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Approximation fixpoint theory (AFT) is an algebraic study of fixpoints of lattice operators that unifies various

knowledge representation formalisms. In AFT, stratification of operators has been studied, essentially resulting

in a theory that specifies when certain types of fixpoints can be computed stratum per stratum. Recently,

novel types of fixpoints related to groundedness have been introduced in AFT. In this paper, we study how

those fixpoints behave under stratified operators.

One recent application domain of AFT is the field of active integrity constraints (AICs). We apply our

extended stratification theory to AICs and find that existing notions of stratification in AICs are covered by

this general algebraic definition of stratification. As a result, we obtain stratification results for a large variety

of semantics for AICs.
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1 INTRODUCTION
Approximation fixpoint theory (AFT) is an abstract, lattice-theoretic formalism designed to study

semantic principles occurring in a wide variety of knowledge representation languages. In AFT,

fixpoints of lattice operators and so-called approximating operators are studied. Denecker, Marek

and Truszczyński [2000] (from now on abbreviated as DMT) defined various types of fixpoints

associated with such operators and called them supported, Kripke-Kleene, stable and well-founded

fixpoints. For logic programming [van Emden and Kowalski 1976], they showed that Fitting’s

semantic operator is an approximator of the two-valued immediate consequence operator and

that its four different types of fixpoints coincide exactly with the four equally named semantics of

logic programs. They defined semantic operators and approximators [DMT 2003] for autoepistemic

logic (AEL) [Moore 1985] and default logic (DL) [Reiter 1980]. The fixpoints of those operators

correspond to existing semantics from those fields and induced some new semantics. Furthermore,

they used the algebraic theory to characterize the relationship between AEL and DL [DMT 2003;

2011].
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2 Bart Bogaerts and Luís Cruz-Filipe

Many more application domains of AFT have been discovered, such as extensions of logic

programming [Antic et al. 2013; Charalambidis et al. 2018; Pelov et al. 2007], (abstract) argumentation

theory [Strass 2013; Strass and Wallner 2015], description logics [Liu et al. 2016], and active

integrity constraints [Bogaerts and Cruz-Filipe 2018]. The algebraic theory has been extended with

generalizations of notions such as strong equivalence [Truszczyński 2006], new types of induction

processes [Bogaerts et al. 2016, 2018; Denecker and Vennekens 2007] and novel types of fixpoints

such as grounded, strictly grounded and partial grounded fixpoints [Bogaerts et al. 2015a,b].

The importance of grounded fixpoints comes mainly from the fact that they provide a solid

theoretic foundation for studying intuitions intuitions that have been present, either explicit or

implicit, inmany different domains of non-monotonic reasoning. For instance, in logic programming,

they formalize the old intuitions that true atoms in “good” models of logic programs need to be

grounded in the program, i.e., that there needs to be a non-self-supporting explanation why they

hold. Similar intuitions showed up in other fields, phrased in different ways, e.g., that facts (or

models) should not be unfounded, or that they should be supported by cycle-free arguments, or by

arguments that contain no vicious circles, etc. In many cases, the occurrence of such ungrounded

aspects of developed semantics has led to a significant research effort to resolve them. In several

cases, great efforts were done to refine semantics which did allow ungrounded models or facts. For

example, the fact that the completion semantics of logic programs [Clark 1978] allows ungrounded

models, e.g., for the transitive closure program, led to the development of perfect [Przymusinski

1988], stable [Gelfond and Lifschitz 1988] and well-founded semantics [Van Gelder et al. 1991]. Also

for auto-epistemic logic [Moore 1985], it was known that Moore’s expansion semantics accepted

ungrounded models, e.g., for the theory {KP ⇒ P}, which motivated several attempts to refine

Moore’s semantics [Halpern and Moses 1985; Konolige 1988]. Bogaerts et al. [2015a] argued that

the intuitions in these fields (and others, including abstract argumentation) are captured by the

formal notions of groundedness in AFT. This idea of groundedness also lived in the context of active

integrity constraint. Its application to that domain has historically been the trigger for developing

AFT-based semantics for AICs [Cruz-Filipe 2016].

One of the powers of AFT is that all theory is developed in an abstract fashion and is readily

applicable to a wide variety of logics. This has been exploited by Vennekens et al. [2006], who studied

stratification in AFT and subsequently applied the theory to logic programming, autoepistemic

logic and default logic. They showed among others that if an operator and its approximator are

stratifiable, then Kripke-Kleene, well-founded, stable and supported fixpoints can be computed

stratum per stratum. When applied to logic programming, they recovered existing modularity

results for logic programs under the stable semantics [Gelfond and Lifschitz 1988] from, e.g. Lifschitz

and Turner [1994] and Eiter et al. [1997]. Furthermore, their theory also works for the well-founded

[Van Gelder et al. 1991], Kripke-Kleene [Fitting 1985] and supported semantics [Clark 1978].

In this paper, we continue the work of Vennekens et al. [2006] on stratification. More precisely,

we tackle the open research question of how the recently introduced (strictly/partial) grounded

fixpoints behave under stratification. We show that for stratifiable operators, also these classes of

fixpoints can be computed stratum per stratum. While these results can be considered unsurprising,

they provide a necessary sanity check for these new classes of fixpoints in AFT. These algebraic

results are directly applicable to all application domains of AFT.We apply our extension of the theory

of Vennekens et al. [2006] to the field of active integrity constraints (AICs) [Flesca et al. 2004], a

formalism to equip a database with a set of integrity constraints and a mechanism to fix the database

in case one of the constraints is violated. Bogaerts and Cruz-Filipe [2018] applied AFT for the first

time to AICs, showing how several existing semantics can be characterized as fixpoints of a suitably

defined operator, and introducing some new semantics based on an approximator of this operator. In

the current work, we show that this operator, and its approximator, are indeed stratifiable, and hence

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.



Stratification in Approximation Fixpoint Theory 3

that all semantics induced by AFT can be computed following the stratification. Practically, this

means that we can repair the database iteratively, following the stratification, each time only taking

a small set of AICs into account. Given the high complexity of computing repairs under various

semantics, results of this kind are very valuable from a practical perspective. Furthermore, we study

how exactly stratification in the algebraic sense relates to an existing notion of stratification in

AICs [Cruz-Filipe 2014].

Bogaerts et al. [2015a] discuss applications of grounded fixpoints in the context of logic pro-

gramming (with aggregates), autoepistemic logic, and abstract argumentation. While we apply our

results only in the setting of active integrity constraints, they are directly applicable in those fields

as well.

The main contributions of this paper can be summarized as follows:

• we show that a variety of recently defined classes of fixpoints behave well under stratification;

• we establish a precise correspondence between stratification of active integrity constraints

and stratification in AFT;

• combining these two, we show that repairs under all AFT semantics of AICs can be computed

stratum by stratum.

Summarized, in the current paper, we continue

(i) the research of Bogaerts, Vennekens, and Denecker (2015a; 2015b) by showing that (par-

tial/strictly) grounded fixpoints behave

(ii) the research of Vennekens et al. [2006] by extending their stratification results to other types

of fixpoints, and

(iii) the work of Bogaerts and Cruz-Filipe [2018] by studying properties of their semantics.

On top of that, Section 5 contains a novel type of results (Propositions 5.9 and 5.12) where we

characterize precisely how stratification in the algebraic and the AIC setting relate.

The rest of this paper is structured as follows. In Section 2, we recall the basics of approximation

fixpoint theory. In Section 3, we show that (strictly/partial) grounded fixpoints behave nicely with

respect to stratification. Next, in Section 4, we revisit active integrity constraints. In Section 5, we

apply our theory to AICs and show that a stratifiable set of AICs always generates a stratifiable

operator. Section 6 concludes.

2 APPROXIMATION FIXPOINT THEORY
In this section, we recall the basics of approximation fixpoint theory [DMT 2012] and the stratifica-

tion results of Vennekens et al. [2006]. Our presentation is based on the preliminaries of Bogaerts

and Cruz-Filipe [2018].

2.1 Lattices, operators and approximators
A partially ordered set (poset) ⟨L, ≤⟩ is a set L equipped with a partial order ≤, i.e., a reflexive,

antisymmetric, transitive relation. As usual, we write x < y as abbreviation for x ≤ y ∧ x , y. A
partial order ≤ is well-founded if every non-empty subset S ⊆ L has a minimal element. We call

⟨L, ≤⟩ a complete lattice if every subset S of L has a least upper bound and a greatest lower bound

and denote them

∨
S and

∧
S respectively. If S = {x,y}, we write x ∧ y for

∧
S and x ∨ y for

∨
S .

A complete lattice has a least element ⊥ =
∧

L and a greatest element ⊤ =
∨

L.
A lattice L is distributive if ∧ and ∨ distribute over each other, i.e., if x ∧ (y ∨z) = (x ∧y) ∨ (x ∧z)

and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x,y, z ∈ L. A bounded lattice L is complemented if every

element x ∈ L has a complement: an element ¬x ∈ L satisfying x ∧ ¬x = ⊥ and x ∨ ¬x = ⊤. A

Boolean lattice is a distributive complemented lattice.
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4 Bart Bogaerts and Luís Cruz-Filipe

An operator O : L → L is monotone if x ≤ y implies that O(x) ≤ O(y). An element x ∈ L is a

fixpoint of O if O(x) = x . Every monotone operator O in a complete lattice has a least fixpoint,

denoted lfp(O).
Bogaerts et al. [2015a] called a point x ∈ L grounded forO if, for eachv ∈ L such thatO(v∧x) ≤ v ,

it holds that x ≤ v . They called a point x ∈ L strictly grounded if there does not exist a y such that

y < x , andO(y) ∧x ≤ y. Intuitively, if the elements of the lattice are sets of some kind (for instance,

sets of atoms), a point x is grounded forO if and only if whenever we jointly remove a subset of the

elements of x , the operator O rederives at least one of the removed elements. For Boolean lattices,

they showed that the notions of groundedness and strict groundedness coincide.

Given a lattice L, approximation fixpoint theory (AFT) [DMT 2000] uses the bilattice L2. We

define projections for pairs as usual: (x,y)1 = x and (x,y)2 = y. Pairs (x,y) ∈ L2 are used to

approximate elements in the interval [x,y] = {z | x ≤ z ∧ z ≤ y}. We call (x,y) ∈ L2 consistent if
x ≤ y, that is, if [x,y] is non-empty, and use Lc to denote the set of consistent elements. Elements

(x, x) ∈ Lc are called exact. We sometimes abuse notation and use the tuple (x,y) and the interval

[x,y] interchangeably. The precision ordering on L2 is defined as (x,y) ≤p (u,v) if x ≤ u and v ≤ y.
If (u,v) is consistent, this means that [u,v] ⊆ [x,y]. If L is a complete lattice, then so is ⟨L2, ≤p⟩.
AFT studies fixpoints of lattice operators O : L → L through operators approximating O . An

operator A : L2 → L2 is an approximator of O if it is ≤p -monotone, and has the property that

A(x, x) = (O(x),O(x)) for all x . Approximators are internal in Lc (i.e., map Lc into Lc ). As usual,
we often restrict our attention to symmetric approximators: approximators A such that, for all

x and y, A(x,y)1 = A(y, x)2. DMT [2004] showed that the consistent fixpoints of interest of a

symmetric approximator (see below for the definition of these fixpoints) are uniquely determined

by an approximator’s restriction to Lc and hence, that for practical purposes, it often suffices to

define approximators on Lc .
AFT studies fixpoints of O using fixpoints of A.
• The A-Kripke-Kleene fixpoint is the ≤p -least fixpoint of A; it approximates all fixpoints of O .

• A partial A-stable fixpoint is a pair (x,y) such that x = lfp(A(·,y)1) and y = lfp(A(x, ·)2),
where A(·,y)1 denotes the operator L → L : z 7→ A(z,y)1 and analogously A(x, ·)2 denotes
the operator L → L : z 7→ A(x, z)2.

• The A-well-founded fixpoint is the least precise (i.e., the ≤p -minimal) partial A-stable fixpoint.
• An A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-stable fixpoint.
This is equivalent to the condition that x = lfp(A(·, x)1).

• A partial A-grounded fixpoint is a consistent pair (x,y) ∈ Lc such that for each v ∈ L,
whenever A(x ∧v,y ∧v)2 ≤ v , also y ≤ v .

All (partial A-)stable fixpoints are (partialA-)grounded fixpoints and the A-well-founded fixpoint
is the least precise partial A-grounded fixpoint [Bogaerts et al. 2015b].

2.2 Stratification in AFT
We now recall the stratification theory that has been worked out for AFT. All definitions and

results in this section originate from Vennekens et al. [2006].

Definition 2.1. Let I be a set (referred to as the index set) and, for each i ∈ I , let ⟨Si , ≤i ⟩ be a

partially ordered set. The product set S = ⊗i ∈ISi is the set of functions⊗
i ∈I

Si =

{
f : I →

⋃
i ∈I

Si | ∀i ∈ I : f (i) ∈ Si

}
and the product order ≤⊗ on ⊗i ∈ISi is defined by x ≤⊗ y iff x(i) ≤i y(i) for all i ∈ I .
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In the rest of this paper, we assume that the index set I is itself endowed with a partial order

≺. Often, but not always, we require ≺ to be well-founded. Given a product lattice L = ⊗i ∈ILi ,
we define L|≼i as the lattice ⊗j ∈I |j≺iLj ordered by the appropriate restriction of ≼. Additionally, if

x ∈ L, we write x |≼i as a shorthand for x |{j ∈I |j≼i } ∈ L|≼i . We make similar conventions for x |≺i
and L≺i .

Definition 2.2. An operator O on a product lattice L is stratifiable if for each i ∈ I and every

x,y ∈ L such that x |≼i = y |≼i , it holds that O(x)|≼i = O(y)|≼i .
In this case, for each i ∈ I and u ∈ L|≺i there is a unique operator O

u
i : Li → Li satisfying the

property that: if x |≺i = u, then (O(x))(i) = Ou
i (x(i)), for all x ∈ L. These operators are called the

components of O .

The main result of Vennekens et al. [2006] is that all AFT-style fixpoints behave well with respect

to stratification. Formally, it is summarized in the following theorem.

Theorem 2.3. Let L = ⊗i ∈ILi be a product lattice, O : L → L an operator on L and A : L2 → L2 an
approximator of O . Assume ≺ is well-founded. If A is stratifiable, so is O . Furthermore, the following
then holds for each pair (x,y) ∈ L2:

• (x,y) is a fixpoint of A if and only if for each i ∈ I , (x(i),y(i)) is a fixpoint of A(x ,y) |≺i
i ,

• (x,y) is the A-Kripke-Kleene fixpoint if and only if for each i ∈ I , (x(i),y(i)) is the A(x ,y) |≺i
i -

Kripke-Kleene fixpoint,
• (x,y) is the A-well-founded fixpoint if and only if for each i ∈ I , (x(i),y(i)) is the A(x ,y) |≺i

i -well-
founded fixpoint, and

• (x,y) is anA-stable fixpoint if and only if for each i ∈ I , (x(i),y(i)) is anA(x ,y) |≺i
i -stable fixpoint,

Intuitively, this means that all AFT-style fixpoints can be computed “following the stratification”,

i.e., first computed on lower strata and than gradually extended to fixpoints of the original operator.

3 STRATIFICATION AND GROUNDED FIXPOINTS
Now, we continue the study of Vennekens et al. [2006] on how stratification can be exploited to

compute various types of fixpoints of lattice operators. More specifically, we focus on grounded,

strictly grounded and partial grounded fixpoints [Bogaerts et al. 2015a,b]. For grounded fixpoints,

some stratification results are known in a general setting, not limited to product lattices [Bogaerts

et al. 2016, Propositions 5.9 and 5.11]. In contrast to our setting, these results impose additional

restrictions (monotonicity conditions) on the form of the operators.

Our main result is the following theorem. It states that all of these types of fixpoints behave

nicely with respect to stratification, that is, they can be computed stratum by stratum in a sequential

manner. Computing grounded, strictly grounded and partial fixpoints is computationally expensive:

in several application domains, deciding whether a given operator has a grounded fixpoint is

ΣP
2
-complete [Bogaerts and Cruz-Filipe 2018; Bogaerts et al. 2015a]. Being able to write particular

instances of grounded fixpoints as compositions of grounded fixpoints of “smaller” operators can

therefore be beneficial from a computational perspective. All in all, we split the task of finding

grounded fixpoints into many smaller tasks, and the order ≺ provides us with a detailed execution

plan by describing the dependencies between these tasks. Preliminary experiments in this direc-

tion [Cruz-Filipe et al. 2015], using different semantics than those studied here, indicate that this

may lead to significant improvements in performance.

Theorem 3.1. Let L = ⊗i ∈ILi be a product lattice with ≺ well-founded, O : L → L an operator on L
and A : L2 → L2 an approximator ofO . If A is stratifiable (and hence, so isO), then the following hold:

(i) a point x ∈ L is grounded for O if and only if x(i) is grounded for Ox |≺i
i for all i ∈ I ,
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6 Bart Bogaerts and Luís Cruz-Filipe

(ii) a point x ∈ L is strictly grounded for O if and only if x(i) is strictly grounded for Ox |≺i
i for all

i ∈ I , and
(iii) a point (x,y) ∈ Lc is A-grounded if and only if (x(i),y(i)) is A(x ,y) |≺i

i -grounded for all i ∈ I .

Proof. The first point follows directly from Lemmas 3.2 and 3.4. The second point follows

directly from Lemmas 3.5 and 3.6 below. The last point follows directly from Lemmas 3.7 and 3.8

below. �

We split the proof of this theorem in various lemmas to prove some stronger intermediate results.

In particular Lemmas 3.4, 3.6 and 3.8 do not require ≺ to be well-founded.

Throughout this section, let L = ⊗i ∈ILi be a product lattice, O a stratifiable operator on L and A
a stratifiable approximator of O .

Lemma 3.2. Assume ≺ is well-founded and x ∈ L. If x(i) is grounded for Ox |≺i
i for all i ∈ I , then x is

grounded for O .

Proof. Follows immediately from the more general Lemma 3.7 since Bogaerts et al. [2015b]

showed (in their Proposition 3.2) that x is grounded for O if and only if (x, x) is A-grounded.
However, in order to strengthen the underlying intuitions, we also provide a direct proof.

The proof is by contraposition. Assume that x ∈ L is not grounded for O , i.e. that there exists
some v ∈ L such that O(x ∧v) ≤ v but x � v .
From x � v , it follows that x(i) � v(i) for some i ∈ I , and since I is well-founded we can

choose a minimal j with this property. In particular, for all i < j we have that x(i) ≤ v(i), whence
(x ∧v)|<j = x |<j and therefore

O(x ∧v)(j) = O
x |≺j
j ((x ∧v)(j)) = O

x |≺j
j (x(j) ∧v(j)).

From O(x ∧v) ≤ v we conclude that in particular

O(x ∧v)(j) ≤ v(j).

Combining this with the previous yields that

O
x |≺j
j (x(j) ∧v(j)) ≤ v(j)

while x(j) � v(j), and therefore x(j) is not grounded for O
x |≺j
j , as we needed to show. �

The condition that ≺ is well-founded is a necessary condition of Lemma 3.2, as the following

example illustrates.

Example 3.3. Consider I = Z with ≺ the standard order of integers. For each i ∈ I consider a
lattice Li = {⊥i ,⊤i }. Consider the following operator O on ⊕Li that maps each x ∈ L to O(x) such
that

• (O(x))(i) = ⊤i if x(j) = ⊤j for each j ≺ i ,
• (O(x))(i) = ⊥i otherwise.

In this case, O has two fixpoints, namely ⊤L and ⊥L . It is clear that ⊤L is non-minimal and hence

not grounded. However, for each i , O⊤L |≺i
i is a constant operator mapping to ⊤i . Hence ⊤i = ⊤L(i)

is grounded for O⊤L |≺i
i . This shows that the condition that ≺ is well-founded is essential in Lemma

3.2. N

Intuitively, the well-foundedness condition on ≺ guarantees that there is some base case where

we start constructing our grounded fixpoint. This kind of intuition, that good fixpoints can be built

from the ground up, lies at the heart of the definition of groundedness. In Example 3.3, there is no

such base case for the fixpoint ⊤L . For the converse of Lemma 3.2, the well-foundedness condition
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on ≺ is not required: if the global point in L is grounded, then so are all its components, regardless

of properties of the order.

Lemma 3.4. Let x ∈ L. If x is grounded for O , then x(i) is grounded for Ox |≺i
i for all i ∈ I .

Proof. Follows immediately from the more general Lemma 3.8 since Proposition 3.2 of Bogaerts

et al. [2015b] shows that x is a grounded fixpoint ofO if and only if (x, x) is an A-grounded fixpoint
of A. In order to strengthen intuitions, we also provide a direct proof.

Assume x is grounded for O . Thus, for each v ∈ L with O(x ∧v) ≤ v , it must hold that x ≤ v .

Now, take any i , we need to show that x(i) is grounded for Ox |≺i
i . To do that, take any vi ∈ Li

such thatOx |≺i
i (x(i) ∧vi ) ≤ vi ; we then need to show that x(i) ≤ vi . Now, definev ∈ L asv(j) = ⊤j

for all j , i and v(i) = vi . It then holds that O(x ∧ v) ≤ v , hence also x ≤ v and in particular,

x(i) ≤ v(i) = vi . �

Lemma 3.5. Assume ≺ is well-founded and x ∈ L. If x(i) is strictly grounded for Ox |≺i
i for all i ∈ I ,

then x is strictly grounded for O .

Proof. We proceed by contraposition. Assume that x is not strictly grounded forO , i.e. that there

exists some y ∈ L such that y < x andO(y) ∧x ≤ y. From y < x we conclude that y(i) ≤ x(i) for all
i ∈ I , and furthermore that this inequality is strict in at least one instance. Since ≺ is well-founded,

we can choose a minimal j for which y(j) < x(j); then y(i) = x(i) for all i ≺ j, from which we

conclude that y |≺j = x |≺j and thus

O(y)(j) = O
x |≺j
j (y(j)).

However, from O(y) ∧ x ≤ y, it follows that, in particular, (O(y) ∧ x)(j) ≤ y(j). Since

(O(y) ∧ x)(j) = O(y)(j) ∧ x(j) = O
x |≺j
j (y(j)) ∧ x(j),

we conclude that

O
x |≺j
j (y(j)) ∧ x(j) ≤ y(j),

and thus x(j) is not strictly grounded for O
x |≺j
j , as we needed to show. �

Since the lattices in Example 3.3 are Boolean lattices, the notions of groundedness and strict

groundedness coincide in that example [Bogaerts 2015]. Hence, example 3.3 also illustrates that the

condition that ≺ is well-founded is necessary for Lemma 3.5.

Lemma 3.6. If x ∈ L is strictly grounded for O , then for each i , x(i) is strictly grounded for Ox |≺i
i .

Proof. Assume x ∈ L is strictly grounded for O , i.e., that there is no y < x with O(y) ∧ x ≤ y.

We need to show that each x(i) is strictly grounded for Ox |≺i
i .

Take any i ∈ I and yi ∈ Li with yi ≤ x(i) and Ox |≺i
i (yi ) ∧ x(i) ≤ yi . We then show that yi = x(i).

Define y ∈ L as follows: y(i) = yi and for all j , i , y(j) = x(j). Then, it is clear that y ≤ x . For each
j , i , it then holds that

(O(y) ∧ x)(j) = (O(y))(j) ∧ x(j)

≤ x(j) = y(j)

Furthermore, x |≺i = y |≺i and hence also

(O(y) ∧ x)(i) = (O(y))(i) ∧ x(i)

= Ox |≺i
i (y(i)) ∧ x(i)

≤ yi = y(i).
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8 Bart Bogaerts and Luís Cruz-Filipe

Combining these two, we find that O(y) ∧ x ≤ y and thus, since x is strictly grounded for O and

y ≤ x , it must hold that y = x . In particular yi = x(i) as we needed to show. �

Lemma 3.7. Assume ≺ is well-founded and (x,y) ∈ Lc . If (x,y)(i) is A(x ,y) |≺i
i -grounded for all i ∈ I ,

then (x,y) is A-grounded.

Proof. The proof is again by contraposition. Assume that (x,y) ∈ Lc is not A-grounded, i.e. that
there exists some v ∈ L such that A(x ∧v,y ∧v)2 ≤ v but y � v .

From y � v , it follows that y(i) � v(i) for some i ∈ I , and since ≺ is well-founded we can choose

a minimal j with this property. In particular, for all i ≺ j we have that x(i) ≤ y(i) ≤ v(i), whence
(x ∧v)|≺j = x |≺j and (y ∧v)|≺j = y |≺j and therefore

A(x ∧v,y ∧v)(j) = A
(x ,y) |≺j
j ((x ∧v,y ∧v)(j))

= A
(x ,y) |≺j
j (x(j) ∧v(j),y(j) ∧v(j)).

From A(x ∧v,y ∧v)2 ≤ v we conclude that in particular

A(x ∧v,y ∧v)2(j) ≤ v(j).

Combining this with the previous yields that

A
(x ,y) |≺j
j (x(j) ∧v(j),y(j) ∧v(j))2 ≤ v(j)

while y(j) � v(j), and therefore (x,y)(j) is not A
(x ,y) |≺j
j -grounded, as we needed to show. �

Lemma 3.8. If (x,y) ∈ Lc is A-grounded, then (x,y)(i) is a A(x ,y) |≺i
i -grounded for all i ∈ I .

Proof. Assume (x,y) ∈ Lc is A-grounded.

Take any i ∈ I , we need to show that (x(i),y(i)) is A
(x ,y) |≺i
i -grounded. Therefore, take any

vi ∈ Li with A
(x ,y) |≺i
i (x(i) ∧ vi ,y(i) ∧ vi )2 ≤ vi . We should show that y(i) ≤ vi . Define v ∈ L

as follows: v(j) = ⊤j for all j , i and v(i) = vi . Since vj = ⊤j for all j , i , it is clear that
A(x ∧v,y ∧v)2(j) ≤ v(j) for all such j . It is also clear that for j ≺ i , (x,y)(j) = (x ∧v,y ∧v)(j) and
thus that (x,y)|≺i = (x ∧v,y ∧v)|≺i . Hence,

A(x ∧v,y ∧v)2(i) = A
(x ,y) |≺i
i (x(i) ∧v(i),y(i) ∧v(i))2

≤ v(i)

Now, for all j ∈ I , we found that A(x ∧ v,y ∧ v)2(j) ≤ v(j) and thus A(x ∧ v,y ∧ v)2 ≤ v . Since
(x,y) is A-grounded, it must be the case that y ≤ v and in particular y(i) ≤ v(i) = vi , which we

needed to show. �

All in all, these lemmas provide a complete picture of how groundedness (and variants thereof)

with respect to an operator relates to groundedness with respect to its components.

4 ACTIVE INTEGRITY CONSTRAINTS
In modern-day databases, it is essential to specify semantic relationships between the data that

is being stored. Such relationships are typically described by means of logical formulas, called

integrity constraints. One of the most important tasks in database maintenance is to guarantee that

integrity constraints remain satisfied after changes of the database.

The problem of restoring consistency of a database relative to a set of integrity constraints is

known as the problem of database repair, and has been an important topic of research for several

decades [Abiteboul 1988]. This problem includes two different aspects: finding possible repairs and

choosing which one to apply. Typically, there are several possible ways to repair an inconsistent
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database. Possible criteria to choose the “best” one that are widely accepted include minimality

of change [Winslett 1990] – change as little as possible – and the common-sense law of inertia,

discussed, e.g., by Przymusinski and Turner [1997] – do not change anything unless there is a

reason to.

Active integrity constraints (AICs) [Flesca et al. 2004] were introduced as a formalism that

captures one of the popular approaches in real-world database systems: rule-based updates, known

as event-condition-action (ECA) rules [Teniente and Olivé 1995; Widom and Ceri 1996], which

specify actions to be performed when a particular trigger occurs and specific conditions hold.

Although they are simple to implement, the semantics of ECA rules is complex, and in particular

their interaction is hard to analyze [Caroprese et al. 2006; May and Ludäscher 2002; Paton and Díaz

1999]. This is addressed by AICs: these are logic programming-style rules whose body expresses

(the negation of) an integrity constraint that must be satisfied, and whose head includes update

actions that can be applied to restore consistency. The declarative semantics of AICs includes

several progressively more restricted classes of repairs, which can be used as criteria to select a

preferred repair [Bogaerts and Cruz-Filipe 2018; Caroprese and Truszczyński 2011]. Algorithms for

computing these repairs [Cruz-Filipe et al. 2013] have been implemented as a prototype [Cruz-Filipe

et al. 2015].

In the rest of this section, we recall some background on AICs. We assume a fixed set of propo-

sitional atoms At. As usual, a literal is either an atom a ∈ At or its negation ¬a. Given a literal l ,
we write |l | for its underlying atom, i.e. |a | = a and |¬a | = a. The literals a and ¬a are called dual
literals, and we write lD to denote the dual of a literal l . A database is a set of atoms, which we

identify with the propositional interpretation satisfying exactly the atoms in that set. Formally, if

DB is a database, then DB |= a iff a ∈ DB, and DB |= ¬a iff a < DB.
Databases may be updated by means of update actions of the form +a or −a, with a ∈ At.

Intuitively, +a denotes the action “add a to the database (if it is not there already)” and −a denotes

the action “remove a from the database (if it is there)”. The actions +a and −a are dual actions; if α
is an action, we write αD

for its dual. A set of update actions U is consistent if it does not contain
any pair of dual actions, i.e. {+a,−a} * U for all a ∈ At. If U is consistent, we define the result of

updating DB by U as

U(DB) = (DB ∪ {a | +a ∈ U}) \ {a | −a ∈ U} .

Literals and update actions are connected by means of the natural operators ua and lit: ua(a) = +a,
ua(¬a) = −a, lit(+a) = a and lit(−a) = ¬a, for a ∈ At.
An active integrity constraint (AIC) is a rule r of the form

1 l1 ∧ . . . ∧ lk ⊃ α where lit(α) ∈

{lD
1
, . . . , lDk }. The body of r is l1 ∧ . . . ∧ lk , and the head of r is α . We say that r is applicable in a

database DB if DB |= body(r ), i.e. if DB satisfies all literals in body(r ), and that r is satisfied by DB
otherwise. The constraint lit(α) ∈ {lD

1
, . . . , lDk } ensures that r is always satisfied in α(DB). The set

of non-updateable literals of r is defined as nup(r ) = {l1, . . . , lk } \ lit(αD ).

Flesca et al. [2004], Caroprese and Truszczyński [2011] and Bogaerts and Cruz-Filipe [2018]

have defined several different semantics for AICs. In this work, we focus on semantics based on

approximation fixpoint theory.

AFT-style semantics for AICs. LetU andV be sets of update actions. We define

U ⊎V = (U ∪V) \ {α | α,αD ∈ U ∪V}.

If all actions inU change DB and all actions inV changeU(DB), then (U ⊎V)(DB) = V(U(DB)).

1
In the terminology used in previous works, this is a normal AIC. In this work we restrict ourselves to normal AICs,

following Bogaerts and Cruz-Filipe [2018], and omit the general definition.
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10 Bart Bogaerts and Luís Cruz-Filipe

We now assume DB to be a fixed database and denote by A the set of update actions that change

DB, i.e.
A = {−a | a ∈ DB} ∪ {+a | a ∈ At \ DB} .

Since DB only contains atoms, any subset of A is necessarily a consistent set of update actions.

Definition 4.1 ([Cruz-Filipe 2016]). Let η be a set of AICs over At. The operator TDB
η : 2

A → 2
A

is defined as follows:

T DB
η (U) = U ⊎ {head(r ) | r ∈ η ∧U(DB) |= body(r )}

A set of update actions U ⊆ A is a grounded repair for ⟨DB,η⟩ if it is a grounded fixpoint of TDB
η .

Observe that TDB
η (U) is well defined: if U ⊆ A and U(DB) |= body(r ), then necessarily either

head(r )D ∈ U and is removed in T DB
η (U), or head(r )D < U and therefore head(r ) ∈ A (since

lit(head(r ))D ∈ DB). In either case, T DB
η (U) ⊆ A.

Example 4.2. Consider the following set of AICs η

a ∧ ¬b ⊃ −a

¬a ∧ b ⊃ −b

a ∧ ¬c ⊃ +c

b ∧ ¬c ⊃ +c .

The first two rules here express that a and b should be equivalent, and that if this is not the case,

they should both become false). The last two rules express that c should be true whenever a or

b is true. Consider the database DB = {a,b}. There are two repairs for ⟨DB,η⟩: U1 = {−a,−b}
andU2 = {+c}. Intuitively, since a and b are already equivalent, the first two rules should not be

triggered. What should happen is that c is made true. I.e., the repairU2 is the intended one.

The notion of groundedness formalizes this:U1 is not a grounded repair, whileU2 is. N

By defining an approximator for TDB
η , we obtain more classes of semantics for AICs.

Definition 4.3 ([Bogaerts and Cruz-Filipe 2018]). A partial action set is a tuple U = (Uc ,Up ) where
Uc ,Up ⊆ A.

Intuitively, a partial action set approximates a set of update actions: the actions in Uc are those

that are certainly applied, while the actions in Up are possibly applied.

If α ∈ A, the value U(α) of α in U is true (t) if α ∈ Uc and α ∈ Up , false (f ) if α < Uc and α < Up ,
unknown (u) if α < Uc and α ∈ Up , or inconsistent (i) if α ∈ Uc and α < Up . We say that U is

consistent if Uc ⊆ Up , in which case U(α) , i for all α ∈ A. The set of all consistent partial action

sets is denoted P .
A (consistent) partial database is a mapping DB : At → {t, f, u}. The intended reading is:

DB(a) = t if a is certainly in the database, DB(a) = f if a is certainly not in the database, and

DB(a) = u otherwise.

For U ∈ P , we define U(DB) to be the partial database such that

U(DB) : a 7→


DB(a) if U(∗a) = f
DB(a)−1 if U(∗a) = t
u otherwise,

where DB(a) = t if a ∈ DB and DB(a) = f otherwise, and ∗a represents +a if a < DB, and −a

otherwise.
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Definition 4.4 ([Bogaerts and Cruz-Filipe 2018]). Given a partial database DB, a set of AICs η
and an update action α , we define the support of α with respect to ⟨DB,η⟩ as

suppDB,η(α) = max

≤t
{nup(r )DB | r ∈ η ∧ head(r ) = α },

where nup(r )DB refers to the standard three-valued truth evaluation of the conjunction of all literals

in nup(r ) in the partial interpretation DB based on Kleene’s truth tables [Kleene 1938].

Intuitively, this means that the support of an action α is the highest truth value of the (non-

updateable part of the) body of a rule in η with α in the head.

Definition 4.5 ([Bogaerts and Cruz-Filipe 2018]). Given a set of AICs η, we define an operator

T ⟨DB,η ⟩ : P → P , such that for each U ∈ P and each α ∈ A:

• If U(α) = f , then T ⟨DB,η ⟩(U)(a) = suppU(DB),η(α).
• If U(α) = t, then T ⟨DB,η ⟩(U)(α) = suppU(DB),η(α

D )−1.

• Otherwise (i.e., if U(α) = u):
– if suppU(DB),η(α) = t and suppU(DB),η(α

D ) = f , then T ⟨DB,η ⟩(U)(α) = t;
– if suppU(DB),η(α

D ) = t and suppU(DB),η(α) = f , then T ⟨DB,η ⟩(U)(α) = f ;
– otherwise, T ⟨DB,η ⟩(U)(α) = u.

The operator T ⟨DB,η ⟩ induces a number of semantics for AICs: (partial) stable repairs, AFT-well-

founded repairs, Kripke-Kleene repairs and partial grounded repairs, defined as the corresponding

fixpoint of T ⟨DB,η ⟩ (see [Bogaerts and Cruz-Filipe 2018] for details).

Example 4.6. Consider the following set η of AICs:

¬a ∧ ¬b ⊃ +a

¬a ∧ ¬b ⊃ +b

a ∧ ¬c ⊃ +c

¬d ⊃ +d

¬d ∧ ¬e ⊃ +e

with DB = ∅. Intuitively, in this example, there are two good repairs: every good repair should

contain +d and none should contain +e . The first two constraints express a choice to fix the lack of

an a or a b: one of the two should be added. The third rule expresses that if a is added, so should c .
As such, the two acceptable repairs are {+a,+c,+d} and {+b,+d}. These are exactly the two stable

repairs.

We know that the Kripke-Kleene repair approximates these two repairs, but it does so in quite a

coarse way. In this example, the Kripke-Kleene repair will assign +d to be true and all other actions

to be unknown. The well-founded repair provides a more fine-grained approximation of the good

repairs by assigning +d to be true, and +e to be false (and the rest to be unknown). N

5 STRATIFICATION OF AICS
Cruz-Filipe [2014] showed that all the declarative semantics for AICs defined by Caroprese and

Truszczyński [2011] respect stratification in the sense that whenever the rules in η1 do not depend

on literals occurring in the head of rules in η2, a set of update actions U is a repair (in a certain

class of repairs, determined by the semantics at hand) if and only if, it is composed of a repair

for η1 and one for η2 (see Theorem 5.3 for such a result for the class of grounded repairs). While

such results might not seem surprising, they are far from trivial. In fact, not all semantics of AICs

satisfy a similar property. For instance so-called well-founded repairs [Cruz-Filipe et al. 2013] do
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12 Bart Bogaerts and Luís Cruz-Filipe

not respect stratification. In this section, we extend the results of Cruz-Filipe [2014] in two ways:

first of all, we extend them to stratifications of more than two (possibly infinitely many) strata.

Secondly, we extend them to cover all AFT-style semantics of AICs.

As before, let I be an index set equipped with a partial order ≺. In this section, we assume ≺

to be well-founded. For the rest of this section, let (Ai )i ∈I be a partition of A. We say that η is

stratified2 if for each rule r ∈ η with head(r ) = α and l ∈ body(r ) such that {α,αD } ∩ Ai , ∅ and

{ua(l), ua(l)D } ∩ Aj , ∅, it must hold that j ≼ i . In words, this means that for all rules r ∈ η, all
literals in the body should come from a lower stratum than the head action. For each i ∈ I , we
define

ηi =
{
r ∈ η |

{
head(r ), head(r )D

}
∩ Ai , ∅

}
.

We will also write η≺i =
⋃

j≺i ηj , and similarly for η≼i , η⊀i and η�i .
We now study the relationship between stratifiability of Tη over I and stratification of the set η

as given above. First, we show that Tη is stratifiable if η is stratified. Furthermore, the stratification

of the operator coincides exactly with stratification of AICs, in the sense that the components of Tη
are precisely the operators described by Cruz-Filipe [2014].

We start by remarking on the well-known fact that the lattice 2
A
is isomorphic to the product

lattice

⊗
2
Ai

, where the isomorphism maps a setU ∈ 2
A
to f ∈

⊗
2
Ai

with f (i) = U ∩ Ai .

Lemma 5.1. If η is stratified, then the operator Tη : 2
A → 2

A is stratifiable.

Proof. We need to show that, for each i ∈ I and for everyU,V ∈ 2
A
such thatU|≤i = V|≤i ,

we have Tη (U)|≤i = Tη (V)|≤i . Let U and V be sets of update actions such that U|≤i = V|≤i .

For every rule r < η≤i , the actions head(r ) and headD do not occur inA≤i . Therefore, Tη (U)|≤i =

Tηi (U)|≤i and Tη (V)|≤i = Tηi (V)|≤i .

Furthermore, for each rule r ∈ η≤i ,U(DB) |= body(r ) iffU|≤i (DB) |= body(r ), since the atoms

underlying actions in U|�i cannot occur in body(r ). Therefore, U(DB) |= body(r ) iff V(DB) |=
body(r ). From this, we find that

{head(r ) | r ∈ ηi ∧U(DB) |= body(r )} = {head(r ) | r ∈ ηi ∧V(DB) |= body(r )}

and thus that

Tη (U)|≤i = Tηi (U)|≤i = Tηi (V)|≤i = Tη (V)|≤i . �

Lemma 5.2. If η is stratified, then the components of Tη are given by (Tη )
U
i = T

U(DB)
ηi .

Proof. Given that components are unique, it suffices to show that the operator defined in the

statement of the lemma satisfies the component property, i.e. that if V|≺i = U, then TDB
η (V)|i =

T
U(DB)

ηi (V|i ).

First observe that, for any V ,

TDB
η (V) = V ⊎ {head(r ) | r ∈ η ∧V(DB) |= body(r )}

= V ⊎ {head(r ) | r ∈ η≺i ∧V(DB) |= body(r )}

⊎ {head(r ) | r ∈ η⊀i ∧V(DB) |= body(r )}

since the actions in the heads of rules in η≺i and η⊀i are disjoint. Furthermore, {head(r ) | r ∈

η≺i∧V(DB) |= body(r )} ⊆ A≺i , while r ∈ η�i can only contribute with elements inA�i . Therefore,

T DB
η (V)|i = V|i ⊎ {head(r ) | r ∈ ηi ∧V(DB) |= body(r )}

2
The original definition of stratification of AICs given by Cruz-Filipe [2014] slightly differs from ours and is based on

a precedence relation that, intuitively, captures when a certain rule can safely be applied before another. Despite this

difference, the two definitions are equivalent for the case of two strata (which is the case considered in [Cruz-Filipe 2014]);

we used slightly different notation since this allows us to generalize to more than two strata more uniformly.
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Suppose now that V≺i = U. Then V(DB) = V|⊀i (U(DB)), since U = V≺i and V⊀i change

disjoint parts of DB. We then conclude that

T DB
η (V)|i = Vi ⊎ {head(r ) | r ∈ ηi ∧Vi (U(DB)) |= body(r )}

= T
U(DB)

ηi (Vi )

observing as above that T
U(DB)

ηi maps 2
Ai

to 2
Ai

. �

Theorem 5.3. If η is stratified, then a set of update actions U is a grounded repair of ⟨DB,η⟩ if and
only if, for every i ,Ui is a grounded repair of ⟨U|≺i (DB),ηi ⟩.

Proof. Follows immediately by combining Lemmas 5.1 and 5.2 with Theorem 3.1. �

The particular case of I = {1, 2} with 1 ≺ 2 was proven directly, as Lemma 29 by Cruz-Filipe

[2016]. We showed that it can be obtained as a special case of stratification in approximation

fixpoint theory. For the other semantics of AICs induced by AFT, no stratification results exist yet.

We show that similar results hold: indeed, the approximator T ⟨DB,η ⟩ is stratifiable, similar to Tη .

Lemma 5.4. If η is stratified, then the approximator T ⟨DB,η ⟩ : 2
A → 2

A is stratifiable.

Proof. Let U and V be consistent partial action sets such that U |≼i = V|≼i , and let α ∈ A≼i . If

r ∈ η is such that head(r ) = α or head(r ) = αD
, then by definition r ∈ η≼i . Therefore, all literals in

body(r ) are changeable only by actions in η≼i , and thus the truth value of all literals in body(r )
in U(DB) and V(DB) coincide. Hence suppU(DB),η≼i (α) = suppV(DB),η≼i (α) and suppU(DB),η≼i (α

D ) =

suppV(DB),η≼i (α
D ), whence Tη(U)(α) = Tη(V)(α). Since this holds for every α ∈ A≼i , it follows

that T ⟨DB,η ⟩(U)|≼i = T ⟨DB,η ⟩(V)|≼i . �

As observed by Vennekens et al. [2006], the components of the approximator Tη are guaranteed

to be approximators of the components of Tη . However, operators can have multiple approximators,

it is not clear a priori how these approximators of the components can be obtained. Here, we prove

a stronger connection, similar to Lemma 5.2: the components of Tη are the approximators defined

from the sets of AICs ηi as in Definition 4.5.

Lemma 5.5. If η is stratified, then the components of Tη are given by (T ⟨DB,η ⟩)
U
i = T ⟨U(DB),ηi ⟩ .

Proof. Again it suffices to show that the operator defined in the statement of the lemma satisfies

the component property.

Suppose that V|≺i = U, and let α ∈ ηi . If α ∈ head(r ) for some r ∈ η, then necessarily r ∈ ηi .
Furthermore, V|⊀i (U(DB)) = V(DB), and since actions in V|�i do not change the truth value of

atoms in the body of r we conclude that suppV(DB),η(α) = suppV |i (U(DB)),ηi (α), and likewise for αD
,

whence ((T ⟨DB,η ⟩)
U(V))|i = T ⟨U(DB),ηi ⟩(V|i ). �

By combining our results with those of Vennekens et al. [2006], we obtain that all AFT-style

semantics for AICs can be computed in a stratified manner.

Theorem 5.6. If η is stratified, the following statements hold:
• a partial set of update actions (Uc ,Up ) is a (partial) stable repair of ⟨DB,η⟩ if and only if
(Uc ∩ Ai ,Up ∩ Ai ) is a (partial) stable repair of ⟨U|≺i (DB),ηi ⟩ for every i ;

• a partial set of update actions (Uc ,Up ) is a AFT-well-founded repair of ⟨DB,η⟩ if and only if
(Uc ∩ Ai ,Up ∩ Ai ) is a AFT-well-founded repair of ⟨U|≺i (DB),ηi ⟩ for every i ;

• a partial set of update actions (Uc ,Up ) is a Kripke-Kleene repair of ⟨DB,η⟩ if and only if
(Uc ∩ Ai ,Up ∩ Ai ) is a Kripke-Kleene repair of ⟨U|≺i (DB),ηi ⟩ for every i ;
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14 Bart Bogaerts and Luís Cruz-Filipe

• a partial set of update actions (Uc ,Up ) is a (partial) grounded repair of ⟨DB,η⟩ if and only if
(Uc ∩ Ai ,Up ∩ Ai ) is a (partial) grounded repair of ⟨U|≺i (DB),ηi ⟩ for every i .

Theorem 5.6 proves that all the AFT-style repairs can be computed following the stratification.

To end this section, we dig a bit deeper into the relation between stratification in AICs and

stratification in AFT. We already showed that whenever a set of AICs is stratified, so are the

associated operator and approximator. However, one might wonder whether the converse also

holds, i.e., if an operator obtained from a set of AICs is stratifiable, is the set of AICs stratifiable as

well? As it turns out, this is not the case in general, as the following example illustrates.

Example 5.7. Consider the following set of AICs η.

p ∧ ¬q ⊃ +q q ∧ ¬p ⊃ +p

¬p ∧ ¬q ⊃ +q ¬q ∧ ¬p ⊃ +p

Since all rules’ bodies contain literals that use both p and q, η can only be stratified in the trivial

way (with I a singleton). However, η induces the same operator as the set η′ = {¬q ⊃ +q,¬p ⊃ +p},
which can be stratified with A1 = {+p} and A2 = {+q}.

It is important to note there that we use a closed-world assumption: in each given database, p is

either true or false. Under an open-world assumption, η and η′ might have a different interpretation,

where the rules in η should only be applied in case there is explicit knowledge about p. N

The problem with the set η in the previous example is that the rules on the left collectively imply

that the decision to add q does not depend on the particular logical value of p, i.e., in order to see

that q must be added no matter what, we need to reason by case splitting on p (if p holds, the first

rule derives q; otherwise, the second). In a certain sense, one could say that these rules contain

redundant information. After all, why would one enforce the constraint that q always holds by

p ∧ ¬q ⊃ +q and ¬p ∧ ¬q ⊃ +q instead of simply stating ¬q ⊃ +q? We now formally define what

we mean by redundancy and show that for sets of AICs without redundancy, stratification of AICs

corresponds exactly to stratification in AFT.

Definition 5.8. Two databasesDB andDB′
are said to be equivalent modulop ifDB\{p} = DB′\{p}.

An atom p is redundant with respect to an action α in a set of AICs η if: for every pair of databases
DB and DB′

equivalent modulo p, there is a rule r ∈ η with head(r ) = α such that DB |= body(r ) iff
there is a rule r ′ ∈ η with head(r ) = α such that DB′ |= body(r ′).

In particular, if p and ¬p do not occur in the body of any rule whose head is α , then p is redundant

with respect to α . However, this notion also captures situations as in Example 5.7, where e.g. p is

redundant with respect to +q. For sets of AICs that do not have redundant atoms in rule bodies,

the converse of Lemma 5.1 does hold.

Proposition 5.9. Suppose that that Tη is stratifiable. If there is no rule r ∈ ηi whose body contains
a literal underlying an action in Aj with i ≺ j that is redundant with respect to head(r ), then η is
stratified.

Proof. Assume, towards contradiction, that η is not stratified. Then, there is a rule r ∈ ηi such
that ua

(
body(r ) ∪ body(r )D

)
∩ Aj , ∅. Let α be an action in this intersection and p = |lit(α)|

be the atom underlying α . By hypothesis, p is not redundant with respect to head(r ) in η, hence
there exist two databases

3 U(DB) andV(DB) equivalent modulo p such thatU(DB) |= body(rU)

for some rule rU with head(rU) = α and V(DB) ̸|= body(r ′′) for any r ′′ with head(r ′′) = α . By
construction, U|≼i = V|≼i (since U and V only differ on p), but Tη (U)|≼i , Tη (V)|≼i (since

α ∈ Tη (U) but α < Tη (V)) contradicting the hypothesis that Tη is stratifiable. �

3
Note that every database can be written in this form
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In practice, redundancy in AICs is undesirable: it obscures the nature of the constraints expressed,

introduces extra (unnecessary constraints) and possiblymakes finding good repairs harder. However,

on the other hand, there might be good reasons to have redundancy, for instance in case different

sets of integrity constraints are maintained by different developers independently, some redundancy

can occur, where even if a constraint of one of the developers is redundant, it is still in place for

consistency in case the other maintainer changes their constraints.

What we showed now is that redundancy can even obscure the stratified nature of a set of AICs;

it is redundancy that is responsible for the difference in stratification between AICs and AFT.

In a certain sense, one might say that stratification of the operator is semantic stratification, while
stratification, as defined for AICs is syntactic stratification. Since the approximator captures more

syntactic elements than the operator, one might wonder what the relation there is. Of course, since

whenever Tη is stratifiable, so is Tη [Vennekens et al. 2006], it follows immediately from Proposition

5.9 that if Tη is stratifiable and the the hypothesis of the lemma holds, then η is stratified. However,

one might still expect that more refined results exist. Indeed, for Example 5.7, the approximator

Tη is not stratified either. The following example shows that Tη can be stratified without η being

stratified.

Example 5.10. Let η1 and η2 be the following sets of AICs:

η1 = {p ∧ q ⊃ −q, q ⊃ −q},

η2 = {q ∧ p ⊃ −p}

and let η be η1 ∪ η2. In this case, η is not stratified, since there is an occurrence of p in the first

rule of η1. However, the first rule is subsumed by the second, in the sense that, whenever −q can

be derived from the first rule, the second rule could be used to derive it as well. Therefore, the

approximator Tη is stratifiable. N

We now formalize this notion of subsumption (a reformulation of the well known notion of

subsumption of clauses in terms of AICs) and show that only subsumed rules can be responsible

for a discrepancy in stratification in the AIC-sense and stratification of the approximator.

Definition 5.11. Let r and r ′ be two AICs. We say that r subsumes r ′ if head(r ) = head(r ′) and
body(r ) ( body(r ′).

A set of AICs η is subsumption-free if it contains no two rules such that one subsumes the other.

Proposition 5.12. Assume that Tη is stratifiable. If η is subsumption-free, then η is stratifiable.

Proof. Without loss of generality, assume that DB = ∅. (This can be assumed using Corollary

6.10 of Bogaerts and Cruz-Filipe [2018], which states that all AFT-induced semantics of AICs are

invariant under shifting [Caroprese and Truszczyński 2011; Marek and Truszczynski 1998].)

Assume towards a contradiction that Tη is stratifiable while there is some p with +p ∈ Aj such

that either p or ¬p occurs in the body of a rule r ∈ ηi . Assume it is p that occurs in r (a symmetrical

argument holds for the case where it is ¬p). Consider the (unique) partial set of update actions U
such that

• pU(DB) = u,
• lU(DB) = f for all l ∈ body(r ) \ {p}, and
• lU(DB) = u for all literals not in body(r ) ∪ ¬body(r ).

Also consider the (unique) partial set of update actions U′
, equal to U except for pU(DB) = f .

It is clear that U and U′
agree on A|≼i , hence, since Tη is stratifiable, it must hold that

Tη(U)|≼i = Tη(U
′)|≼i .
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Now, since nup(r )Tη (U) = u, it holds that head(r )Tη (U) ≥t u. Hence, there must also be a rule r ′ with
head(r ) = head(r ′) and nup(r ′)Tη (U

′) ≥t u. Due to the definition of U′
, nup(r ′) can then consist

only of literals in body(r ) \ {p}, which means that r ′ subsumes r , leading to a contradiction. �

It is easy to see that adding/removing a subsumed rule to/from a set of AICs η does not change

Tη . Furthermore, it is easy to check (syntactically) which rules are subsumed by others. As such,

Proposition 5.12 provides with a syntactic criterion to verify if the approximator of a set of AICs

is stratified: we first remove all subsumed AICs and then check for stratifiability in the AIC

sense [Cruz-Filipe 2014].

To summarize, in this section we first proved our main result related to AICs, namely Theorem

5.6, which states that all AFT semantics induced by AICs behave well with respect to stratification.

After that, we investigated in great detail what the relationship is between stratifiability in AFT

and in active integrity constraint. Using two auxiliary notions (redundancy and subsumption) we

established a precise connection.

6 CONCLUSION
In this paper, we studied how grounded fixpoints, and variants thereof, behave when the operator

and approximator involved are stratified. We showed that these types of fixpoints can be computed

stratum per stratum. We applied our theory and the theory of Vennekens et al. [2006] to the field of

active integrity constraints and found that notions of stratification defined there are instantiations

of the more general theory. In particular, if a set of AICs is stratifiable, so are the associated

operator and approximator and hence, all AFT-induced semantics behave nicely with respect to

this stratification. We furthermore studied under which conditions the inverse implication holds,

i.e., when stratifiability of the operator/approximator implies stratifiability of the set of AICs; this

study yielded, among others, a syntactic check to verify if the approximator is stratified.

As such, on the theoretical side, we progressed the understanding of grounded, strictly grounded

and partial grounded fixpoints in approximation fixpoint theory. On the practical side, we showed

how, for a stratified set of AICs, various types of repairs can be computed following the stratification.

Given the high complexity of these computations, the fact that such results can significantly

reduce the size of the sets of AICs that have to be considered at each stage, can have great

influence on computation times. Furthermore, our theoretic results lay the basis for distributed

computations of repairs under various semantics of active integrity constraints. Developing efficient

implementations that exploit stratification. Another line of future work is to investigate whether a

strong correspondence, such as found in Propositions 5.9 and 5.12 can also be established in other

domains.
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