of a different sorting algorithm, e.g., insertion sort, for small
subproblem sizes. Most such suggestions have in common that the empirically observed efficiency can be
explained on theoretical grounds by analyzing the expected number of comparisons, swaps, and partitioning
stages (see [SF96] for details).

Figure 1 presents a comparison of the common spectrum of data-dependent sorting algorithms for small
numbers of inputs, depicting the number of inputs (x-axis) together with the number of cycles required to
sort them (y-axis), averaged over 100 million random executions. The upper curve in the figure is obtained
from the standard Quicksort implementation in the C library (which is at some disadvantage, as it requires
a general compare function as an argument). The remaining curves are derived from applying standard
sorting algorithms, as detailed by Sedgewick [SW11]; the code was taken directly from the book’s web page,
http://algs4.cs.princeton.edu/home/. This analysis shows insertion sort to be the clear winner.
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Fig. 2. A sorting network on 5 channels operating on the input 10101.

2.2. Sorting Networks

A comparator network on n channels is a finite sequence C = c1, . . . , ck of comparators, where each compara-
tor c` is a pair (i`, j`) with 1 ≤ i` < j` ≤ n. The size of C is the number k of comparators it contains. Given
an input ~x ∈ Dn, where D is any totally ordered domain, the output of C on ~x is the sequence C(~x) = ~xn,
where ~x` is defined inductively as follows:

• ~x0 = ~x;

• ~x` is obtained from ~x`−1 by swapping the elements in positions i` and j`, in case xi` < xj` ;

• ~x` is ~x`−1, if xi` ≥ xj` .

A comparator network C is a sorting network if C(~x) is sorted for all C ∈ Dn. It is well known (see
e.g. [Knu73]) that this property is independent of the concrete domain D, and in particular can be decided
by considering only binary sequences.

Comparators may act in parallel. A comparator network C has depth d if C is the concatenation of
L1, . . . , Ld, where each Li is a layer : a comparator network with the property that no two of its comparators
act on a common channel.

Figure 2 depicts a sorting network on 5 channels in the graphical notation we will use throughout this
paper. Channels are depicted as horizontal lines, numbered from bottom to top, comparators are depicted as
vertical lines, and layers are separated by a dashed line. The numbers illustrate how the input 10101 ∈ {0, 1}5
propagates through the network. This network has 6 layers and 9 comparators.

There are two main notions of optimality of sorting networks in common use: size optimality, where
one minimizes the number of comparators used in the network; and depth optimality, where one minimizes
the number of execution steps, taking into account that some comparators can be executed in parallel. The
network in Figure 2 is size optimal, but not depth optimal.

Given n inputs, finding the minimal size sn and depth tn of a sorting network is an extremely hard
problem that has seen significant progress in recent years. The table below details the best currently known
bounds. The values for n ≤ 8 were already known in the 1960s, and are listed in [Knu73]; the values of t9
and t10 were proven exact by Parberry [Par91], those of t11–t16 by Bundala and Závodný [BZ14], and t17
was recently computed by Ehlers and Müller [EM15] using results from [CCFSK15a, CCFSK15b]. Finally,
the values of s9 and s10 were first given in [CCFFSK14, CCFFSK16].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

sn 0 1 3 5 9 12 16 19 25 29
35 39 45 51 56 60 73
33 37 41 45 49 53 58

tn 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10

Oblivious versions of several classic sorting algorithms can also be implemented as sorting networks, as
described in [Knu73]. Figure 3 (a) shows an oblivious version of insertion sort. The vertical dashed lines
highlight the 4 iterations of “insertion” required to sort 5 elements. Figure 3 (b) shows the same network,
with comparators arranged in parallel layers. Bubble sort can also be implemented as a sorting network as
illustrated in Figure 3 (c), where the vertical dashed lines illustrate the 4 iterations of the classic bubble sort
algorithm. As observed in [Knu73], when ordered according to layers, this network becomes identical to the
one in Figure 3 (b).
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Fig. 3. Sorting networks for insertion sort (a) and bubble-sort (c) on 5 inputs, dashed lines separating iterations. When
parallelized, both networks become the same (b).

2.3. Modern CPU Architectures

Modern CPU architectures allow multiple instructions to be performed in parallel on a single thread. This
ability is called instruction-level parallelism (ILP), and is built on three modern micro-architectural tech-
niques1:

• superscalar instruction pipelines, i.e., pipelines with the ability to hold and execute multiple instructions
at the same time;

• dynamic out-of-order execution, i.e., dynamic reordering of instructions respecting data dependencies;

• redundant execution units, i.e., multiple Arithmetic Logic Units per core.

Together, these features allow instructions to be rearranged into an order that minimizes data dependencies,
so that multiple redundant execution units can be used at the same time. This is often termed implicit ILP,
in contrast to the explicit ILP found in vector operations.

Example 1. Consider the C expression (x+y)*(z+u). Assume the variables x, y, z and u are loaded in registers
eax, ebx, ecx and edx. Then the evaluation of the above expression is compiled to three machine instructions:
ADD eax,ebx; ADD ecx,edx; MUL eax,ecx, with the result in ecx. The first two instructions are data-independent
and can be executed in parallel, while the last one depends on the results of those, and has to be executed
in another CPU cycle.

Conditional branching instructions are the most expensive instructions on pipelined CPUs, as they require
flushing and refilling the pipeline. In order to minimize their cost, modern CPU architectures employ dynamic
branch prediction. By keeping the pipeline filled with the instructions of the predicted branch, the cost of
branching is severely alleviated. Unfortunately, branch prediction cannot be perfect, and when the wrong
branch is predicted, the pipeline needs to be flushed and refilled – an operation taking many CPU cycles.

In order to avoid branching instructions for “small” decisions, e.g., deciding whether to assign a value
or not, modern CPU architectures also feature conditional instructions. Depending on flags set by e.g. a
comparison, either an assignment of a value of a register will be performed, or the instruction will be
ignored. In both cases, the pipeline is filled with the subsequent instructions, and the cost of the operation
is smaller than a possible branch prediction failure.

Example 2. Consider the C statement if (x == 42) x = 23; with variable x loaded in eax. Without conditional
move instructions, this is compiled to code with a conditional branching instruction, i.e.:

CMP eax ,42; JNZ after; MOV eax , 23

where after is the address of the instruction following the MOV instruction. Alternatively, using conditional
instructions, we obtain CMP eax, 42; CMOVZ eax, 23. This code not only saves one machine code instruction,
but most importantly avoids the huge performance impact of a mispredicted branch.

2.4. Benchmarking on a Cycle Level

Throughout this paper, for empirical evaluations we run all code on an Intel Core i7, measuring runtime in
CPU cycles using the time stamp counter register using the RDTSC(P) instruction.

1 For details on these features of modern microarchitectures see e.g. [FFY05, SRU99].
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We employed two different measuring methodologies, depending on the resolution needed. For most
benchmarks we used simple average benchmarking, where we measure the total number of CPU cycles used
for a given number of repetitions (usually 100,000,000 randomly generated inputs). This measurement is
performed by using the RDTSC instruction before and after the iteration through all the repetitions. The
total number of cycles is then divided by the number of repetitions to obtain an average cycle count for
one-time execution. The advantages of this method are its simplicity and its applicability to both branching
and non-branching code; the drawback is that it includes overhead from iterating the code, as well as from
preemption and hardware interrupt events. As a compiler for benchmarks using simple average benchmarking,
we used LLVM 6.1.0 with clang-602.0.49 as frontend on Mac OS X 10.10.2. We also tried GCC 4.8.2 on
Ubuntu with Linux kernel 3.13.0-36 for this benchmarking method, yielding comparable results.

For benchmarks of non-branching code where a higher precision and resolution was desired, we employed
the kernel level minimum benchmarking technique described in an Intel white paper [Pao10]. Here, we
prefixed a single execution of the code by four instructions: the CPUID instruction, which acts as a serializing
guard w.r.t. to ILP and out-of-order execution, followed by the RDTSC instruction to read the time stamp
counter register, and finally two MOV instructions to save the value to a local variable. The code was
then suffixed by another four instructions: the RDTSCP instruction, which is in itself serializing, two MOV
instructions to save to a local variable, and a final CPUID instruction to serialize also w.r.t. these instructions.
In addition, we used optimizations from the afore-mentioned white paper regarding priming the instruction
cache.

In order to avoid preemption and hardware interrupts, the code is executed in a custom kernel module,
where these features are temporarily disabled. Given the limits on allocating kernel memory, we performed
100 iterations, each consisting of 10,000 repetitions of the code. The global minimum computed is, thus, the
minimum of a total of 1,000,000 repetitions. The resolution of our measurement was found to be 3 cycles and
reliability was found to be very high, with repeated benchmarks for the same code yielding identical global
minima. This is in contrast with traditional repeat-and-get-minimum or repeat-and-average benchmarking
approaches, which we empirically found to be less reliable and an order of magnitude less precise. Using
kernel level minimum benchmarking, we are able to get high-precision measurements of rather short code
pieces. The disadvantage of this method is that it can only be used for code that is data-independent such
as e.g. non-branching implementations of sorting networks (see Section 4.2). As a compiler for benchmarks
using kernel level minimum benchmarking, we used GCC 4.8.4 on Ubuntu with Linux kernel 3.15.0-51.

3. Quicksort with Sorting Networks for Base Case

The general theme of this paper is to derive, from sorting networks, optimized code to sort small numbers
of inputs, and then to apply this code as the base case in a divide-and-conquer general-purpose sorting
algorithm such as Quicksort or merge sort.

In this section, we compare precise average case results for the number of comparisons and swaps per-
formed by a classic Quicksort algorithm and by a modification that uses sorting networks on subproblems
of size at most 14. We choose 14 for this analysis, as it is the largest value n for which we could conve-
niently measure the number of comparisons and swaps for all n! permutations. We used the best-known
(w.r.t. size) sorting networks (which have been proven optimal for up to 10 inputs) in order to obtain the
most favorable comparison numbers for sorting networks. To this end, we assume the algorithm to act on
random permutations of size n, each being the input with equal probability.

Let Cn (resp. Sn) denote the expected number of comparisons (resp. swaps) performed by classic Quick-

sort on (random) inputs of size n. Let furthermore Ĉn and Ŝn denote the corresponding quantities for
Quicksort using sorting networks for inputs smaller than 15. It is standard to set up recurrence relations for
those quantities that typically obey a pattern such as:

Tn(a, b) =

{
a · n + b + 1

n

∑
1≤j≤n Tj−1(a, b) + Tn−j(a, b) if n > M ,

g(n) otherwise.

Here, a and b have to be chosen properly to reflect the parameter’s (comparisons, swaps) behavior, M
determines the maximum subproblem size for which a different algorithm (insertion sort, sorting networks)
is used, and g accounts for the costs of that algorithm. In order to analyze classic Quicksort as proposed by
Hoare, we have to choose a = 1, b = −1 (resp. a = 1

6 , b = 2
3 ) for comparisons (resp. swaps), together with
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

comparisons 0 1 3 5 9 12 16 19 25 29 35 39 45 51

swaps 0.0 0.5 1.5 2.7 4.8 6.6 8.6 10.6 13.0 11.1 19.4 22.4 20.0 26.5

Table 1. Average number of comparisons and swaps when executing optimal sorting networks with at most M = 14 inputs.

M = 0 and g(0) = 0. For the analysis of our proposed modification using sorting networks for subproblems
of small sizes, we set M = 14 together with the values for g as given in Table 1. Using standard algebraic
manipulations, it is possible to solve this recurrence explicitly to obtain a formula for Tn(a, b) in terms of
n, M , a and b. By defining tn = a · n + b and ∇tn = tn − tn−1, one finds (see [Sed77] for details) that, for
n > M + 1,

Tn(a, b) = 2(n + 1)
∑

M+2≤k≤n

∇tk
k + 1

+
n + 1

M + 2
(tM+1 + TM+1(a, b))− tn .

Computing the closed form expressions for
∑

M+2≤k≤n
∇tk
k+1 for the different choices of a and b, we finally

get

Cn = 2n ln(n + 1)− 2.84557n + o(n) Sn =
1

3
n ln(n + 1) + 0.359072n + o(n)

Ĉn = 2n ln(n + 1)− 2.44869n + o(n) Ŝn =
1

3
n ln(n + 1) + 0.524887n + o(n)

We see that, when increasing n, both parameters get worse by our modification of classic Quicksort. Even for
small n and optimal size sorting networks, there is no advantage w.r.t. the numbers of comparisons or swaps.
In conclusion, we cannot hope to get a faster sorting algorithm simply by switching to sorting networks for
small subproblems – at least not on grounds of our theoretical investigations. And, by transitivity, replacing
insertion sort by a sorting network in the base case should result in an even worse behavior w.r.t. both
parameters.

4. Implementing the Base Case Efficiently

In this section, we first show how to derive a data-oblivous implementation of the insertion sort base case,
which corresponds to viewing it as a sorting network. Then, we optimize the implementation of sorting
networks in general to obtain a more efficient implementation of the base case of divide-and-conquer sorting
algorithms. For a more detailed presentation, the reader is referred to [CCFNSK15].

4.1. Unrolling Insertion Sort

Here, we show how to unroll an implementation of insertion sort, step by step, until we finally obtain code
equivalent to a sorting network. We take the basic insertion sort code from Sedgewick [SW11], and, for
illustration, assume that the fixed number of inputs is n = 5. From this point onwards, we number the
channels from 0 to n − 1. We experimented also with optimized variants (e.g. making use of sentinels to
avoid the j>0 check), but did not find any of them to be faster for small inputs given a modern C compiler.

#define SWAP(x,y) {int tmp = a[x]; a[x] = a[y]; a[y] = tmp;}
static inline void sort5(int *a, int n) {

n=5
for (int i = 1; i < n; i++)

for (int j = i; j > 0 && a[j] < a[j-1]; j--)
SWAP(j-1, j)

}

Given that n is fixed, we can obviously unroll the outer loop, as the guard is only dependent on n. In order
to unroll the inner loop, we move the data-dependent part of its guard to its body, obtaining the following,
seemingly less efficient, data-oblivious code:
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Fig. 4. Comparison of insertion sort with (unrolled) comparator based code for small numbers of inputs.

static inline void sort5_oblivous_unrolled(int *a) {
if (a[1] < a[0]) SWAP(0, 1)
if (a[2] < a[1]) SWAP(1, 2)
if (a[1] < a[0]) SWAP(0, 1)
if (a[3] < a[2]) SWAP(2, 3)
if (a[2] < a[1]) SWAP(1, 2)
if (a[1] < a[0]) SWAP(0, 1)
if (a[4] < a[3]) SWAP(3, 4)
if (a[3] < a[2]) SWAP(2, 3)
if (a[2] < a[1]) SWAP(1, 2)
if (a[1] < a[0]) SWAP(0, 1)

}

All the statements in the body of sort5_oblivous_unrolled are now conditional swaps, each corresponding
exactly to one comparator in a sorting network. Indeed, this sequence is equivalent to the 8-layer sorting
network in Figure 3 (a). Thus, we can apply the reordering of comparators that resulted in Figure 3 (b) to
obtain an implementation with only 7 layers.

Figure 4 presents a comparison of a standard insertion sort (code from [SW11]) with several optimized
versions, depicting the number of inputs (x-axis) together with the number of cycles required to sort them (y-
axis), using standard average benchmarking over 100 million random executions. The curve labeled “insertion
sort” portrays the same data as the corresponding curve in Figure 1. The curve labeled “unrolled insertion
sort” corresponds to a version of insertion sort where only the outer loop has been unrolled. The other
three curves correspond to code derived from different types of sorting networks: the “insertion sorting
network” from Figure 3 (a), implemented by function sort5_oblivious unrolled; the “compressed insertion
sorting network” from Figure 3 (b); and the “optimal sorting network”, corresponding to the use of a best
(smallest) known sorting network.

From the figure, it is clear that standard sorting network optimizations such as reordering of independent
comparators [Knu73] give a slight performance boost. But there is another clear message: even going beyond
standard program transformations by breaking data-dependence and obtaining a sequence of conditional
swaps (i.e., a sorting network), we do not manage to make any significant improvements of the performance
of sorting implementations for small numbers of inputs. Furthermore, even when using size-optimal sorting
networks, we obtain no real benefit over compiler-optimized insertion sort. This is in line with the theoretical
results on average case complexity discussed in the previous section.

4.2. Implementing Sorting Networks Efficiently

The previous results explained the rather discouraging results obtained by a first attempt to use sorting
networks as the base case of a divide-and-conquer sorting algorithm: they are simply not faster than e.g. in-
sertion sort – at least when implemented naively as in [LCC14]. In this section we show how to exploit
two main properties of sorting networks, together with features of modern CPU architectures, and obtain
speed-ups of a factor higher than 3 compared to unrolled insertion sort.
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We first observe that, as sorting networks are data-oblivious, the order of comparisons is fully determined
at compile time, i.e., their implementation is free of any control-flow branching. Unfortunately, the naive
implementation of each comparator involves branching to decide whether to perform a swap. The path taken
depends entirely on the specific inputs to be sorted, and as such branch prediction necessarily does not
perform very well.

Luckily, we can also implement comparators without branching. To this end, we use a conditional assign-
ment (defined by the macro COND below), which can be compiled to the conditional move (CMOV) instruction
available on modern CPU architectures. This approach proved to be very fruitful. For illustration, from
the optimal-size sorting network for 5 inputs portrayed in Figure 2, we synthesize the following C function
sort5_best, where each row in the code corresponds to a layer in the sorting network.

#define COND(c,x,y) { x = (c) ? y : x; }
#define COMP(x,y) { int ax = a[x]; COND(a[y]<ax,a[x],a[y]); COND(a[y]<ax,a[y],ax ); }

static inline void sort5_best(int *a) {
COMP(0, 1) COMP(3, 4)
COMP(2, 4)
COMP(2, 3) COMP(1, 4)
COMP(0, 3)
COMP(0, 2) COMP(1, 3)
COMP(1, 2)

}

Given a sufficient optimization level (-O2 and above), the above code is compiled by the LLVM (or GNU)
C compiler to use two conditional move (CMOV) instructions, resulting in a totally branching free code for
sort5_best. As can be expected, the other two instructions are a move (MOV) and a compare (CMP). In other
words, each comparator is implemented by exactly four non-branching machine code instructions.

Alternatively, we can implement the comparator applying the folklore idea of swapping values using XORs
to eliminate one conditional assignment:2

#define COND(c,x,y) { x = (c) ? y : x; }
#define COMP(x,y) { int ax = a[x]; COND(a[y]<ax,a[x],a[y]); a[y] ^= ax ^ a[x]; }

This variant compiles down to five instructions (MOV, CMP, CMOV and two XORs). We benchmarked these two
implementations and observed that they are indistinguishable in practice, with differences well within the
margin of measurement error. Thus, we decided to continue with this second version, as the XOR instructions
are more “basic” and can therefore be expected to behave better w.r.t. e.g. instruction level parallelism.

We further implemented and benchmarked several alternative SWAP macros, finding only detrimental effects
on measured performance.

Figure 5 compares three sorting algorithms for small numbers of inputs: (1) the unrolled insertion sort

2 See http://graphics.stanford.edu/~seander/bithacks.html#SwappingValuesXOR
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Fig. 6. ILP on comparator networks of length 1000 with differing levels of parallelism.

(also plotted in Figure 4); (2) code derived from a standard insertion sorting network (also plotted in
Figure 4); (3) the same insertion sorting network but with a non-branching version of the COMP macro. We
compare the number of branches encountered and mispredicted, again using simple average benchmarking
over 100 million random executions.

From the figure it is clear that the number of branches encountered (and mispredicted) is larger for
both unrolled insertion sort and a naive implementation of sorting networks. In contrast, the branching-free
implementation exhibits a nearly constant level of branches encountered and mispredicted. These branches
actually originate from the surrounding test code (filling an array with random numbers, computing random
numbers, and checking that the result is actually sorted).

Our second observation is that sorting networks are inherently parallel, i.e., comparators at the same level
can be performed simultaneously. This parallelism can be mapped directly to instruction level parallelism
(ILP). The ability to make use of ILP has further performance potential. In order to demonstrate this
potential, we constructed artificial test cases with varying levels of data dependency. Given a natural number
m, we built a comparator network of size 1000 consisting of subsequences of m parallel comparators. We
would expect that, as m grows, we would see more use of ILP.

In Figure 6, the values for m are represented on the x-axis, while the y-axis (as usual) indicates the
averaged number of CPU cycles. Indeed, we see significant performance gains when going from m = 1 to
m = 2 and m = 3. From this value onwards, performance stays unchanged. This is the result of each
comparator being compiled to 5 assembler instructions when using optimization level -O3. Then we obtain
slightly under 2 CPU cycles per comparator.

Combining the gains from ILP with the absence of branching, we obtain large speed-ups for small inputs
when comparing to both insertion sort and naive implementations of sorting networks. In Figure 7, we
show the magnitude of the improvements obtained. Once again we plot the number of inputs on the x-axis
against the number of cycles required to sort then on the y-axis, using simple average benchmarking over
100 million random executions. We consider the unrolled insertion sort, the three sorting networks from
Figure 4 (insertion sorting network, compressed insertion sorting network, and optimal sorting network),
and these same three sorting networks using non-branching comparators (non-branching insertion sorting
network, non-branching compressed insertion sorting network, and non-branching optimal sorting network).
The figure shows that using the best known (optimal) sorting networks in their non-branching forms results
in a speed-up by a factor of more than 3.

5. Practical Implications in the Context of Quicksort and Merge Sort

We now demonstrate that optimizing the code in the base case of a Quicksort algorithm translates to real-
world savings when applying the sorting function. To this end, we use as base cases (1) the (empirically)
best variant of insertion sort unrolled by applying program transformations to the algorithm from [SW11],
and (2) the fastest non-branching code derived from optimal (size) sorting networks – marked respectively
as + and • in Figure 7.

In Figure 8 we depict the results of sorting lists of 10,000 elements. The y-axis measures the number of
cycles (using simple average benchmarking over one million random runs), and the x-axis specifies the limit
at which Quicksort reverts to a base case. For example, the value 8 indicates that the algorithm uses a base
case whenever it is required to sort a sequence of length at most 8 elements. The value 2 corresponds to the
case where the base case has no impact. To quantify the impact of the choice of base case, we compare to
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Fig. 8. Quicksort: comparing insertion sort at the base case with non-branching optimal sorting networks at the base case.
Plotting base case size (x axis) and number of cycles (averaged over one million random runs).

the case for value 2 (on the x-axis). For insertion sort we see a 2–12% reduction in runtime depending on
the limit, while for non-branching sorting networks we achieve instead a 7–23% reduction in runtime.

Further experiments with systematics constructions, in particular with Batcher’s odd-even sorting net-
works [BB11, Bat68], have shown that this trend of runtime reductions continues well beyond 14 inputs. We
investigated the runtime behavior of quicksort with base case sizes of up to 128 inputs and array sizes of
1,000 to 1,000,000 elements, finding that virtually all the achievable runtime reduction was already realized
with base case sizes of at most 32 and that runtime would soon start increasing again for larger base case
sizes. For example, for 10,000 elements (as used for Figure 8) the minimum was reached at a base case size
of 33.

In order to evaluate the applicability of this optimization to other divide-and-conquer general-purpose
sorting algorithms, we performed similar experiments for an optimized array-based merge sort implemen-
tation from [SW11]. As for Quicksort, we varied the limit at which merge sort delegates to the base case,
and measured the cycles used for sorting 10,000 elements. As can be seen in Figure 9, using non-branching
optimal sorting networks provides significant runtime reductions, on the order of 2–20%. Note that this holds
for all the tested limit sizes, even in the face of merge sort being more sensitive to the choice of this limit. In
particular, as merge sort is known to work particularly well for sequences whose length is a power of two, the
limit sizes should should not be close to such values. This is illustrated by the data presented in Figure 9,
where the locally smallest improvements are found for limit sizes of 4 and 8, while the largest improvements
are found for 6 and 11.

Both sets of experiments suggest that similar improvements would likely be obtained for other divdide-
and-conquer general-purpose sorting algorithms.
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Fig. 10. Runtime in cycles for optimal (up to 16 inputs) sorting networks and three systematic constructions (up to 32 inputs)

6. Selecting and Optimizing Sorting Networks for Efficient Implementation

In the previous sections we have seen that non-branching implementations of optimal sorting networks sort
small numbers of inputs several times faster than (unrolled) insertion sort, that this advantage increases as we
increase the number of inputs, and that these speed-ups can be used to speed up the base case of Quicksort
by reverting to sorting networks at around 32 inputs. In this section we explore which sorting networks
one should select for obtaining an efficient implementation. To this end, in addition to the smallest known
sorting networks (which have been proven to be size optimal only up to 10 inputs [CCFFSK16]), we study
the systematic constructions of Batcher [BB11, Bat68], Bose & Nelson [BN62] and Hibbard [Hib63], which
can be used to generate sorting networks for arbitrarily large numbers of inputs. We use the implementations
of these constructions from [Gam11]. We also show how these constructions can be uniformly adapted to
yield optimized real-world performance by cleverly rearranging comparators.

In Figure 10 we benchmark the execution times in cycles for the families of sorting networks mentioned
above from 2 to 32 inputs, comparing with the optimal size sorting network. Here, we employ the kernel
level benchmarking method described in Section 2.4.

The first observation is that for the values of up to 16, the optimal sorting networks are the most efficient
ones, reflecting the fact that the number of comparators is highly responsible for their performance. However,
we also observe a non-continuous change in performance at around 14 to 15 inputs. The reason for this can
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Fig. 11. Number of memory accesses (read + write) for optimal sorting networks and three systematic constructions

be found in the number of general-purpose registers available in the CPU. The CPU architecture we use
provides 16 general purpose registers; given that out-of-order execution and ILP are executing up to three
comparators concurrently, there is a need for three registers to keep intermediate results. The remaining 13
registers are available to keep the values of up to 13 channels. When working with more than 13 channels,
the values have to be intermittently written to memory and read again when needed (this is called register
spilling). Figure 11 shows the number of memory accesses for the different sorting networks. As expected,
for up to 13 inputs there is exactly one read and one write for each channel; the number of memory accesses
then grows superlinearly from 14 inputs.

Looking more closely at Figure 10, we further observe that the number of comparators in a sorting
network is only a part of the explanation of its real-world performance when there are more than 13 inputs.
Consider in particular the case of the Batcher and the Bose–Nelson sorting networks for 21 inputs. The
Batcher network has just 107 comparators while the Bose–Nelson network has 118 comparators, but the
runtime for the Batcher network is larger (261 cycles) than for the Bose–Nelson network (248 cycles). To
understand this discrepancy, we also need to look at the number of memory accesses required by each network
(Figure 11), which we find to be 187 for Batcher, compared to only 145 for Bose–Nelson.

These particular sorting networks can be seen in Figures 12 and 13. Observing them, we see that Batcher’s
construction has a tendency to go repeatedly from the bottom to the top channel, thus requiring a number
of channels close to the number of inputs to be kept in registers. On the other hand, in Bose–Nelson’s
construction the comparators tend to clump around the same channels, which helps out-of-order execution
perform a better job; and the outermost channels stop being used, so that the last third of the network
actually does not require any register spilling.

We now show how we can optimize these systematic constructions for sorting networks on more than 16
channels taking into account the considerations above. We focus first on Bose & Nelson’s construction, as it
is visually easier to understand, and then show how to adapt the same ideas to Batcher’s odd-even sorting
networks.

6.1. Bose–Nelson sorting networks

We start by looking at the particular case of the 29-channel Bose–Nelson sorting network. There is no
particular mystery about the choice of 29, but it works well for our presentation as it is high enough to serve
as an example, and it is an odd number, which reduces the symmetry of the network.

Figure 14 depicts the Bose–Nelson sorting network on 29 channels as generated from [Gam11]. Parallelism
is maximized by layering comparators so that as many comparisons as possible take place at the same time;
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Fig. 12. Batcher sorting network on 21 channels

Fig. 13. Bose–Nelson sorting network on 21 channels

Fig. 14. The usual presentation of the Bose–Nelson sorting network on 29 channels, maximizing parallelism.



Optimizing Sorting Algorithms by Using Sorting Networks 15

Fig. 15. The same network as in Figure 14, but with the recursive calls on 7 or more channels marked as boxes. Observe that
the beginning of the mergers is typically interleaved with the end of the previous recursive calls.

in particular, the first four steps perform 14 comparisons in parallel. As computation proceeds, the outermost
channels stop being used, and the number of values involved in comparisons gradually decreases.

This family of sorting networks is built recursively by means of a merger : an (n,m)-merger is a comparator
network that merges two sorted sequences of lengths n and m into one sorted sequence of length n+m. The
algorithm for building a Bose–Nelson sorting network on n channels is then simply:

1. build a sorting network on the first
⌊
n
2

⌋
channels;

2. build a sorting network on the last
⌈
n
2

⌉
channels;

3. juxtapose the previous networks and append an
(⌊

n
2

⌋
,
⌈
n
2

⌉)
-merger.

By applying this construction recursively (taking as base cases the empty network on 1 channel and a single
comparator on 2 channels) we can generate a network on any number of channels. Typically, the merger is
also “pushed back” in order to maximize parallelism.

In Figure 15 we box the recursive calls on 7 or more channels. Observe that these do not interact;
this suggests that we slightly modify the above construction as follows: if n > 13 (the number of available
registers), we append the networks built recursively instead of juxtaposing them. This yields the network
shown in Figure 16.

Running this version of the Bose–Nelson sorting network yields a performance gain of around 7%. The
lower level of parallelism does not affect execution time negatively, as we can only execute three instructions
simultaneously anyway, but we gain a lot from not needing to update the values in the registers constantly.

Experiments show that the optimizations performed by the compiler and out-of-order execution will again
interleave the end of each recursively built sorting network with the beginning of the next one (or the next
merger), while preserving the benefit gained from working as much as possible on the same set of at most
13 channels. Therefore, we do not need to worry about the nearly sequential code at the end of each of the
smaller sorting networks produced by this algorithm.

Figure 17 shows the gain in performance by systematically rearranging the comparators in the Bose–
Nelson sorting networks in the manner described. We are using 13 as the limit to the size of the recursive
calls we parallelize rather than sequentialize, as this is the number of registers available in our hardware, but
this number can of course be changed to any adequate value. The data reveals an increase in performance
of the order of up to 15%.



16 M. Codish, L. Cruz-Filipe, M. Nebel and P. Schneider-Kamp

Fig. 16. The Bose–Nelson sorting network on 29 channels, optimized for performance on 13 registers. The larger sorting
networks built in the recursive calls are now clearly visible.
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Fig. 17. Number of cycles and memory accesses (read + write) standard and optimized Bose–Nelson networks

6.2. Batcher sorting networks

Looking at Figures 12 and 13, it may not be obvious that the idea used for optimizing Bose–Nelson sorting
networks is applicable to Batcher’s construction. However, this family of networks is also constructed by a
similar recursive algorithm, the main difference being that the recursive sorting networks are built on the
odd and even channels, rather than on the top half and low half. As a consequence, the merger network used
is substantially different and, as remarked above, uses all channels up to the last (parallel) step.

The recursive construction of Batcher sorting networks is as follows:

1. build a sorting network on the
⌈
n
2

⌉
odd-numbered channels;

2. build a sorting network on the
⌊
n
2

⌋
even-numbered channels;

3. juxtapose the previous networks and append an
(⌊

n
2

⌋
,
⌈
n
2

⌉)
-merger

where the merger in the last step is Batcher’s odd-even merger [Bat68]. Again, recursively applying this
construction with the same base cases as before allows us to construct sorting networks on any number of
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Fig. 18. Batcher’s sorting network on 29 channels. The dashed line separates the two first recursive calls from the final merge
step.

Fig. 19. Batcher’s sorting network on 29 channels optimized for 13 registers – all recursive calls are appended, rather than
juxtaposed. The dashed lines separate the two first recursive calls; note how the two first blocks are nearly identical, but shifted
from the odd to the even channels.

channels. Furthermore, these networks can be built with maximal parallelism by an imperative algorithm
found in [Knu73] (Section 5.2.2, Algorithm M).

In order to optimize register access, we can again append, rather than juxtapose, recursive calls that
build sorting networks on more than 13 channels. The only difference with respect to Bose & Nelson’s con-
struction is that these networks will now act on interleaved, rather than adjacent, sets of channels. Figures 18
and 19 illustrate the corresponding variants of Batcher’s sorting network on 29 channels. Figure 20 shows
that systematically rearrangeing the comparators in this fashion achieves performance gains comparable to
those described for Bose–Nelson sorting networks. Furthermore, Batcher sorting networks now systematically
outperform those ones, even in the previous anomalous cases of e.g. 21 inputs.
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Fig. 20. Number of cycles and memory accesses (read + write) standard and optimized Batcher networks

6.3. Achieving optimality

We also tested our optimizations to the Hibbard family of sorting networks [Hib63], obtaining similar results.
Hibbard’s algorithm directly generates the Bose–Nelson sorting networks when the number of channels n is
a power of 2; for other values of n, it generates the network obtained from the Bose–Nelson sorting network
on 2dlog2 ne channels by removing all comparators acting on at least one channel with index greater than n.

However, our methodology for optimizing networks for a given number of available general-purpose
registers only works well on networks that have a recursive structure, as it is only in those cases that we are
able to identify systematically smaller subnetworks that can be replaced by more efficient ones. Therefore,
it is not clear whether and how these can be used for e.g. the optimal-size sorting network on 16 channels.
We point out that the optimized variant of Batcher’s sorting network on 16 channels actually performs as
well as this network.

The interesting aspect is that neither Batcher’s nor Bose & Nelson’s recursive algorithms rely on the
structure of the smaller sorting networks for their correctness. In other words, we can combine any two
sorting networks on n and m channels by means of an (n,m)-merger to obtain a sorting network on n + m
channels. This allows us to construct an optimally-performing sorting network (for r registers) as follows:

1. let k1 =
⌈
n
2

⌉
(a) if k1 < min(r, 16), construct an optimal-size sorting network on the k1 odd-numbered channels

(b) else, recursively construct a sorting network on the k1 odd-numbered channels

2. let k2 =
⌊
n
2

⌋
(a) if k2 < min(r, 16), construct an optimal-size sorting network on the k2 even-numbered channels

(b) else, recursively construct a sorting network on the k2 even-numbered channels

3. append the two previous networks and a (k1, k2)-merger.

To demonstrate this construction, we are using Batcher’s recursive construction, as it outperforms Bose
& Nelson’s (both in the setting of this and of the previous subsection), and thus gives smaller execution
times; but the same adaptation indeed also works for the latter networks.

We benchmark the performance of these networks again by using kernel level minimum benchmarking.
The results are summarized in Figure 22 for Batcher’s construction and Figure 21 for Bose–Nelson’s. The
slight decrease in the number of comparators gives a performance advantage in several instances and, as
expected, always performs at least on par with the optimized variants of the sorting networks.

Using the optimized variant of Batcher’s construction as a base case improves the performance of Quick-



Optimizing Sorting Algorithms by Using Sorting Networks 19

100

150

200

250

300

350

400

450

500

550

16 18 20 22 24 26 28 30 32

Bose-Nelson

+
+

+
+ +

+

+
+ +

+
+

+

+
+

+

+
++

optimized Bose-Nelson

×
×

×
× × ×

×
× ×

×
× × ×

× ×
× ×

×
optimal Bose-Nelson

∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

∗ ∗ ∗ ∗
∗

Fig. 21. Number of cycles for Bose–Nelson sorting networks: standard construction, optimized as in Section 6.1, and using
size-optimal networks for n ≤ 13.
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sort further by up to 5% w.r.t. the results presented in Figure 8. The real-world impact of each of these
contributions to the performance of Quicksort is summarized in Figure 23, which depicts average execu-
tion times when using for base case: unrolled insertion sort; Batcher sorting networks; Bose–Nelson sorting
networks; and the optimized variants of these. Table 2 details individual percentage gains for particular
cases.
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Fig. 23. Performance of Quicksort for different base cases with limit sizes varying from 16 to 32.
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limit Bose–Nelson Batcher
size original optimized original optimized

16 11.5% 11.5% 10.0% 11.5%
17 12.0% 11.0% 10.6% 12.2%
18 11.9% 13.0% 11.4% 13.0%
19 11.7% 11.6% 10.0% 11.1%
20 12.6% 11.5% 12.9% 12.4%
21 12.0% 13.3% 11.3% 12.4%
22 12.3% 11.9% 11.4% 13.7%
23 13.3% 12.2% 13.4% 13.8%
24 14.5% 14.0% 14.6% 15.1%
25 14.4% 14.1% 13.3% 14.0%
26 12.3% 14.4% 12.8% 14.8%
27 12.3% 14.4% 12.9% 14.8%
28 14.4% 15.1% 13.3% 15.5%
29 13.5% 14.5% 14.7% 14.8%
30 14.6% 16.5% 14.7% 16.6%
31 13.5% 14.5% 14.9% 16.4%
32 15.1% 15.8% 15.3% 17.3%

Table 2. Improvement of using different sorting networks as a base case of Quicksort w.r.t. unrolled insertion sort.

We observe that, as the limit size increases, the optimized Batcher sorting networks systematically out-
perform the other constructions. This tendency becomes more pronounced for limit sizes above 26, which is
to be expected as we effectively have 13 available general-purpose registers. Choosing a limit size of 32 and
applying all the techniques developed in this work, we see an effective real-world improvement of 17.3% in
the performance of Quicksort with insertion sort as a base case.

7. Conclusion

In this paper, we showed, both theoretically and empirically, that using code derived naively from sorting
networks is not advantageous to sort small numbers of inputs, compared to the use of standard data-
dependent sorting algorithms like insertion sort. Furthermore, we showed that program transformations are
of only limited utility for improving insertion sort on small numbers of inputs.

By contrast, we showed how to synthesize simple yet efficient implementations of sorting networks,
and gave insight into the microarchitectural features that enable this implementation. We demonstrated
that we do obtain significant speed-ups compared to naive implementations such as [LCC14]. A further
empirical comparison between our implementation and the one described in [FAN07] (not detailed in this
paper) shows similar performance and scaling behavior. However, our approach allows the exploitation of
instruction-level parallelism without the need for a complex instruction set-specific algorithm, as required
by [FAN07]. Furthermore, we can easily incorporate characteristics of the hardware as parameters to the
recursive constructions we use to build sorting networks whose performance is optimized for that architecture.
We also provided further evidence that efficient sorting networks are useful as a base case in divide-and-
conquer sorting algorithms such as, e.g., Quicksort.

Our results also show that using different sorting networks has measurable impact on the efficiency of
the synthesized C code. While previous research on finding optimal sorting networks has focused on optimal
depth or optimal size, we showed that the relevant measure is actually a combination of small size, enough
parallelism and a block structure of the network that minimizes register spilling.
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