
Formally Proving the Boolean Pythagorean Triples

Conjecture *

Luís Cruz-Filipe and Peter Schneider-Kamp

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{lcf,petersk}@imada.sdu.dk

Abstract

In 2016, Heule, Kullmann and Marek solved the Boolean Pythagorean Triples problem: is there

a binary coloring of the natural numbers such that every Pythagorean triple contains an element of

each color? By encoding a �nite portion of this problem as a propositional formula and showing its

unsatis�ability, they established that such a coloring does not exist. Subsequently, this answer was

veri�ed by a correct-by-construction checker extracted from a Coq formalization, which was able to

reproduce the original proof. However, none of these works address the question of formally addressing

the relationship between the propositional formula that was constructed and the mathematical problem

being considered. In this work, we formalize the Boolean Pythagorean Triples problem in Coq. We

recursively de�ne a family of propositional formulas, parameterized on a natural number n, and show

that unsatis�ability of this formula for any particular n implies that there does not exist a solution

to the problem. We then formalize the mathematical argument behind the simpli�cation step in the

original proof of unsatis�ability and the logical argument underlying cube-and-conquer, obtaining a

veri�ed proof of Heule et al.'s solution.

1 Introduction

The Boolean Pythagorean Triples problem asks the following question:

Is it possible to partition the natural numbers into two sets such that no set contains
a Pythagorean triple (three numbers a, b and c with a2 + b2 = c2)?

This problem is an instance of an important family of problems in Ramsey theory on the
integers [16]: given an equation and an integer k, is there a coloring of the natural numbers
using k colors such that there are no monochromatic solutions to the equation? If every k-
coloring of the natural numbers admits a monochromatic solution, the equation is said to be
partition regular. Schur's theorem, van der Waerden's theorem and Rado's theorem all establish
partition regularity of particular equations.

Regularity of the Pythagorean equation for k = 2 was �nally established in 2016, when
Heule, Kullmann and Marek [13] showed that it is already impossible to partition the set
{1, . . . , 7825} into two sets such that none of them contains a Pythagorean triple. This proof
was done by means of an encoding of this �nite version of the problem into propositional
logic (already used in [6]), which was then simpli�ed and solved using the cube-and-conquer
method [14].

More precisely, the propositional formula considered is∧
1 ≤ a < b < c ≤ 7825

a2 + b2 = c2

(xa ∨ xb ∨ xc) ∧ (xa ∨ xb ∨ xc) (1)

*Supported by the Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247.

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

where each xi is a propositional variable and · denotes logical negation. This formula ex-
haustively lists the Pythagorean triples contained in {1, . . . , 7825}3, ordered ascendingly, and
requires that each triple contain at least one variable assigned to true and another assigned
to false. A valuation satisfying the formula directly corresponds to a coloring of the natural
numbers without monochromatic Pythagorean triples.

This formula was �rst simpli�ed using blocked clause elimination and symmetry breaking �
removing and adding clauses in a way that preserves (un)satis�ability.1 In this particular case,
blocked clause elimination can be explained in a mathematically meaningful way: it corresponds
to removing from a list of triples L every triple (a, b, c) containing a number that does not occur
in any other triple. Indeed, if e.g. a does not occur in any other triple in L, and we can partition
the natural numbers such that none of the remaining triples in L is monochromatic, then we can
extend such a coloring to L by eventually changing the color of a. By iterating this argument
over the set of Pythagorean triples in {1, . . . , 7825}3, 2136 of the original 9472 triples can be
ignored. The symmetry break applied at the end consists of assigning a particular color to a
single number (in this case, 2520 was assigned to true).

The second step was dividing the problem into one million cubes: a set of partial assignments
that cover the whole space of possible valuations on the 3745 propositional variables actually
used. Then, it was shown that (1) the conjunction of the simpli�ed formula with any cube
is unsatis�able, and (2) the negation of the disjunction of all the cubes is unsatis�able. As a
consequence, the simpli�ed formula (and therefore also the original formula) is unsatis�able.

However, trusting that a formula is unsatis�able simply because of the result of a SAT
solver is not completely satisfactory, as there is no guarantee that the SAT solver is correct.
For this reason, the authors also produced a trace of their unsatis�ability proofs that they
veri�ed using an independently written solver, thereby checking their results independently.
This improves con�dence on the result, but it still requires trusting that the checker is correctly
implemented (albeit a much weaker requirement). The next step was therefore to formalize the
process of checking unsatis�ability proofs using the trace provided by the SAT solver within the
theorem prover Coq [9]. Using Coq's extraction mechanism (an implementation of the Curry�
Howard isomorphism between the Calculus of Construction, Coq's underlying type theory, and
the programming language OCaml), this yielded a similar checker whose correctness is now
guaranteed by the soundness of the theorem prover and of the extraction mechanism. In the
�rst stage, this checker was only able to verify proofs using a sublanguage of the trace format,
and as a consequence was only able to validate the claims of unsatis�ability (see Figure 1). The
checker was subsequently extended to the full trace format [8], allowing also the simpli�cation
step to be checked.

Taken together, these independent veri�cations constitute a formal proof that the proposi-
tional formula (1) is unsatis�able. However, the mathematical argument connecting this result
to the original formulation of the Boolean Pythagorean Triples has not been formalized. To
understand why this can be seen as a problem, we point out the places in the process where we
still rely on soundness of informal arguments.

1. The Boolean Pythagorean Triples problem regards colorings of the natural numbers,
whereas formula (1) only addresses a �nite subset of these.

2. Formula (1) was generated using a C program whose soundness was never discussed.

3. The metalevel argument for soundness of cube-and-conquer requires manipulating formulas
too large to process by hand, which have to be combined using e.g. command-line tools.

1To show partition-regularity of the Pythagorean equation, only preservation of satis�ability is required;
however, preservation of unsatis�ability is also discussed in [13], and used to show that 7825 is the smallest n
for which the set {1, . . . , n} cannot be 2-colored without including a monochromatic Pythagorean triple.

2

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

cube1 //

[9]

2

BPT //

(a)

$$

(b)

44
propositional

formula
//

[8]

%%
simpli�ed
formula

55

))

(d) //

...

cuben //

[9]

==2

(c)

ss

¬
∨

i cubei [9]
// 2

2
��

Figure 1: The original proof and the di�erent veri�cation steps. The dashed arrows denote the
steps in the original proof [13]: a �rst propositional formula was generated by a C program,
and subsequently simpli�ed, divided and solved by SAT solvers. The dotted arrows denote
proofs of unsatis�ability obtained by a SAT solver that were veri�ed by a certi�ed checker
extracted from a Coq formalization [8, 9]. The solid arrows denote the contribution of this
work: the generation, in Coq, of propositional formulas that are proved to represent the original
mathematical problem, directly (a) and after simpli�cation (b); the formal speci�cation of the
simple reasoning behind cube-and-conquer (c); and the generation of the formulas that are
given as input to cube-and-conquer (d).

We do not claim that any of these issues presents a �aw in the original proof: the argument
for encoding a �nite subset of the problem (presented above) is simple; the C program that
generates the formula is also very easy to check for correctness; and the �le manipulation
required in the last step consists only of copy and concatenation operations. Still, a case for a
fully formal proof of the Boolean Pythagorean Triples should avoid these pitfalls. In this paper,
we undertake such an e�ort. In particular, we use the theorem prover Coq to:

� state the Boolean Pythagorean Triples problem as a logic formula;

� generate a family of propositional formulas (parameterized on n) and show that unsatis�a-
bility of any formula in this family implies that the Boolean Pythagorean Triples problem
does not have a solution;

� formalize soundness of cube-and-conquer;

� formalize the generation of all the formulas whose unsatis�ability is required by cube-and-
conquer (parameterized on the individual cubes).

We also formalize the mathematical argument behind the simpli�cation of formula (1), so that
we directly generate the simpli�ed formula (see Figure 1).

Due to the huge size of the formulas and trace �les involved, it is impossible to perform
the whole veri�cation process inside Coq; thus, we use program extraction to obtain code that
is correct by construction, and we rely on metalevel reasoning to chain the di�erent steps in
the process. However, we reduce this dependency to checking that the same arguments are
provided to di�erent functions. To avoid repeating the expensive veri�cation steps in [9], we
use the entailment checking capability of the checker from [8] to reuse those results.

3

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

This paper is organized as follows. We brie�y summarize relevant concepts in Section 2. In
Section 3 we describe the formalization, in Coq, of the Boolean Pythagorean Triples problem and
of its relationship to formula (1). Section 4 describes the formalization of the simpli�cation step
in Coq. The soundness of cube-and-conquer and its application to this problem is formalized
in Section 5. We conclude in Section 6.

The full development is available online [10].

2 Background and Related Work

We work with propositional logic over a countable set of propositional symbols {xi}i∈N. A literal

is a propositional symbol xi or its negation, which we denote by xi. A clause is a disjunction
of literals, and a CNF (conjunctive normal form) is a conjunction of clauses. It is well known
that every propositional formula is equivalent to a CNF, and we therefore restrict ourselves to
this fragment of the language. We denote the empty clause by 2, and observe that every clause
is a CNF. We use ` to range over literals, c to range over clauses, and C to range over CNFs.

A valuation is a function V : {xi}i∈N → B, where B = {>,⊥} is the set of Boolean
truth values. Often we identify propositional symbols with the natural numbers via the trivial
isomorphism i ↔ xi, and view valuations as functions from N to B. We say that V satis�es a
propositional symbol xi, denoted V |= xi, if V (xi) = >, and that V satis�es a negative literal
xi if V (xi) = ⊥. Satisfaction extends to CNFs in the usual way: V |=

∨
j∈J `j if V |= `j for

some j ∈ J , where each `j is a literal, and V |=
∧

j∈J cj if V |= cj for all j ∈ J , where each cj
is a clause. A CNF C is satis�able if there exists a valuation V such that V |= C; otherwise
C is unsatis�able. In particular, the empty clause 2 is unsatis�able. The Boolean satis�ability

problem (SAT) consists of determining whether a given CNF is satis�able; this problem is
known to be NP-complete. Nevertheless, state-of-the-art SAT solvers are able to solve extremely
large instances of this problem, and there have been a number of recent successes in encoding
mathematical problems as propositional formulas and solving these automatically [15, 4, 5].

There are two problems with this approach. The �rst is ensuring soundness of the encoding:
how can one guarantee that (un)satis�ability of a particular propositional formula implies a
particular mathematical statement? This aspect is usually not given much emphasis, because
propositional encodings tend to be very straightforward and �obviously� correct.

A more serious drawback of SAT solvers regards the reliability of their answers. These
programs are usually extremely complex and impossible to prove correct by mathematical
methods. When a formula is claimed to be satis�able, the SAT solver usually returns a satisfying
assignment that can be veri�ed independently; however, in the case of unsatis�ability, no such
witness can be produced. Recently, an e�ort has been made to have SAT solvers return traces
of unsatis�ability proofs � enough information that is, in principle, su�cient to reproduce the
proof independently by another, simpler program (which still needs to be trusted or proved
correct by formal methods) [3, 18, 1, 13]. A more ambitious e�ort was the development of a
more expressive format that enables formalization of the whole proof-checking process within
a formal theorem prover [9]. This format, called GRIT (Generalized ResolutIon Trace format),
is able to represent resolution proofs based on reverse unit propagation. This checker was later
extended to the more expressive LRAT format [8], which also allows for steps based on the RAT
property [12]. For the purpose of this work, both the details of these formats and the logical
properties they encode are immaterial.

Both [8, 9] and the current development we use the proof assistant Coq [2]. Coq is one
successful member of a family of theorem provers based on dependent type theory: by means of
a propositions-as-types interpretation, logic formulas are viewed as types, and the user interac-

4

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

tively builds terms inhabiting those types. The same correspondence allows these terms to be
viewed as proofs of the original proposition. The advantage of this family of theorem provers
is that, once the proofs have been built, they can be checked automatically: type checking in
these languages is decidable, and implementable by a small kernel that is simple enough to be
checked for correctness. The remaining interface does not need to be trusted: if an error in the
program allows a wrong proof-term to be build, the type checker will detect it. This property is
usually described as saying that these theorem provers have a small proof kernel. (See e.g. [20]
for an overview of the major theorem provers currently in use.)

The type theory underlying Coq is the Calculus of Constructions [7], a dependent type
theory with inductive and co-inductive types. We highlight some of the most relevant features
of the Calculus of Constructions. The logic corresponding to this theory is intuitionistic (i.e.,
the principle of excluded middle ϕ∨¬ϕ and the rule of double negation ϕ↔ ¬¬ϕ do not hold
in general). This allows an implementation of a realizability interpretation in terms of program
extraction [17], a mechanism by means of which proof terms are converted to programs in a
suitable functional programming language (in our case, OCaml) whose correctness is guaranteed
by their original type. Furthermore, the Calculus of Constructions includes a special type Prop

whose elements are computationally irrelevant: they are used to express properties of data, and
data cannot depend on them. Program extraction eliminates all terms whose type lives in Prop,
thereby signi�cantly reducing the size of the programs generated.

The formalization of the process of verifying unsatis�ability proofs in [9] uses a deep embed-
ding of CNFs into Coq's type theory. We summarize the key aspects that are relevant for this
presentation. Literals are de�ned as elements of an inductive type Literal with two construc-
tors pos,neg:positive → Literal, where positive is the type of positive integers (with a binary
representation, designed to be e�cient under program extraction). The intended meaning is
that (pos n) corresponds to the positive literal xn, and (neg n) to the negative literal xn. Like-
wise, the type Valuation of valuations is the function type positive → bool (where bool is the
Coq type of Booleans) with the natural semantics. Clauses (type Clause) are lists of literals,
and CNFs are binary trees of Clauses. We use two di�erent implementations of binary trees: a
standard implementation of binary search trees developed originally as part of the proof in [11],
using lexicographic ordering on clauses as the underlying order, that yields a type CNF, which we
use to state most results; and an implementation from Coq's standard library where elements
are referenced by means of a key that is a positive integer whose binary representation denotes
the path to the element, which yields an e�cient datatype ICNF used in the extracted program.

Many de�nitions in our formalization are made by case analysis on whether a particular
property holds. In Coq, properties are typically formalized using the type Prop, over which
terms with computational content cannot depend. To bypass this limitation, there are special
types for expressing decidability results: lemmas stating that one can decide whether a given
property holds or not. A typical example is the (dependent) type sumbool; in Coq notation, the
formula {A}+{B} (where A and B are themselves of type Prop) has type (sumbool A B), and terms
inhabiting this type can be of the form (left pA) with pA:A or (right pB) with pB:B. Program
extraction forgets the proof terms pA and pB, but not the constructor. This allows us to write
de�nitions by case analysis over such terms using an if-then-else syntax.

All experiments were run on the Abacus 2.0 supercomputer of the DeIC National HPC
Centre at the University of Southern Denmark. The nodes used were equipped with 64 GB
RAM and 12 CPU cores (Intel(R) Xeon(R) CPU E5-2680 v3) able to run 24 threads in parallel.

5

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

3 Encoding the Boolean Pythagorean Triples Problem in

Coq

Our formalization is built upon the Coq type positive of binary natural numbers. Colorings
are functions from this type to the type of booleans: letting the two colors be true and false

simpli�es the development, since this is also type of valuations. A Pythagorean triple is de-
�ned as a predicate over triples of numbers in the natural way. (Since arithmetic operators are
overloaded in Coq, the token %positive is required to tell the parser that the previous expres-
sion should be interpreted over positives). A coloring has the positive Pythagorean property
(pythagorean_pos) if every Pythagorean triple contains two elements of di�erent colors. Equiva-
lently, it has the negative Pythagorean property (pythagorean_neg) if any monochromatic triple
is not Pythagorean. Since equality on the natural numbers is decidable, these properties are
intuitionistically equivalent.

Definition coloring := positive → bool.

Definition pythagorean (a b c:positive) := (a*a + b*b = c*c)%positive.

Definition pythagorean_pos (C:coloring) :=
∀ a b c, pythagorean a b c → (C a <> C b) ∨ (C a <> C c) ∨ (C b <> C c).

Definition pythagorean_neg (C:coloring) :=
∀ a b c, C a = C b → C a = C c → ~pythagorean a b c.

Theorem pythagorean_equiv : ∀ C, pythagorean_pos C ↔ pythagorean_neg C.

Note that the de�nition of pythagorean_neg is asymmetric: its premises imply also C b = C c.
We now construct a family of propositional formulas, parameterized on n, corresponding to

formula 1 with a variable upper bound. We �rst construct a list of all Pythagorean triples with
elements in {1, . . . , n}3 by double iteration. To simplify the recursion, the recursive argument
is a unary natural number (type nat).

In inner_cycle below, we �rst compute sqrt to be the integer square root of n*n+mN*mN

(Pos.of_nat is the mapping between the two di�erent representations of natural numbers, so
mN is m as a binary integer), and then check whether these three values are in a Pythagorean
triple (using the fact that this is a decidable property, as expressed by pythagorean_dec). In
the a�rmative case, we add the triple (mN,n,sqrt) to the result; then we recur. At the end,
(inner_cycle n m b) returns a list of all Pythagorean triples whose second element is n, whose
�rst element is less than or equal to m, and whose third element is smaller than b. (Observe
that we switch the order of n and mN, in order to obtain triples that are ordered ascendingly.)

Definition target_list := list (list positive).

Fixpoint inner_cycle (n:positive) (m:nat) (b:positive) : target_list :=
match m with

| O ⇒ nil

| S m' ⇒ let mN := Pos.of_nat m in let sqrt := (Pos.sqrt (n*n+mN*mN)) in
if (sqrt<?b)%positive

then if (pythagorean_dec n mN sqrt)
then (mN:: n:: sqrt::nil) :: inner_cycle n m' b

else (inner_cycle n m' b)
else (inner_cycle n m' b)

end.

6

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

Afterwards, in function outer_cycle below, we recur on n, calling inner_cycle with n as
�rst and second argument. This yields a list containing all Pythagorean triples whose �rst two
elements are smaller than or equal to n (in ascending order) and whose third element is smaller
than b. By calling this function with both parameters instantiated with n, we obtain the list of
all Pythagorean triples with all elements smaller than n.

Fixpoint outer_cycle (n:nat) (b:positive) : target_list :=
match n with

| O ⇒ nil

| S m ⇒ (inner_cycle (Pos.of_nat n) n b) ++ (outer_cycle m b)
end.

Definition BPT_list (n:nat) := outer_cycle n (Pos.of_nat n).

In the next step, we map this list into a list of Clause by generating two Clauses from
each triple (one with positive literals, another with negative literals, obtained by mapping the
appropriate constructors of type Literal to each tuple). For n = 7826, this list contains exactly
the clauses in formula (1).

Fixpoint target_formula (t:target_list) :=
match t with

| nil ⇒ nil

| tuple::t' ⇒ (map pos tuple) :: (map neg tuple) :: (target_formula t')
end.

Finally, we make this into an object of type ICNF. Function make_BPT_list (omitted) pairs
each clause with an identi�er; the precise values of the identi�ers is immaterial, as long as they
are all distinct, so for simplicity of de�nition we assign natural numbers in sequence to each
clause. Function make_ICNF transforms this list into a binary tree, using the index to determine
the path from the root to the node where the clause is placed (see [9] for details).

Definition Pythagorean_formula (n:nat) := make_ICNF (make_BPT_list (BPT_formula n)).

We now formally prove the relation between this family of formulas and existence of a
coloring with the positive Pythagorean property: every such coloring is a valuation that satis�es
all formulas in the family. In particular, if one of these formulas is unsatis�able, then there is no
coloring of the natural numbers with the (positive) Pythagorean property. This proof explores
the fact that colorings and valuations have the same type.

Lemma BPT_formula_sat : ∀ (C:coloring), pythagorean_pos C →
∀ n, satisfies C (Pythagorean_formula n).

Parameter TheN : nat.

Definition The_CNF := Pythagorean_formula TheN.

Theorem Pythagorean_Theorem : unsat The_CNF → ∀ C, ~pythagorean_pos C.

In order to compute the particular instance of Pythagorean_formula we need, TheN must be
set to 7826. In order to reuse previous work, this formula must then be extracted to OCaml
using the Coq extraction mechanism [17]; for e�ciency, we also delegate instantiating TheN to
correct-by-construction extracted code.

To connect this formula with previous results [13, 9, 8] we need to change two simple
things: (1) the indices in the variables in the formula need to be increased by 10,000 (so that

7

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

e.g. the number 3 corresponds to variable x10,003) and (2) the identi�ers assigned to each clause
need to be changed. The �rst item is a simple change in the formalization, which we did for
experimentation purposes but omit here.2 For the second item, we used the ability of the
extracted checker from [8] to process a sequence of SAT-solving actions and match the resulting
CNF (ignoring clause identi�ers) against another one given as input. By considering the empty
sequence of actions, we get a certi�ed proof that the formula we generate entails the original
formula from the proof in [13].

The running time for this experiment was just over 34 minutes (2055.39s) with a peak
memory consumption of 22.67 MB. The vast majority of time was spent on generating the
formula, while the entailment check was performed in less than 1 minute.

4 Simplifying the Derived Formula

We now focus on the transformation of the original formula into a simpler one. Interestingly,
for proving that the Boolean Pythagorean Triples problem has no solution, there is a trivial
proof that the simpli�cation step is sound: since it only deletes clauses, if the simpli�ed CNF
is unsatis�able, then the original one must also be unsatis�able. However, the authors of [13]
make a stronger claim: simpli�cation preserves not only satis�ability, but also unsatis�ability.
This property is essential for their proof that the numbers in the set {1, . . . , 7824} can be
colored with two colors such that no Pythagorean triple is monochromatic. We also formalize
this stronger result.

In [13], the simpli�cation step was expressed as a trace in DRAT format, and could therefore
be veri�ed by the checker from [8]. However, the underlying argument can be explained math-
ematically, as was done in the introduction, and is therefore suitable to a direct formalization
in Coq. We formalize a more general property: if t is a list of tuples of natural numbers3, a
is a number that does not occur in any element of t, ` is a tuple containing a and at least one
other element and C is a coloring such that no element of t is monochromatic under C, then
we can �nd a coloring C ′ such that t ∪ {`} is monochromatic under C ′.

We begin by recursively de�ning two predicates no_occurrence and one_occurrence, char-
acterizing numbers that occur, respectively, in none or in exactly one tuple of a given list of
tuples. These de�nitions are tailored to make subsequent proofs easier.

Fixpoint no_occurrence (p:positive) (t:target_list) :=
match t with

| nil ⇒ True

| (l:: t') ⇒ ~In p l ∧ no_occurrence p t'

end.

Lemma no_occurrence_char : ∀ p t, no_occurrence p t ↔ ∀ l, In l t → ~In p l.

Fixpoint one_occurrence (p:positive) (t:target_list) :=
match t with

| nil ⇒ False

| (l:: t') ⇒ (In p l ∧ no_occurrence p t') ∨ (~In p l ∧ one_occurrence p t')
end.

2This requires changing the de�nition of target_list in the obvious way and adapting the proofs slightly.
However, the simpli�cation step from [13] also changes the variables used in the formula, so the de�nitions
presented here are actually the right ones for the remainder of the development.

3We use t for an element of the type target_list de�ned earlier.

8

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

Lemma one_occurrence_find : ∀ p t, one_occurrence p t →
∃ l, In p l ∧ In l t ∧ (∀ l', In l' t → l <> l' → ~In p l').

Lemma no_occurrence_char reformulates the recursive de�nition as a global property of the
list of tuples. Lemma one_occurrence_find states that we can single out the only tuple l where
p occurs. From this lemma we can prove that, if that tuple is removed, then p does not occur
in the result.

We are interested in colorings that do not make any element of a target_listmonochromatic
(predicate colorful de�ned below). If C is colorful with respect to list t and a does not occur
in any element of t, then we can add any list containing a and at least one other element to t

and �nd a colorful coloring C' of the result.

Definition colorful (C:coloring) (t:target_list) :=
∀ tuple, In tuple t → ∃ a b, In a tuple ∧ In b tuple ∧ C a <> C b.

Lemma colorful_add : ∀ t a, no_occurrence a t → ∀ C, colorful C t → ∀ b, a <> b →
∀ l, In a l → In b l → ∃ C', colorful C' (l::t).

The proof of this lemma is by case analysis on the possible values of (C a) and (C b). If they are
distinct, then C is the desired coloring; otherwise, we �ip the value of (C a) in C' , and use the
fact that a does not occur in any other tuple to show that C' is colorful with respect to (l:: t).

We now de�ne the iterative simpli�cation algorithm (function simplify below). Given a
list of tuples and a list of natural numbers, we go through each element of the latter and
check whether it appears in exactly one tuple (one_occurrence_dec p t); in the a�rmative case,
we remove the relevant tuple from the list (using function remove_number) before recurring.
By induction using lemma colorful_add we show that any colorful coloring of the natural
numbers with respect to the simpli�ed list monochromatically can be used to construct a
colorful coloring with respect to the original list.

Fixpoint remove_number (p:positive) (t:target_list) :=
match t with

| nil ⇒ nil

| l:: t' ⇒ if (In_dec Pos.eq_dec p l) then remove_number p t'

else l:: remove_number p t'

end.

Fixpoint simplify (t:target_list) (l:list positive) :=
match l with

| nil ⇒ t

| p:: l' ⇒ if (one_occurrence_dec p t) then simplify (remove_number p t) l'
else simplify t l'

end.

Lemma colorful_simplify : ∀ t, ok_list t →
∀ l C, colorful C (simplify t l) → ∃ C', colorful C' t.

We now apply this construction to the family of formulas Pythagorean_formula constructed
in the previous section, obtaining a family of simpli�ed formulas depending not only on the
original parameter n, but also on the list of numbers to be used for removal of tuples.

Definition simplified_BPT_formula (n:nat) (l:list positive) :=
target_formula (simplify (BPT_list n) l).

Definition simplified_Pythagorean_formula (n:nat) (l:list positive) :=

9

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

make_ICNF (make_BPT_list (simplified_BPT_formula n l)).

Parameter The_List : list positive.

Definition The_Simple_CNF := simplified_Pythagorean_formula TheN The_List.

Specializing the results on the simpli�cation procedure to these de�nitions, we prove that
simpli�cation preserves unsatis�ability. The converse implication is straightforward, since every
clause in the simpli�ed formula is present in the original one.

Theorem simplification_ok : unsat The_CNF ↔ unsat The_Simple_CNF.

Theorem Pythagorean_Theorem' : unsat The_Simple_CNF → ∀ C, ~pythagorean_pos C.

We now move on to the symmetry break, also discussed in the introduction: �xing the color
of the number 2520. This is also simple to formalize in Coq. We �rst show that we can �x the
color of a particular number � if a Pythagorean coloring of the natural numbers exists, then
one must exist with the particular chosen color: either the original one, or the one obtained
by �ipping the color assigned to each number. Then we use this result to show that we can
add any (single) unit clause to the simpli�ed formula obtained above without losing any of the
properties proved earlier.

Lemma fix_one_color : ∀ C, pythagorean_pos C →
∀ n b, ∃ C' , pythagorean_pos C' ∧ C' n = b.

Parameter TheBreak : positive.

Definition The_Asymmetric_CNF :=
make_ICNF (make_BPT_list
((pos TheBreak :: nil) :: simplified_BPT_formula TheN The_List)).

Theorem symbreak_ok : unsat The_CNF ↔ unsat The_Asymmetric_CNF.

Theorem Pythagorean_Theorem'' : unsat The_Asymmetric_CNF → ∀ C, ~pythagorean_pos C.

Again, we can use program extraction to compute this last formula from a correct-by-
construction OCaml program. This requires constructing the list of numbers that are used to
eliminate triples in the simpli�cation procedure, which is done by an untrusted piece of code
from the trace of the original simpli�cation proof. (Since all lemmas are universally quanti�ed
on this list, soundness of the result is not a�ected by errors in this untrusted code � although
such errors would not generate the formula from [13].) This time, the only di�erence between the
CNF generated from the Coq formalization and the one produced in [13] lies in the identi�ers
assigned to each clause, since the original simpli�cation procedure introduced new variables
whose indices coincide with the natural numbers they correspond to. Therefore, we again use
the extracted checker described in [8] to prove that this new formula entails the old one, allowing
us to reuse the unsatis�ability results proved in previous work.

The running time for this experiment was just over 35 minutes (2125.98s) with a peak
memory consumption of 15.8 MB. The vast majority of time was spent on generating the
formula, while the entailment check was performed in less than 1 minute.

10

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

5 Cube-and-Conquer

To formalize the remaining steps in Figure 1, we need to focus on the methodology of cube-and-
conquer [14]. The idea behind this methodology is simple: instead of looking for a satisfying
assignment for a particular formula, consider its conjunctions with di�erent sets of literals (the
cubes) such that every possible assignment satis�es one of the possible cubes. For example, if
ϕ is a formula on two variables x and y, the cubes could be {x}, {x̄, y} and {x̄, ȳ}, and instead
of trying to satisfy ϕ we would check the three formulas ϕ∧x, ϕ∧ x̄∧ y and ϕ∧ x̄∧ ȳ. In order
to ensure the side condition (every assignment satis�es one of the cubes) we would also need
to check that the formula x̄ ∧ (x ∨ ȳ) ∧ (x ∨ y), de�ned as the conjunction of the disjunction of
the literals in each cube, is unsatis�able.

In the cube-and-conquer methodology, the biggest challenge is �nding the �right� set of
cubes � namely, a set that makes the resulting (un)satis�ability proofs easy, but that does not
generate too many subproblems. This process typically requires state-of-the art techniques,
with complex heuristics and look-ahead strategies [19]. When checking proofs, however, this
complex step is avoided � the cubes are given as part of the input.

We formalize this process in Coq as follows. A Cube is simply a list of literals; function
Cubed_CNF joins a cube with a CNF, adding the former's literals one by one. (Recall that a CNF is
a binary tree of clauses.) Function noCube takes a list of cubes and builds the CNF corresponding
to the negation of their disjunction; function negate implements negation on literals (i.e., it
changes (pos n) to (neg n) and conversely).

Definition Cube := list Literal.

Fixpoint Cubed_CNF (F:CNF) (C:Cube) : CNF :=
match C with

| nil ⇒ F

| l :: c ⇒ CNF_add (l :: nil) (Cubed_CNF F c)
end.

Fixpoint neg_cube (C:Cube) : Clause :=
match C with

| nil ⇒ nil

| l :: c ⇒ negate l :: (neg_cube c)
end.

Fixpoint noCube (C:list Cube) : CNF :=
match C with

| nil ⇒ nought

| (c :: C') ⇒ CNF_add (neg_cube c) (noCube C')
end.

Soundness of cube-and-conquer is then very simple to state and prove: given a list of cubes
and a formula Formula, if all the CNFs generated by the above functions are unsatis�able, then
so is Formula.

Lemma CubeAndConquer_lemma : ∀ Formula Cubes,
(∀ c, In c Cubes → unsat (Cubed_CNF Formula c)) → unsat (noCube Cubes) → unsat Formula.

Note that this result applies to formulas of type CNF, which di�ers from the type ICNF of the
formula The_Asymmetric_CNF generated earlier. Therefore, we de�ne a conversion function from
CNFs to ICNFs by giving each clause a number, similar to make_BPT_list in the previous section.
This function is called CNF_to_ICNF, and we omit its de�nition. The key result is that it does

11

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

not change satis�ability; the direction in which we use this result is expressed in the following
lemma, where for readibility we write the coercion ICNF_to_CNF explicitly.

Lemma CNF_to_ICNF_unsat : ∀ c, unsat (ICNF_to_CNF (CNF_to_ICNF c)) → unsat c.

We then proceed to checking the application of cube-and-conquer to The_Asymmetric_CNF.
Again we extract the relevant functions to OCaml and rely on the soundness of program ex-
traction.

First, we build the list of cubes in OCaml (using untrusted code to process the �les generated
in [13]) and pass it as argument to noCube; using the extracted function from the lemma that
states that equality of CNFs is decidable, we check that this generates exactly the same CNF as
the one used in the proof of unsatis�ability in [13], which was checked in [9].4 This ensures
that the second hypothesis in Lemma CubeAndConquer_lemma holds. This step required 88.67s
of CPU time and a peak memory consumption of 3.16 GB.

Next, using exactly the same code, we build the same list of cubes and pick from it
each individual element; we pass this, together with The_Asymmetric_CNF, as arguments to
Cubed_CNF, transform it into an ICNF, and show that this entails the corresponding cubed
formula from [13], whose proof of unsatis�ability was again formally veri�ed by the checker
in [9]. By Lemma CNF_to_ICNF_unsat this implies that the CNF in the corresponding premise of
Lemma CubeAndConquer_lemma � namely, The_Asymmetric_CNF � also holds. As a consequence,
The_Asymmetric_CNF is unsatis�able.

This last step required running 1000 jobs checking 1000 cubes each on 40 nodes, running
25 jobs in parallel on each node. Each of these jobs took between 45,859.65s and 51,188.46s
(average 49,440.38s and median 49,590.77s) to complete. Within each job, approximately 2100s
were spent on generating The_Asymmetric_CNF, and the remaining time on generating the 1000
formulas using Cubed_CNF and checking that they entail the corresponding formula checked
in [9]. The total CPU time used amounts to just over 1.5 CPU years, and the peak memory
consumption per node was 41.46 GB.

The only part in this proof that are not formally veri�ed is the chaining of arguments at
the meta-level: the applications of lemmas CNF_to_ICNF_unsat and CubeAndConquer_lemma. In
particular, we need to trust that the implementation does test all cubes in the list of cubes: this
is done by untrusted code, and not by iteration over the list using extracted code. Although in
principle it would have been possible to do this step formally, the time requirements made it
unpractical (the veri�cation was run in parallel).

6 Conclusions

The main contribution of this article is a formalization of the Boolean Pythagorean Triples
problem in the theorem prover Coq, together with a strategy for generating a family of proposi-
tional formulas whose unsatis�ability implies that the Pythagorean equation is partition regu-
lar. We choose the particular formula whose unsatis�ability we know how to prove (using proof
witnesses from [13]), simplify it, again by certi�ed methods, and split the proof of its unsatis-
�ability in one million (plus one) subproblems. The correspondence between unsatis�ability of
the original formula and unsatis�ability of the 1,000,001 derived formulas is a consequence of
the formalization, in Coq, of the soundness of the cube-and-conquer methodology.

The soundness of our development depends on previous work only as regards the ability to
check proofs of unsatis�ability by a correct-by-construction veri�er described in [9]. We do not

4The checker extracted in the latter development actually builds a CNF as an intermediate step, which allowed
us to bypass constructing an ICNF from it.

12

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

depend on the results from [13]: although we (intensively!) use the data from their experiments
as oracle to our extracted code, that data is used in an untrusted manner, meaning that it is
checked for correctness before being used. This is illustrated by the universal quanti�cations in
all soundness results in our formalization (namely, Pythagorean_Theorem'', which quanti�es over
the parameters TheN, The_List and TheBreak, and CubeAndConquer_lemma, which quanti�es over
the arbitrary list of cubes). Likewise, we do not depend on the results from [8] in an essential
manner: all the unsatis�ability proofs we consider use the GRIT format already veri�able with
the checker from [9]. Although the entailment check capability was added in that work, we only
use it with an empty number of inferences, so that all we are testing is set equality of binary
trees.

Our formalization relies on meta-level arguments in two places.

1. The formulas generated by the cube-and-conquer methodology are shown to entail formulas
that were previously shown to be unsatis�able. In this step, the old formulas are provided
as arguments to two di�erent functions: the entailment checker and the unsatis�ability
checker. We guarantee soundness of this step by using exactly the same untrusted code to
construct the formulas from exactly the same input �les.

2. The �nal entailment (arrow (c) in Figure 1) requires connecting the 1,000,001 proofs of
unsatis�ability. Since these were done independently and in a parallel way, we argue that
CubeAndConquer_lemma can in principle be applied, since the formulas generated and tested
were obtained by applying exactly the same functions as in the premises of that lemma.
However, one needs to trust that we indeed covered all the cases in the list of cubes, since
this step was done by manually written (untrusted) code.

These dependencies arise for the need to parallelize code and, on a lower scale, due to the
enormous computational requirements for verifying the 1,000,001 unsatis�ability proofs, which
led us to try to reuse previous results. It would not be hard to extend our formalization to
a checker that would, theoretically, combine all the steps. Such a checker would receive as
arguments also the oracles for the 1,000,001 unsatis�ability proofs, and iterate through the list
of cubes to generate all the formulas and check their unsatis�ability. Its soundness could then
be stated and proved within Coq, by applying CubeAndConquer_lemma. However, since Coq is
currently unable to produce parallelizable code, running this code would require several years
on state-of-the-art hardware, which is clearly unfeasible.

References

[1] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, and Christine Rizkallah. A framework for the
veri�cation of certifying computations. J. Autom. Reasoning, 52(3):241�273, 2014.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Texts
in Theoretical Computer Science. Springer, 2004.

[3] Manuel Blum and Sampath Kannan. Designing programs that check their work. In David S.
Johnson, editor, STOC, pages 86�97. ACM, 1989.

[4] Michael Codish, Luís Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. Sorting nine inputs
requires twenty-�ve comparisons. Journal of Computer and System Sciences, 82(3):551�563, 2016.

[5] Michael Codish, Michael Frank, Avraham Itzhakov, and Alice Miller. Computing the Ramsey
number R(4, 3, 3) using abstraction and symmetry breaking. Constraints, 21(3):375�393, 2016.

[6] Joshua Cooper and Ralph Overstreet. Coloring so that no pythagorean triple is monochromatic.
CoRR, abs/1505.02222, 2015.

13

Formally Proving the Boolean Pythagorean Triples Conjecture L. Cruz-Filipe and P. Schneider-Kamp

[7] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput., 76(2/3):95�
120, 1988.

[8] Luís Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and Peter Schneider-Kamp. E�-
cient certi�ed RAT veri�cation. CoRR, abs/1610.06984, 2016.

[9] Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. E�cient certi�ed resolution
proof checking. In Axel Legay and Tiziana Margaria, editors, TACAS, volume 10205 of LNCS.
Springer, 2017.

[10] Luís Cruz-Filipe and Peter Schneider-Kamp. Checking the Boolean Pythagorean Triples conjec-
ture. Available from: http://imada.sdu.dk/~petersk/bpt/.

[11] Luís Cruz-Filipe and Peter Schneider-Kamp. Formalizing size-optimal sorting networks: Extract-
ing a certi�ed proof checker. In Christian Urban and Xingyuan Zhang, editors, ITP, volume 9236
of LNCS, pages 154�169. Springer, 2015.

[12] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Maria Paola Bonacina, editor, CADE-24, volume 7898 of LNCS, pages 345�359.
Springer, 2013.

[13] Marijn Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre,
editors, SAT, volume 9710 of LNCS, pages 228�245. Springer, 2016.

[14] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: Guiding
CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn Shehory, editors,
HVC 2011, volume 7261 of LNCS, pages 50�65. Springer, 2012.

[15] Boris Konev and Alexei Lisitsa. Computer-aided proof of Erd®s discrepancy properties. Artif.

Intell., 224:103�118, 2015.

[16] Bruce M. Landman and Aaron Robertson. Ramsey Theory on the Integers, volume 24 of The
Student Mathematical Library. AMS, 2004.

[17] P. Letouzey. Extraction in Coq: An overview. In A. Beckmann, C. Dimitracopoulos, and B. Löwe,
editors, CiE 2008, volume 5028 of LNCS, pages 359�369. Springer, 2008.

[18] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119�161, 2011.

[19] Sid Mijnders, Boris de Wilde, and Marijn Heule. Symbiosis of search and heuristics for random
3-SAT. In David G. Mitchell and Eugenia Ternovska, editors, LaSh, 2010.

[20] Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of LNCS. Springer, 2006.

14

http://imada.sdu.dk/~petersk/bpt/

	Introduction
	Background and Related Work
	Encoding the Boolean Pythagorean Triples Problem in Coq
	Simplifying the Derived Formula
	Cube-and-Conquer
	Conclusions

