
Fixpoint Semantics for Active Integrity Constraints

Bart Bogaertsa,∗, Luı́s Cruz-Filipeb

aKU Leuven, Department of Computer Science
Celestijnenlaan 200A, Leuven, Belgium

bUniversity of Southern Denmark, Department of Mathematics and Computer Science
Campusvej 55, Odense, Denmark

Abstract

Active integrity constraints (AICs) constitute a formalism to associate with a database not just the constraints it
should adhere to, but also how to fix the database in case one or more of these constraints are violated. The intuitions
regarding which repairs are “good” given such a description are closely related to intuitions that live in various areas
of non-monotonic reasoning, such as logic programming and autoepistemic logic.

In this paper, we apply approximation fixpoint theory, an abstract, algebraic framework designed to unify seman-
tics of non-monotonic logics, to the field of AICs. This results in a new family of semantics for AICs. We study
properties of our new semantics and relationships to existing semantics. In particular, we argue that two of the newly
defined semantics stand out. Grounded repairs have a simple definition that is purely based on semantic principles
that semantics for AICs should adhere to. And, as we show, they coincide with the intended interpretation of AICs on
many examples. The second semantics of interest is the AFT-well-founded semantics: it is a computationally cheap
semantics that provides upper- and lower bounds for many other classes of repairs.

Keywords: active integrity constraints; approximation fixpoint theory

1. Introduction

One of the key components of modern-day databases are integrity constraints: logical formulas that specify se-
mantic relationships between the data being modeled that have to be satisfied at all times. When the database is
changed (typically due to updating), it is necessary to check if its integrity constraints still hold; in the negative case,
the database must be repaired.

The problem of database repair has been an important topic of research for more than thirty years (Abiteboul,
1988). There are two major problems when deciding how to repair an inconsistent database: finding possible repairs
and choosing which one to apply. Indeed, there are typically several ways to fix an inconsistent database, and several
criteria to choose the “best” one have been proposed over the years. Among the most widely accepted criteria are
minimality of change (Winslett, 1990; Eiter and Gottlob, 1992) – change as little as possible – and the common-sense
law of inertia (discussed in, e.g., Przymusinski and Turner, 1997) – do not change anything unless there is a reason
for the change.

A typical implementation of integrity constraints in database systems is by means of event-condition-action (ECA)
rules (Teniente and Olivé, 1995; Widom and Ceri, 1996), which specify update actions to be performed when a
particular event (a trigger) occurs and specific conditions hold. ECA rules are widely used in practice, as they are
simple to implement and their individual semantics is easy to understand. However, the lack of declarative semantics
for ECA rules makes their interaction complex to analyze and their joint behavior hard to understand.

The formalism of active integrity constraints (AICs) (Flesca et al., 2004) was inspired by a similar idea. AICs
express database dependencies through logic programming-style rules that include update actions in their heads. They
come with a set of declarative semantics that identifies several progressively more restricted classes of repairs, which

∗Corresponding author; tel. +32 16 37 39 82.

Preprint submitted to Elsevier November 20, 2017

can be used as criteria to select a preferred repair (Caroprese and Truszczyński, 2011). These repairs can be computed
directly by means of tree algorithms (Cruz-Filipe et al., 2013), which have been implemented as a prototype (Cruz-
Filipe et al., 2015).

Example 1.1. We motivate the use of AICs in practice by means of a simple example. Consider a company’s database,
including tables employee and dept (relating employees to the department where they work). In particular, each
employee is assigned to a unique department; if an employee is listed as working in two different departments, then
the database is inconsistent, and this inconsistency must be fixed by removing one of those entries.

We can write this requirement as the following AIC.

∀x, y, z : employee(x),dept(x, y),dept(x, z), y 6= z ⊃ −dept(x, y)

The intended meaning of this rule is: if all the literals in the lefthandside (body) of the rule are true in some state
of the database, for particular values of x, y and z, then the database is inconsistent, and this inconsistency can be
solved by performing the action on the right.

Suppose that the database is

DB = {employee(john),dept(john,finance),dept(john,hr)} .

This database is inconsistent, and applying our AIC with x = john, y = finance and z = hr gives us a possible fix
consisting of the action “remove dept(john,finance)”. Observe, however, that the instantiation x = john, y = hr
and z = finance detects the same inconsistency, but proposes instead the fix “remove dept(john,hr)”: in general,
there can be several different ways to repair inconsistencies.

AICs may also interact with each other. Suppose that we add the constraint

∀x, y, z : supervisor(x, y),dept(x, z),¬dept(y, z) ⊃ +dept(y, z) (r1)

stating that employees can only supervise people from their own department, and that whenever this constraint is
violated, the department of the supervisee needs to be updated (i.e., the supervisor table and the department of the
supervisor are deemed correct. If the database is now

DB = {employee(john), employee(ann),dept(john,finance),dept(ann,hr), supervisor(ann, john)}

then this AIC detects an inconsistency, and suggests that it be fixed by adding the entry dept(john,hr). The database
is still inconsistent, though, since there are now two entries for John in the dept table; restoring inconsistency would
also require removing the entry dept(john,finance).

An alternative repair of the integrity constraint that the supervisee and supervisor should belong to the same
department would be to change the department information associated with ann. By using active integrity constraints,
we discard this solution: rule (r1) only allows to insert a new department for the supervisee. If we additionally also
want to allow changing ann’s department, we need an extra constraint. N

It is striking that many intuitions about what “good” repairs are, such as minimality of change, are similar to
intuitions that surfaced in other domains of non-monotonic reasoning, such as logic programming (van Emden and
Kowalski, 1976) and default logic (Reiter, 1980). Still, it has been hard to find satisfying semantics for AICs. As
shown by Cruz-Filipe et al. (2013), the semantics of so-called founded repairs (Caroprese et al., 2006) unexpectedly
fails to respect the common-sense law of inertia, while the more restricted semantics of justified repairs (Caroprese
and Truszczyński, 2011) forbids natural repairs in some cases. That work proposed the operational semantics of well-
founded repairs, which however is not modular (Cruz-Filipe, 2014) and is therefore severely restricted in its practical
applicability.

In this work, we begin by defining a new semantics for AICs that avoids these problems: grounded repairs.
Grounded repairs are natural counterparts to existing semantics in various non-monotonic reasoning domains such as
logic programming; we discuss how they relate to other semantics for AICs. We also argue that grounded repairs
match our intuitions regarding AICs on a broad set of examples.

We then give a more abstract characterization of the different semantics for AICs by associating with each set of
AICs η a semantic operator Tη . This operator immediately induces several semantics:

2

(i) weak repairs are fixpoints of Tη;

(ii) repairs are minimal fixpoints of Tη;

(iii) grounded repairs are grounded fixpoints (Bogaerts et al., 2015a) of Tη .

The first two semantics are pre-existing semantics for AICs that we recover in an operator-based fashion.
Next, we define a three-valued variant of Tη . In the terminology of approximation fixpoint theory (AFT) (De-

necker et al., 2012) our three-valued operator is an approximator of the original semantic operator. Given such an
approximator Tη , AFT induces a few more semantics:

(iv) the Kripke-Kleene repair is the Kripke-Kleene fixpoint of Tη;

(v) the AFT-well-founded repair is the well-founded fixpoint of Tη;

(vi) (partial) stable repairs are (partial) stable fixpoints of Tη;

(vii) partial grounded repairs are partial grounded fixpoints of Tη .

We again study properties of these new semantics and study how they compare to existing semantics. Furthermore,
we argue that, from a practical point of view, the AFT-style well-founded semantics is very valuable. Indeed, we show
that the AFT-well-founded repair can be computed in polynomial time, and that, on a broad set of practical examples,
it corresponds to the intuitions underlying database repairs, providing natural upper and lower bounds on the set
of acceptable repairs (formally: the AFT-style well-founded model approximates all justified, stable and grounded
repairs).

All our semantics are defined within the framework of approximation fixpoint theory, a general algebraic frame-
work for studying logics with a fixpoint semantics. This framework was initially developed by Denecker, Marek
and Truszczyński, henceforth referred to as DMT (2000), after identifying analogies in the semantics of logic pro-
gramming (van Emden and Kowalski, 1976), autoepistemic logic (AEL) (Moore, 1985) and default logic, hereafter
abbreviated to DL (Reiter, 1980). The theory defines different types of fixpoints for what are called approximat-
ing operators, or approximators. In the context of logic programming, DMT (2000) showed that Fitting’s (three- or
four-valued) immediate consequence operator is an approximator of the usual (two-valued) immediate consequence
operator, and that the major semantics of logic programs coincide with the (equally named) different types of fix-
points of that approximator. They then identified approximators for both default and autoepistemic logic, showing
that AFT induces all main semantics in these fields, as well as some new ones (Denecker et al., 2003), thus unifying
DL and AEL in a deep sense. More recently, Strass (2013) showed that AFT can also be used to characterize the
major semantics of Dung’s argumentation frameworks (Dung, 1995) and abstract dialectical frameworks (Brewka and
Woltran, 2010). Other recent applications of AFT include: defining extensions of logic programming (Antic et al.,
2013), defining new logics (Bogaerts et al., 2014), integrating different formalisms (Bi et al., 2014), studying com-
plexity (Strass and Wallner, 2014), and studying modularity and predicate introduction in a uniform way (Vennekens
et al., 2006, 2007a,b).

As such, the contribution of this work goes beyond the definition of new semantics for AICs. By integrating active
integrity constraints in AFT, we provide solid foundations for applying a rich algebraic theory to AICs. For instance,
we can now directly apply existing results from AFT, such as modularity results and predicate introduction results to
AICs. It remains to be researched how these related for instance to existing modularity results for AICs (Cruz-Filipe,
2014, 2016). Furthermore, our work paves the way to applying AFT to revision programming, following the results
from Caroprese and Truszczyński (2011), and to AICs outside the database world, as generalized in Cruz-Filipe et al.
(2016).

The rest of this paper is structured as follows. In Section 2, we provide preliminaries related to active integrity
constraints. In Section 3 we discuss the semantics of grounded repairs. While our definitions are motivated from
approximation fixpoint theory, their semantics can also be given without this machinery, hence we start with a direct
definition. Next, in Section 4, we give background on approximation fixpoint theory. In Section 5, we define a
semantic operator for AICs and show that its grounded fixpoints indeed correspond to grounded repairs, as defined
in Section 3. Next, we define an approximator of our operator in Section 6 and use it to derive more AFT-style

3

semantics for AICs; we study how these semantics relate to existing semantics. Afterwards, in Section 7, we discuss
the relationship between our newly defined semantics and the equally-named semantics for logic programming. In
Section 8, we study complexity of various tasks related to our newly defined semantics. We conclude in Section 9.

Publication history. The semantic operator for grounded AICs and the resulting semantics of grounded repairs were
originally proposed by Cruz-Filipe (2016). The approximator for this operator and its properties were introduced by
Bogaerts and Cruz-Filipe (2017). Our current work combines results from those conference papers and extends it with
proofs, examples, and a detailed analysis of the connection between the approximation semantics for AICs and logic
programming.

2. Preliminaries: Active Integrity Constraints

In this section we summarize previous work on active integrity constraints (AICs), including results developed by
Flesca et al. (2004); Caroprese et al. (2006); Caroprese and Truszczyński (2011) and Cruz-Filipe et al. (2013).

We assume a fixed set At of atoms. An interpretation or database is a subset of At . In the current paper,
following, e.g., Cruz-Filipe et al. (2013), we assume, At to be a finite set. This restriction is not essential for defining
our semantics, or to any of the theorems we prove about them, with the exception of complexity results and comparison
with existing semantics (that have only been defined in the finite case). A literal is an atom a or its negation ¬a. We
say that ¬a is the dual literal of a and vice versa, and denote the dual of a literal l by lD. Propositional formulas are
defined as usual: atoms are formulas, the negation of a formula is a formula, and the conjunction of formulas is a
formula. The satisfaction relation between databases DB and formulas is defined as usual:

• DB |= a if a ∈ DB ,

• DB |= ¬ϕ if DB 6|= ϕ,

• DB |= ϕ ∧ ψ if DB |= ϕ and DB |= ψ

for all atoms a and all formulas ϕ and ψ.
An update action α has the form +a or −a with a ∈ At . We call +a and −a dual actions and use αD to denote

the dual action of α. Intuitively, update actions represent changes to the database: +a adds a, while −a removes a.
Formally, +a transforms DB into DB ∪ {a}, and −a transforms DB into DB \ {a}. A set of update actions U is
consistent if it does not contain both an action and its dual. A consistent set of update actions U acts on a database
DB by executing all its actions simultaneously; we denote the result of this operation by U(DB). If α is an update
action, we simply write α(DB) for the result of applying α to DB , i.e., for {α}(DB).

Literals and update actions are related by mappings lit and ua, where lit(+a) = a, lit(−a) = ¬a and ua is the
inverse of lit. These mappings naturally extend to sets of literals/actions.

Definition 2.1. An active integrity constraint (AIC) is a rule r of the form

l1 ∧ · · · ∧ ln ⊃ α1 | · · · | αk (1)

such that lit(αDi) ∈ {l1, . . . , ln} for each i. We call l1 ∧ · · · ∧ ln the body of r, denoted body(r), and α1 | · · · | αk the
head of r, denoted head(r).

The informal reading of the above rule is: “If each of the li holds in DB , then DB is inconsistent. It is allowed to
repair this inconsistency by executing one or more of the αi.” The body of an AIC represents a constraint a database
should adhere to and its head represents a set of atoms that are allowed to be changed in order to fix the constraint,
in case it is violated. Intuitively, atoms should only be changed if there is some rule that allows it. Furthermore, the
only actions that are able to repair the inconsistency detected by the body of an AIC are those corresponding to the
duals of its literals (Caroprese et al., 2006), hence we restrict the actions allowed in the head to these. Contrary to
the seminal work on AICs (Flesca et al., 2004), we only consider propositional AICs, i.e., we do not allow first-order
variables (note that we did use them in Example 1.1). However, the restrictions in that work (more precisely, range
restrictedness) ensure that we can always reduce to the propositional case by means of grounding.

4

An AIC is called normal if k = 1. The normalization of an AIC of the form (1) is the set of AICs

{l1 ∧ · · · ∧ ln ⊃ αi | 1 ≤ i ≤ k}.

It follows from the informal explanation above that we expect normalization to preserve semantics. Indeed, this is
the case for most semantics of AICs – the notorious exception being the semantics of justified repairs (Caroprese and
Truszczyński, 2011), which also poses several other problems (Cruz-Filipe et al., 2013). In the current paper, we
assume that, unless explicitly mentioned otherwise, all AICs are normal. Extensions of the semantics we define for
non-normal AICs can be obtained through normalization, if needed.

Definition 2.2. A set of update actions U is a weak repair for DB and a set η of AICs (shortly, for 〈DB, η〉) if:

• every action in U changes DB , and

• U(DB) 6|= body(r) for each r ∈ η.

A ⊆-minimal weak repair is called a repair.

(Weak) repairs do not take the head of AICs into account, and thus allow arbitrary changes to the database.

Example 2.3. Consider the restriction that “if a and b both hold, then c and d should also hold”. In propositional
logic, such a restriction can be expressed by the following formula:

(a ∧ b)⇒ (c ∧ d),

or, equivalently by the two formulas

¬(a ∧ b ∧ ¬c)
¬(a ∧ b ∧ ¬d).

Now, the AIC formalism provides, besides the ability to express these constraints, also control over what should
happen when one of them is violated. Assuming that in such a case, we only wish to modify a or b, the corresponding
AICs are:

a ∧ b ∧ ¬c ⊃ −a | −b
a ∧ b ∧ ¬d ⊃ −a | −b

where the first one expresses that if a and b hold, but c does not (i.e., if the constraint is violated), we should remove
one of the two literals a and b and the second constraint is similar for d. Despite the inclusion of explicit repair actions
in the heads of these rules, the notions of weak repair and repair do not take them into account. Suppose a given
database is DB = {a, b}. In this case, {−a}, {−b} and {+c,+d} are repairs; furthermore, sets such as {−a,−b} or
{−b,+c} are weak repairs: in all cases, all actions change DB , and the result always negates at least one literal in the
body of each of the rules.

Sets such as {−a,−c} and {+a,+c,+d} also solve the inconsistency, but they include actions that do not change
the database, and therefore are not considered weak repairs. Sets such as {+a,−a} are inconsistent, as it is not clear
whether they state that the update of DB should include a or not.

Applying normalization yields the following set of AICs.

a ∧ b ∧ ¬c ⊃ −a
a ∧ b ∧ ¬d ⊃ −a
a ∧ b ∧ ¬c ⊃ −b
a ∧ b ∧ ¬d ⊃ −b

It is immediate to check that everything discussed above with respect to the original set of AICs also applies to its
normalized counterpart, i.e., intuitively, these constraints represent the same knowledge and the sets of repairs and
weak repairs remain unchanged. N

5

We now review several other semantics for AICs that have been defined with the intention to allow only changes
explicitly allowed by one of the AICs: founded (weak) repairs (Caroprese et al., 2006), justified (weak) repairs
(Caroprese and Truszczyński, 2011), and well-founded (weak) repairs (Cruz-Filipe et al., 2013).

Definition 2.4 (Caroprese et al., 2006). A set of update actions U is founded with respect to 〈DB, η〉 if, for each
α ∈ U , there is a rule r ∈ η with α ∈ head(r) and such that U ′(DB) |= body(r), where U ′ = U \ {α}. A founded
(weak) repair is a (weak) repair that is founded.

The intuition behind this definition is that for each element in a “good” repair there should be a reason such that:
if the element is removed, some constraint is violated and the removed element is an allowed fix.

Example 2.5. Consider again the database DB = {a, b} together with the set η of normalized AICs from the previous
example.

a ∧ b ∧ ¬c ⊃ −a (r2)
a ∧ b ∧ ¬d ⊃ −a (r3)
a ∧ b ∧ ¬c ⊃ −b (r4)
a ∧ b ∧ ¬d ⊃ −b (r5)

The set {−a} is founded with respect to 〈DB, η〉: if its only action is removed, then rule r2 is applicable, and −a
occurs in head(r2). Likewise, the set {−b} is also a founded repair for 〈DB, η〉.

On the other hand U = {+c,+d} is not founded. If we remove e.g. +c from U , obtaining U ′ = {+d}, then
U ′(DB) = {a, b, d}, and:

• U ′(DB) |= body(r2), but +c 6∈ head(r2), and likewise for r4;

• U ′(DB) 6|= body(r3) and U ′(DB) 6|= body(r5),

and thus there is no support for +c in U . In this case, there is also no support for +d. N

Caroprese and Truszczyński (2011) discovered that there can be founded repairs exhibiting circularity of support.
The following example is due to Cruz-Filipe et al. (2013).

Example 2.6. Consider the following set of AICs η, expressing that a and b are equivalent (and if this is not the case,
then they should both become false) and that c should be true whenever a or b is true.

a ∧ ¬b ⊃ −a (r6)
¬a ∧ b ⊃ −b (r7)
a ∧ ¬c ⊃ +c (r8)
b ∧ ¬c ⊃ +c (r9)

Suppose that the database is DB = {a, b}. There are two repairs for 〈DB, η〉: U1 = {−a,−b} and U2 = {+c}.
Intuitively, the rules suggest that U2 should be the preferred repair, since it includes the action suggested by the only
AIC that is not satisfied, and indeed U2 is founded (removing its only element yields ∅, and as we observed both r8
and r9 provide support for +c given the state of DB).

However, U1 is also a founded repair. If we remove −a from U1, we obtain U ′1 = {−b}, and U ′1(DB) = {a},
where r6 is applicable and −a ∈ head(r6). Dually, if we remove −b we obtain U ′′1 = {−a}, and U ′′1 (DB) = {b};
now r7 is applicable, and −b ∈ head(r7). Thus both actions in U1 are founded, hence this is a founded repair. N

The problem in this example is that the property of being a founded repair only excludes individual actions that
are not supported by the remaining ones, rather than sets of actions with this characteristic. In order to avoid this
unwanted characteristic, Caroprese and Truszczyński (2011) proposed considering justified repairs, which we now
define.1

1Caroprese and Truszczyński (2011) never formally define circularity of support, or discuss why justified repairs avoid it. We give an informal
argument to sustain this claim in the discussion after Proposition 3.7 below.

6

Definition 2.7 (Caroprese and Truszczyński, 2011). Let U be a set of update actions and 〈DB, η〉 a database.

• The no-effect actions with respect to DB and U , neffDB (U), are the actions that change neither DB , nor
U(DB).

neffDB (U) = {+a | a ∈ DB ∩ U(DB)} ∪ {−a | a 6∈ DB ∪ U(DB)}
= {α | α(DB) = DB ∧ α(U(DB)) = U(DB)} .

• The set of non-updatable literals of an AIC r, nup(r), contains all body literals of r that do not occur in the
head of r.

nup(r) = body(r) \ lit
(
head(r)D

)
.

• U is closed under η if for each r ∈ η, ua(nup(r)) ⊆ U implies head(r) ∩ U 6= ∅.

• U is a justified action set if it is a minimal superset of neffDB (U) closed under η.

• U is a justified (weak) repair if it is a (weak) repair and U ∪ neffDB (U) is a justified action set.

Although the notion of closed set of actions does not take the database into account, its role in the definition of
justified weak repairs is as part of the definition of justified action set – where all actions that do not change the
database are included. In the normalized case that we considered, all justified weak repairs are minimal with respect
to set inclusion, i.e., they are justified repairs.

Example 2.8. In the setting of Example 2.6, the sets of non-updateable literals are as follows.

nup(r6) = {¬b}
nup(r7) = {¬a}
nup(r8) = {a}
nup(r9) = {b}

The founded repair U1 is not justified. First, observe that neff(U1) = {−c} (assuming that a, b and c are the only
atoms in the language). Consider U ′ = ∅ ⊆ U1; then U ′ ∪ neff(U1) = {−c}, and ua(nup(r)) 6⊆ (U ′ ∪ neff(U1)) for
every r ∈ η; therefore U ′ ∪ neff(U1) is a subset of U1 ∪ neff(U1) containing neff(U1) that is (trivially) closed under η.

In contrast, the repair U2 is justified. In this case, we have neff(U2) = {+a,+b}; the only proper subset of
U2 is again U ′ = ∅. Then both r8 and r9 satisfy ua(nup(r)) ⊆ (U ′ ∪ neff(U2)) = {+a,+b}, and in both cases
head(r) = {+c}. Since head(r) ∩ {+a,+b} = ∅, we conclude that U ′ ∪ neff(U2) is not closed under η. N

The relation between founded and justified weak repairs was established by Caroprese and Truszczyński (2011).

Lemma 2.9. Let DB be a database, η be a set of AICs over DB and U be a set of update actions over DB . If U is a
justified weak repair for 〈DB, η〉, then U is a founded weak repair for 〈DB, η〉.

One of the main issues with the notion of justified repair is that it is too restrictive. Interestingly, this can already
be seen by an example originally given by Caroprese and Truszczyński (2011), which we reproduce below.

Example 2.10. Consider the following set of AICs η.

a ∧ b ⊃ −a (r10)
a ∧ ¬b ⊃ −a (r11)
¬a ∧ b ⊃ −b (r12)

Consider the same database DB = {a, b} as before. This database is inconsistent (it does not satisfy r10), and the
only possible repair is U = {−a,−b}. Furthermore, this repair is intuitively compatible with η, since rule r10 requires
us to remove a from DB , which triggers r12 and forces us also to remove b.

7

The repair U is founded, but for a different reason: if we remove −a from U , then r11 is applicable, and its head
includes−a, while removing−b from U makes r12 applicable, and its head includes−b. Caroprese and Truszczyński
(2011) considered this as another instance of circularity of support (see (Cruz-Filipe et al., 2013) for a discussion).
The repair U is not justified: neff(U) = ∅, and taking U ′ = ∅ we have that U ′ ∪ neff(U) = ∅ is again trivially closed
under η (every rule has non-updateable literals in its body). N

A different attempt to resolve the problems of circularity posed by founded repairs, while avoiding the over-
restrictiveness of justified repairs, was the introduction of well-founded repairs by Cruz-Filipe et al. (2013) – a third
kind of repairs, motivated by an operational approach directly inspired by the syntax of AICs.

Definition 2.11 (Cruz-Filipe et al., 2013). A (weak) repair U for 〈DB, η〉 is well-founded if there exists a sequence of
actions α1, . . . , αn such that U = {α1, . . . , αn} and, for each i ∈ {1, . . . , n}, there is a rule ri such that Ui−1(DB) |=
body(ri) and αi ∈ head(ri), where Ui−1 = {α1, . . . , αi−1}.

Example 2.12. In the setting of Example 2.6, the only well-founded repair for 〈DB, η〉 is {+c}, as r8 and r9 are the
only rules applicable in DB .

Likewise, the repair U in Example 2.10 is well-founded, as it can be constructed by applying first r10 (introducing
−a) and afterwards r12. N

However, well-founded repairs can also behave unexpectedly.

Example 2.13. Let η be the set of AICs containing

¬a ⊃ +a (r13)
¬a ∧ ¬b ⊃ +b (r14)

a ∧ ¬b ∧ ¬c ⊃ +c (r15)

and consider DB = ∅. There are two well-founded repairs for 〈DB, η〉: U1 = {+b,+a}, obtained by applying
first r14 and then r13, and U2 = {+a,+c}, obtained by applying first r13 and then r15. It is arguable that U2 is
preferable, as it is not reasonable to apply r14 when r13 is also applicable, since any action that solves the inconsistency
detected by r13 also repairs r14, but not conversely. However, the well-founded semantics for AICs cannot infer this
restriction. N

In this example, it is interesting to note that U2 is a founded repair. Indeed, r13 supports +a and this support is
independent of b and c; furthermore r15 supports +c when +a is present. However, U1 is not founded, since the action
+b is not supported, as r14 is not applicable once a has been added to DB .

The examples above show that there exist both founded weak repairs that are not well-founded, and well-founded
weak repairs that are not founded. These relations were established by Cruz-Filipe et al. (2013), together with the
connection to justified weak repairs.

Lemma 2.14. Let DB be a database, η be a set of AICs over DB and U be a set of update actions over DB . If U is
a justified weak repair for 〈DB, η〉, then U is a well-founded weak repair for 〈DB, η〉.

We are also interested in the shifting property. Originally defined by Marek and Truszczynski (1998) in the
context of revision programming, this property was later transferred to active integrity constraints (Caroprese and
Truszczyński, 2011). Intuitively, a semantics for AICs possesses the shifting property if uniformly replacing some
literals with their duals preserves the semantics at hand, i.e., if the semantics treats truth and falsity of elements in the
database symmetrically.

Definition 2.15. Let S ⊆ At be a set of atoms and l a literal. The shift of l with respect to S is defined as

shiftS(l) =

{
l if l 6∈ S
lD otherwise

The shift function is extended to sets of literals, update actions and AICs in the straightforward manner.

8

Definition 2.16. We say that a semantics for AICs has the shifting property if: for all 〈DB, η〉 and all S ⊆ At , U is
a repair of 〈DB, η〉 accepted by the semantics if and only if shiftS(U) is a repair of 〈shiftS(DB), shiftS(η)〉 accepted
by the semantics.

If a semantics has the shifting property, then we can reduce any situation to the case DB = ∅ by taking S = DB .
All semantics discussed in this section have the shifting property.

3. Grounded Repairs

Founded, well-founded and justified repairs were all introduced with the purpose of characterizing a class of
repairs whose actions are supported (there is a reason for having them in the set), without being self-supporting. I.e.,
they try to avoid certain forms of circularity of support. Sometimes, one also requires these repairs to be constructible
“from the ground up”, which was the motivation for defining well-founded repairs. However, all notions exhibit
unsatisfactory examples: there exist founded repairs with circular support (see, e.g., Example 2.6), and repairs with
no circular support that are not justified (Cruz-Filipe et al., 2013). In this section, we introduce a new semantics,
grounded repairs, aimed at directly tackling this issue.

Grounded repairs are motivated by Example 2.6, where we noticed that the definition of founded repairs does not
manage to capture groups of self-supporting arguments. Indeed, there the repair U1 is founded. It consists of two
actions, −a and −b such that whenever one of them is removed from U1, there is an AIC whose body is violated and
whose head is the action in question. However, if we remove both of them simultaneously, we notice that no rule any
longer applies. As such, we can conclude that these actions are “self-supporting”: the only reason to have one of the
two actions in the repair of our choice is because the other action is also in there. Our definition of grounded (weak)
repair is aimed directly at avoiding this kind of situations.

Definition 3.1. A set of update actions U is grounded with respect to 〈DB, η〉 if, for each V (U , there is a rule r ∈ η
such that V(DB) |= body(r) and head(r) ∈ (U \ V). A grounded (weak) repair is a (weak) repair that is grounded.

As can be seen, our definition of groundedness is a slight variant of the notion of foundedness: instead of only
considering what happens if one action is dropped from a proposed set of update actions, we consider arbitrary
removals. A first observation with respect to groundedness is that grounded weak repairs are always minimal, i.e.,
that each grounded weak repair is a repair.

Proposition 3.2. All grounded weak repairs of 〈DB, η〉 are ⊆-minimal, i.e., are repairs.

Proof. Suppose U is a grounded weak repair and U is not minimal, i.e., that there exists a V (U that is also a weak
repair. Since U is grounded, there must exist an AIC whose body is satisfied in V(DB), contradicting the fact that V
is a weak repair.

Thus, the notion of groundedness intrinsically embodies the principle of minimality of change, unlike other kinds
of weak repairs previously defined.

Proposition 3.3. Let DB be a database, η be a set of AICs over DB and U be a grounded repair for 〈DB, η〉. Then
U is both founded and well-founded.

Proof. Assume that U is a grounded repair for 〈DB, η〉. The fact that U is founded follows immediately from the
definition of grounded repair, since for each action α, V = U \ {α} is a strict subset of U . Hence, by groundedness of
U , there must be a rule r with head(r) ∈ U \ V = {α}, whose body is satisfied in V(DB). We find that U is founded
indeed.

Now, we show how to construct a sequence of subsets of U that illustrates that U is well-founded. For this
sequence, we start from U0 = ∅ and construct Ui = Ui−1∪{ui} by picking a rule r ∈ 〈DB, η〉with head(r) = ui ∈ U
and Ui−1(DB) |= body(r). Since U is grounded, if Ui−1 (U then such a rule always exists, and by construction
Ui ⊆ U . But U is finite, therefore this sequence converges towards U , and thus U is a well-founded repair.

However, the notion of grounded repair is strictly stronger than both of these: Example 2.6, presented earlier, also
shows that some forms of circular justifications are avoided by grounded repairs.

9

Example 3.4 (Example 2.6 continued). The repair U1 = {−a,−b} is a founded repair that is not grounded: taking
V = ∅, we notice that no AIC with −a or +a in the head has its body satisfied in V(DB). The more natural repair
U2 = {+c} is also founded, and it is immediate to verify that it is also grounded. N

Likewise, not all well-founded repairs are grounded.

Example 3.5 (Example 2.13 continued). Consider again η from Example 2.13, with DB = ∅. As shown earlier,
the two well-founded repairs for 〈DB, η〉 are U1 = {+b,+a} and U2 = {+a,+c}. We already observed that U1
is not founded, so it cannot be grounded; indeed, V = {+a} is a set of update actions such that no rule r with
head(r) ∈ (U \ V) has its body satisfied in V(DB). N

We thus have that grounded repairs are always founded and well-founded; the next example shows that they do
not correspond to the intersection of those classes.

Example 3.6. Consider the following set of AICs η.

¬a,¬b ⊃ +a (r16)
a,¬b ⊃ +b (r17)
¬a, b ⊃ −b (r18)

a, b,¬c ⊃ +c (r19)
a,¬b, c ⊃ +b (r20)
¬a, b, c ⊃ +a (r21)

Let DB = ∅. Then U = {+a,+b,+c} is a repair for 〈DB, η〉: the first three constraints require a and b to be included
in the database. They do not do this in a straightforward manner. Starting from a database in which b holds, but a
does not, rule (r18) first enforces removal of b. Next, rule (r16) adds a and subsequently, rule (r17) adds b. While this
combination of constraints seems unnatural (no-one would use these to enforce inclusion of a and b in the database),
it is possible that this type of constraints show up if they are written by different developers maintaining the database,
having different concerns. The last three rules state that no 2-element subset of U can be a repair. Given rule (r17),
one might say that rule (r20) is redundant. However, again the same argument holds: they could show up together in
a database. In this example, U is founded (the last three rules also ensure that) and well-founded (starting with ∅, we
are forced to apply rules r16, r17 and r19, in that order).

However, U is not grounded: if V = {+b}, then V (U , but there is no rule r with head(r) ∈ {+a,+c} whose
body is satisfied in V(DB). N

In this situation, U might seem reasonable; however, observe that the support for its actions is circular: it is the
three last rules that make U founded, and none of them is applicable to DB . Also note that V(DB) = {b} is a database
for which the given set η behaves very awkwardly: the only applicable AIC tells us to remove b, while the only repair
of V(DB) is actually {+a,+c}.

We do not feel that this example weakens the case for studying grounded repairs, though: the consensual approach
to different notions of repair is that they express preferences. In this case, where 〈DB, η〉 admits no grounded repair,
it is sensible to allow a repair in a larger class – and a repair that is both founded and well-founded is a good candidate.
The discussion by Caroprese and Truszczyński (2011, Section 8) already proposes such a “methodology”: choose a
repair from the most restrictive category (justified, founded, or any). We advocate a similar approach, but including
grounded repairs among the possible choices.

We now investigate the relation between grounded and justified repairs, and find that all justified repairs are
grounded, but not conversely – in line with our earlier claim that the notion of justified repair is too strong.

Proposition 3.7. Let DB be a database, and let η be a set of normal AICs over DB . If U is a justified repair for
〈DB, η〉, then U is grounded.

Proof. Let U be a justified repair for 〈DB, η〉 and take V (U . Then V ∪ neff(U) is not closed under η, whence there
is a rule r ∈ η such that ua(nup(r)) ⊆ V ∪ neff(U) and head(r) 6∈ V ∪ neff(U).

10

F WF

G

J

Figure 1: Relative inclusions between the sets of founded (F), well-founded (WF), grounded (G) and justified (J) repairs. All inclusions are
strict.

Since V ⊆ U , also ua(nup(r)) ⊆ U ∪ neff(U), whence head(r) ∈ U ∪ neff(U) as U is closed under η. But
head(r) 6∈ V ∪ neff(U), so head(r) ∈ U \ V .

We need to show that also V |= body(r). On the one hand, ua(nup(r)) ⊆ V ∪ neff(U) implies that V(DB) |=
nup(r), as neff(U) ⊆ neff(V); on the other hand, from head(r) ∈ U we know that lit(head(r))D ∈ DB (all actions
in U change DB), whence V(DB) |= lit(head(r)D) since head(r) 6∈ V . As r is normal, there are no more literals in
body(r), so V(DB) |= body(r). Hence, we have found a rule r such that V |= body(r) and head(r) ∈ (U \ V), thus
showing that U is grounded.

This proof does not use the hypothesis that U is a repair. This is due to the fact (already mentioned earlier) that
we only consider normal AICs in this paper. By Theorem 4 of (Caroprese and Truszczyński, 2011), all justified weak
repairs are minimal when η consists of only normal AICs.

Recall Example 2.10, which was used by Cruz-Filipe et al. (2013) to point out that justified repairs sometimes
eliminate “natural” repairs. This example also shows that the notion of justified repair is stricter than that of grounded
repair.

Example 3.8 (Example 2.10 continued). Although the repair U = {−a,−b} for 〈DB, η〉 is not justified, it is
grounded: if −a ∈ V (U , then there is a rule that derives −b; otherwise, there is a rule that derives −a. N

As discussed earlier, in this case the first rule clearly motivates the action −a, and the last rule then requires −b.
This is in contrast to Example 2.6, where there was no clear reason to include either −a or −b in a repair. Hence
grounded repairs avoid this type of unreasonable circularities, without being as restrictive as justified repairs.

We summarize the relations between the different types of repairs in Figure 1.

4. Preliminaries: Lattices, Operators and Approximation Fixpoint Theory

4.1. Lattices, Operators and Fixpoints
In this section we summarize the ideas, definitions and main results from approximation fixpoint theory (AFT)

that we use in the remainder of the paper.
A partially ordered set (poset) 〈L,≤〉 is a set L equipped with a partial order ≤, i.e., a reflexive, antisymmetric,

transitive relation. As usual, we write x < y as abbreviation for x ≤ y ∧ x 6= y. If S is a subset of L, then x is an
upper bound (a lower bound) of S if for every s ∈ S, it holds that s ≤ x (x ≤ s, respectively). An element x is a
least upper bound (a greatest lower bound) of S if it is an upper bound that is smaller than every other upper bound (a
lower bound that is greater than every other lower bound, respectively). If S has a least upper bound (a greatest lower
bound) we denote it lub(S) (glb(S), respectively). As is custom, we sometimes call a greatest lower bound a meet,
and a least upper bound a join and use the related notations

∧
S = glb(S), x ∧ y = glb({x, y}),

∨
S = lub(S) and

x ∨ y = lub({x, y}). We call 〈L,≤〉 a complete lattice if every subset of L has a least upper bound and a greatest
lower bound. A complete lattice has both a least element ⊥ =

∧
L and a greatest element > =

∨
L.

A lattice L is distributive if ∧ and ∨ distribute over each other, i.e., if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L. A bounded lattice L is complemented if every element x ∈ L
has a complement: an element ¬x ∈ L satisfying x ∧ ¬x = ⊥ and x ∨ ¬x = >. A Boolean lattice is a distributive
complemented lattice.

11

Since we apply our results to (finite) databases, for the sake of simplicity we assume L to be finite in this text. All
presented results easily generalize to the infinite setting as well.

An operator O : L → L is monotone if x ≤ y implies that O(x) ≤ O(y). An element x ∈ L is a fixpoint of O if
O(x) = x. Every monotone operator O in a complete lattice has a least fixpoint, denoted lfp(O), which is the limit
(the least upper bound) of the increasing sequence (xi)i∈N defined by x0 = ⊥ and xi+1 = O(xi).

Bogaerts et al. (2015a) called a point x ∈ L grounded forO if, for each v ∈ L such thatO(v∧x) ≤ v, it holds that
x ≤ v. They called a point x ∈ L strictly grounded if there does not exist a y such that y < x, andO(y)∧x ≤ y. They
explained the intuition underlying these concepts under the assumption that the elements of L are sets of “facts” of
some kind and the ≤ relation is the subset relation between such sets: in this case, a point x is grounded if it contains
only facts that are sanctioned by the operator O, in the sense that if we remove them from x, then the operator will
add at least one of them again. Bogaerts (2015) showed that for Boolean lattices the notions of groundedness and
strict groundedness coincide. In this paper, all lattices of our application are Boolean, hence we use both notions
interchangeably.

4.2. Approximation Fixpoint Theory
Given a lattice L, approximation fixpoint theory (AFT) (Denecker et al., 2000) uses the bilattice L2. We define

two projection functions for pairs as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are used to approximate
elements in the interval [x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y, that is, if [x, y] is non-
empty, and use Lc to denote the set of consistent elements. Elements (x, x) ∈ Lc are called exact; they constitute the
embedding of L in L2. We sometimes abuse notation and use the tuple (x, y) and the interval [x, y] interchangeably.
The precision ordering on L2 is defined as (x, y) ≤p (u, v) if x ≤ u and v ≤ y. In case (u, v) is consistent, this
means that (x, y) approximates all elements approximated by (u, v), or in other words that [u, v] ⊆ [x, y]. If L is a
complete lattice, then 〈L2,≤p〉 is also a complete lattice.

AFT studies fixpoints of lattice operators O : L → L through operators approximating O. An operator A :
L2 → L2 is an approximator of O if it is ≤p-monotone, and has the property that A(x, x) = (O(x), O(x)) for all
x. Approximators are internal in Lc (i.e., map Lc into Lc). As usual, we often restrict our attention to symmetric
approximators: approximators A such that, for all x and y, A(x, y)1 = A(y, x)2. Denecker et al. (2004) showed that
the consistent fixpoints of interest (supported, stable, well-founded) are uniquely determined by an approximator’s
restriction to Lc, hence, sometimes we only define approximators on Lc.

AFT studies fixpoints of O using fixpoints of A.

• The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint of A, and it approximates all fixpoints of O.

• A partial A-stable fixpoint is a pair (x, y) such that x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where A(·, y)1
denotes the operator L → L : z 7→ A(z, y)1 and analogously A(x, ·)2 denotes the operator L → L : z 7→
A(x, z)2.

• The A-well-founded fixpoint is the least precise (i.e., the ≤p-minimal) partial A-stable fixpoint.

• An A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-stable fixpoint. This is equivalent
to the condition that x = lfp(A(·, x)1).

• A partialA-grounded fixpoint is a consistent pair (x, y) such that for each v ∈ L, wheneverA(x∧v, y∧v)2 ≤ v,
also y ≤ v.

All (partial A-)stable fixpoints are (partial A-)grounded fixpoints and the A-well-founded fixpoint is the least
precise partial A-grounded fixpoint (Bogaerts et al., 2015b). The A-Kripke-Kleene fixpoint of O can be constructed
as the limit of any monotone induction of A. For the A-well-founded fixpoint, a similar constructive characterization
has been worked out by Denecker and Vennekens (2007):

Definition 4.1. An A-refinement of (x, y) is a pair (x′, y′) ∈ L2 satisfying one of the following two conditions:

(i) (x, y) ≤p (x′, y′) ≤p A(x, y), or

(ii) x′ = x and A(x, y′)2 ≤ y′ ≤ y.

12

An A-refinement is strict if (x, y) 6= (x′, y′).

We call the first type (i) of refinements application refinements and the second type (ii) unfoundedness refinements.
If (x′, y′) is an A-refinement of (x, y) and A is clear from the context, we often write (x, y)→ (x′, y′).

Definition 4.2. A well-founded induction of A is a sequence (xi, yi)i≤n with n ∈ N such that

• (x0, y0) = (⊥,>);

• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < n.

A well-founded induction is terminal if its limit (xn, yn) has no strict A-refinements.

A well-founded induction is an algebraical generalization of the well-founded model construction defined by Van
Gelder et al. (1991). The first type of refinement corresponds to making a partial structure more precise by applying
Fitting’s immediate consequence operator; the second type of refinement corresponds to making a structure more
precise by eliminating an unfounded set. For a given approximator A, there are many different terminal well-founded
inductions of A. Denecker and Vennekens (2007) showed that they all have the same limit, which equals the A-well-
founded fixpoint of O. Furthermore, if A is symmetric, then the A-well-founded fixpoint of O (in fact, every tuple in
a well-founded induction of A) is consistent.

4.3. Logic Programming and AFT
A (normal2) logic program P is a set of rules r of the form

h← l1 ∧ · · · ∧ ln (2)

where h is an atom called the head of r, denoted head(r), and each of the li is a literal; l1 ∧ · · · ∧ ln is called the body
of r and denoted body(r). A rule of the form (2) is called simple if none of the li equals ¬h or h; a logic program is
simple if it consists of only simple rules. The set of interpretations 2At forms a lattice equipped with the order ⊆. The
truth value (t or f) of a propositional formula ϕ in a structure I , denoted ϕI is defined as usual. With a logic program
P , we associate an immediate consequence operator (van Emden and Kowalski, 1976) TP that maps a structure I to

TP(I) = {p | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.

Bogaerts et al. (2015a) called grounded fixpoints of TP grounded models of P .

Example 4.3. Consider the following logic program P:{
p.
q ← p ∧ q.

}
Its immediate consequence operator TP is represented by the following graph:

> = {p, q}
WW

{p}

66
++

{q}

hh

rr

⊥ = ∅

66hhcc

TP is a monotone operator with least fixpoint {p}. As such, {p} is its only grounded fixpoint. To see that {p, q} is
not grounded, notice that, when taking v = {p},

TP(v ∩ {p, q}) = {p} ⊆ v,

but {p, q} 6⊆ v. N

2Sometimes, logic programs are defined with disjunctive rules. In the current paper, we only consider normal logic programs: logic programs
where the head is a single atom. In some propositions, we explicate the fact our programs are normal to emphasize that these results are not
guaranteed to hold in the more general case.

13

In the context of logic programming, elements of the approximation lattice
(
2At
)2

are four-valued interpretations,
pairs I = (I1, I2) of interpretations. The pair (I1, I2) approximates all interpretations I ′ with I1 ⊆ I ′ ⊆ I2. We
often identify an interpretation I with the four-valued interpretation (I, I). We are mostly concerned with consistent
(also called partial or three-valued) interpretations: tuples I = (I1, I2) with I1 ⊆ I2. For such an interpretation, the
atoms in I1 are true (t) in I, the atoms in I2 \ I1 are unknown (u) in I and the other atoms are false (f) in I. If I is a
three-valued interpretation, and ϕ a formula, we write ϕI for the standard three-valued valuation based on the Kleene
truth tables (see Figure 2).

Several approximators have been defined for logic programs. The most common is Fitting’s immediate conse-
quence operator ΨP (Fitting, 2002), a direct generalization of TP to partial interpretations:

ΨP(I)1 = {a ∈ At | body(r)I = t for some rule r ∈ P with head(r) = a},
ΨP(I)2 = {a ∈ At | body(r)I 6= f for some rule r ∈ P with head(r) = a}.

Denecker et al. (2000) showed that ΨP is an approximator of TP , that the well-founded fixpoint of ΨP is the well-
founded model of P as defined by Van Gelder et al. and that ΨP -stable fixpoints are exactly the stable models of P
as defined by Gelfond and Lifschitz. In this case, the operator ΨP(·, y)1 coincides with the immediate consequence
operator of the Gelfond-Lifschitz reduct (Gelfond and Lifschitz, 1988) of P with respect to the interpretation y.

Example 4.4. Consider the following logic program P:{
p←¬q.
q←¬p.

}
It has two stable models, namely {p} and {q}. Its well-founded model equals its Kripke-Kleene model and is I =
(∅, {p, q}), i.e., the partial interpretation in which both p and q are unknown. To see that I is the Kripke-Kleene
model, it suffices that it is the least element of the approximation lattice

(
2At
)2

and that it is a fixpoint of ΨP (since
in this interpretation, the value of all the bodies is u). To see that I is the well-founded model, we notice that there
are no unfoundedness refinements of I. Indeed, if for some I ⊆ At , it would hold that

ΨP(∅, I)2 ≤ I

then q ∈ I (otherwise, p would be derived by the first rule) and p ∈ I (for a symmetric argument). Hence, I = {p, q}
and there is no unfoundedness refinement.

To see that {p} is a stable model, it suffices to note that ΨP(∅, {p}) = ({p}, {p}) and hence that {p} =
lfp ΨP(·, {p})1 indeed. N

5. A Semantic Operator for AICs

In this section we show how a set of normal AICs induces an operator on a suitably defined lattice.
Given a fixed database DB , we are interested in the sets of update actions U such that:

(i) U is consistent and

(ii) each action in U modifies DB .

Note that the second condition here implies the first since it is not possible that both +a and−a modify DB . For each
atom a ∈ At , we define

ch a =

{
+a if a 6∈ DB
−a otherwise.

Let us furthermore denote the set of update actions that modify DB by A. With this notation, A = {ch a | a ∈ At}
and the sets of update actions we are interested in are elements of 2A. Note that ch and A are defined solely based on
the initial database DB and are not dependent of, for instance, a given repair.

14

Following the principle of minimality of change (Winslett, 1990; Eiter and Gottlob, 1992), we also typically prefer
smaller sets of updates over larger sets. Therefore, we are interested in the lattice 〈2A,⊆〉, where smaller elements
correspond to better repairs according to this principle.

The intuitive reading of an AIC r naturally suggests an operator over this lattice, defined as “if U(DB) |= body(r),
then add head(r) to U” to obtain a new element of 2A. However, this naive definition does not lead to an operator that
is internal in 2A, as illustrated for instance in the following example.

Example 5.1. Consider

η = {¬a ⊃ +a}

and DB = {a}. In this case, A = {−a} and 2A = {∅, {−a}}. Now, taking U = {−a}, the body of the only rule in
η is satisfied. Naively adding its head to U results in the set {+a,−a}, which is not an element of 2A. We expect a
semantic operator to map U to ∅ since the rule in η indicates that the problems with U(DB) can be solved by adding
a, i.e., by not changing DB at all. N

This kind of problems is inherent to the fact that AICs can have rules with dual heads and does not occur in other
formalisms where AFT is applied, such as, e.g., logic programming3. Intuitively, the operator Tη we wish to define
should satisfy the following properties:

• (inertia) Only change something in the input if there is a rule that warrants this change. This requirement
consists itself of two parts:

– Do not add anything to U unless there is a reason for it, i.e.,

Tη(U) ⊆ U ∪ {head(r) | r ∈ η ∧ U(DB) |= body(r)}.

– Do not remove anything from U unless there is a reason for it, i.e.,

U \ {head(r)D | r ∈ η ∧ U(DB) |= body(r)} ⊆ Tη(U).

• (cancellation) If there is an action in U that is “canceled out” by some rule in η, then neither the action nor
its dual are in the result (i.e., DB remains unchanged with respect to this action). Formally, if α ∈ U and
αD ∈ {head(r) | r ∈ η ∧ U(DB) |= body(r)}, then α 6∈ Tη(U), αD 6∈ Tη(U).

• (completeness) If there is an applicable rule whose body is satisfied, and whose head does not contradict U ,
then the head is derived. Formally,

{head(r) | r ∈ η ∧ U(DB) |= body(r) ∧ head(r)D 6∈ U} ⊆ Tη(U).

It turns out that these three properties uniquely define an operator on 2A. In order to give a constructive characteriza-
tion of this operator, we introduce the following concept.

Definition 5.2. Let U1 and U2 be sets of update actions over a set of atoms At . The set U1] U2 is defined as

(U1] U2) (DB) = (U1 ∪ U2) \ {α | α, αD ∈ U1 ∪ U2} .

This operation models sequential composition of repairs in the following sense: given a database DB , if every
action in U1 changes DB and every action in U2 changes U1(DB), then (U1] U2)(DB) = U2(U1(DB)).

Observe that, while a set of AICs may include both a rule with head +a and another with head −a, these rules are
not simultaneously applicable, as the conjunction of their bodies is always unsatisfiable. However, it may be the case
that applying one of them makes the other applicable (undoing the effect of the first one). In this case, the operation
defined above guarantees that the database always reflects the last actions that were executed.

We note also that U1] U2 is consistent whenever U1 and U2 are.

3Notice that for instance in default logic, rules with complementary literals in their head are allowed. However, such literals are treated as two
independent statements and can be derived separately. In the current setting, an update action +p can undo the effect of a previously derived action
−p.

15

Definition 5.3. Let DB be a database and η be a set of AICs over DB . The operator T DB
η : 2A → 2A is defined as

follows:
T DB
η (U) = U] {head(r) | r ∈ η ∧ U(DB) |= body(r)}

In other words, T DB
η (U) is obtained by updating U with the heads of all AICs whose bodies are satisfied by

U(DB). To see that this operator is well-defined (i.e., that the result of applying it indeed yields a consistent set of
actions), observe that the syntactic restrictions on AICs guarantee that the set {head(r) | r ∈ η∧U(DB) |= body(r)}
is always consistent. Indeed, if both +a and −a are in this set, then there must be rules r1 and r2 such that ¬a ∈
body(r1) and a ∈ body(r2) with U(DB) |= body(ri) for i = 1, 2, which is impossible since it would mean that
U(DB) |= a and U(DB) |= ¬a. From this, it also follows that Tη(U) is always consistent. As before, when DB is
clear from the context, we simply write Tη for T DB

η .

Proposition 5.4. The operator Tη is the only operator on 2A that satisfies inertia, cancellation and completeness.

Proof. It is easy to verify that Tη satisfies inertia, cancellation and completeness.
Now, assume O : 2A → 2A satisfies the three properties. Let α be any action in A and U ⊆ A. Let V denote

{head(r) | r ∈ η ∧ U(DB) |= body(r)}. Since, α ∈ A, we know that αD 6∈ U . We show that α ∈ O(U) if and only
if α ∈ Tη(U) = U] V . We distinguish 3 cases:

• If α ∈ V , then, since αD 6∈ U , by completeness, α ∈ O(U). In this case, since αD 6∈ U ∪ V , but α ∈ U ∪ V , it
holds that α ∈ U] V = Tη(U).

• If αD ∈ V , then there is a rule r ∈ η such that αD ∈ head(r) and U(DB) |= body(r). Since U(DB) |=
body(r), lit(α) holds in U(DB). Since α changes DB , we know that lit(α) does not hold in DB , hence it
must be the case that α ∈ U . By cancellation, we then find that α 6∈ O(DB). Since α ∈ U but αD ∈ V , also
α 6∈ U] V = Tη(U).

• If neither α ∈ V , nor αD ∈ V , then by inertia, it must hold that α ∈ O(U) if and only if α ∈ U . In this case, it
also holds that α ∈ Tη(U) = U] V if and only if α ∈ U .

Hence, we have proven in each of the cases that α ∈ O(U) if and only if α ∈ Tη(U) and the result follows.

Example 5.5 (Example 2.3 continued). Consider again the set of AICs η from Example 2.3, where DB = {a, b}.
Then Tη(∅) = {−a,−b}. Indeed, the bodies of all rules are satisfied; hence all heads are elements of Tη(∅). N

Proposition 5.6. Let DB be a database, η be a set of normal AICs over DB and U be a set of update actions. Then
U is a weak repair for 〈DB, η〉 if and only if U is a fixpoint of Tη .

Proof. If U is a weak repair for 〈DB, η〉, then certainly, U ∈ 2A. Also, U(DB) 6|= body(r) for all r ∈ η, whence
Tη(U) = U . If U is not a weak repair for 〈DB, η〉, then U(DB) |= body(r) for some r ∈ η, and Tη(U) differs from
U by (at least) head(r).

Example 5.7. In general, Tη does not need to have fixpoints (since there may be no database satisfying η). A simple
(unrealistic) example is if η consists of the two rules

a ⊃ −a and ¬a ⊃ +a

where Tη(DB) 6= DB for any database DB . N

Proposition 5.8. Let DB be a database, η be a set of normal AICs over DB and U be a set of update actions. Then
U is a repair for 〈DB, η〉 if and only if U is a minimal fixpoint of Tη .

Proof. Follows directly from Proposition 5.6 and the definition of repair.

Proposition 5.9. Let DB be a database, η be a set of normal AICs over DB and U ∈ 2A. Then U is founded with
respect to 〈DB, η〉 if and only if, for all α ∈ U , it is the case that α ∈ Tη(U \ {α}).

16

Proof. It follows from the definition of Tη that for each action α ∈ U , the following are equivalent:

(i) there is a rule r ∈ η such that (U \ {α})(DB) |= body(r) and

(ii) α ∈ Tη(U \ {α}).

Now, U is founded if and only if (i) holds for all actions α ∈ U ; this is indeed equivalent with the condition from this
proposition, which is that (ii) holds for each α ∈ U .

This result also gives some intuition regarding why founded repairs allow for circular dependencies: the definition
of founded repair only checks that each individual action is supported by the remaining ones, but it still allows for
dependency cycles.

Proposition 5.10. Let DB be a database, η be a set of normal AICs over DB and U be a weak repair for 〈DB, η〉.
Then U is well-founded if and only if there is an orderingα1, . . . , αn of the elements of U such thatαi ∈ Tη({α1, . . . , αi−1})
for each i = 1, . . . , n.

Proof. This is a direct consequence of the definitions of Tη and of well-founded repair. By definition, U is well-
founded if and only if there exists a ordering α1, . . . , αn of the elements of U such that for each i, there is a rule
ri ∈ η with Ui−1(DB) |= body(ri) and αi ∈ head(ri) (where Ui denotes {α1, . . . , αi}). Now, the condition
that there is a rule ri ∈ η with Ui−1(DB) |= body(ri) and αi ∈ head(ri) is equivalent with the condition that
αi ∈ Tη(Ui−1), from which the result follows.

Proposition 5.11. Let DB be a database and η a set of AICs over DB . A set of update actions U is a grounded repair
of 〈DB, η〉 if and only if U is a grounded fixpoint of Tη .

Proof. Recall that grounded and strictly grounded fixpoints of Tη coincide. We show that U is a grounded repair of
〈DB, η〉 iff U is a strictly grounded fixpoint of Tη .

First suppose that U is not a strictly grounded fixpoint of Tη . This means that there exists a set V (U such that
Tη(V) ∩ U ⊆ V . From the definition of Tη it follows immediately that, if r is a rule such that V(DB) |= body(r),
then head(r) 6∈ (U \ V), whence U is not a grounded repair for 〈DB, η〉.

Conversely, assume that U is a strictly grounded fixpoint of Tη and let V be any subset of U such that there is no rule
r for which V(DB) |= body(r) and head(r) ∈ (U \V). From the definition of Tη , it follows that Tη(V)∩ (U \V) = ∅
and thus that Tη(V) ∩ U ⊆ V . Since U is strictly grounded, it follows that V = U .

The previous proposition illustrates that Proposition 3.7 is not a coincidence at all. Indeed, Bogaerts et al. (2015a)
have already shown that all stable fixpoints of a given approximator are grounded, and Caroprese and Truszczyński
(2011, Theorem 6) showed that justified repairs are stable models of a given derived logic program. In the following
sections, we explore this relationship further: first, we define an approximator for Tη and as such obtain also a notion
of stable repair. Next, in Section 7, we study the relationship between logic programs and AICs in depth.

Since grounded repairs can be built from the ground up, this result also corroborates the informal claim that
justified repairs avoid circularity of support, as stated by Caroprese and Truszczyński (2011).

6. An Approximator for AICs

In this section, we define an approximator for Tη and hence, obtain a set of AFT-based semantics for AICs, based
on intuitions similar to those underlying groundedness and various semantics from non-monotonic reasoning.

A partial action set is a tuple U = (Uc,Up) where Uc ∈ 2A and Up ∈ 2A. A partial action set is an approximation
of a set of update actions. It provides information on which update actions are certainly applied (the actions in Uc)
and which actions are possibly applied (the actions in Up). If Uc ⊆ Up, we say that U is consistent. We are mostly
concerned with consistent partial action sets. If α ∈ A, the value of α in U (denoted U(α)) is:

• true, denoted t, if α ∈ Uc and α ∈ Up,

• false, denoted f , if α 6∈ Uc and α 6∈ Up,

17

A ∧B B
t f u

A
t t f u
f f f f
u u f u

¬A

A
t f
f t
u u

Figure 2: The Kleene truth tables for conjunction and negation (Kleene, 1938).

• unknown, denoted u, if α 6∈ Uc and α ∈ Up,

• inconsistent, denoted i, if α ∈ Uc and α 6∈ Up.

Note that a partial action set is characterized completely by the mapping A → {t, f ,u, i} it induces:

Uc = {α ∈ A | U(α) ∈ {t, i}},
Up = {α ∈ A | U(α) ∈ {t,u}}.

We sometimes exploit this correspondence, by not explicating the partial action set itself, but the mapping, as this
allows for more compact notation and more elegant definitions. It can be seen that that U is consistent if and only if
U(α) ∈ {t, f ,u} for all α. The intended interpretation of a consistent partial action set is thus that U(a) is true iff a
is certainly changed by U, it is false iff a is certainly not changed by U and it is unknown if U leaves it open whether
or not a is changed. The set of all consistent partial action sets is denoted as P . As such, P is exactly the consistent
part of the bilattice (2A)2. We call U two-valued if Uc = Up, i.e., if U(α) ∈ {t, f} for all α; in this case, we identify
U with the action set Uc. The truth order ≤t on truth values is defined by f ≤t u ≤t t; f ≤t i ≤t t. The inverse of a
truth value is f−1 = t, t−1 = f ,u−1 = u, i−1 = i.

A (consistent) partial database is a mapping DB : At → {t, f ,u}. The intended reading is that DB(a) is true if
a is certainly in the database, DB(a) is false if a is certainly not in the database and DB(a) is unknown otherwise.

If U ∈ P is a consistent partial action set and DB is a (regular) database, then we define U(DB) to be the partial
database such that

U(DB) : a 7→

 DB(a) if U(a) = f
DB(a)−1 if U(a) = t
u otherwise,

where DB(a) = t if a ∈ DB and DB(a) = f otherwise.

Definition 6.1. Given a partial database DB, a set of AICs η and an update action α, we define the support of α with
respect to 〈DB, η〉 as

suppDB,η(α) = max
≤t

{nup(r)DB | r ∈ η ∧ head(r) = α},

where nup(r)DB refers to the standard three-valued truth evaluation of the formula4 nup(r) in the partial interpretation
DB based on Kleene’s truth tables (Kleene, 1938) (see Figure 2).

Intuitively, this means that the support of an action α is the highest truth value of the (non-updateable part of the)
body of a rule in η with α in the head.

Example 6.2. Consider DB = ∅ and the following set η:

¬a ∧ b ⊃ +a

a ∧ c ∧ d ⊃ −a .

Consider U = ({+a,+b,+c}, {+a,+b,+c,+d}). Then U(DB) = {a 7→ t, b 7→ t, c 7→ t, d 7→ u}. In this case,
suppU(DB),η(+a) = t and suppU(DB),η(−a) = u. N

4Technically, nup(r) is a set of literals; we identify it with the conjunction of those literals.

18

Definition 6.3. Given DB and η, we define an operator T〈DB,η〉 : P → P , such that for each U ∈ P and each α ∈ A:

• If U(α) = f , then T〈DB,η〉(U)(α) = suppU(DB),η(α).

• If U(α) = t, then T〈DB,η〉(U)(α) = suppU(DB),η(αD)−1.

• Otherwise (i.e., if U(α) = u):

– if suppU(DB),η(α) = t and suppU(DB),η(αD) = f , then T〈DB,η〉(U)(α) = t;

– if suppU(DB),η(αD) = t and suppU(DB),η(α) = f , then T〈DB,η〉(U)(α) = f ;

– otherwise, T〈DB,η〉(U)(α) = u.

When DB is clear from the context, we write Tη for T〈DB,η〉.

Definition 6.3 is motivated as follows. Assume U is a partial update set containing some information on the
intended update. In this case Tη(U) represents a revised update, using the AICs in η. In the case where U(α) = f , α
is not an element of the (partial) update set at hand. The only way to add α to the update is if some rule supports α,
which is captured by suppU(DB),η(α). The case for U(α) = t is completely symmetrical, in this case the only reason
for removing α from the update at hand is there is support for its dual. In the last case, where U(α) = u, we have no
information on whether α should or shouldn’t be in the update yet. In this case, we can derive that α must be in the
update if we already have support for α and we are sure that there is no support for it dual (for αD). Similarly, we can
derive that α must not be in the update if we have support for αD and certainly not for α. In all other cases, we derive
nothing about α being in the update or not.

Since suppU(DB),η(α) and suppU(DB),η(αD)−1 are consistent whenever U is consistent, the above operator is
indeed defined on P , i.e., T〈DB,η〉(U) is consistent whenever U is.

Recall that Denecker et al. (2004) showed that it suffices to define approximator on the consistent part of the
bilattice. Using the fact that P = (2A)c, Tη is a candidate approximator of Tη . The next proposition shows that this
is indeed the case.

Proposition 6.4. Tη is an approximator of Tη .

Proof. First, we show that Tη is ≤p-monotone. To see this, first note that Kleene-valuation is ≤p-monotone. Hence,
for each α ∈ A, also the functions that map U to suppU(DB),η(α) and suppU(DB),η(αD) are ≤p-monotone. Now
take some α ∈ A and suppose U′ ≥p U. Then suppU′(DB),η(α) ≥p suppU(DB),η(α) and suppU′(DB),η(αD) ≥p
suppU(DB),η(αD). We show that Tη(U′)(α) ≥p Tη(U)(α) by a case analysis on the definition of Tη(U)(α).

• If U(α) = f , then U′(α) = f since U′ ≥p U. In this case Tη(U′)(α) = suppU′(DB),η(α) ≥p suppU(DB),η(α) =
Tη(U)(α).

• The case where U(α) = t is similar.

• Assume U(α) = u.

– If suppU(DB),η(α) = t and suppU(DB),η(αD) = f , then Tη(U)(α) = t and also suppU′(DB),η(α) = t
and suppU′(DB),η(α) = f . Hence if U′(α) = u, this is trivially proven. In case U′(α) = t, Tη(U′)(α) =

suppU′(DB),η(αD)−1 = t and in case U′(α) = f , Tη(U′)(a) = suppU′(DB),η(α) = t. Hence, in all cases
Tη(U)(α) = Tη(U′)(α) and the claim follows.

– The case where suppU(DB),η(αD) = t and suppU(DB),η(α) = f is similar to the previous.

– In all other cases, Tη(U)(α) = u, hence Tη(U′)(α) ≥p Tη(U)(α) is trivially satisfied.

Secondly, we show that on two-valued update sets, Tη and Tη coincide, i.e., that for all U , Tη(U) = Tη(U). Take
any α ∈ A, we again prove this claim by a case analysis on the definition of of Tη(U)(α).

• If U(α) = f , then Tη(U)(α) = t if and only if there is some rule r ∈ η with U(DB) |= body(r) and head(r) =
α. Since body(r) = nup(r) ∧ lit(αD), we conclude that Tη(U)(α) is true if and only if suppU(DB),η(α) = t,
if and only if Tη(U)(α) = t.

19

• The case for U(α) = f is similar.

• The case where U(α) = u cannot occur, since U is two-valued.

Since Tη is an approximator, it defines a family of semantics for AICs.

Definition 6.5. Let 〈DB, η〉 be a database.

• A partial stable repair of 〈DB, η〉 is a partial update set U such that U is a partial Tη-stable fixpoint. A stable
repair is a partial stable repair that is two-valued.

• The AFT-well-founded repair of 〈DB, η〉 is the Tη-well-founded fixpoint (in general, this is a partial update
set).

• The Kripke-Kleene repair of 〈DB, η〉 is the Tη-Kripke-Kleene fixpoint (in general, this is a partial update set).

• A partial grounded repair of 〈DB, η〉 is a partial update set U such that U is a partial Tη-grounded fixpoint
(Bogaerts et al., 2015b). A grounded repair is a partial grounded repair that is two-valued.

The terminology in the above definition uses “repairs” for certain classes of fixpoints of a semantic operator. It
follows easily that all two-valued update sets that are called “repair” in the the above definition, indeed are repairs
according to AIC terminology. This paper is the first work that studies partial (non-two-valued) repairs.

The well-founded semantics induced by AFT can in general differ from the existing well-founded semantics for
AICs, as we show in Example 6.12. To distinguish the two, we use the term AFT-well-founded semantics.

It follows directly from Bogaerts et al. (2015b, Proposition 3.2) and Proposition 5.11 that grounded repairs as
defined in Definition 6.5 coincide with Definition 3.1. All other classes of repairs are new.

We now illustrate these semantics by means of some examples.

Example 6.6. Consider the following set η of AICs:

¬a ⊃ +a

¬a ∧ ¬b ∧ ¬c ⊃ +c

a ∧ ¬b ⊃ +b

a ∧ c ∧ b ⊃ −b

with DB = ∅. Now, the Tη-well-founded fixpoint can be computed as the limit of a well-founded induction. It starts
at U0 that maps

+a 7→ u,+b 7→ u,+c 7→ u,

i.e., U0 is5 the partial action
(∅, {+a,+b,+c}).

Here, we see that

suppU0(DB),η(+a) = t, suppU0(DB),η(−a) = f

suppU0(DB),η(+b) = u, suppU0(DB),η(−b) = u

suppU0(DB),η(+c) = u, suppU0(DB),η(−c) = f

Hence,
U1 = Tη(U0) : +a 7→ t,+b 7→ u,+c 7→ u

is a refinement of U0. Now, it can be verified that U1 is a fixpoint of Tη . This is the Kripke-Kleene fixpoint. It is a
partial repair set and provides the information that a must be added, but it is uncertain about b and c.

5Recall that for simplicity, we often characterize partial action sets by their induced truth function.

20

A well-founded induction continues by unfoundedness refinement. The partial update set

U2 = +a 7→ t,+b 7→ u,+c 7→ f

is an unfoundedness refinement of U1. This follows easily from the fact that

U3 = Tη(U2) = +a 7→ t,+b 7→ t,+c 7→ f .

Furthermore, U3 is an application refinement of U2. Since this is an exact point, it is the Tη-well-founded fixpoint of
Tη . It is clearly the intended repair in this example.

Note that in this example, unfoundedness refinements take care of minimizations of repairs. N

Example 6.7. Consider the following set η of AICs:

a ∧ ¬b ⊃ +b

¬a ∧ b ⊃ +a

¬a ∧ ¬b ∧ ¬c ⊃ +c

with DB = ∅. Intuitively, we expect +c to be an element of “good” repairs, and (following the minimality of change
principle), no other actions to be in “good” repairs.

Now, the Tη-well-founded fixpoint can be computed as the limit of a well-founded induction. It starts at

U0 : +a 7→ u,+b 7→ u,+c 7→ u.

Here, we see that

suppU0(DB),η(+a) = u, suppU0(DB),η(−a) = f

suppU0(DB),η(+b) = u, suppU0(DB),η(−b) = f

suppU0(DB),η(+c) = u, suppU0(DB),η(−c) = f

Hence, Tη(U0) = U0 and U0 is the Tη-Kripke-Kleene fixpoint. A well-founded induction can continue with unfound-
edness refinements. Indeed, consider

U1 : +a 7→ f ,+b 7→ f ,+c 7→ u.

Since
Tη(U1) = +a 7→ f ,+b 7→ f ,+c 7→ t,

it holds that U1 is an unfoundedness refinement of U0. Finally, we can conclude that U2 := Tη(U1) is the Tη-well-
founded fixpoint. This corresponds to the intended repair. N

As can be expected, not every set of AICs has a two-valued well-founded repair. That would simply be too much
to ask, as it would mean that for every set of AICs we can unambiguously identify a single repair. The following
example illustrates that this is indeed not always the case. It also illustrates that, for this specific example, Tη-stable
repairs provide a solution that corresponds to the intuitions.

Example 6.8. Consider the following set η of AICs:

¬a ∧ ¬b ⊃ +a

¬a ∧ ¬b ⊃ +b

a ∧ ¬c ⊃ +c

with DB = ∅. Intuitively, η has two “good” repairs. The first two rules state that a or b should be added in order to
“fix” the violated constraint ¬(¬a ∧ ¬b). Depending on that choice, the last rule determines whether or not c should
be repaired. The two intended repairs are thus {+a,+c} and {+b}. Let us investigate what the different AFT-style
semantics give in this case.

21

Consider
U0 : +a 7→ u,+b 7→ u,+c 7→ u.

Here, it holds that

suppU0(DB),η(+a) = u, suppU0(DB),η(−a) = f

suppU0(DB),η(+b) = u, suppU0(DB),η(−b) = f

suppU0(DB),η(+c) = u, suppU0(DB),η(−c) = f

Hence, Tη(U0) = U0 and U0 is the Tη-Kripke-Kleene fixpoint. Furthermore, we claim that there are no unfounded-
ness refinements of U0, and hence that U0 is also the Tη-well-founded fixpoint. To see that our claim indeed holds,
notice that any unfoundedness refinement of U0 should consist of making a subset U of {+a,+b,+c} false, in such a
way that for each α ∈ U , Tη(U0[U : f])(α) = f . Assume +a ∈ U . In order for Tη(U0[U : f])(+a) to be false +b
must be t in U0[U : f] (otherwise the body of the rule defining +a is unknown or true). That is not possible, hence
+a 6∈ U . From a similar argument, we find that +b 6∈ U and +c 6∈ U . Trivially, the two intended repairs are more
precise than the well-founded fixpoint.

Now, let us check whether U := {+a,+c} is a stable repair. For this, we need to verify if

U = lfp(Tη(·,U)1).

Define U0 = ∅. Then
(U0,U) = +a 7→ u,+b 7→ f ,+c 7→ u.

Hence
Tη(U0,U) = +a 7→ t,+b 7→ u,+c 7→ u

and
U1 := Tη(U0,U)1 = {+a}.

Similarly,
(U1,U) = +a 7→ t,+b 7→ f ,+c 7→ u.

Hence
Tη(U1,U) = +a 7→ t,+b 7→ f ,+c 7→ t

and
U2 := Tη(U1,U)1 = U .

Furthermore, Tη(U2,U) = U2 = U , hence we find that indeed, U is an Tη-stable fixpoint. The case for {+b} is
similar.

It can also be verified that there are no other Tη-stable fixpoints. Due to minimality, no other could contain +b,
hence they must be subsets of {+a,+c}. But since U is a stable repair, it is already minimal, hence no strict subset of
{+a,+c} can be a stable repair. N

Hence, in the above example, Tη-stable repairs capture the intended semantics.
We omit examples of grounded fixpoints, as we already included some in Section 3.

Properties of AFT-Style Semantics. We now show that all AFT-style semantics are nicely invariant under shifting.

Proposition 6.9. Tη , and hence also Tη , commutes with shifting, i.e., for each set S ⊆ At:

shifts ◦ T〈DB,η〉 = T〈shiftS(DB),shiftS(η)〉

Proof. The clue to proving this proposition is the fact that for each action α,

suppU(DB),η(α) = suppU(shiftS(DB)),shiftS(η)(shiftS(α)).

Then, the result easily follows from the fact that Tη has been defined entirely based on the supp function.

22

Corollary 6.10. All AFT-style semantics for AICs have the shifting property.

Proposition 6.11. If the AFT-well-founded repair is two-valued, it is also well-founded (as defined by Cruz-Filipe
et al. (2013)).

Proof. Let (Ui)i≤k be a well-founded induction of Tη . For each i, define Ui as {α ∈ A | Ui(α) = t}. We will
prove the following claim by induction on the length k of the well-founded induction (note that we restrict to finite
well-founded inductions here, since we assume At to be finite).

Claim: There exists a sequence α1, . . . , αn such that Uk = {α1, . . . , αn} and, for each i ∈ {1, . . . , n},
there is a rule ri such that {α1, . . . , αi−1}(DB) |= body(ri) and αi = head(ri).

From this claim, taking any terminal well-founded induction yields the desired result.
We now show the claim indeed holds. The claim is trivial for k = 0. Assume the claim holds for k, we show

that it also holds for k + 1. Thus assume α1, . . . , αn is a sequence with Uk = {α1, . . . , αn} satisfying the above
condition. If Uk+1 is an unfoundedness refinement of Uk, then Uk+1 = Uk and there is nothing to show. Hence,
assume that Uk ≤p Uk+1 ≤p Tη(Uk). In this case, Uk+1 = Uk ∪ {βj | 1 ≤ j ≤ m} for some sequence of elements
βj such that Tη(Uk)(βj) = t. For each j, let U ′j denote {α1, . . . , αn, β1, . . . , βj}. We claim that the sequence
α1, . . . , αn, β1, . . . , βm still satisfies the condition in the claim. To see this, note that from the definition of Tη , it
follows that for each j ∈ {1, . . . ,m} there is a rule rj with nup(r)Uk(DB) = t and head(rj) = βj . Furthermore, for
each j it holds that U ′j−1 ≥p Uk, hence also nup(r)U

′
j−1 = t. Since βj 6∈ Uj−1, we also see that body(rj)

U ′j−1 = t.
Hence, the claim indeed holds for k + 1 as well.

Example 6.12. The converse of Proposition 6.11 does not hold, as illustrated by Example 2.13. The intuitive repair
U2 = {+a,+c} is the AFT-well-founded repair for 〈DB, η〉. However, there is another well-founded repair U1 =
{+a,+b}. N

Proposition 6.13. All Tη-stable repairs are justified.

Proof. We can safely assume that U is a repair of DB (otherwise, it is not a Tη-stable repair).
Before starting the actual proof, we introduce a couple of auxiliary operators. For each set of update actions V , let

ext(V) denote V ∪ neffU (DB). Note that ext(V) is consistent whenever V ⊆ U . For each set of update actions V , let
closure(V) denote

closure(V) = V ∪ {head(r) | ua(nup(r)) ⊆ V}.

Now, we define the operator (on sets of update actions):

O : V 7→ closure(ext(V)) \ neffU (DB).

Below, we prove the following claims:
Claim 1: U is a minimal prefixpoint of O if and only if U is a justified repair of 〈DB, η〉.
Claim 2: For any literal l, ua(l) ∈ ext(DB) if and only if l(V,U)(DB) = t.
Claim 3: For any update action α, α ∈ closure(ext(V)) if and only if supp(V,U)(DB),η(α) = t.
Claim 4: For every set of update actions V ⊆ U :

Tη(V,U)1 ⊆ O(V).

Now, assume U is a Tη-stable repair. It is clear that O is a monotone operator, hence it has a unique minimal
prefixpoint, which is also its least fixpoint. Since U is a repair, it is a fixpoint of O; we need to show that it is minimal.
Assume U ′ ⊆ U is a prefixpoint of O as well. This means O(U ′) ⊆ U ′ and hence

Tη(U ′,U)1 ⊆ (O(U ′)) ⊆ U ′,

i.e., U ′ is a prefixpoint of Tη(·,U)1. Since U is an Tη-stable repair, U is the least prefixpoint of Tη(·,U)1 and thus
U = U ′. Hence, also U = U ′, which we needed to prove. We conclude that, indeed, U is a justified repair.

23

Claim 1 Recall that U is a repair. The claim then follows immediately from the definition of justified repair.
Prefixpoints of the closure operator are sets of update actions closed under η. Hence U is a minimal prefixpoint of O
iff ext(U) is a minimal set of update actions that contains neffU (DB) and is closed under η.

Claim 2 Pick some literal l.
First assume that ua(l) ∈ ext(V) = V ∪ neffU (DB). We show that l(V,U)(DB) = t. We consider two cases:

• If ua(l) ∈ neffU (DB), then lDB = t and U does not change the value of l. Thus, l(V,U)(DB) = lDB = t.

• If ua(l) 6∈ neffU (DB), then it must hold that ua(l) ∈ V ⊆ U . Since ua(l) ∈ U and every action in U
changes DB , it must hold that lDB = f . Now, since ua(l) ∈ V , (V,U) changes the value of l and thus
l(V,U)(DB) = (lDB)−1 = t in this case.

For the other direction, assume that l(V,U)(DB) = t. We need to show that ua(l) ∈ ext(V) = V ∪neffU (DB). Assume
that ua(l) 6∈ neffU (DB), we show that ua(l) ∈ V . Since l(V,U)(DB) = t and U ≥p (V,U), also lU = t. Since
l 6∈ neffU (DB), this means that lDB = f . Now, l(V,U)(DB) = t = (lDB)−1. Hence it must hold that (V,U) changes
the value of l. Since lDB = f , this means that ua(l) ∈ V , which is exactly what we needed to prove.

Claim 3 Let α be an update action. It holds that supp(V,U)(DB),η(α) = t if and only if there is some rule r with
head(r) = α and nup(r)(V,U)(DB) = t. This means that for each literal l′ ∈ nup(r), l′(V,U)(DB) = t. From Claim 2
it then follows that this is equivalent with the condition that each literal l′ ∈ nup(r) is an element of ext(V), i.e., with
the condition that α ∈ closure(ext(V)).

Claim 4 Take α ∈ A and a set V of update actions. It holds that α ∈ Tη(V,U)1 if and only if one of the following
holds:

(i) (V,U)(α) = t and supp(V,U)(DB),η(αD) = f

(ii) (V,U)(α) = f and supp(V,U)(DB),η(α) = t

(iii) (V,U)(α) = u, supp(V,U)(DB),η(α) = t, and supp(V,U)(DB),η(αD) = f .

In the first case, α ∈ V , hence α ∈ ext(V) and α ∈ closure(ext(V)). If supp(V,U)(DB),η(α) = t (i.e., in cases ii
and iii), then by Claim 3, α ∈ closure(ext(V)). Thus, in all cases, α ∈ closure(ext(V)). Now, since U is a repair,
(U ,U) is a fixpoint of of Tη . Since (V,U) ≤p (U ,U), α ∈ Tη(V,U)1 entails α ∈ Tη(U ,U)1, i.e., α ∈ U . Thus,
α 6∈ neffU (DB) and we find that α ∈ closure(ext(V)) \ neffU (DB) = O(V), which we needed to prove.

Example 6.14. The converse of Proposition 6.13 does not hold. Consider the following set η of AICs.

¬a ⊃ +a

a ∧ ¬b ⊃ +b

a ∧ ¬b ⊃ −a

with DB = ∅. In this case {+a,+b} is a justified repair of 〈DB, η〉, but not a stable repair. To see that it is not a
stable repair, it suffices to note that

Tη(∅, {+a,+b}) = (∅, {+a,+b})

and hence
lfpTη(·, {+a,+b})1 = ∅ 6= {+a,+b}.

To see that it is a justified repair, note that {+a,+b} is the least set closed under η. N

While the converse of Proposition 6.13 does not hold in general, for a broad class of active integrity constraints, it
does hold. We first define this class and then prove that this is indeed the case.

Definition 6.15. A set of AICs η is called unipolar if there are no rules r, r′ ∈ η with head(r) = head(r′)D.

Unipolar AICs make sense in practice, for example if there are tables from which removing data is never an option.

Proposition 6.16. If η is unipolar, then each justified repair of 〈DB, η〉 is Tη-stable.

24

Proof. To prove this theorem, we show the following strengthening of Claim 4 in the proof of Proposition 6.13.
Claim 4’: For every set of update actions V ⊆ U :

Tη(V,U)1 = O(V).

It then follows easily that U is a minimal fixpoint of O iff U is a minimal fixpoint of Tη(·,U)1 and the result follows
from Claim 1 in the proof of Proposition 6.13 and the definition of Tη-stable fixpoint.

Claim 4’ One direction of this claim has been proven as Claim 4 in the proof of Proposition 6.13; we show that
the other inclusion also holds. Take α ∈ A and a set V ⊆ U of update actions such that α ∈ O(V); we show that α ∈
Tη(V,U)1. Since α ∈ O(V), it holds that α ∈ closure(ext(V)) and thus (by Claim 3) that supp(V,U)(DB),η(α) = t.
This means that there is at least one rule r ∈ η with head(r) = α. Since η is unipolar, there can be no rules r′ ∈ η
with head(r′) = αD hence, it holds that supp(V,U)(DB),η(aD) = f . From the definition of Tη , we then find that
Tη(V,U)(α) = t and thus that α ∈ Tη(V,U)1, which we needed to prove.

From Proposition 3.7, which states that all justified repairs are grounded, we easily find how justified repairs and
the AFT-well-founded repair relate.

Corollary 6.17. The AFT-well-founded repair and the Kripke-Kleene repair approximate all justified repairs.

7. Relationship With Logic Programming

Caroprese and Truszczyński (2011) defined a translation from logic programs to AICs as follows.

Definition 7.1. Let r be a normal logic programming rule,

a← l1 ∧ · · · ∧ ln.

We define the active integrity constraint aic(r) as

l1 ∧ . . . ∧ ln ∧ ¬a ⊃ +a.

Furthermore, if P is a normal logic program, we define

aic(P) =
⋃
{aic(r) | r ∈ P}.

Caroprese and Truszczyński (2011) showed that for simple programs P , an interpretation I is a stable model of P
if and only if I (viewed as an update set) is a justified repair of 〈aic(P), ∅〉. Since aic(P) is unipolar, from our earlier
results (Propositions 6.13 and 6.16) it follows that this is also equivalent with the condition that I is a Taic(P)-stable
repair. The same result is also a corollary of the following stronger theorem.

Theorem 7.2. Let P be a simple normal logic program and I a partial interpretation. It holds that I is a partial
stable model of P if and only if I is a partial stable repair of 〈aic(P), ∅〉.

The proof of this theorem follows later, since it makes use of Theorem 7.6. Since the well-founded model of a
logic program is the least precise partial stable model, and an analogous relationship holds in the setting of AICs, we
immediately find the following corollary.

Corollary 7.3. Let P be a normal logic program. The well-founded model of P coincides with the AFT-well-founded
repair of 〈aic(P), ∅〉.

While the operation aic preserves (partial) stable, well-founded fixpoints, it does not preserve grounded fixpoints
or the Kripke-Kleene fixpoint (as the following two examples illustrate). In both cases, it is the intuition of inertia,
present in AICs but not in logic programs, that is responsible for the difference.

25

Example 7.4. Consider the logic program

Pg =

{
p ← ¬q
q ← p

}
.

Since TPg has no fixpoints, Pg has no grounded models. In this case,

aic(Pg) =

{
¬p ∧ ¬q ⊃ +p
p ∧ ¬q ⊃ +q

}
.

Now, 〈aic(Pg), ∅〉 has one grounded repair, namely {+p,+q}. N

Example 7.5. Consider the logic program
Pkk = {b← a} .

The Kripke-Kleene model of this program maps both a and b to f . The corresponding AIC

aic(Pkk) = {¬b ∧ a ⊃ +b}

has a Kripke-Kleene repair that maps a and b to u, i.e., it is unknown if these need to be changed. N

It can be seen from the previous example that for AICs, the Kripke-Kleene semantics is very bad at deriving that
something does not need to be changed. The well-founded semantics is much stronger with that respect. In a certain
sense, one might say that the intuition of “inertia” underlying AICs lies at the foundation of this discrepancy. Now,
in logic programming, the Kripke-Kleene semantics exhibits similar behavior. Consider for instance the empty logic
program

P∅ = {}.

This program has a Kripke-Kleene model in which each atom is false, as expected. However, adding a trivial rule

p← p

that “simulates” inertia results in a program with a Kripke-Kleene model in which p is unknown.
Inertia is also responsible for the discrepancy in Example 7.4. Intuitively, aic(Pg) from that example corresponds

more to the logic program

P ′g =

p← ¬q
p← p
q ← p
q ← q

 .

Indeed aic(Pg) states that if neither p nor q are present in the database, add p, and once we add it, by inertia, it stays
unless there is a reason to remove it again (which there is not), and similarly for q. P ′ and Pg only differ from each
other in the rules p← p and q ← q, which simulate inertia.

The above discussion provides intuitions on what a transformation that preserves all AFT semantics should look
like. In the following theorem, this is formalized.

Theorem 7.6. Suppose that DB = ∅ and that the only update actions in η are of the form +a. The mapping ua induces
an isomorphism between the lattices 2At and 2A and between (2At)c and (2A)c. Let lp(η) denote the following logic
program:

lp(η) ={a← nup(r) | r ∈ η, head(r) = +a}
∪ {a← a | a ∈ At}

then for each partial interpretation I, Tη(ua(I)) = ua(Ψlp(η)(I)). Hence, all AFT semantics for 〈DB, η〉 coincide
in this case with the equally-named semantics for the logic program lp(η).

26

Proof. By definition,

Ψlp(η)(I)1 = {a ∈ At | body(r)I = t for some r ∈ lp(η) with head(r) = a}
= {a ∈ At | nup(r)I = t for some r ∈ η with head(r) = +a} ∪ {a ∈ At | aI = t}
= {lit(head(r)) | r ∈ η ∧ nup(r)I = t} ∪ {a ∈ At | aI = t}
= {lit(α) | suppI,η(α) = t} ∪ {a ∈ At | aI = t}

Now, since, for each α ∈ A, it holds that suppI,η(αD) = f (since there are no rules with αD in the head). From the
definition of Tη , it then follows that

Tη(ua(I))1 = {α | suppI,η(α) = t or αua(I) = t},

i.e., that
Tη(ua(I))1 = ua(Ψlp(η)(I)1).

Similarly, we also find that
Tη(ua(I))2 = ua(Ψlp(η)(I)2)

and the result follows.

Proof of Theorem 7.2. For each logic program P , let triv(P) denote the logic program

triv(P) = P ∪ {p← p | p ∈ At}.

It is well-known6 that the partial stable models of P and those of triv(P) are the same. Now, the result easily follows
from the facts that (i) if P is simple, then

lp(aic(P)) = triv(P)

since aic adds a literal ¬a to the body of each rule r with head(r) = a and lp removes such literal again (since P is
simple, there was no such literal at the start) and additionally, adds the trivial rules triv adds, and (ii) that triv and lp
preserve partial stable models.

Example 7.7. Theorem 7.6 does not hold in general, not even for unipolar AICs. Consider for instance the following
sets of AICs.

η1 =

{
a ⊃ −a
b ⊃ −b

}
η2 = ∅.

These two are not equivalent under all AFT semantics. For the first one, the KK-repair is {+a 7→ f ,+b 7→ f}, while
for the latter, the KK-repair is {+a 7→ u,+b 7→ u}. However, they have the same translation to logic programs (since
there are no rules with positive actions in the head). N

The reason why the equivalence does not hold in the previous example is because rules with −a in the head are
ignored, while in the context of AICs such rules can make a semantic difference.

6For completeness, we give the argument. Let I be an interpretation; from the definition of partial stable fixpoint, it suffices to show that
lfp(ΨP (·, I)1) = lfp(Ψtriv(P)(·, I)1) and that lfp(ΨP (I, ·)2) = lfp(Ψtriv(P)(I, ·)2). Since we are working with symmetric operators, it
suffices to prove the first of the two equalities. Now, it is easy to see that Ψtriv(P)(·, I)1 is the inflationary operator of ΨP (·, I)1, i.e., that
Ψtriv(P)(·, I)1(J) = ΨP (·, I)1(J)∪J . Hence, these two monotone operators have the same prefixpoints and thus also the same least prefixpoint,
which equals their least prefixpoint.

27

Limitations and Related Work. In this Section, we studied mappings from sets of active integrity constraints to logic
programs and back and how the semantics of the two formalisms relate. We briefly discuss the restrictions of this
approach. In our translation of AICs to logic programs, namely in Theorem 7.6, we assume that DB = ∅ and that
the only update actions that occur in heads of rules are positive, i.e., of the form +a. Since all our semantics satisfy
the shifting property, the correspondence between the semantics still holds if DB is arbitrary but all actions in rule
heads change DB . However, the condition that all actions in heads of rules change DB is essential, as illustrated by
Example 7.7.

The translation Rew introduced by Caroprese et al. (2006), on the other hand, is at first sight more expressive than
ours, as it applies to AICs with arbitrary actions on their head. In order to deal also with removal actions (in the case of
an empty database), the authors are required to consider a logic program with an extended signature that includes two
copies of the database and two atoms for each possible update action. They can then prove a precise correspondence
between stable models of logic programs and founded repairs for AICs – the only semantics that had been developed
at that point in time.

However, their construction is very directly tailored to founded repairs, and it is not obvious that it can be adapted
to AFT semantics. In order to capture inertia, the authors duplicate all database atoms, so that every model contains
both a copy of the original database and a copy of the repaired database. Additional rules ensure that, in each model,
the repaired database corresponds exactly to the result of applying the update actions also included in that model to
the original database. It can easily be seen that this mapping does not preserve AFT semantics for AICs. For instance,
this technique maps founded repairs (which are not always grounded) to stable models (which are always grounded),
hence, it certainly does not preserve grounded repairs. By contrast, the correspondence stated in Theorem 7.6 holds
for all different semantics considered in the current work.

Another limitation of our results is that for the reverse translation, we only preserve (partial) stable repairs and
the AFT-well-founded repair (cfr Theorem 7.2). However, our discussion does highlight where the difference comes
from, namely the intuition of inertia. That is, as shown in the proof of Theorem 7.2: for each simple normal logic
program P , the semantics of triv(P) and aic(P) coincide.

Furthermore, we restrict our attention to normal programs; Caroprese and Truszczyński (2011) discuss this trans-
lation without requiring normality. However, as mentioned before, we see non-normal AICs as syntactic sugar for
their normalization and hence have no need for non-normal logic programs either. The same applies to the translation
Rew from Caroprese et al. (2006). The restriction that our programs are simple is rather a technical requirement that
simplifies proofs. For several semantics, this is non-essential: for (partial) stable and well-founded semantics, each
program can easily be translated into an equivalent simple program.

8. Complexity Analysis

We begin this section by stating an observation about the complexity of computing Tη . All complexity results are
in terms of the size of the database, 〈DB, η〉.

Proposition 8.1. Given a partial action set U, Tη(U) is computable in polynomial time.

Proof. The definition of Tη only requires evaluating U(α), suppU(DB),η(α) and suppU(DB),η(αD) for each α ∈ A.
In turn, the two last computations can be done in polynomial time: they require evaluating each literal in the body of
each rule from η with head α or αD and computing its truth value under the database updated by U.

Proposition 8.2. Let DB be a database and η be a set of normal AICs over DB . The problem of deciding whether
there exists a grounded repair for 〈DB, η〉 is ΣP2 -complete.

Proof. (Inclusion) We need to show that we can decide the problem with a non-deterministic Turing machine with an
NP oracle. Given a set of update actions U , checking that it is a fixpoint of Tη can be done in polynomial time on
the size of DB and η, as shown in Proposition 8.1; the NP-oracle can then answer whether there exists U ′ (U with
Tη(U ′) ∩ U ⊆ U ′, thereby establishing whether U is grounded.

(Hardness) We show hardness directly by reducing another ΣP2 -hard problem to deciding whether a particular
database with a set of AICs has a grounded repair. Our proof is a straightforward adaptation of (Bogaerts et al., 2015a,
Theorem 5.7), which in turn is inspired by (Denecker et al., 2004, Theorem 6.12).

28

Given a DNF formula ϕ over propositional symbols x1, . . . , xm, y1, . . . , yn, and an interpretation I of the xi, let
ϕI denote the formula obtained by replacing each occurrence of xi with either t, if xi ∈ I , or f , otherwise. The
problem to decide whether there exists an interpretation I of the xi such that ϕI is a tautology is ΣP2 hard. We now
reduce this problem to our problem.

We consider the empty database DB over At = {xi, x′i | 1 ≤ i ≤ m} ∪ {p, q, y1, . . . , yn}, where we use x′i to
represent the negation of xi. We write ϕ′ for the formula obtained by uniformly replacing ¬xi with x′i in ϕ. The set
of AICs η(ϕ) is defined as follows, where we assume ϕ′ = ϕ′1 ∨ . . . ∨ ϕ′k and each ϕ′i is a conjunction of literals.

¬xi ∧ ¬x′i ⊃ +xi ¬xi ∧ ¬x′i ⊃ +x′i for 1 ≤ i ≤ m (r22)
ϕ′i ∧ ¬yj ⊃ +yj ϕ′i ∧ ¬p ⊃ +p for 1 ≤ i ≤ k, 1 ≤ j ≤ n (r23)
¬p,¬q ⊃ +q ¬p, q ⊃ −q (r24)

The following properties hold about η(ϕ).

a. Each weak repair of 〈η(ϕ), ∅〉 contains +p (otherwise one of the rules r24 would apply).

b. No repair for 〈η(ϕ), ∅〉 contains +q (due to minimality).

c. In each grounded repair for 〈η(ϕ), ∅〉, at least one of the ϕ′i is satisfied (otherwise, removing +p from that repair
would result in a set of update actions where +p is no longer derivable, contradicting groundedness).

d. Each grounded repair for 〈η(ϕ), ∅〉 contains all of the +yj (follows directly from the previous point).

e. Each grounded repair for 〈η(ϕ), ∅〉 contains for each i, exactly one of +xi and +x′i (it must contain at least one
due to rules r22; the previous points guarantee that rules r23 and r24 are satisfied regardless of the xi and x′i in
each grounded repair, hence minimality implies that it can contain at most one of these two actions).

Given an interpretation I , we write Ǐ to denote the set {+xi | xi ∈ I} ∪ {+x′i | xi /∈ I}. From observations a-e
above, it follows that all grounded fixpoints for 〈η(ϕ), ∅〉 must be of the form UI = Ǐ ∪ {p, y1, . . . , yn} for some
interpretation I of the xi. We now show that for each interpretation I , UI is a grounded repair for 〈η(ϕ), ∅〉 iff ϕI is a
tautology.

• First, assume that UI is a grounded repair of 〈η(ϕ), ∅〉. If J ⊆ {y1, . . . , yn} is a falsifying assignment for ϕI ,
then Tη(ϕ)(Ǐ ∪ {+yi | yi ∈ J}) ∩ U = (Ǐ ∪ {+yi | yi ∈ J} ∪ {+q}) ∩ U = Ǐ ∪ {+yi | yi ∈ J}, contradicting
the fact that U is a grounded repair for 〈η(ϕ), ∅〉. (Note that Ǐ ∪ {+yi | yi ∈ J} is always a strict subset of U ,
since it does not contain p.) Therefore ϕI is a tautology.

• Suppose on the other hand that ϕI is a tautology. Let V ⊆ U be such that Tη(ϕ)(V)∩U ⊆ V . If +xi ∈ (U \ V)

or +x′i ∈ (U \ V) for some i, then +xi ∈ Tη(ϕ)(V) by rules r22; therefore, Ǐ ⊆ V . But ϕI is a tautology, hence
if +yi /∈ V , then the corresponding rule from r23 ensures that +yi ∈ Tη(ϕ)(V). Likewise, if +p /∈ V , then
+p ∈ Tη(ϕ)(V). We thus conclude that V = U , whence U is a grounded repair for 〈η(ϕ), ∅〉.

Proposition 8.3. The Kripke-Kleene repair for 〈DB, η〉 is computable in polynomial time.

Proof. The Kripke-Kleene repair of 〈DB, η〉 can be computed by iterating Tη until a fixpoint is reached. Since Tη is
monotonic, the maximum number of iterations is the size of At ; since each iteration can be computed in polynomial
time (Proposition 8.1), so can this fixpoint.

Proposition 8.4. The ATF-well-founded repair for 〈DB, η〉 is computable in polynomial time.

The proof makes use of the following proposition.

Proposition 8.5 (Denecker and Vennekens, 2007). Let A be an approximator of O and (x, y) ∈ L2. Let SxA be the
operator on L that maps every y′ to A(x, y′)2. This operator is monotone. The smallest y′ such that (x, y′) is an
unfoundedness refinement of (x, y) is given by y′ = lfp(SxA).

29

Proof of Proposition 8.4. To compute the Tη-well-founded fixpoint, we can construct a well-founded induction with
only strict refinements. Since such a well-founded is ≤p-increasing, it can consist of at most of |A| = |At | steps.
Computing if there exists a strict application refinement of a given partial repair set U can be done by computing
Tη(U). Now, Proposition 8.5 shows that the most precise unfoundedness refinement can also be computed as the least
fixpoint of a derived operator on 2A. Such a fixpoint can again be computed in polynomial time. Hence, it follows
that we can compute a terminal well-founded induction, and thus the well-founded fixpoint, in polynomial time.

Proposition 8.6. The task of checking if a database 〈DB, η〉 has a stable repair is NP-complete.

Proof. (Inclusion) Given a candidate repair U , checking that it is stable can be done in polynomial time, as it amounts
to verifying that it is a repair (two-valued) and that it is a least fixpoint of the operators Tη(·,U)1 and Tη(U , ·)2. The
latter can be done in polynomial time, as in the proof of Proposition 8.3.

(Hardness) For hardness, we again use the reduction from simple logic programs to AICs from (Caroprese and
Truszczyński, 2011) given in Definition 7.1. This operator preserves stable semantics by Theorem 7.2, and therefore
allows us to compute stable models of simple logic programs by first translating them (in linear time) to sets of AICs.
Since checking whether a logic program has a stable model is NP-complete (Bidoit and Froidevaux, 1991; Marek and
Truszczyński, 1991), we conclude that checking whether a database has a stable repair must be NP-hard. Note that
every logic program can be transformed in a simple logic program by removing the offending rules without changing
its stable semantics.

What we notice in this section is that complexity for inference tasks related to our semantics is always the same as
the complexity of its counterpart in (normal) logic programming. This illustrates that the added expressivity (essen-
tially, allowing AICs that are not unipolar) does not result in added complexity.

Contrary to the original work introducing AICs (Flesca et al., 2004), our definitions do not include first-order
quantifications. When allowing such a richer syntax, the results presented in this section can be re-used and constitute
data-complexity results.

9. Conclusion

In this paper, we defined an approximator in the domain of active integrity constraints. The result is a family
of semantics for AICs based on existing intuitions in various domains of non-monotonic reasoning. We studied
properties of our induced semantics. In particular the AFT-well-founded semantics possesses desirable properties:
it approximates all repairs of various families (stable, justified, grounded) and hence can be used for approximate
skeptical query-answering with respect to any of these semantics. Furthermore, the AFT-well-founded repair can be
computed in time polynomial in the size of the database.

Our study is far from finished. In the context of approximation fixpoint theory, ultimate approximators have been
studied by Denecker et al. (2004). They showed that with each two-valued operator, we can associate a canonical
approximator. The ultimate approximator induces another family of semantics for AICs. In other domains, e.g., in
logic programming, semantics based on ultimate approximators have some very desirable properties, but in general
come at the cost of a higher computational complexity than their “standard” variants. It remains to be researched if
the same holds in the context of AICs. In this paper, we showed that the class of justified repairs is situated in between
the classes of stable and of grounded repairs. It is known from AFT that the class of ultimate stable fixpoints also
falls in between the classes of stable fixpoints (for any approximator) and grounded fixpoints. Hence, an interesting
research question would be to verify if justified repairs coincide with ultimate stable fixpoints in this domain, and if
not, how they relate. Another topic with potential for interesting future work is the notion of inconsistency. Consider
for instance the set of AICs {¬a ⊃ +a, a ⊃ −a}; intuitively, we expect a semantic operator to derive an inconsistency
from any partial action set; in standard AFT this is not possible. However, extensions of AFT that accommodate this
have been defined (Bi et al., 2014); it would be interesting to see how AICs fit in this general theory. Another AFT-
based topic of interest could be to study what safe inductions (Bogaerts et al., 2017) yield in the context of AICs
and whether they can fix problems with the well-founded semantics. One last topic on which more extensive research
might be needed is the domain of revision programming (Marek and Truszczynski, 1998). Caroprese and Truszczyński
(2011) showed structural correspondences between semantics for AICs and semantics for revision programs. Our
paper now paves the way to applying AFT to revision programming as well.

30

Acknowledgements. Bart Bogaerts is a postdoctoral fellow of the Research Foundation – Flanders (FWO). Luı́s Cruz-
Filipe was partially supported by the Danish Council for Independent Research, Natural Sciences, grants DFF-1323-
00247 and DFF-7014-00041.

References

Abiteboul, S., 1988. Updates, A new frontier. In: Gyssens, M., Paredaens, J., Gucht, D. V. (Eds.), ICDT’88, 2nd International Conference on
Database Theory, Bruges, Belgium, August 31 - September 2, 1988, Proceedings. Vol. 326 of Lecture Notes in Computer Science. Springer, pp.
1–18.
URL https://doi.org/10.1007/3-540-50171-1_1

Antic, C., Eiter, T., Fink, M., 2013. Hex semantics via approximation fixpoint theory. In: Cabalar, P., Son, T. C. (Eds.), Logic Programming and
Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings. Vol. 8148 of
LNCS. Springer, pp. 102–115.
URL http://dx.doi.org/10.1007/978-3-642-40564-8_11

Bi, Y., You, J., Feng, Z., 2014. A generalization of approximation fixpoint theory and application. In: Kontchakov, R., Mugnier, M. (Eds.), Web
Reasoning and Rule Systems - 8th International Conference, RR 2014, Athens, Greece, September 15-17, 2014. Proceedings. Vol. 8741 of
Lecture Notes in Computer Science. Springer, pp. 45–59.
URL http://dx.doi.org/10.1007/978-3-319-11113-1_4

Bidoit, N., Froidevaux, C., 1991. Negation by default and unstratifiable logic programs. Theor. Comput. Sci. 78 (1), 86–112.
URL https://doi.org/10.1016/0304-3975(51)90004-7

Bogaerts, B., Jun. 2015. Groundedness in logics with a fixpoint semantics. Ph.D. thesis, Department of Computer Science, KU Leuven, denecker,
Marc (supervisor), Vennekens, Joost and Van den Bussche, Jan (cosupervisors).
URL https://lirias.kuleuven.be/handle/123456789/496543

Bogaerts, B., Cruz-Filipe, L., 2017. Semantics for active integrity constraints using approximation fixpoint theory. In: (Sierra, 2017), pp. 866–872.
URL https://doi.org/10.24963/ijcai.2017/120

Bogaerts, B., Vennekens, J., Denecker, M., 2015a. Grounded fixpoints and their applications in knowledge representation. Artif. Intell. 224, 51–71.
URL http://dx.doi.org/10.1016/j.artint.2015.03.006

Bogaerts, B., Vennekens, J., Denecker, M., 2015b. Partial grounded fixpoints. In: Yang, Q., Wooldridge, M. (Eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. AAAI Press, pp.
2784–2790.
URL http://ijcai.org/papers15/Abstracts/IJCAI15-394.html

Bogaerts, B., Vennekens, J., Denecker, M., 2017. Safe inductions: An algebraic study. In: (Sierra, 2017), pp. 859–865.
URL https://doi.org/10.24963/ijcai.2017/119

Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J., 2014. FO(C): A knowledge representation language of causality. TPLP 14 (4–5-
Online-Supplement), 60–69.
URL https://lirias.kuleuven.be/handle/123456789/459436

Brewka, G., Woltran, S., 2010. Abstract dialectical frameworks. In: Lin, F., Sattler, U., Truszczyński, M. (Eds.), Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI
Press, pp. 102–111.
URL http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294

Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E., 2006. Declarative semantics of production rules for integrity maintenance. In: Etalle, S.,
Truszczyński, M. (Eds.), Logic Programming, 22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings.
Vol. 4079 of LNCS. Springer, pp. 26–40.
URL http://dx.doi.org/10.1007/11799573_5

Caroprese, L., Truszczyński, M., 2011. Active integrity constraints and revision programming. TPLP 11 (6), 905–952.
URL http://dx.doi.org/10.1017/S1471068410000475

Cruz-Filipe, L., 2014. Optimizing computation of repairs from active integrity constraints. In: Beierle, C., Meghini, C. (Eds.), Foundations of
Information and Knowledge Systems - 8th International Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014. Proceedings. Vol. 8367
of Lecture Notes in Computer Science. Springer, pp. 361–380.
URL http://dx.doi.org/10.1007/978-3-319-04939-7_18

Cruz-Filipe, L., Nov. 2016. Grounded fixpoints and active integrity constraints. In: Carro, M., King, A., De Vos, M., Saeedloei, N. (Eds.), Technical
Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA.
Vol. 52 of OASIcs. Schloss Dagstuhl, pp. 11:1–11:14.
URL https://doi.org/10.4230/OASIcs.ICLP.2016.11

Cruz-Filipe, L., Franz, M., Hakhverdyan, A., Ludovico, M., Nunes, I., Schneider-Kamp, P., 2015. repairc: A tool for ensuring data consistency. In:
Fred, A. L. N., Dietz, J. L. G., Aveiro, D., Liu, K., Filipe, J. (Eds.), KMIS 2015 - Proceedings of the International Conference on Knowledge
Management and Information Sharing, part of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K 2015), Volume 3, Lisbon, Portugal, November 12-14, 2015. SciTePress, pp. 17–26.
URL https://doi.org/10.5220/0005586400170026

Cruz-Filipe, L., Gaspar, G., Engrácia, P., Nunes, I., 2013. Computing repairs from active integrity constraints. In: Seventh International Symposium
on Theoretical Aspects of Software Engineering, TASE 2013, 1-3 July 2013, Birmingham, UK. IEEE Computer Society, pp. 183–190.
URL https://doi.org/10.1109/TASE.2013.32

Cruz-Filipe, L., Gaspar, G., Nunes, I., Schneider-Kamp, P., 2016. Active integrity constraints for multi-context systems. In: Blomqvist, E., Ciancar-
ini, P., Poggi, F., Vitali, F. (Eds.), Knowledge Engineering and Knowledge Management - 20th International Conference, EKAW 2016, Bologna,

31

Italy, November 19-23, 2016, Proceedings. Vol. 10024 of Lecture Notes in Computer Science. pp. 98–112.
URL https://doi.org/10.1007/978-3-319-49004-5_7

Denecker, M., Bruynooghe, M., Vennekens, J., 2012. Approximation fixpoint theory and the semantics of logic and answers set programs. In:
Erdem, E., Lee, J., Lierler, Y., Pearce, D. (Eds.), Correct Reasoning. Vol. 7265 of LNCS. Springer, pp. 178–194.
URL http://dx.doi.org/10.1007/978-3-642-30743-0_13

Denecker, M., Marek, V., Truszczyński, M., 2000. Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic
reasoning. In: Minker, J. (Ed.), Logic-Based Artificial Intelligence. Vol. 597 of The Springer International Series in Engineering and Computer
Science. Springer US, pp. 127–144.
URL http://dx.doi.org/10.1007/978-1-4615-1567-8_6

Denecker, M., Marek, V., Truszczyński, M., 2003. Uniform semantic treatment of default and autoepistemic logics. Artif. Intell. 143 (1), 79–122.
URL http://dx.doi.org/10.1016/S0004-3702(02)00293-X

Denecker, M., Marek, V., Truszczyński, M., Jul. 2004. Ultimate approximation and its application in nonmonotonic knowledge representation
systems. Information and Computation 192 (1), 84–121.
URL https://lirias.kuleuven.be/handle/123456789/124562

Denecker, M., Vennekens, J., 2007. Well-founded semantics and the algebraic theory of non-monotone inductive definitions. In: Baral, C., Brewka,
G., Schlipf, J. S. (Eds.), LPNMR. Vol. 4483 of Lecture Notes in Computer Science. Springer, pp. 84–96.
URL http://dx.doi.org/10.1007/978-3-540-72200-7_9

Dung, P. M., 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell. 77 (2), 321 – 357.
URL http://dx.doi.org/10.1016/0004-3702(94)00041-X

Eiter, T., Gottlob, G., 1992. On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artif. Intell. 57 (2-3),
227–270.
URL http://dx.doi.org/10.1016/0004-3702(92)90018-S

Fitting, M., 2002. Fixpoint semantics for logic programming — A survey. Theoretical Computer Science 278 (1-2), 25–51.
URL http://dx.doi.org/10.1016/S0304-3975(00)00330-3

Flesca, S., Greco, S., Zumpano, E., 2004. Active integrity constraints. In: Moggi, E., Warren, D. S. (Eds.), Proceedings of the 6th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 24-26 August 2004, Verona, Italy. ACM, pp. 98–107.
URL http://doi.acm.org/10.1145/1013963.1013977

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic programming. In: Kowalski, R. A., Bowen, K. A. (Eds.), ICLP/SLP. MIT
Press, pp. 1070–1080.
URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050

Kleene, S. C., 1938. On notation for ordinal numbers. The Journal of Symbolic Logic 3 (4), 150–155.
URL http://www.jstor.org/stable/2267778

Marek, V., Truszczyński, M., 1991. Autoepistemic logic. J. ACM 38 (3), 588–619.
URL http://dx.doi.org/10.1145/116825.116836

Marek, V. W., Truszczynski, M., 1998. Revision programming. Theor. Comput. Sci. 190 (2), 241–277.
URL http://dx.doi.org/10.1016/S0304-3975(97)00092-3

Moore, R. C., 1985. Semantical considerations on nonmonotonic logic. Artif. Intell. 25 (1), 75–94.
URL http://dx.doi.org/10.1016/0004-3702(85)90042-6

Przymusinski, T. C., Turner, H., 1997. Update by means of inference rules. J. Log. Program. 30 (2), 125–143.
URL https://doi.org/10.1016/S0743-1066(96)00091-X

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.
URL http://dx.doi.org/10.1016/0004-3702(80)90014-4

Sierra, C. (Ed.), 2017. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017. ijcai.org.
URL http://www.ijcai.org/Proceedings/2017/

Strass, H., 2013. Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70.
URL http://dx.doi.org/10.1016/j.artint.2013.09.004

Strass, H., Wallner, J. P., 2014. Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory. In:
Baral, C., De Giacomo, G., Eiter, T. (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, pp. 101–110.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7917

Teniente, E., Olivé, A., 1995. Updating knowledge bases while maintaining their consistency. VLDB J. 4 (2), 193–241.
URL http://www.vldb.org/journal/VLDBJ4/P193.pdf

van Emden, M. H., Kowalski, R. A., 1976. The semantics of predicate logic as a programming language. J. ACM 23 (4), 733–742.
URL http://dx.doi.org/10.1145/321978.321991

Van Gelder, A., Ross, K. A., Schlipf, J. S., 1991. The well-founded semantics for general logic programs. J. ACM 38 (3), 620–650.
URL http://dx.doi.org/10.1145/116825.116838

Vennekens, J., Gilis, D., Denecker, M., 2006. Splitting an operator: Algebraic modularity results for logics with fixpoint semantics. ACM Trans.
Comput. Log. 7 (4), 765–797.
URL http://dx.doi.org/10.1145/1182613.1189735

Vennekens, J., Mariën, M., Wittocx, J., Denecker, M., September 2007a. Predicate introduction for logics with a fixpoint semantics. Part I: Logic
programming. Fundamenta Informaticae 79 (1-2), 187–208.
URL https://lirias.kuleuven.be/handle/123456789/266021

Vennekens, J., Mariën, M., Wittocx, J., Denecker, M., September 2007b. Predicate introduction for logics with a fixpoint semantics. Part II:

32

Autoepistemic logic. Fundamenta Informaticae 79 (1-2), 209–227.
URL https://lirias.kuleuven.be/handle/123456789/146591

Widom, J., Ceri, S. (Eds.), 1996. Active Database Systems: Triggers and Rules For Advanced Database Processing. Morgan Kaufmann.
Winslett, M., 1990. Updating Logical Databases. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.

33

