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Choreographic Programming is a paradigm for the development of concurrent software, where dead-
locks are prevented syntactically. However, choreography languages are typically synchronous,
whereas many real-world systems have asynchronous communications. Previous attempts at enrich-
ing choreographies with asynchrony rely on ad-hoc constructions, whose adequacy is only argued
informally. In this work, we formalise the properties that an asynchronous semantics for choreogra-
phies should have: messages can be sent without the intended receiver being ready, and all sent
messages are eventually received. We explore how out-of-order execution, used in choreographies
for modelling concurrency, can be exploited to endow choreographies with an asynchronous seman-
tics. Our approach satisfies the properties we identified. We show how our development yields a
pleasant correspondence with FIFO-based asynchronous messaging, modelled in a process calculus,
and discuss how it can be adopted in more complex choreography models.

1 Introduction

Choreographic Programming [18] is a paradigm for developing concurrent software, where an “Alice and
Bob” notation is used to prevent mismatched I/O actions syntactically. An EndPoint Projection (EPP)
can then be used to synthesise correct-by-construction process implementations [4, 8, 21]. Choreogra-
phies are used in different settings, including standards [2, 23], languages [5, 14, 20, 22], specification
models [3, 4, 16], and design tools [2, 20, 22, 23].

The key to preventing mismatched I/O actions in choreographies is that interactions between two (or
more) processes are specified atomically, using terms such as p.e -> q;C – read “process p sends the
evaluation of expression e to process q, and then we proceed as the choreography C”. Giving a semantics
to such terms is relatively easy if we assume that communications are synchronous: we can just reduce
p.e -> q;C to C in a single step (and update q’s state with the received value, but this is orthogonal to
this discussion). For this reason, most research on choreographic programming focused on systems with
a synchronous communications semantics.

However, many real-world systems use asynchronous communications. This motivated the introduc-
tion of an ad-hoc reduction rule for modelling asynchrony in choreographies (Rule bC|Asynce in [4]). As
an example, consider the choreography p.1 -> q;p.2 -> r (where 1 and 2 are just constants). The special
rule would allow for consuming the second communication immediately, thus reducing the choreogra-
phy to p.1 -> q. In general, roughly, this rule allows a choreography of the form p.e -> q;C to execute
an action in C if this action involves p but not q (sends are non-blocking, receives are blocking). This
approach was later adopted in other works (see Section 5). Unfortunately, it also comes with a serious
problem: it yields an unintuitive semantics, since a choreography can now reduce to a state that would
normally not be reachable in the real world. In our example, specifically, in the real world p would have
to send its first message to q before it could proceed to sending its other message to r. This information
is lost in the choreography reduction, where it appears that p can just send its messages in any order.
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In [4], this also translates to a misalignment between the structures of choreographies and their process
implementations generated by EPP, since the latter use a standard asynchronous semantics with message
buffers; see Section 5 for a detailed discussion of this aspect. Previous work [11] uses intermediate run-
time terms in choreographies to represent asynchronous messages in transit, in an attempt at overcoming
this problem. However, the adequacy of this approach has never been formally demonstrated.

In this paper, we are interested in studying asynchrony for choreographies in a systematic way. Thus,
we first analyse the properties that an asynchronous choreography semantics should have (assuming stan-
dard FIFO duplex channels between each pair of processes) – messages can be sent without the intended
receiver being ready, and all sent messages are eventually received – and afterwards formulate them pre-
cisely in a representative choreography language. Our study leads naturally to the construction of a new
choreography model that supports asynchronous communications, by capitalising on the characteristic
feature of out-of-order execution found in choreographic programming. We formally establish the ad-
equacy of our asynchronous model, by proving that it respects the formal definitions of our properties.
Then, we define an EPP from our new model to an asynchronous process calculus. Thanks to the accu-
rate asynchronous semantics of our choreography model, we prove that the code generated by our EPP
and the originating choreography are lockstep operationally equivalent. As a corollary, our generated
processes are deadlock-free by construction. Our development also has the pleasant property that pro-
grammers do not need to reason about asynchrony: they can just program thinking in the usual terms of
synchronous communications, and assume that adopting asynchronous communications will not lead to
errors. We conclude by discussing how our construction can be systematically extended to more complex
choreography models.

Contribution. The contribution of this article is threefold. First, we give an abstract characterisation
of asynchronous semantics for choreography languages, which is formalised for a minimal choreogra-
phy calculus. Secondly, we propose an asynchronous semantics for this minimal language, show that
it is an instance of our characterisation, and discuss how it can be applied to other choreography cal-
culi. Finally, we prove a lockstep operational correspondence between choreographies and their process
implementations, when asynchronous semantics for both systems are considered.

Structure. We present the representative choreography language in which we develop our work, to-
gether with its associated process calculus and EPP, in Section 2. In Section 3, we motivate and introduce
the properties we would expect of an asynchronous choreography semantics, and introduce a semantics
that satisfies these properties. We show that we can define an asynchronous variant of the target process
calculus in Section 4, and extend the definition of EPP towards it, preserving the precise operational cor-
respondence from the synchronous case. We relate our development to other approaches for asynchrony
in choreographies in Section 5, before concluding in Section 6 with a discussion on the implications of
our work and possible future directions.

2 Minimal Choreographies and Stateful Processes

We review the choreography model of Minimal Choreographies (MC) and its target calculus of Stateful
Processes (SP), originally introduced in [8].
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2.1 Minimal Choreographies

The language of MC is defined inductively in Figure 1. Processes, ranged over by p,q, r, . . ., are assumed

C ::= p.e -> q;C | if p.e thenC1 elseC2 | defX =C2 inC1 | X | 0

Figure 1: Minimal Choreographies, syntax.

to run concurrently. Processes interact through value communications p.e -> q, which we also denote as
η . Here, process p evaluates expression e and sends the result to q. The precise syntax of expressions is
immaterial for our presentation; in particular, expressions can access values stored in p’s memory.

The remaining choreography terms denote conditionals, recursion, and termination. In the condi-
tional if p.e thenC1 elseC2, process p evaluates expression e to decide whether the choreography should
proceed as C1 or as C2. In defX =C2 inC1, we define variable X to be the choreography term C2, which
then can be called (as X) inside both C1 and C2. Term 0 is the terminated choreography, which we
sometimes omit. For a more detailed discussion of these primitives, we refer the reader to [8].1

The (synchronous) semantics of MC is a reduction semantics that uses a total state function σ to
represent the memory state at each process p. Since our development is orthogonal to the details of the
memory implementation, we say that σ(p) is a representation of the memory state of p (left unspecified)
and write upd(σ ,p,v) to denote the (uniquely defined) updated memory state of p after receiving a
value v. Term e ↓σ(p) v denotes that locally evaluating expression e at p, with memory state σ , evaluates
to v. We assume that expression evaluation is deterministic and always terminates. (This formulation
captures the essence of previous memory models for choreographies, cf. [4, 7].)

Transitions are defined over pairs 〈C,σ〉, given by the rules in Figure 2. As usual, we omit the angular
brackets in transitions. These rules are mostly standard, and we summarise their intuition. In bC|Come,

e ↓σ(p) v

p.e -> q;C,σ →C,upd(σ ,q,v)
bC|Come

C1,σ →C′1,σ
′

defX =C2 inC1,σ → defX =C2 inC′1,σ
′ bC|Ctxe

e ↓σ(p) true

if p.e thenC1 elseC2,σ →C1,σ
bC|Thene

e ↓σ(p) false

if p.e thenC1 elseC2,σ →C2,σ
bC|Elsee

C1 �C2 C2,σ →C′2,σ
′ C′2 �C′1

C1,σ →C′1,σ
′ bC|Structe

Figure 2: Minimal Choreographies, synchronous semantics.

the state of q is updated with the value received from p (which results from the evaluation of expression e
at that process). Rules bC|Thene and bC|Elsee are as expected, while rule bC|Ctxe allows reductions un-
der recursive definitions. Finally, rule bC|Structe uses a structural precongruence �, defined in Figure 3,
which essentially allows (i) independent communications to be swapped (rule bC|Eta-Etae), (ii) recur-
sive definitions to be unfolded (rule bC|Unfolde), and (iii) garbage collection (rule bC|ProcEnde). The

1We relaxed the syntax of MC slightly with respect to [8] by leaving the syntax of expressions unspecified, which allows
for the simpler conditional if p.ethenC1 elseC2 in line with typical choreography languages. This minor change simplifies our
presentation.
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pn(η)∩pn(η ′) = /0
η ;η ′ ≡ η ′;η

bC|Eta-Etae
pn(Ci)∩pn(η) = /0

defX =C2 in(η ;C1)≡ η ;defX =C2 inC1
bC|Eta-Rece

defX =C2 inC1 � defX =C2 inC1[C2/X ]
bC|Unfolde

defX =C in0� 0 bC|ProcEnde

{p,q}∩pn(η) = /0
if p.e then(η ;C1)else(η ;C2)≡ η ; if p.e thenC1 elseC2

bC|Eta-Conde

p 6= q

if p.e then(if q.e′ thenC1 elseC2)else(if q.e′ thenC′1 elseC′2)
≡

if q.e′ then(if p.e thenC1 elseC′1)else(if p.e thenC2 elseC′2)

bC|Cond-Conde

Figure 3: Minimal Choreographies, structural precongruence.

remaining rules are additional rules allowing communications to swap with other constructs, required
for achieving (i). These rules, taken together, endow the semantics of MC with out-of-order execution:
interactions not at the top level may be brought to the top and executed if they do not interfere with other
interactions that precede them in the choreography’s abstract syntax tree. We write C ≡ C′ for C � C′

and C′ �C, and denote the set of process names in a choreography C by pn(C).
Unsurprisingly, choreographies in MC are always deadlock-free. We use this property later on, to

prove that the process code generated from choreographies is also deadlock-free.

Theorem 1 (Deadlock-freedom). Given a choreography C, either C � 0 (termination) or, for every σ ,
there exist C′ and σ ′ such that C,σ →C′,σ ′.

2.2 Stateful Processes and EndPoint Projection

Minimal Choreographies are meant to be implemented in a minimalistic process calculus, also intro-
duced in [8], called Stateful Processes (SP). We summarize this calculus, noting that we make the same
conventions and changes regarding expressions, labels, and states as above.

The syntax of SP is reported in Figure 4. A term p.σp
B is a process with name p, memory state σp

B ::= q!e;B | p?;B | if e thenB1 elseB2;B | defX = B2 inB1 | X | 0 N,M ::= p.σp
B | (N |M) | 0

Figure 4: Stateful Processes, syntax.

and behaviour B. Networks, ranged over by N,M, are parallel compositions of processes, with 0 being
the inactive network.

Behaviours correspond to the local views of choreography actions. The process executing a send
term q!e;B evaluates expression e and sends the result to process q, proceeding as B. The dual receiving
behaviour p?;B expects a value from process p, stores it in its memory and proceeds as B. The other
terms are as in MC.

These intuitions are formalized in the synchronous semantics of SP, which is defined by the rules in
Figure 5. Rule bP|Come models synchronous value communication: a process p wishing to send a value



L. Cruz-Filipe & F. Montesi 5

e ↓σp v

p.σp
q!e;B1 | q.σq

p?;B2→ p.σp
B1 | q.upd(σq,v)

B2
bP|Come

e ↓σp true

p.σp
if e thenP1 elseP2→ p.σp

P1
bP|Thene

e ↓σp false

p.σp
if e thenP1 elseP2→ p.σp

P2
bP|Elsee

p.σp
P | N→ p.σp

P′ | N′

p.σp
defX = Q inP | N→ p.σp

defX = Q inP′ | N′
bP|Ctxe

N �M M→M′ M′ � N′

N→ N′
bP|Structe N→ N′

N |M→ N′ |M
bP|Pare

Figure 5: Stateful Processes, synchronous semantics.

to q can synchronise with a receive-from-p action at q, and the state of q is updated accordingly. The
remaining rules are standard. This calculus once again includes a structural precongruence relation �,
defined in Figure 6, which allows unfolding of recursive definition and garbage collection (removal of
terminated processes).

defX = B2 inB1 � defX = B2 inB1[B2/X ]
bS|Unfolde

p.σp
0� 0 bS|PZeroe

N | 0� N
bS|NZeroe

defX = B in0� 0 bS|ProcEnde

Figure 6: Stateful Processes, structural precongruence.

Networks in SP do not enjoy a counterpart to Theorem 1, as send/receive actions may be unmatched
or wrongly ordered. To avoid this happening, we focus on networks that are generated automatically
from choreographies in a faithful way, by EndPoint Projection (EPP).

EPP is defined first at the process level, by means of a partial function [[C]]p. The rules defining
behaviour projection are given in Figure 7. Each choreography term is projected to the local action of

[[p.e -> q;C]]r =


q!e; [[C]]r if r = p

p?; [[C]]r if r = q

[[C]]r otherwise

[[if p.e thenC1 elseC2;C]]r =

{
if e then [[C1]]r else [[C2]]r; [[C]]r if r = p

[[C1]]r; [[C]]r if r 6= p and [[C1]]r = [[C2]]r

[[defX =C2 inC1]]r = defX = [[C2]]r in [[C1]]r [[0]]r = 0 [[X ]]r = X

Figure 7: Minimal Choreographies, behaviour projection.
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the process that we are projecting. For example, a communication term p.e -> q is projected into a send
action for the sender process p, a receive action for the receiver process q, or nothing otherwise. The
rule for projecting a conditional requires that the behaviours of processes not aware of the choice are
independent of that choice (see [8] for details).

Definition 1 (EPP from MC to SP). Given a choreography C and a state σ , the endpoint projection
[[C,σ ]] is the parallel composition of the EPPs of C wrt all processes in pn(C):

[[C,σ ]] = ∏p∈pn(C) p.σ(p) [[C]]p .

Given any two states σ and σ ′, [[C,σ ]] is defined iff [[C,σ ′]] is defined. If this is the case, we say that
C is projectable and that N is the projection of C,σ .

Theorem 2 (EPP Theorem). If C is projectable, then, for any σ :

• (Completeness) if C,σ →C′,σ ′, then [[C,σ ]]→ [[C′,σ ′]];

• (Soundness) if [[C,σ ]]→ N, then C,σ →C′,σ ′ for some C′ and σ ′ such that [[C′,σ ′]] � N.

Combining Theorem 2 with Theorem 1 we get that the projections of choreographies never deadlock.

Corollary 1 (Deadlock-freedom by construction). Let N = [[C,σ ]] for some C and σ . Then either N � 0
(termination) or there exists N′ such that N→ N′.

3 Asynchronous Choreographies

In order to define an asynchronous semantics for MC and prove their equivalence to the synchronous
semantics, we need to define precisely what we understand by “asynchronous semantics” and by “equiv-
alence”. Intuitively, communications from p to q are asynchronous if: they occur in two steps (send
and receive), the send step does not require q to be ready, and if the send step is executed, then the
corresponding receive step is also eventually executed.

We begin by defining asynchrony in MC. We define the syntactic category of contexts, which can
contain holes denoted as •, formally defined in Figure 8. Structural precongruence is defined for contexts

C[•] ::= •;C | η ;C[•] | if p.e thenC1[•]elseC2[•] | defX =C inC[•] | X | 0

Figure 8: Contexts for asynchrony.

as for choreographies. We do not consider holes to be interactions, so they cannot be swapped with any
other action.

Using contexts, we can define a function that identifies the type of the next action in context C[•]
involving a process r: a communication (comm), a conditional (cond), or dependent on how • is in-
stantiated (•). This function is partial – in particular, it is undefined if C[•] does not contain either r
or •.
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Definition 2. The next action for r in a context C[•], denoted nextr(C[•]), is defined as follows.

nextr(•;C) = • nextr(0) = nextr(X) = undefined

nextr(η ;C[•]) =

{
comm if r ∈ pn(η)

nextr(C[•]) otherwise

nextr(if p.e thenC1[•]elseC2[•]) =


cond if p= r

nextr(C1[•]) if nextr(C1[•]) = nextr(C2[•])
undefined otherwise

nextr(defX =C inC[•]) = nextr((C[•])[C/X ])

The proviso in the second case of the definition of nextr(if p.e thenC1[•]elseC2[•]) ensures that the
enabled action for r is uniquely defined. Note that recursive definitions only need to be unfolded once.

This notion is well-defined, since structural precongruence cannot swap actions involving the same
process. We denote by C[η ] the result of replacing every occurrence of • in C[•] by η .

Since we expect asynchronous communications to occur in two steps, it is reasonable to expect MC
to be extended with additional actions. By an extension of MC, we understand a choreography language
that has all the primitives of MC, an arbitrarily larger set of interaction statements η , and an adequately
extended function pn. Our definitions of contexts and next extend automatically to these languages.

We can now formalise the intuition given at the beginning of this section.

Definition 3. A semantics→a for an extension of MC is asynchronous if the following conditions hold
for any state σ . (We assume that 0;C stands for C.)

• If nextp(C[•]) = •, then C[p.e -> q],σ →a C[∗v
q],σ , where e ↓σ(p) v and ∗v

q is a statement that
depends on v and q.

• If nextq(C[•]) = •, then C[∗v
q],σ →a C[0],upd(σ ,q,v).

The second ingredient we need is a formal definition of equivalence. Our notion is similar to the stan-
dard notion of operational correspondence from [13], but stronger, since we require that any additional
term introduced by asynchronous reductions can always be consumed.

Definition 4. An asynchronous semantics →a for an extension of MC is asynchronously equivalent to
the semantics→ of MC if:

• if C,σ →C′,σ ′, then C,σ →∗a C′,σ ′;

• if C,σ →∗a C′,σ ′, then there exist C′′ and σ ′′ such that C,σ →∗ C′′,σ ′′ and C′,σ ′→∗a C′′,σ ′′.

Note that, in the last point of the above definition, the choreography C′ might include terms from the
extended choreography language.

Now we are ready to present our extension of MC and define its asynchronous semantics. We extend
the syntax of choreographies with the runtime terms in Figure 9. We call the resulting calculus aMC (for
asynchronous MC). The key idea is that, at runtime, a communication is expanded into multiple actions.

η ::= . . . | p.e -> x | v̂ -> q v̂ ::= x | v

Figure 9: Asynchronous Minimal Choreographies, runtime terms.

For example, a communication p.e -> q expands in p.e -> x – a send action from p – and x -> q – a receive
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action by q. The variable x is used to specify that the original intention by the programmer was for that
message from p to reach that receive action at q. Thus, executing p.e -> x replaces x in the corresponding
receive action with the actual value v computed from e at p, yielding v -> q. Finally, executing v -> q
updates the state of q. Process names for the new runtime terms are defined in the obvious way.

The semantics for aMC includes:

• the rules from Figure 10, replacing bC|Come, and from Figure 11, extending �;

• rules bC|Thene, bC|Elsee and bC|Structe from Figure 2;

• the rules defining � (Figure 2), with η now ranging also over the new runtime terms.

e ↓σ(p) v

p.e -> x;C,σ →a C[v/x],σ
bC|Com-Se

v -> q;C,σ →a C,upd(σ ,q,v)
bC|Com-Re

Figure 10: Asynchronous Minimal Choreographies, semantics (runtime terms).

p.e -> q� p.e -> x;x -> q bC|Com-Unfolde

Figure 11: Asynchronous Minimal Choreographies, new rule for structural precongruence.

By the Barendregt convention, the variables introduced by unfolding a value communication are globally
fresh. (We assume that their scope is global.) This allows us to use these variables to maintain the
correspondence between the value being sent and that being received.

The key to the asynchronous semantics of aMC lies in the new swaps allowed by �, due to the
definition of pn for the new terms.

Example 1. Let C ∆
= p.e -> q;p.e′ -> r. To execute C asynchronously, we must expand it:

C � p.e -> x; x -> q; p.e′ -> y; y -> r

Using �, we can swap the second term to the end:

C � p.e -> x; p.e′ -> y; y -> r; x -> q

So p can send both messages immediately, and r can receive its message before q.

The semantics of aMC also enjoys deadlock-freedom.

Theorem 3 (Deadlock-freedom). Given a choreography C, either C � 0 (termination) or, for every σ ,
there exist C′ and σ ′ such that C,σ →a C′,σ ′.

Theorem 4. The relation→a is an asynchronous semantics for aMC.

Proof (Sketch). By induction on the definition of next. For the first point, observe that the only process
name in p.e -> x is p, and therefore we can expand p.e -> q and use swapping (�) to rewrite C[p.e -> q]
as p.e -> x;C[x -> q], if nextp(C[•]) = •. The second point follows from a similar observation for
v -> q.
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Theorem 5. The semantics→a is asynchronously equivalent to the semantics of MC.

Proof (Sketch). Proving the first property is straightforward. The only non-trivial case is when the tran-
sition C,σ → C′,σ ′ uses rule bC|Come, and in this case in the asynchronous semantics we can unfold
the corresponding communication and reduce twice using bC|Com-Se and bC|Com-Re.

For the second property, we make two observations.

(1) The relation→a has the diamond property, namely: if C,σ →a C′,σ ′ and C,σ →a C′′,σ ′′, then there
exist C′′′ and σ ′′′ such that C′,σ ′ →a C′′′,σ ′′′ and C′′,σ ′′ →a C′′′,σ ′′′ (see Figure 12, left). This
is directly proven by case analysis on the structure of a choreography C with two distinct possible
transitions.

(2) If C,σ →a C′,σ ′, then there exist C′′ and σ ′′ such that C,σ →∗ C′′,σ ′′ and C′,σ ′→∗a C′′,σ ′′. This is
similar to the proof for the first property. If the transition uses rule bC|Com-Se, then the choreography
C′′ is obtained by firing rule bC|Com-Re, but it might be necessary to execute additional actions in
case the receiver is not ready for that transition yet. This is always possible due to Theorem 3.

The property now follows by induction on the length of the reduction chain C,σ →∗a C′,σ ′. When
this length is 0, the result is trivial, and when the length is 1, the result is simply (2) above. Otherwise,
we follow the reasoning displayed in Figure 12, right. By assumption, we have that C,σ →∗a C1,σ1→a

C′,σ ′ (top of the picture). By induction hypothesis, there exist C′1 and σ ′1 such that C,σ →∗ C′1,σ
′
1

and C1,σ1→∗a C′1,σ
′
1 (left triangle). By iterated application of (1) above, there exist C′′1 and σ ′′1 such that

C′1,σ
′
1→?

a C′′1 ,σ
′′
1 and C′,σ ′→∗a C′′1 ,σ

′′
1 (right square). The reduction C′1,σ

′
1→?

a C′′1 ,σ
′′
1 is optional because

it may be the case that the action in the reduction C1,σ1→a C′,σ ′ is already included in the reduction
chain C1,σ1→∗a C′1,σ

′
1. In this case, the thesis follows, taking C′′=C′1 and σ ′′= σ ′1. Otherwise, we apply

(2) above (lower right triangle) to obtain C′′ and σ ′′ such that C′1,σ
′
1→∗ C′′,σ ′′ and C′′1 ,σ

′′
1 →∗a C′′,σ ′′,

and the thesis follows.

C,σ a
//

a ��

C′,σ ′

a ��

C,σ
∗
a
//

∗��

C1,σ1 a
//

∗a ��

C′,σ ′

∗a ��
C′′,σ ′′ a

// C′′′,σ ′′′ C′1,σ
′
1

?
a
//

∗��

C′′1 ,σ
′′
1

∗a ��
C′′,σ ′′

Figure 12: The diamond property for→a (left) and the reasoning in the proof of the second property in
Theorem 5 (right).

Remark 1. Reasoning on asynchronous behaviour is known to be hard for programmers. That is why our
terms for modelling asynchronous communications are runtime terms: they are not intended to be part
of the source language used by developers to program. In general, programmers do not need to be aware
of the development in this section, thanks to Theorem 5. Instead, they can just write a choreography
thinking in terms of synchronous communications as usual (syntax and semantics), and then just assume
that adopting an asynchronous communications will not lead to any bad behaviour. In the next section,
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we show that this abstraction carries over to asynchronous process code generated by EPP. Since EPP
is automatic, developers do not need to worry about asynchrony in process code either.

4 Asynchronous Processes

In the previous section, we characterized asynchrony at an abstract level, and showed that our choreogra-
phy model satisfies the properties we identified. In this section, we take a more down-to-earth approach:
we define directly an asynchronous variant for SP, extend EPP to the runtime terms introduced earlier,
and show that the asynchronous semantics for both calculi again satisfy the EPP Theorem (Theorem 2).

4.1 Asynchronous Stateful Processes

Syntactically, we need to make a slight change to our processes: each process is now also equipped with
a queue of incoming messages. We name this version of the calculus aSP. So actors in the asynchronous
model have the form p.

ρ

σ B, where ρ is a queue of incoming messages. We sometimes omit ρ when it is
empty; in particular, this allows us to view SP networks as special cases of aSP networks. A message is
a pair 〈q,m〉, where q is the sender process and m is a value, label, or process identifier.

The semantics of aSP consists of rules bP|Thene, bP|Elsee, bP|Pare, bP|Ctxe and bP|Structe from SP
(Figure 5) together with the new rules given in Figure 13. Structural precongruence for aSP is defined
exactly as for SP. We write ρ · 〈q,m〉 to denote the queue obtained by appending message 〈q,m〉 to ρ ,

e ↓σp v ρ ′q = ρq · 〈p,v〉

p.
ρp
σp
q!e;Bp | q.

ρq
σq

Bq→ p.
ρp
σp

Bp | q.
ρ ′q
σq

Bq

bP|Com-Se
ρq � 〈p,v〉 ·ρ ′q

q.
ρq
σq
p?;B→ q.

ρ ′q
upd(σq,v)

B
bP|Com-Re

Figure 13: Asynchronous Stateful Processes, semantics (new rules).

and 〈q,m〉 ·ρ for the queue with 〈q,m〉 at the head and ρ as tail. We simulate having one separate FIFO
queue for each other process by allowing incoming messages from different senders to be exchanged,
which we represent using the congruence ρ � ρ ′ defined by the rule 〈p,m〉 · 〈q,m′〉 � 〈q,m′〉 · 〈p,m〉 if
p 6= q.

All behaviours of SP are valid also in aSP.

Theorem 6. Let N be an SP network. If N→ N′ (in SP), then N[]→∗ N′[] (in aSP), where N[] denotes the
asynchronous network obtained by adding an empty queue to each process.

Proof. Straightforward by case analysis: the only reduction rule in SP that is not present in aSP is that for
communications, which can be simulated by applying rules bP|Com-Se and bP|Com-Re in sequence.

The converse is not true, so the relation between SP and aSP is not so strong as that between MC and
aMC (stated in Theorem 5). This is because of deadlocks: in SP, a communication action can only take
place when the sender and receiver are ready to synchronize; in aSP, a process can send a message to
another process, even though the intended recipient is not yet able to receive it. For example, the network
p.σp

q!1 | q.σq
0 is deadlocked in SP, but its counterpart in aSP (obtained by adding empty queues at each

process) reduces to q.
〈p,1〉
σq

0. (This network is not equivalent to 0, since there is a non-empty queue.)
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More interestingly, the network

p.σp
q!e1; r? | q.σq

r!e2;p? | r .σr
p!e3;q? (1)

is deadlocked in SP, but reduces to 0 in aSP (all queues are eventually emptied). It is possible to extend
MC with communication primitives that capture this type of behaviour, as discussed in [6]; we briefly
discuss this point in Section 6.

4.2 Asynchronous EndPoint Projection

Defining an EPP from aMC to aSP requires extending the previous definition with clauses for the
new runtime terms, which populate the local queues in the projections. Intuitively, when compiling,
e.g., v -> q, we add a message containing v at the top of q’s queue.

There are two problems with this approach. The first is a syntactic issue: each message in the queues
of aSP processes must include the name of its sender, but that information is not present in the runtime
term v -> q. This is a minor issue that can be dealt with by annotating send and receive actions with
the name of the process sending them – writing, e.g., 〈p,x〉 -> q and 〈p,v〉 -> q. Changing the syntax of
runtime terms and rule bC|Com-Unfolde in this way is trivial, and we assume this annotated terms in the
remainder of this session.2

The second problem arises because we can write choreographies that use runtime terms in a “wrong”
way, for which Theorem 2 no longer holds.

Example 2. Consider the choreography C = p.1 -> q;〈p,2〉 -> q. If we naively project it as described
informally, we obtain p.

[]
σ(p) q!1 | q.〈p,2〉

σ(q) p?;p? , where [] is the empty queue, and q will receive 2 before
it receives 1.

To avoid this undesired behaviour, we restrict ourselves to well-formed choreographies: those that
can arise from executing a choreography that does not contain runtime terms (i.e., a program). Since
runtime terms are supposed to be hidden from the programmer anyway, this restriction does not make us
lose any generality in practice.

Definition 5 (Well-formedness). A choreography C in aMC containing runtime terms is well-formed if
η1; . . . ;ηn;CMC �− C, where:

• �− is structural precongruence without rule bC|Unfolde;

• each ηi is an instantiated receive action of the form 〈pi,vi〉 -> qi;

• CMC is an MC choreography (i.e., a choreography without runtime terms).

Well-formedness is decidable, since the set of choreographies equivalent up to�− is decidable. More
efficiently, one can check that C is well-formed by swapping all runtime actions to the beginning and
folding all paired send/receive terms. Furthermore, choreography execution preserves well-formedness;
in particular, the problematic choreography from Example 2 is not well-formed. More generally, we can
use well-formedness in the remainder of this section to reason about EPP.

2We could have defined the runtime terms for aMC annotated from the start. However, we felt that it would be unnatural
to include them in a choreographic presentation, as they are only needed for projecting runtime terms – a feature that is a
technicality required for the proof of Theorem 7 below, since the programmer should not write runtime terms anyway.
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Definition 6 (Asynchronous EPP from aMC to aSP). Let C be a well-formed aMC choreography and σ

be a state. Without loss of generality, we assume that C does not contain p.e -> x actions.3 The EPP of
C and σ is defined as

[[C,σ ]] = ∏p∈pn(C) p.
(|C|)p
σ(p) [[C]]p

where [[C]]p is defined as in Figure 7 with the extra rule in Figure 14 and (|C|)p is defined by the rules in
Figure 15.

[[〈p,v〉 -> q;C]]r =

{
p?; [[C]]r if r = q

[[C]]r otherwise

Figure 14: Minimal Choreographies, asynchronous behaviour projection (new rule).

(|〈p,v〉 -> q;C|)r =

{
〈p,v〉 · (|C|)r if r = q

(|C|)r otherwise

(|if p.e thenC1 elseC2;C|)r = (|C1|)r · (|C|)r
(|η ;C|)r = (|C|)r

Figure 15: Minimal Choreographies, projection of messages in transit.

In the last case of the definition of (|C|)p (bottom-right), η ranges over all cases that are not covered
previously. The rule for the conditional may seem a bit surprising: projectability of choreographies
implies that unmatched receive actions at a process must occur in the same order in both branches.
We could alternatively define projection only for well-formed choreographies in the “canonical form”
implicit in the definition of well-formedness.

With this definition, we can state an asynchronous variant of Theorem 2.

Theorem 7 (Asynchronous EPP Theorem). If C is a projectable and well-formed MC choreography,
then, for all σ :

• (Completeness) if C,σ →C′,σ ′, then [[C,σ ]]→ [[C′,σ ′]];

• (Soundness) if [[C,σ ]]→ N, then C,σ →C′,σ ′ for some C′ and σ ′ such that [[C′,σ ′]] � N.

As a consequence, Corollary 1 applies also to the asynchronous case: the processes projected from
MC into aSP are deadlock-free, even when they contain runtime terms.

As usual, the hypotheses in Theorem 7 are not necessary, and this result also holds for some chore-
ographies that are not well-formed. For example, the network in (1) can be written as the projection
of a choreography with runtime terms, but this choreography is not structurally precongruent to any
choreography obtained from execution of an MC choreography.

5 Related Work

The first work introducing an asynchronous semantics to choreographies is [4], as described in the in-
troduction. The same approach was later adapted to compositional choreographies [19] and multiparty

3By well-formedness, we can always rewrite C to an equivalent choreography satisfying this condition; such a choreography
is also guaranteed not to contain x -> q actions.
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session types [15]. The models presented in these works all suffer from the shortcoming discussed in the
introduction: choreographies can reduce to states that would normally not be reachable in the real world.

We can now give a formal example of the consequences of this discrepancy.
Example 3. Let C be the choreography from the introduction: C ∆

= p.1 -> q;p.2 -> r. If we adopted the
asynchronous semantics from [4], then the reduction

C,σ → p.1 -> q,upd(σ , r,2)

would be possible for any σ . This shows that Theorem 7 (the completeness direction) does not hold in
this semantics, since [[C,σ ]] cannot reduce to any N such that [[p.1 -> q,upd(σ , r,2)]] � N (we have to
consume the first output by p first).

Therefore, if we want to formalise the correspondence between a choreography and its EPP in this
setting, we need to consider multiple steps. In this example, specifically, we can observe that

p.1 -> q,upd(σ , r,2)→ 0,upd(upd(σ , r,2),q,1)

and that [[C,σ ]]→∗ [[0,upd(upd(σ , r,2),q,1)]].
In general, the EPP Theorem with this kind of asynchronous semantics is weaker and more compli-

cated. We report it here by adapting the formulation from [18, Chapter 2] (the full version of [4]) to our
notation:
Theorem 8. If C is a projectable choreography, then, for all σ :
• (Completeness) if C,σ →C′,σ ′, then C′,σ ′→∗ C′′,σ ′′ for some C′′,σ ′′ and [[C,σ ]]→∗ [[C′′,σ ′′]];
• (Soundness) if [[C,σ ]]→∗ N, then N →∗ N′ for some N′, and C,σ →∗ C′,σ ′ for some σ ′ and C′

such that [[C′,σ ′]] � N′.
Compared to our Theorem 7 above, Theorem 8 is missing the step-by-step correspondence between

choreographies and their projections, and therefore does not say much about the intermediate steps.
In [11], multiparty session types are equipped with runtime terms that represent messages in transit

in asynchronous communications, similarly to our approach. Differently from our model, the semantics
in [11] uses a labelled transition system (instead of out-of-order execution) to identify when a com-
munication can be executed asynchronously. The difference between these two systems seems to be
mostly a matter of presentation, but their expressive powers are difficult to compare formally because a
counterpart to Theorem 5 is not provided for the model of [11].

A more recent development that is nearer to ours is the model of Applied Choreographies [12],
where out-of-order execution (modelled as structural equivalences) is used to swap independent partial
choreographic actions, which contain terms that are similar to our runtime asynchronous terms. However,
the asynchronous terms in Applied Choreographies are not enough to ensure that the semantics is sound;
therefore, these choreographies also need to include queues to store messages in transit. This makes
their development substantially more complicated than the one we propose. Furthermore, the work
in [12] focuses on implementation models, and does not provide a formal definition of asynchrony for
choreographies as in this paper. There is also no correspondence result relating Applied Choreographies
to a standard synchronous choreography semantics, although we conjecture that it is possible to map a
fragment of that language into an asynchronous extension of MC in the sense of our definition.

Our approach relies on out-of-order execution for choreographic interactions, which was first in-
troduced in [4] to capture parallel execution. We extended it to support the swapping of interactions
supported by asynchronous message passing. Out-of-order execution does not introduce any burden on
the programmer, since only non-interfering interactions can be swapped and all swappings are thus safe
by design (more precisely, swaps correspond to the parallel semantics of typical process calculi [18]);
instead, they just model different safe ways of executing the same choreography.
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6 Conclusions and Future Work

We presented a definition of asynchrony in the minimal choreography language MC and showed that we
can define an asynchronous semantics for an extension of MC (aMC) that respects this definition. This
construction was deliberately made in a modular way (it changes only the rules for communications,
leaving the rest untouched), so that it can be easily applied to more expressive languages. We discuss a
few relevant cases.

The first case regards label selection, usually written p -> q[`], which is a widespread primitive in
choreographies [3]. In a selection, the sender informs the receiver of a local choice, and the receiver can
use this information to change its behaviour. Selections are mostly relevant for extending the domain
of EPP, which is orthogonal to this work. Our approach applies directly also to selections, by adding
asynchronous runtime terms that are similar to the ones for value communications but carry selection
labels instead of values. Name mobility [4, 9] can also be treated in a similar way.

Instead of out-of-order execution, some choreography models also include explicit parallel compo-
sition, e.g., C |C′ [3, 21]. Most behaviours of C |C′ are captured by out-of-order execution, for example
p.e -> q | r.e′ -> s is equivalent to p.e -> q; r.e′ -> s in MC (due to rule bC|Eta-Etae in Figure 2) – see [4]
for a deeper discussion. Generalising our construction to supporting also an explicit parallel operator is
straightforward (structural precongruence is extended homomorphically without surprises).

A more interesting extension is multicom [6], a primitive that considerably extends the expressivity
of choreographies by allowing for general criss-cross communications. A prime example is the asyn-
chronous exchange {p.e -> q,q.e′ -> p}, which allows two processes to exchange message without wait-
ing for each other (this is the building block, e.g., of the alternating 2-bit protocol given in [6]). Multi-
coms crucially depend on asynchrony, making them an interesting case study in our context. Our devel-
opment applies immediately to multicoms, since we can just apply the expansion rule bC|Com-Unfolde
to all communications in a multicom simultaneously.

Likewise, we conjecture that our development is applicable to the models in [10, 17].
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