
Encoding Asynchrony in Choreographies

Luís Cruz-Filipe and Fabrizio Montesi∗
Dept. Mathematics and Computer Science, University of Southern Denmark

Campusvej 55, 5230 Odense M, Denmark
{lcf,fmontesi}@imada.sdu.dk

ABSTRACT
Choreographies are widely used both for the specification
and the programming of concurrent and distributed soft-
ware architectures. Since many of such architectures use
asynchronous communications, it is essential to understand
how the behaviour described in a choreography can be cor-
rectly implemented in asynchronous settings. So far, this
problem has been addressed by relying on additional techni-
cal machinery, such as ad-hoc syntactic terms, semantics, or
equivalences. In this work, we show that such extensions are
not needed for choreography languages that support primi-
tives for process spawning and name mobility. Instead, we
can just encode asynchronous communications in choreogra-
phies themselves, yielding a simpler approach.

CCS Concepts
•Theory of computation → Process calculi;

Keywords
Asynchrony; Choreography; Concurrency

1. INTRODUCTION
Programming concurrent and distributed systems is chal-
lenging, because it is difficult to program correctly the in-
tended interactions among components executed concurrently
(e.g., services). Empirical investigations of bugs in concur-
rent and distributed software [7, 8] reveal that most errors
are due to: deadlocks; violations of atomicity intentions; or,
violations of ordering intentions. The issue is particularly
pressing in architectures where hundreds of components may
interact via message passing, like microservices [5].

∗Montesi was supported by CRC (Choreographies for Reli-
able and efficient Communication software), grant no. DFF–
4005-00304 from the Danish Council for Independent Re-
search.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

To mitigate this problem, choreographies can be used as
high-level formal specifications of the intended interactions
among components [1, 2].

Example 1. We use a choreography to define a scenario
where a buyer, Alice (a), purchases a product from a seller
(s) through her bank (b).

1. a.title -> s; 4. if b
<-
=a then

2. s.price -> a; 5. s.book -> a;

3. s.price -> b; 6. else 0

In Line 1, the term a.title -> s denotes an interaction whereby
a communicates the title of the book that Alice wishes to buy
to s. The seller then sends the price of the book to both a
and b. In Line 4, a sends the price she expects to pay to
b, which confirms that it is the same amount requested by s
(stored internally at b). If so, s sends the book to a (Line
5). Otherwise, the choreography terminates.

In addition to their clarity, choreographies enable new devel-
opment methodologies. For example, in Choreographic Pro-
gramming [9, 10], choreographies are compiled to compliant
local implementations for the described components. In our
example, the implementation inferred for Alice (a), would
be: send the book title to s; receive the price from s; send
the price to b for confirmation; await the success/failure no-
tification from b; in case of success, receive the book from s.

In most software architectures, communications are asyn-
chronous. Therefore, it is important to prove that the code
generated by compiling a choreography implements it cor-
rectly under in such a setting. So far, such proofs have been
developed by defining ad-hoc extensions to the syntax and
semantics of the models used to represent choreographies or
their compiled code [2, 6, 11].

In this paper, we show that choreography languages equipped
with primitives for process spawning and name mobility are
already powerful enough to capture asynchronous commu-
nications. The key idea is to use processes to represent mes-
sages in transit, allowing the sender to proceed immediately
after having sent a message without having to synchronise
with the receiver [12]. We present our result (sketch) as
an endo-encoding in the new language of Dynamic Minimal
Choreographies (DMC), an extension of the representative
choreography calculus of Minimal Choreographies [4].

C ::= 0 | η;C | if p <-
=q thenC1 elseC2 | defX(p̃) = C2 inC1 |X〈p̃〉 η ::= p.e -> q | p.r -> q | p starts q

p
G←→ q e[σ(p)/∗] ↓ v

G, p.e -> q;C, σ → G,C, σ[q 7→ v]
bC|Come

i = 1 if σ(p) = σ(q), i = 2 otherwise

G, if p
<-
=q thenC1 elseC2, σ → G,Ci, σ

bC|Conde

G, p starts q;C, σ → G ∪ {p↔ q}, C, σ[q 7→ ⊥]
bC|Starte

p
G←→ q p

G→ r

G, p.r -> q;C, σ → G ∪ {q→ r}, C, σ
bC|Introe

Figure 1: Dynamic Minimal Choreographies, Syntax and Semantics.

2. LANGUAGE MODEL
We introduce Dynamic Minimal Choreographies (DMC), an
extension of the calculus from [4].

The syntax of DMC is given in Figure 1 (top), where C
ranges over choreographies. Processes (p, q, . . .) run in par-
allel, and each process stores a value in a local memory cell
that can be read with the expression ∗. Term η;C is an inter-
action between two processes, read “the system may execute
η and proceed as C”. In a value communication p.e -> q,
p sends its local evaluation of expression e (whose syntax
we leave undefined) to q, which stores the received value. In
term p starts q, process p starts a new process q, whose name
is known only by p. Names can be communicated via term

p.r -> q. In a conditional if p
<-
= q thenC1 elseC2, q sends its

value to p, which checks if the received value is equal to its
own; the choreography proceeds as C1, if that is the case,
or as C2, otherwise. In all these actions, the two interacting
processes must be different. Definitions and invocations of
(parametric) recursive procedures (X) are standard. The
term 0 is the terminated choreography.

In the semantics of DMC, we use a graph of connections
G [3], keeping track of which pairs of processes are allowed
to communicate. This graph is directed, and an edge from

p to q in G (written p
G→ q) means that p knows the name

of q. In order for an actual message to flow between p and
q, both processes need to know each other, which we write

as p
G←→ q. The semantics for DMC uses reductions of the

form G,C, σ → G′, C′, σ′, where G and G′ are the connec-
tion graphs before and after executing C, respectively, and
the total state function σ maps each process name to its
value (values are denoted v, w, . . .). The complete rules are
given in Figure 1 (bottom), closed under a structural precon-
gruence that allows for unfolding of procedure calls, garbage
collection, and swapping of independent actions (see [4]).

In the premise of bC|Come, e[σ(p)/∗] denotes replacing ∗
with σ(p) in e. In the reductum, σ[q 7→ v] denotes the up-
dated state function σ where q now maps to v. In bC|Starte,
the fresh process q is assigned a default value ⊥. We write
G ∪G′ for the graph obtained by merging G with G′.

The main limitation of DMC is that its semantics is syn-
chronous. Indeed, in a real-world scenario implementation
of Example 1, we would expect s to proceed immediately to
sending its message in Line 3 after having sent the one in
Line 2, without waiting for a to receive the latter. Capturing

this kind of asynchronous behaviour is the main objective of
our development in the remainder of this paper.

3. ASYNCHRONY IN DMC
The calculus of Minimal Choreographies (MC) from [4] is
the fragment of DMC that does not include process spawn-
ing and name mobility. In this fragment, we can omit pro-
cedure parameters by assuming that all procedures take all
processes as arguments. In this section, we focus on MC and
show that any MC choreography can be encoded in DMC
in such a way that communication becomes asynchronous.
More precisely, we provide a mapping {{·}} : MC → DMC
such that every communication action p.e -> q ∈ C ∈ MC
becomes split into a send/receive pair in {{C}} ∈ DMC, with
the properties that: p can continue executing without wait-
ing for q to receive its message (and even send further mes-
sages to q); and messages from p to q are delivered in the
same order as they were originally sent.

Let C be a choreography in MC. In order to encode C in
DMC, we use a function M : P2 → N, where P = pn(C)
is the set of process names in C. Intuitively, {{C}} use a
countable set of auxiliary processes

{
pqi | p, q ∈ P, i ∈ N

}
,

where pqi holds the ith message from p to q.

First, we setup initial channels for communications between
all processes occurring in C.

{{C}} =
{
p start pq0; p : q <->pq0

}
p,q∈P,p6=q

; {{C}}M0

Here, M0(p, q) = 0 for all p and q. For simplicity, we write

pqM for pqM(p,q) and pqM+ for pqM(p,q)+1. The definition
of {{C}}M is given in Figure 2.

We write M̄ for
{
pqM | p, q ∈ P, p 6= q

}
, where we assume

that the order of the values of M is fixed. In recursive def-
initions, we reset M to M0; note that the parameter decla-
rations act as binders, so these process names are still fresh.

In order to encode p.e -> q, p uses the auxiliary process pqM

to store the value it wants to send to q. Then, p creates a
fresh process (to use in the next communication) and sends
its name to pqM . Afterwards, p is free to proceed with
execution. In turn, pqM communicates q’s name to the new
process, which now is ready to receive the next message from
p. Finally, pqM waits for q to be ready to receive both the
value being communicated and the name of the process that
will store the next value.

{{p.e -> q;C}}M = p.e -> pqM ; p start pqM+; p : pqM <-> pqM+;

pqM .q->pqM+; pqM .pqM+
->q; pqM . ∗ -> q; {{C}}M [(p,q)7→M(p,q)+1]

{{if p <-
=q thenC1 elseC2}}M = q. ∗ -> qpM ; q start qpM+; q : qpM <-> qpM+; qpM .p -> qpM+; qpM .qpM+

-> p;

if p
<-
=qpM then {{C1}}M [(p,q)7→M(p,q)+1] else {{C2}}M [(p,q)7→M(p,q)+1]

{{0}}M = 0 {{X}}M = X〈M̄〉 {{defX = C2 inC1}}M = defX(M0) = {{C2}}M0
in {{C1}}M

Figure 2: Encoding MC in DMC.

The behaviours of the choreographies C and {{C}} are closely
related, as formalised in the following theorems.

Theorem 1. Let p ∈ pn(C) and pq ∈ pn({{C}}) \ pn(C).
If G, {{C}}, σ →∗ G′, C1, σ1 → G′, C2, σ2 where in the last
transition a value v is sent from p to pq, then there exist
G′′, C3, σ3, C4 and σ4 such that G′, C2, σ2 →∗ G′′, C3, σ3 →
G′′, C4, σ4 and in the last transition the same value v is sent
from pq to some process q ∈ pn(C).

Theorem 2. If G, {{C}}M , σ →∗ G1, C1, σ1, then there
exist C′, σ′ and σ′′ such that G,C, σ →∗ G,C′, σ′, and
G1, C1, σ1 →∗ G′, {{C′}}M , σ′′, and σ′ and σ′′ coincide on
the values stored at pn(C).

Example 2. We show the result of applying this trans-
formation to Lines 1–3 of Example 1. The numbers refer to
the line numbers in the original example.

a start as0; a : as0 <-> s;

s start sa0; s : sa0 <-> a;

s start sb0; s : sb0 <-> b;

1. a.title -> as0; a start as1; a : as1 <-> as0;

as0.as1 -> s; as0.s -> as1; as0. ∗ -> s;

2. s.price -> sa0; s start sa1; s : sa1 <-> sa0;

sa0.sa1 -> a; sa0.a -> sa1; sa0. ∗ -> a;

3. s.price -> sb0; s start sb1; s : sb1 <-> sb0;

sb0.sb1 -> b; sb0.b -> sb1; sb0. ∗ -> b;

. . .

The first three lines initialize three channels: from a to s;
from s to a; and from s to b. Then one message is passed in
each of these channels, as dictated by the encoding. All com-
munications are asynchronous in the sense explained above,
as in each case the main sender process sends its message to
an intermediary (as0, sa0 or sb0, respectively), who eventu-
ally delivers it to the recipient. Moreover, causal dependen-
cies are kept: in Step 2, s can only send its message to sa0

after receiving the message sent by a in Step 1. However, in
Step 3 s can send its message to sb0 without waiting for a
to receive the previous message, as the action s.price -> sa0

can swap with the three actions immediately preceding it.
We briefly illustrate Theorems 1 and 2 in this example. The-
orem 1 guarantees that the action a.title -> as0 is eventually
followed by a communication of title from as0 to some other
process in the original choreography (in this case, s). Theo-
rem 2 implies that if a.title -> as0 is executed, then it must be

“part” of an action in the original choreography (in this case,
a.title -> s), and furthermore it is possible to find an execu-
tion path that will execute the remaining actions generated
from that one (the remaining five actions in Step 1).

Our construction can be extended to the whole language of
DMC, but we omit this for space constraints.

4. REFERENCES
[1] M. Carbone, K. Honda, and N. Yoshida. Structured

communication-centered programming for web
services. ACM Trans. Prog. Lang. Syst., 34(2):8, 2012.

[2] M. Carbone and F. Montesi.
Deadlock-freedom-by-design: multiparty asynchronous
global programming. In R. Giacobazzi and R. Cousot,
editors, POPL, pages 263–274. ACM, 2013.

[3] L. Cruz-Filipe and F. Montesi. A language for the
declarative composition of concurrent protocols.
Submitted for publication.

[4] L. Cruz-Filipe and F. Montesi. A core model for
choreographic programming. Accepted for publication
at FACS’16. http://arxiv.org/abs/1510.03271.

[5] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: yesterday, today, and tomorrow. CoRR,
abs/1606.04036, 2016.

[6] K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. J. ACM, 63(1):9, 2016.

[7] T. Leesatapornwongsa, J. Lukman, S. Lu, and
H. Gunawi. TaxDC: A taxonomy of non-deterministic
concurrency bugs in datacenter distributed systems. In
ASPLOS, pages 517–530. ACM, 2016.

[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. ACM SIGARCH
Computer Architecture News, 36(1):329–339, 2008.

[9] F. Montesi. Choreographic Programming. Ph.D. thesis,
IT University of Copenhagen, 2013.
http://fabriziomontesi.com/files/choreographic
programming.pdf.

[10] F. Montesi. Kickstarting choreographic programming.
In WS-FM, volume 9421 of LNCS, pages 3–10.
Springer, 2016.

[11] F. Montesi and N. Yoshida. Compositional
choreographies. In CONCUR, volume 8052 of LNCS,
pages 425–439. Springer, 2013.

[12] D. Sangiorgi and D. Walker. The π-calculus: a Theory
of Mobile Processes. Cambridge Univ. Press, 2001.

