
That’s Enough: Asynchrony with Standard

Choreography Primitives
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Abstract

Choreographies are widely used for the specification of concurrent
and distributed software architectures. Since asynchronous communica-
tions are ubiquitous in real-world systems, previous works have proposed
different approaches for the formal modelling of asynchrony in chore-
ographies. Such approaches typically rely on ad-hoc syntactic terms or
semantics for capturing the concept of messages in transit, yielding dif-
ferent formalisms that have to be studied separately.

In this work, we take a different approach, and show that such exten-
sions are not needed to reason about asynchronous communications in
choreographies. Rather, we demonstrate how a standard choreography
calculus already has all the needed expressive power to encode messages
in transit (and thus asynchronous communications) through the primi-
tives of process spawning and name mobility. The practical consequence
of our results is that we can reason about real-world systems within a
choreography formalism that is simpler than those hitherto proposed.

1 Introduction

Today, concurrent and distributed systems are widespread. Multi-core hard-
ware and large-scale networks represent the norm rather than the exception.
However, programming such systems is challenging, because it is difficult to
program correctly the intended interactions among components executed con-
currently (e.g., services). Empirical investigations of bugs in concurrent and
distributed software [17, 18] reveal that most errors are due to: deadlocks (e.g.,
a component that was supposed to be ready for interaction at a given time is ac-
tually not); violations of atomicity intentions (e.g., a component is performing
some action when not intended to); or, violations of ordering intentions (some
components perform the right actions, but not when intended). If the design
and implementation of a concurrent system are initially difficult, they get even
harder as the system evolves and has to be maintained. Without proper tool
support, introducing new actions at components may have unexpected effects
due to side-effects.
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To mitigate this problem, choreographies can be used as high-level formal
specifications of the intended interactions among components [1, 2, 3, 4, 15, 16,
24, 26].

Example 1. We use a choreography to define a scenario where a buyer, Alice
(a), purchases a product from a seller (s) through her bank (b).

1. a.title -> s;

2. s.price -> a;

3. s.price -> b;

4. if b
<-
= a then

5. b -> s[ok ]; b -> a[ok ];

6. s.book -> a;

7. else b -> s[ko]; b -> a[ko]

In Line 1, the term a.title -> s denotes an interaction whereby a communicates
the title of the book that Alice wishes to buy to s. The seller then sends the price
of the book to both a and b. In Line 4, a sends the price she expects to pay to
b, which confirms that it is the same amount requested by s (stored internally
at b). If so, b notifies both s and a of the successful transaction (Line 5) and s
sends the book to a (Line 6). Otherwise, b notifies s and a of the failure (Line
7) and the choreography terminates.

Choreographies are the foundations of an emerging development paradigm,
called Choreographic Programming [20, 21], where an automatic projection
procedure is used to synthesise a set of compliant local implementations (the
implementations of the single components) from a choreography [4, 16, 24].
This procedure is formally proven to be correct, preventing deadlocks, ordering
errors, and atomicity violations. This ensures, critically, that updates to either
the choreography or the local implementations do not introduce bugs and that
developers always know what communications their systems will enact (by
looking at the choreography). In the previous example, the implementation
inferred for, e.g., Alice (a), would be: send the book title to s; receive the
price from s; send the price to b for confirmation; await the success/failure
notification from b; in case of success, receive the book from s.

Choreography languages come in all sizes and flavours, with different sets of
primitives inspired by practical applications, such as adaptation [9, 10], chan-
nel mobility [5, 6], or web services [2, 4, 26]. However, this multiplicity makes
it increasingly difficult to reuse available theory and tools, because of the dif-
ferences and redundancies among these models. For this reason, we previously
introduced the model of Core Choreographies (CC) [8], a minimal and represen-
tative theoretical model of Choreographic Programming. In CC, components
are modelled as concurrent processes that run independently and possess own
memory, inspired by process calculi [25]. Example 1 is written in the syntax of
CC described in § 2.

In this paper, we are interested in studying asynchronous communications
in choreographies. As a motivation, consider the two communications in Lines
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Figure 1: Choreography calculi and encodings.

2 and 3 of Example 1: typically, in a realistic system, we would expect s to send
the price to a and then immediately proceed to sending it also to b, without
waiting for a to receive its message. Typically, asynchronous communications
are formalised in choreography models by defining ad-hoc extensions to their
syntax and semantics [5, 11, 15, 16, 22, 23], causing a substantial amount of du-
plication in their technical developments (many of which are even incompatible
with each other).

Unfortunately, there are still no foundational studies that provide an el-
egant and general understanding of asynchrony in choreographies. Here, we
pursue such a study in the context of CC. We depict our overall development
in Figure 1, and describe it in the following.

We first present our development for the computational fragment of CC,
called Minimal Choreographies (MC) [8]. We take inspiration from how asyn-
chrony is modelled in foundational process models, specifically the π-calculus [19].
The key idea there is to use processes to represent messages in transit, allowing
the sender to proceed immediately after having sent a message without having
to synchronise with the receiver [25]. In an asynchronous system, there is no
bound to the number of messages that could be transiting in the network; this
means that MC is not powerful enough for our purposes, because it can only
capture a finite number of processes (the same holds for CC). For this reason,
we extend MC with two standard notions, borrowed from process calculi and
previous choreography models: process spawning – the ability to create new
processes at runtime – and name mobility – the ability to send process refer-
ences, or names. We call this new language Dynamic Minimal Choreographies
(DMC). MC is a strict sub-language of DMC, denoted by the arrow ↪→ on the
left-hand side of Figure 1. In general, all arrows of shape ↪→ in that figure
denote (strict) language inclusion.

The dotted arrow (1) in Figure 1 is the cornerstone of our development:
every choreography in MC can be encoded in an asynchronous implementation
in DMC, by using auxiliary processes to represent messages in transit. Since
DMC extends MC with new primitives, it makes sense to extend this encoding
to the whole language of DMC (2). This syntactic interpretation of asynchrony
in choreographies is our main contribution. Specifically, our results show that
asynchronous communications can be modelled in choreographies using well-
known notions, i.e., process spawning and name mobility (studied, e.g., in [5,
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C ::= 0 | η;C | if p<-
= q thenC1 elseC2 | defX = C2 inC1 |X

η ::= p.e -> q | p -> q[l] e ::= v | ∗ | . . .

Figure 2: Core Choreographies, Syntax.

7]), without the need for ad-hoc constructions. Coming back to the title: we
already have enough.

The fact that our encoding can be extended from MC to DMC is evidence
that our approach is robust, and the simplicity of DMC makes it a conve-
nient foundational calculus to use in future developments of choreographies.
However, one of the expected advantages of using a foundational theory such
as DMC for capturing asynchrony is indeed that we can reuse existing formal
techniques based on standard primitives for choreographies. (This is a common
scenario in π-calculus, where many techniques apply to its sub-languages [25].)
We show an example of such reuses. Core Choreographies (CC) [8] is MC with
the addition of a primitive for communicating choices explicitly as messages,
called selection [4, 13, 15, 27] (the terms in Lines 5 and 7 in Example 1 are
selections). An important property of CC is that selections can be encoded in
the simpler language MC – the dashed arrow (a) in Figure 1. What happens
if we add selections to DMC? Ideally, the resulting calculus (called Dynamic
Core Choreographies, or DCC) should both have an asynchronous interpre-
tation through the techniques introduced in this paper and still possess the
property that selections are encodable using the simpler language DMC. This
is indeed the case. We extend our encoding to yield an interpretation of asyn-
chronous selections, yielding (3) and (4). The second property (encodability of
selections in DCC) follows immediately from language inclusion, giving us (b)
for free.

2 Background

We briefly introduce CC and MC, from [8], and summarise their key properties.
The syntax of CC is given in Figure 2, where C ranges over choreogra-

phies. Processes (p, q, . . .) run in parallel, and each process stores a value in a
local memory cell.1 Each process can access its own value using the syntactic
construct ∗, but it cannot read the contents of another process. Term η;C
is an interaction between two processes, read “the system may execute η and
proceed as C”. In a value communication p.e -> q, p sends its local evalua-
tion of expression e to q, which stores the received value. In a label selection
p -> q[l], p communicates label l to q. The set of labels is immaterial, as long

as it contains at least two elements. In a conditional if p
<-
= q thenC1 elseC2,

q sends its value to p, which checks if the received value is equal to its own;
the choreography proceeds as C1, if that is the case, or as C2, otherwise. In

1In the original presentation, values were restricted to natural numbers; we drop this
restriction here since it is orthogonal to our development.
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e[σ(p)/∗] ↓ v
p.e -> q;C, σ → C, σ[q 7→ v]

bC|Come

p -> q[l];C, σ → C, σ
bC|Sele

i = 1 if σ(p) = σ(q), i = 2 o.w.

if p
<-
= q thenC1 elseC2, σ → Ci, σ

bC|Conde

C1, σ → C ′1, σ
′

defX = C2 inC1, σ → defX = C2 inC
′
1, σ
′ bC|Ctxe

C1 � C2 C2, σ → C ′2, σ
′ C ′2 � C ′1

C1, σ → C ′1, σ
′ bC|Structe

Figure 3: Core Choreographies, Semantics.

all these actions, the two interacting processes must be different. Definitions
and invocations of recursive procedures (X) are standard. The term 0 is the
terminated choreography.

The semantics of CC uses reductions of the form C, σ → C ′, σ′, where the
total state function σ maps each process name to its value. We use v, w, . . .
to range over values. The reduction relation → is defined by the rules given in
Figure 3.

These rules formalise the intuition presented earlier. In the premise of
bC|Come, we write e[σ(p)/∗] for the result of replacing ∗ with σ(p) in e. In the
reductum, σ[q 7→ v] denotes the updated state function σ where q now maps
to v.

Rule bC|Structe uses the structural precongruence relation �, which gives a
concurrent interpretation to choreographies by allowing non-interfering actions
to be executed in any order. The key rule defining � is

pn(η) ∩ pn(η′) = ∅
η; η′ ≡ η′; η

bC|Eta-Etae

where C ≡ C ′ stands for C � C ′ and C ′ � C and pn(C) returns the set of all
process names occurring in C. The other rules for � are standard, and support
recursion unfolding and garbage collection of unused definitions.

CC was designed as a core choreography language, in which in particular
it is possible to implement any computable function. Furthermore, CC chore-
ographies can always progress until they terminate.

Theorem 1. If C is a choreography, then either C � 0 (C has terminated)
or, for all σ, C, σ → C ′, σ′ for some C ′ and σ′ (C can reduce).

Label selections are not required for Turing completeness, and thus the
simpler fragment MC obtained from CC by omitting them is interesting as an
intermediate language for compilers and, also, for theoretical analysis. One of
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the reasons for having label selection is to make choice propagation explicit
in choreographies; in a system implementation, this allows, e.g., to monitor
distributed choices without having to inspect the message payload. Another
reason is projectability : the possibility of automatically generating processes
implementations that satisfy the choreographic specification. In Example 1,
the label selections in Lines 5 and 7 are important in order for b to let a and s
know whether or not they should communicate.

Choices communicated by label selections can also be encoded as data in
value communications, by sending a boolean value to determine which one of
two branches was selected. This is the key idea behind the encoding presented
in [8] – arrow (a) in Figure 1 – which transforms a choreography in CC to one
in MC by encoding selections as value communications and nested conditionals.

We do not need to concern ourselves with projectability in this work, and
we will thus omit its details. This is because CC and MC enjoy a projectabil-
ity property that is not altered by our development. Formally, there exists a
procedure Amend(·) that, given any choreography, returns a choreography in
CC that is projectable. Then, given a projectable CC choreography, the en-
coding ([·]) transforms it into a choreography in MC, by encoding selections as
value communications and conditionals. These transformations preserve the
computational meaning of choreographies, as formally stated in the following
theorem (·+ extends a state function to the auxiliary processes introduced by
the transformations in a systematic way).

Theorem 2. Let C,C ′ be MC choreographies and σ, σ′ be states. If C, σ →∗
C ′, σ′, then ([Amend(C)])+, σ+ →∗ ([Amend(C ′)]), σ′

+
.

The main limitation of CC is that its semantics is synchronous. Indeed,
in a real-world scenario implementation of Example 1, we would expect s to
proceed immediately to sending its message in Line 3 after having sent the
one in Line 2, without waiting for a to receive the latter. Capturing this kind
of asynchronous behaviour is the main objective of our development in the
remainder of this paper.

3 Asynchrony in MC

In this section, we extend CC with primitives to implement asynchronous com-
munication, obtaining a calculus of Dynamic Core Choreographies (DCC). We
focus on MC and first show that any MC choreography can be encoded in DMC
– the fragment of DCC that does not use label selection – in such a way that
communication becomes asynchronous.

More precisely, we provide a mapping {{·}} : MC → DMC such that every
communication action p.e -> q ∈ C ∈ MC becomes split into a send/receive pair
in {{C}} ∈ DMC, with the properties that: p can continue executing without
waiting for q to receive its message (and even send further messages to q); and
messages from p to q are delivered in the same order as they were originally
sent.

The system DCC. We briefly motivate DCC. In CC, there is a bound on
the number of values that can be stored at any given time by the system:
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C ::= · · · | defX(p̃) = C2 inC1 |X〈p̃〉
η ::= · · · | p starts q e ::= p | · · ·

Figure 4: Dynamic Core Choreographies, Syntax.

since each process can hold a single value, the maximum number of values
the system can know is equal to the number of processes in the choreography,
which is fixed. However, in an asynchronous setting, the number of values
that need to be stored is unbounded: a process p may loop forever sending
values to q, and q may wait an arbitrary long time before receiving any of
them. Therefore, we need to extend CC with the capability to generate new
processes. As discussed in [7], this requires enriching the language with two
additional abilities: parameters to recursive procedures (in order to be able to
use a potentially unbounded number of processes at the same time) and action
to communicate process names.

Formally, the differences between the syntax of CC and that of DCC are
highlighted in Figure 4: procedure definitions and calls now have parameters;
there is a new term for generating processes; and, the expressions sent by pro-
cesses can also be process names. The possibility of communicating a process
name (p.q -> r) ensures name mobility. We will use the abbreviation p : r <-> q
as shorthand for p.q -> r; p.r -> q.

The semantics for DCC includes an additional ingredient, borrowed from [7]:
a graph of connections G, keeping track of which pairs of processes are allowed
to communicate. This graph is directed, and an edge from p to q in G (written

p
G→ q) means that p knows the name of q. In order for an actual message to

flow between p and q, both processes need to know each other, which we write as

p
G←→ q.2 The reduction relation now has the form G,C, σ → G′, C ′, σ′, where

G and G′ are the connection graphs before and after executing C, respectively.
The complete rules are given in Figure 5, with � defined similarly to CC. In
rule bC|Starte, the fresh process q is assigned a default value ⊥.

The proof of Theorem 1 can be generalised to DCC, but this requires an
extra ingredient: a simple type system (which we do not detail, as it is a sub-
system of that presented in [7]). This type system checks that all processes that
attempt at communicating are connected in the communication graph, e.g., by
being properly introduced using name mobility. Furthermore, we can define a
target process calculus for DCC and an EndPoint Projection that will auto-
matically synthetise correct-by-construction deadlock-free implementations of
(projectable) choreographies, using techniques from [8] and [7]. Although these
constructions are not technically challenging, we omit them for brevity, since
they are immaterial for our results.

The fragment of DCC that does not contain label selections is called Dy-

2In some process calculi, the weaker condition p
G→ q is typically sufficient for p to send a

message to q. Our condition is equivalent to that found in the standard model of Multiparty
Session Types [15]. This choice is orthogonal to our development.
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p
G←→ q e[σ(p)/∗] ↓ v

G, p.e -> q;C, σ → G,C, σ[q 7→ v]
bC|Come

p
G←→ q

G, p -> q[l];C, σ → G,C, σ
bC|Sele

G, p starts q;C, σ → G ∪ {p↔ q}, C, σ[q 7→ ⊥]
bC|Starte

p
G←→ q p

G→ r

G, p.r -> q;C, σ → G ∪ {q→ r}, C, σ
bC|Introe

i = 1 if σ(p) = σ(q), i = 2 otherwise

G, if p
<-
= q thenC1 elseC2, σ → G,Ci, σ

bC|Conde

C1 � C2 G,C2, σ → G′, C ′2, σ
′ C ′2 � C ′1

G,C1, σ → G′, C ′1, σ
′ bC|Structe

Figure 5: Dynamic Core Choreographies, Semantics.

namic Minimal Choreographies (DMC). Amendment and label selection elimi-
nation hold for DMC and DCC just as for MC and CC, so that, for any DMC
choreography C, ([Amend(C)]) is always projectable, and Theorem 2 also holds
for these calculi (arrow (b) in Figure 1).

The encoding. We focus now on the mapping (1) from Figure 1, as this is the
key ingredient to establish the remaining connections in that figure. Let C be
a choreography in MC. In order to encode C in DMC, we use a function MC :
P2 → N, where P = pn(C) is the set of process names in C. Intuitively, {{C}}
will use a countable set of auxiliary processes

{
pqi | p, q ∈ P, i ∈ N

}
, where pqi

will hold the ith message from p to q.
First, we setup initial channels for communications between all processes

occurring in C.

{{C}} =
{
p start pq0; p : q <->pq0

}
p,q∈P,p 6=q

; {{C}}M0

Here, M0(p, q) = 0 for all p and q. For simplicity, we write pqM for pqM(p,q)

and pqM+ for pqM(p,q)+1. The definition of {{C}}M is given in Figure 6.
We write M̄ for

{
pqM | p, q ∈ P, p 6= q

}
, where we assume that the order

of the values of M is fixed. In recursive definitions, we reset M to M0; note
that the parameter declarations act as binders, so these process names are still
fresh. We can use α-renaming on {{C}} to make all bound names distinct.

In order to encode p.e -> q, p uses the auxiliary process pqM to store the
value it wants to send to q. Then, p creates a fresh process (to use in the next
communication) and sends its name to pqM . Afterwards, p is free to proceed
with execution. In turn, pqM communicates q’s name to the new process, which
now is ready to receive the next message from p. Finally, pqM waits for q to
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{{p.e -> q;C}}M = p.e -> pqM ; p start pqM+; p : pqM <-> pqM+;

pqM .q->pqM+; pqM .pqM+->q; pqM . ∗ -> q;

{{C}}M [(p,q)7→M(p,q)+1]

{{if p<-
= q thenC1 elseC2}}M = q. ∗ -> qpM ; q start qpM+; q : qpM <-> qpM+;

qpM .p -> qpM+; qpM .qpM+ -> p;

if p
<-
= qpM then {{C1}}M [(p,q)7→M(p,q)+1]

else {{C2}}M [(p,q) 7→M(p,q)+1]

{{0}}M = 0

{{X}}M = X〈M̄〉
{{defX = C2 inC1}}M = defX(M0) = {{C2}}M0

in {{C1}}M

Figure 6: Encoding MC in DMC

be ready to receive both the value being communicated and the name of the
process that will store the next value.

The behaviours of the choreographies C and {{C}} are closely related, as
formalised in the following theorems.

Theorem 3. Let p ∈ pn(C) and pq ∈ pn({{C}}) \ pn(C). If G, {{C}}, σ →∗
G′, C1, σ1 → G′, C2, σ2 where in the last transition a value v is sent from p to
pq, then there exist G′′, C3, σ3, C4 and σ4 such that G′, C2, σ2 →∗ G′′, C3, σ3 →
G′′, C4, σ4 and in the last transition the same value v is sent from pq to some
process q ∈ pn(C).

Theorem 3 states that messages sent from p to q are eventually received by
q.

Theorem 4. If G, {{C}}M , σ →∗ G1, C1, σ1, then there exist G′′, C ′, σ′ and
σ′′ such that C, σ →∗ C ′, σ′, and G1, C1, σ1 →∗ G′′, {{C ′}}M , σ′′, and σ′ and σ′′

coincide on the values stored at pn(C).

Theorem 4 states that the encoding does not add any additional behaviour
to the original choreography, aside from expanding communications into several
actions.

Example 2. We partially show the result of applying this transformation to
Lines 1–3 of Example 1. We only include the initializations of the channels
that are used in this fragment; the numbers indicated refer to the line numbers
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in the original example.

a start as0; a : as0 <-> s;

s start sa0; s : sa0 <-> a;

s start sb0; s : sb0 <-> b;

1. a.title -> as0; a start as1; a : as1 <-> as0;

as0.as1 -> s; as0.s -> as1; as0. ∗ -> s;

2. s.price -> sa0; s start sa1; s : sa1 <-> sa0;

sa0.sa1 -> a; sa0.a -> sa1; sa0. ∗ -> a;

3. s.price -> sb0; s start sb1; s : sb1 <-> sb0;

sb0.sb1 -> b; sb0.b -> sb1; sb0. ∗ -> b;

. . .

The first three lines initialize three channels: from a to s; from s to a; and
from s to b. Then one message is passed in each of these channels, as dictated
by the encoding. All communications are asynchronous in the sense explained
above, as in each case the main sender process sends its message to a dedicated
intermediary (as0, sa0 or sb0, respectively), who will eventually deliver it to the
recipient. Moreover, causal dependencies are kept: in Step 2, s can only send
its message to sa0 after receiving the message sent by a in Step 1. However,
in Step 3 s can send its message to sb0 without waiting for a to receive the
previous message, as the action s.price -> sa0 can swap with the three actions
immediately preceding it.

We briefly illustrate Theorems 3 and 4 in this setting. Theorem 3 states
that, e.g., the action a.title -> as0 is eventually followed by a communication of
title from as0 to some other process in the original choreography (in this case,
s). Theorem 4 implies that if, e.g., a.title -> as0 is executed, then it must be
“part” of an action in the original choreography (in this case, a.title -> s), and
furthermore it is possible to find an execution path that will execute the remain-
ing actions generated from that one (the remaining five actions in Step 1).

4 The General Case

The calculus DMC is in itself synchronous, just like MC. We now show that we
can extend {{·}} to the full language of DMC – arrow (2) in Figure 1 – thereby
obtaining a systematic way to write asynchronous communications in DMC.
By further marking which communications we want to treat as synchronous
(so that they are untouched by {{·}}) we obtain a calculus in which we can have
both synchronous and asynchronous communication, compiled in itself. This
is similar (albeit dual) to the situation in asynchronous π-calculus, where we
can also encode synchronous communication without extending the language.

The main challenge is dealing with M , as the source choreography can
now include process spawning. This means that the domain of M can be
dynamically extended throughout the computation of {{C}}M , which renders
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our parameter-passing in recursive calls invalid (since the number of parameters
in the procedures generated by our encoding is fixed). However, since each
procedure X(p1, . . . , pn) in DMC can only use (by convention) the processes
p1, . . . , pn in its body, we can restrict the additional parameters introduced
by the encoding to the n(n − 1) auxiliary processes currently assigned by M
to communications between the pis. For example, {{defX(p, q) = C2 inC1}}M
would be defX(p, q, pq0, qp0) = {{C2}}M0

in {{C1}}M . We will not write this
definition formally.

With this in mind, we can easily define the new cases for {{C}}M .

{{p start q;C}}M = p start q; p start pq0; q start qp0;

p : q <-> pq0; q : p <-> qp0;

{{C}}M [(p,q) 7→0,(q,p)7→0]

{{p.q -> r;C}}M = p start qr0; p.qr0 -> pqM ; p.qr0 -> prM ;

p start pqM+; p : pqM <-> pqM+;

p start prM+; p : prM <-> prM+;

pqM .q -> pqM+; prM .r -> prM+;

pqM .pqM+ -> q; pqM .qr0 -> q;

prM .prM+ -> r; prM .qr0 -> r;

{{C}}M [(p,q)7→M(p,q)+1,(p,r) 7→M(p,r)+1,(q,r)7→0]

In {{p start q;C}}M , we simply create the asynchronous communication channels
between p and q – the only step where these process will need to synchronize
– and extend M in the continuation. The encoding of p.q -> r is better un-
derstood by reading it as a composition: first, p creates the new asynchronous
communication channel from q to r, then uses its own channels to send this
name to these processes. Note that the auxiliary channels do not communicate,
so this encoding will introduce asymmetries in the graph of communications.

Theorems 3 and 4 still hold for this extended encoding.

Projections. Finally, we extend this encoding to the whole language of DCC
– arrow (4) in Figure 1 – by adding the clause

{{p -> q[l];C}}M = p -> pqM [l]; p start pqM+;

p : pqM <-> pqM+; pqM .q -> pqM+;

pqM .pqM+ -> q; pqM -> q[l];

{{C}}M [(p,q)7→M(p,q)+1]

to the definition of {{C}}M . Restricting this encoding to the language of CC
yields arrow (3) in Figure 1.

We finish this section with a brief informal note on projectability. As we
discussed in § 2, a formal presentation of projection for DMC and DCC is
beyond the scope of this paper. However, we point out that our encoding for
asynchronous communications preserves projectability, i.e., if C is projectable,
then so is {{C}}.
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5 Related Work

To the best of our knowledge, this is the first work presenting an interpretation
of asynchronous communications in choreographies based solely on the expres-
sive power of primitives for the creation of processes and their connections, via
name mobility.

Our work recalls the development of the asynchronous π-calculus [12] (Aπ
for short, using the terminology from [25]). Aπ has a synchronous semantics,
in the sense that two processes can communicate when they are both ready to,
respectively, perform compatible input and output actions. However, an output
action can have no sequential continuation, but can instead only be composed
in parallel with other behaviour. Thus, the interpretation of communications
in Aπ is asynchronous, since outputs can be seen as messages in transit over
a network. The synchronisation between (the process holding) a message in
transit and the intended receiver models then the extraction of the message
from the medium by the receiver. Differently from our work, Aπ is obtained
from the standard π-calculus by restricting the syntax of processes such that
all communications necessarily conform to this asynchronous interpretation. It
is then shown that Aπ is expressive enough to encode the synchronous com-
munications from standard π-calculus, by using acknowledgement messages.
DMC and DCC exhibit the dual behaviour: communications are naturally
synchronous, but we can always encode them to be asynchronous by passing
them through intermediary processes.

Other studies have investigated asynchronous communications in choreogra-
phies. The distinctive feature of our work is that it does not rely on any ad-
hoc syntax or semantics for capturing asynchrony. In [14], choreographies are
used as types for communication protocols and are related to asynchronous
communications by encoding choreographies in types for terms in a variant of
the π-calculus. However, asynchrony can only be observed in the semantics
of processes, not at the level of choreographies, and the syntax of processes
is equipped with ad-hoc runtime terms3 that represent messages in transit.
The first work defining an asynchronous semantics for choreographies is [5], by
defining an ad-hoc rule in the semantics of choreographies that allows nested
(not appearing at the top level) communications to be executed if, among other
conditions: the sender is the same as the one in the communication at the top
level of the choreography, the receiver is not involved in the nested communi-
cation. This technique has been later adopted also in [22] – for defining the
composition of asynchronous choreographies with legacy process code – and
in [15] (the journal version of [14]) – to formulate a semantics for communi-
cation protocols represented as choreographies. In [11], choreographies (not
processes, for example as in [14]) are equipped with runtime terms to represent
messages in transit.

Process spawning and name mobility are the key additions to DCC and
DMC, from CC and MC, that yield the expressive power to represent asyn-
chronous communications. Process spawning in choreographies has been stud-

3Runtime terms are assumed never to be used by the programmer, but only produced as
the result of execution.
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ied also in the works [4, 5, 22], but in a different form where processes have to
synchronise over a shared channel to proceed. Name mobility in choreographies
was introduced in [5], but for channel rather than process names. Our process
spawning and name mobility primitives are simplifications of those presented
in [7], which makes all results from that work applicable to DCC (and thus
DMC).

6 Conclusions

Choreographies are widely used in the context of concurrent and distributed
software architectures, in order to specify precisely how the different compo-
nents of a system should interact [2, 26]. Previous formalisations of asyn-
chronous communications in choreographies exchange expressivity for simplic-
ity, yielding ad-hoc models with unclear connections. In this work, we showed
that a choreography calculus with process spawning and process name mobil-
ity can capture asynchronous communications. Therefore, all such calculi with
similar primitives have the same power. Our development is conservative wrt
previous work, allowing us to import existing techniques developed for previ-
ous calculi. For example, the techniques shown in [7, 8] could be reapplied to
DCC to synthesise deadlock-free process implementations. Here, we showed
how to import the result of selection elimination from [8]. In conclusion, we
now have a setting where we can reason about asynchronous communications
in choreographies by considering a simple synchronous semantics, just like it
can be done in the seminal model of π-calculus for mobile processes.
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