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Chapter 1

Introduction

For many centuries (even millenia), mathematics has been concerned with
providing algorithmic solutions to numerical problems, not only for its use-
ful (and needed) applications but also for the art of finding them. Thus,
the ancient Egyptians, Greeks and Babylonians had methods to solve at
least particular cases of linear and quadratic equations, while formulas to
solve cubics and quartics were published in the 16th century by Cardano and
Tartaglia.

In the 19th century, with the proof by Abel of the inexistence of a general
formula to solve polynomial equations of degree 5 or higher, the spectrum
of interest of mathematicians began to broaden: even if general methods to
solve equations do not exist, can one prove that there is a solution? The
question of solvability became thus a very important one in 20th century
mathematics.

With the growing power of computers during the last century, another
interesting aspect arose: even if no analytic method exists to solve a given
equation exactly, can approximate solutions be numerically computed with
arbitrary precision?

The relationship between provability and computability became more
clear when notions such as realizability were introduced in the early 20th

century. It was then noticed by Brouwer (quoted in [10, Chapter 1]) that the
use of the classical axiom A∨¬A prevents one from mechanically deriving the
algorithm for constructing x from a proof of ∃x.P (x); and this observation
eventually gave rise to the constructive way of doing mathematics.

Still most mathematicians think constructive mathematics is not powerful
enough for their needs. In answer to this, Bishop published in 1967 his
book “Foundations of Constructive Analysis” [10], where (as he says in its
introduction) he shows that, contrarily to what many claimed, it was possible
to develop almost all of the “relevant” mathematics in a constructive way.
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2 CHAPTER 1. INTRODUCTION

This thesis discusses how this objective can be pursued even further,
showing that it is even possible to completely formalize his development of
Real Analysis [10, Chapter 2] in the Coq proof assistant, building on top of
a previously existing formalization of the Fundamental Theorem of Algebra.

But why formalize it at all? And why constructively?
Formalizing mathematics can be inspiring. In the process of formalizing,

one discovers the fine structure of the field one is working with and one gains
more confidence in the correctness of the definitions and the proofs. But in
addition to this, formalizing mathematics can also be useful; among some of
its possible uses are the following.

Correctness guaranteed: the formalized mathematics is checked and thus
the proofs are guaranteed to be correct. This can be vital in the realm
of software or system correctness, where one wants to be as sure as
possible that the mathematical models and the results proved about
them are correct.

Exchange of “meaningful” mathematics: that the mathematics is for-
malized means that it has a structure and a semantics within the Proof
Assistant. So a mathematical formula or proof is not just a string
of symbols, but it has a structure that represents the mathematical
meaning and its building blocks have a definition (within the Proof
Assistant). These can in principle be exploited to generate meaningful
documents or to exchange mathematics with other applications.

Finding mathematical results: based on the semantics and the structure
of the formalized mathematics, it should be possible to query the library
and find results easily. Querying based on the (meaningful) structure
is already possible, but more semantical querying would be welcome.

An important point of this formalization is that it is a constructive one.
There are several reasons for this.

The main one is the intended use of the library. Apart from studying
how it conducts as a repository, one wants to study the connections between
“conceptual” (abstract) mathematics and “computational” (concrete) math-
ematics. The first (conceptual math) deals with e.g. the proof of (and theory
development leading to) the Fundamental Theorem of Algebra, while the sec-
ond (computational math) deals with an actual representation of the reals
and complex numbers and the actual root finding algorithm that this proof
exhibits. This was also an important motivation for choosing to work with
Coq; in particular, the work in program extraction relies heavily on the fact
that the underlying library is constructive.
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The other issue is that of generality. As described in [5], there are many
different schools of mathematicians, each claiming that “their” way is the
right way to do mathematics. In the intersection of the major schools lies
the style proposed by Bishop: the principle of the excluded middle has been
repeatedly criticized over the 20th century; so do not assume it. But do
not assume any of the more controversial axioms of intuitionistic or recur-
sive mathematics either. The result is a theory which will, in principle, be
accepted by most mathematicians.

This thesis describes how Bishop’s constructive development of Real Anal-
ysis was for the first time formalized within the Coq system. In order to do
this, serious thought had to be given to several important issues which had
not previously been addressed in this context, namely the representation of
concepts and the construction of auxiliary tools to help developing the proofs.

The formalization is the departure point to more general considerations
on how a large library should be developed and organized so that its contents
can be easily accessed and used by others.

The work described in this thesis can be summarized in three points:

• construction of the C-CoRN library (formalization of Real Analysis and
development of tactics);

• development of a working methodology;

• applications to program extraction (case study: extracting and opti-
mizing a program from the formalized library).

For presentation, the first two points are addressed in the inverse order.
Chapter 2 presents a more detailed introduction on the whole work, dis-

cussing other formalizations of Real Analysis (in particular in Coq) as well as
the pre-existing library of Algebra on top of which this work was developed:
the FTA-library. This is followed by some general considerations about the
methodology used throughout the whole formalization; and the chapter con-
cludes with a description of the mathematics to be formalized, Chapter 2
of [10], and the identification of some problems which will have to be solved.

Dealing with partial functions is one of these problems, addressed in
Chapter 3. This chapter discusses possible ways to formalize them, both
in Coq and in other proof assistants, and focuses on the two most natural
ways to do it in the context of this work. The advantages and disadvantages
of each of these two options are then discussed before a final choice is made.
Part of the material in this chapter has been published in [20].

The next crucial issue is automation. Chapter 4 deals with this at length,
presenting different ways to define tactics in Coq as well as examples and
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advantages of each mechanism. Special attention is paid to the new tactics
developed to automate proofs in Real Analysis. Some of the content of this
chapter has been published in [20]; the extension of Rational to partial
functions is joint work with Freek Wiedijk, and the new version of the Step

tactic was designed with Hugo Herbelin.
Chapter 5 then discusses extensively how the mathematics of [10, Chap-

ter 2] were formalized, presenting the major problems encountered and ex-
amining the choices that had to be made at each stage. This chapter is a
(very) extended version of [21].

The last chapter explores one of the applications of formalized construc-
tive mathematics: program extraction. In Chapter 6, the ideas behind pro-
gram extraction are presented together with the description of work previ-
ously done in the area before examining the problem of getting first a program
and later a working program from the repository of formalized mathematics
developed at the University of Nijmegen. Most of this chapter contains joint
work with Bas Spitters, which was partially published in [22]; the first part
of Section 6.3 is joint work with Pierre Letouzey and Bas Spitters.

The thesis ends with a general overview of what was achieved and some
concluding remarks.

A short introduction to Coq is provided as Appendix A.
The whole formalization, together with the documentation, can be ac-

cessed via the C-CoRN home page, http://c-corn.cs.kun.nl/.



Chapter 2

Some Metamathematical
Considerations

Formalizing a significant piece of mathematics is a highly non-trivial task
which requires some previous analysis and careful planning.

The field of Real Analysis had already been formalized in other theorem
provers when this work was begun. This chapter begins with an overview of
these different formalizations, together with a brief analysis of their pros and
cons and a justification of why it was still sensible to do this work in a new
context.

The environment where this formalization was to be developed was the
FTA-library. As its name suggests, this library contained a formalization of
the Fundamental Theorem of Algebra (the FTA) carefully developed so as to
be usable in future work. In Section 2.2, the notation and conventions used
in the FTA-library are introduced and explained, as well as the underlying
philosophy and the more abstract goals at the heart of the FTA-project.

Since Real Analysis can hardly be classified as a part of the Fundamental
Theorem of Algebra, the library was renamed during the development of this
work, and is presently known as C-CoRN (the Constructive Coq Repository
at Nijmegen).

According to the goals of the FTA-project, which are also the goals of
C-CoRN, the formalization should be as general and widely applicable as
possible. Thus, instead of aiming at a specific theorem, it was decided to
try to formalize a chapter of a reference book as closely as possible, with
the advantages and disadvantages of such an option. Since C-CoRN is a for-
malization of constructive mathematics, the natural bibliographic reference
was Bishop’s “Foundations of Constructive Analysis” [10], and in particu-
lar Chapter 2. In Section 2.4 a more detailed overview of the mathematical
content of this work is presented, with the double purpose of acquainting

5



6 CHAPTER 2. SOME METAMATHEMATICAL CONSIDERATIONS

the reader with it and a priori identifying potential problematic issues which
should be solved before starting the formalization.

At the end of the chapter a brief discussion of the problems which can
already be seen is presented. A relevant aspect of this discussion is the fact
that C-CoRN is on the one hand meant as an extension of the FTA-library,
and hence should be coherent with it, but on the other hand expected to
follow [10] as closely as possible.

2.1 Related Work

Several formalizations of real numbers, Real Analysis and properties of ele-
mentary transcendental functions have been previously completed in different
systems. Most of these differ from the one described in this thesis simply
because they are classical formalizations.

The first successful attempt to formalize a reference book on mathemat-
ics was made by van Benthem Jutting [6] (partially reprinted as [7]). He
followed Landau’s construction of real numbers [46] as closely as possible,
translating it into Automath. His work bears many similarities to the one
described in this thesis, not only in motivation but also in his treatment
of partial functions (discussed in Section 3.2); but the differences inherent
to thirty years’ development of technology are marked. Among these, the
readability of the development stands out as foremost: whereas the Coq for-
malization is readable without too much explanation, as Chapter 5 clearly
shows, understanding van Benthem Jutting’s coding in Automath requires a
previous study of that system’s language. Also, Automath was not meant
to do proofs automatically, therefore Chapter 4 of this thesis has no parallel
in his work; this is also reflected in the difference between the conclusions
of [6] and those in Section 5.6: whereas the ratio between the original text
and its formalized counterpart is, in Automath, always roughly the same, in
the Coq formalization of [10] this ratio will be shown to decrease as the work
progresses.

Mizar [51] presently includes a classical formalization of Real Analysis.
Differential calculus was developed by Kotowicz, Raczkowski and Sadowski,
whereas Endou, Wasaki, and Shidama have formalized integral calculus.
These formalizations include classical counterparts to all the results pre-
sented below in Section 2.4, in particular Rolle’s Theorem (Theorem 2.4.11),
Taylor’s Theorem (Theorem 2.4.15) and the Fundamental Theorem of Cal-
culus (Theorem 2.4.20). It is also interesting to note that it is the only other
formalization of those here mentioned that explicitly attempts to deal with
partial functions in their full generality.
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Harrison’s HOL-light system (described in [38]) is another proof assis-
tant that comes with a library of Real Analysis. Once again, this library
is built classically. Among the results therein included figure the usual re-
sults on preservation of continuity through algebraic operations, derivation
rules, Rolle’s Theorem (Theorem 2.4.11) and the Law of the Mean (Equa-
tion 2.2). Also included in this system is a library of transcendental functions,
where exponential and trigonometric functions are defined as power series
and their inverses as inverse functions. Finally, integration is defined and the
Fundamental Theorem of Calculus (Theorem 2.4.20) is proved. This work,
described in [38], has been used together with his formalization of floating
point arithmetic in [39] to prove correctness of floating point algorithms.

Mayero has also formalized differential calculus and transcendental func-
tions in Coq, starting with an axiomatic characterization of the reals, and
showed in [50] how this formalization can be used to prove correctness of
programs in Numerical Analysis. Her formalization of differential calculus in
Coq includes notions of (point-wise) continuity and differentiability, deriva-
tion rules, and some work on transcendental functions. However, it does not
either deal with integral calculus nor state more general results like Rolle’s
theorem. This is because her motivation is not formalizing Real Analysis
in itself, but showing how such a formalization can be used for Numeri-
cal Analysis, whence she develops just the theory that she needs for that
purpose. For the same reason, she argues that it makes more sense to work
classically—which makes her work totally distinct from the one in this thesis.

Mayero’s treatment of partial functions is discussed in more detail in
Chapter 3, where in particular it is shown that it cannot be adapted to a
constructive setting.

In the PVS system, Dutertre has also developed a classical theory of Real
Analysis which most of differential calculus. This formalization is described
in [27]. Building upon this work, Gottliebsen built a library of transcen-
dental functions described in [37], where she defines exponential, logarithmic
and trigonometric functions, proving similar results to those in Section 5.5.
Besides these, she defines an automatic procedure to prove continuity of a
large class of functions, which works in a similar way to the Contin tactic
described in Section 4.4, and shows how it can be used interactively with
Computer Algebra systems to guarantee the correctness of applications of
the Fundamental Theorem of Calculus (Theorem 2.4.20).

More specific aspects of related work are discussed at the beginning of
Chapter 3 (how the different formalizations above described deal with partial
functions) and Chapter 6 (on the more specific topic of program extraction
from constructive proofs). Those chapters also include more detailed com-
parisons with the work described in this thesis.
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Throughout Chapter 5, several comments are made on specific aspects
which turned out to be more difficult to formalize than the rest. Besides the
afore-mentioned references, many of the remarks there made about similar
difficulties encountered by other people when formalizing related topics in
other proof assistants are motivated by a discussion during the Workshop
in Continuous Mathematics which was held as part of TPHOLs 2002 and
attended by many of the people mentioned above.

2.2 Background

The work described here was initially thought of as a direct continuation of
the FTA-project, which had been going on at the University of Nijmegen
during the period 1999–2000. In this section, the aims and results of that
project will be briefly presented, in order to give a clearer picture of the
setting in which C-CoRN came to exist and to introduce the preexisting
library.

The FTA-project: goals and philosophy

One of the main criticisms to formalizations of mathematics as presently
done is their little reusability. Most of the work is geared to proving a given
theorem within a specific theorem prover, and little or no attention is paid
during that process to the development of a library which will be usable by
others later on.

Challenging this approach was one of the early motivations fueling the
FTA-project. The goal of this project was to formalize in Coq a constructive
proof of the Fundamental Theorem of Algebra (FTA).

Theorem 2.2.1 Let f be a non-constant polynomial over the complex num-
bers. Then f has a root, i.e., there is a complex number z such that f(z) = 0.

Instead of simply proving this theorem as quickly as possible, though, care
was taken to develop in this process a generic library of elementary construc-
tive algebra.

In particular, this meant that all the auxiliary lemmas needed for the
proof of the FTA should be formalized in as general a way as possible. As a
consequence, real numbers were axiomatized (as a Cauchy-complete ordered
field satisfying the Archimedean property) rather than built as a concrete
structure; similarly, an Algebraic Hierarchy (described in detail in [32]) was
constructed, where properties of the algebraic operations were proved at the
right level of abstraction.
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Two nice properties of this approach are worth pointing out.

First, having generic types of algebraic structures allows reuse of notation
for the algebraic operations, which is a very relevant point: in this way one
can simulate overloading in a system such as Coq where it is not available. As
an example, any ring has an operation (multiplication) that can be written
down as ×, leaving the ring implicit1—thus allowing one to write both x × y
for real numbers x and y, p × q for polynomials p and q, or z × z′ for complex
numbers z and z′. Furthermore, once the axiomatic properties of × (e.g.
associativity, commutativity) have been proved for each structure, all lemmas
about rings can be used for all of them.

The Algebraic Hierarchy also leaves open the possibility of reusing the
library for other domains than that of the complex numbers. The existence
of results about groups makes it possible to formalize group theory on top
of it, even though the FTA has nothing to do with groups. A convincing
example of this is the extension of the FTA-library with a formalization of
Real Analysis described in Chapter 5. The new and the old parts share as
much as possible—namely, all the Algebraic Hierarchy and the results about
real numbers. The integration between the old and new parts of the extended
Algebraic Hierarchy can be seen from the formalization of the complex ex-
ponential function done by Hinderer [41].

The main disadvantage of this approach is that the terms that occur
in the formalization quickly become large, since they have to refer to the
specific structure used. Also, because of the hierarchy of the types of algebraic
structures, one will needed to insert in the terms to get to the right kind of
algebraic structure. For example, to multiply two elements of a field one first
has to access the underlying ring in order to use the multiplication. This
is not a problem for the user, since all these operations are implicit: the
specific structure is generally an implicit argument, while the functions that
map algebraic structures are implicit coercions2. But internally these terms
are still big, so it slows down the processing of the formalization by Coq.

Another slight disadvantage of this approach is that sometimes proofs can
be less direct than in the case that all functions are concretely defined. This
will be especially relevant when working with program extraction, which is
the subject of Chapter 6. For example, if one knows that one is dealing with
the rational numbers, a proof of a specific lemma might be possible that gives
a much better extracted program. In the case that one has to give a proof
from axioms, this optimization might not be available. Concrete examples

1That is, the ring is an implicit argument which the system figures out for itself; see
Appendix A.5 for a more precise description of how implicit arguments work.

2A description of how the coercion mechanism works can be found in Appendix A.5
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of such situations can be found in Chapter 6.

A different feature of the FTA-project was the focus on documentation.
If a library is meant to be reused, then it is necessary that a good description
of its content be available.

It should be stressed that documentation is here understood as different
from presentation. A presentation of a library of formalized mathematics is
simply a list of (possibly pretty-printed) lemmas, where the proof scripts may
or may not be included. A documentation of the same library should include
the lemmas, possibly in a simplified form (i.e., in a way that their meaning
is clear, although the theorem prover may not recognize them as valid state-
ments); it should not include the proof scripts; and it should contain other
relevant information, such as explanation of non trivial definitions or proofs,
comments on the development, and discussion on alternative developments
where appropriate.

This philosophy of working was made more precise and taken as a fun-
damental issue in the development of C-CoRN, as will be explained in Sec-
tion 2.3.

The Algebraic Hierarchy of the FTA-library

Since the FTA-library is at the heart of the whole work here described, it
is essential to have a general understanding of its content and its notation.
This section explains the construction and use of the Algebraic Hierarchy
and the real numbers, needed for the formalization of Real Analysis. A more
detailed description of this hierarchy can be found in [32].

The basics of Coq, including an overview of the type theory it relies on,
a description of its syntax and the conventions used throughout this thesis
for displaying Coq terms are explained in Appendix A.

At the basis of the FTA-library lies the notion of setoid. Equality in Coq
is an intensional (syntactical) notion, which is not appropriate for construc-
tive mathematics: in the usual models of the real numbers, redundancy is
essential in the sense that there will be many (syntactically) different repre-
sentations of (extensionally) the same element. Therefore, it is necessary to
have a special type corresponding to sets in constructive mathematics. This
will be the type CSetoid of setoids3.

Furthermore, all work in the FTA-library (and in C-CoRN) done so far
deals with sets where a more primitive relation than equality exists: a binary
relation #, called apartness, which satisfies the following properties for all x,

3Throughout the Algebraic Hierarchy the types of structures always begin with a C,
standing for Constructive.
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y and z:

• irreflexivity: ¬x # x;

• symmetry: if x # y then y # x;

• co-transitivity: if x # y then either x # z or z # y.

The apartness is said to be tight (with respect to the equality) if furthermore
x = y iff ¬x # y.

The type CSetoid is defined as the following record type:

Record CSetoid : Type :=
{ cs crr :> Set;

cs eq : (Relation cs crr);
cs ap : (Relation cs crr);
cs proof : (is CSetoid cs crr cs eq cs ap)}.

where the last field states that cs ap is an apartness relation which is tight
with respect to cs eq; from this one can prove that cs eq is an equivalence
relation. (Record types are explained in Appendix A.2.) Notice that tight-
ness could be used as a definition of equality; but often it is useful to have a
more direct definition and then prove that it is tight.

The notation and implicit arguments of Coq allow the apartness (cs ap S)
and equality (cs eq S) to be written infix respectively as [#] and [=]. The
square brackets are needed since # and = are already tokens in Coq, and this
system does not allow overloading. In this presentation, however, the latter
version will be used for simplicity, since there can never be any confusion
about the meaning of the symbols.

Equality being a fundamental notion, most operations and relations are
required to respect it; in other words, functions and relations should behave
in an extensionally equal way on extensionally equal inputs. It should come
as no surprise that this property is known as extensionality.

In the presence of a tight apartness, a stronger property (predictably
known as strong extensionality) is often required. Being strongly extensional
amounts to reflecting apartness; for example, if the two outputs of a unary
function on two given arguments are apart, then the arguments are also apart.
This requirement is justified by the intuitive meaning of “apartness”: two ob-
jects are apart if they can be distinguished by some finite process. Applying
a function to them and comparing the output is such a finite process.

Functions on setoids will always be required to be strongly extensional;
otherwise they will be called operators. If S1, S2 and S3 have type CSetoid,
then S1→S2 (respectively S1→S2→S3) is the type of operators from S1
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to S2 (respectively S1 to S2 to S3), whereas (CSetoid fun S1 S2) (respec-
tively (CSetoid bin fun S1 S2 S3)) are the types of the corresponding setoid
functions. The latter are again record types, containing the underlying op-
erator and a proof of its strong extensionality. These types will be writ-
ten as (CSetoid un op S) and (CSetoid bin op S), respectively, in the case
S1=S2(=S3)=S.

Similar types are defined for binary relations and unary relations (pred-
icates) on a setoid. Strong extensionality for these looks slightly different
than for functions: if P is a unary predicate, then strong extensionality of P
is written down as

P (x) → P (y) ∨ x # y.

However, relations and predicates which are not strongly extensional (and
occasionally not even extensional) will often be used.

The Algebraic Hierarchy of the FTA-library contained types for seven al-
gebraic structures, each of which is a special case of the previous one: semi-
groups (CSemiGroup), (commutative) monoids (CMonoid), groups (CGroup),
(commutative) rings (with identity) (CRing), fields (CField), ordered fields
(COrdField) and real number structures (CReals)4. At the basis of this hier-
archy lies the type of setoids.

This hierarchy is linear: each structure is an instance of all the previous
ones. This is due to the fact that, so far, work has only been done on real and
complex numbers; it is hoped that this hierarchy will get richer and gain a
more complicated structure once subjects like group theory are incorporated
in the library.

The type of each structure is a record type. The first field of this record
(the carrier) is a coercion to the structure immediately below in the hierarchy;
thus, carrier of a group is a monoid, the carrier of a ring is a group (its additive
group), the carrier of an ordered field is a field, and so on.

The next field(s) of the record characterize the rest of the signature of the
structure. For example, a group is a monoid plus a unary operation on the
carrier (the inverse); a ring is a group with a binary operation on the carrier
(multiplication) and an element of the carrier (multiplicative unit); and an
ordered field is a field with a binary relation on the carrier (the strict order).

The last field of the record contains the specification of the algebraic
structure, i.e., the properties that it satisfies. These are encapsulated within

4After this work had been finished, this hierarchy was refined so that monoids and
groups no longer have to be commutative, and an extra type CAbGroup of abelian groups
was included before that of rings. In practice this makes no difference for the purposes of
the following chapters; in this presentation the above described version will be considered,
as it corresponds to what is described in [32].
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a predicate (typically named is type, where type is the type of the structure
in question). Intuitively (since adding a field to a record type intuitively
corresponds to defining a subtype of the same type) this corresponds to
selecting from the structures with the given signature the ones that satisfy
the desired axiom(s). This method has also been followed in the Algebraic
Hierarchy of Metaprl, described in [64].

As an example, the definitions of CGroup and COrdField are presented:

Definition is inverse (S:CSetoid) (op:(CSetoid bin op S)) (one x x inv:S) :=
((op x x inv) = one) ∧ ((op x inv x) = one).

Definition is CGroup (G: CMonoid) (inv: (CSetoid un op G)) :=
∀x:G.(is inverse + 0 x (inv x)).

Record CGroup : Type:=
{ cg crr :> CMonoid;

cg inv : (CSetoid un op cg crr);
cg proof : (is CGroup cg crr cg inv)}.

Record strictorder (S:Set) (R:(CSetoid relation S)) : Set:=
{ so trans : (transitive R);

so asym : (antisymmetric R)}.

Record is COrdField (F:CField) (less:(CSetoid relation F)) : Set:=
{ ax less strorder : (strictorder less);

ax plus resp less : ∀x,y:F.(less x y)→∀z:F.(less (x + z) (y + z));
ax mult resp pos: ∀x,y:F.(less 0 x)→(less 0 y)→(less 0 (x × y));
ax less conf ap : ∀x,y:F. (x # y) ↔ ((less x y) ∨ (less y x))}.

Record COrdField : Type:=
{ cof crr :> CField;

cof less : (CSetoid relation cof crr);
cof proof : (is COrdField cof crr cof less)}.

The ring operations will be denoted by their usual symbols: + for addi-
tion, with identity 0; − for the additive inverse and for subtraction (where
x − y is defined as x + −y); and × for multiplication, with unit 1. Division
is introduced as Definition 3.1.3 and the slightly more complicated notation
for it can be found afterwards in Section 3.1. The (strict) order relation is
denoted by <; the non-strict order x ≤ y is defined as ¬(y < x).

Finally, a term R of type CReals is assumed as axiom; a concrete term of
that type was built separately and proved isomorphic to all other terms of
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the same type. This formalization, described in [31], is also included in the
FTA-library. This model will be relevant in Chapter 6; its description will
be postponed until then.

Logic in the FTA-library

The FTA-library also differed from the standard Coq formalizations in the
way the logic was used.

As explained in Appendix A, there is a preferred sort for propositions in
Coq, namely Prop, whereas datatypes usually have type Set. One of the
main purposes of this distinction, which will be explained in more detail in
Chapter 6, is to separate the computational content of proofs from the pure
logical reasoning. In particular, data is not allowed to depend on proposi-
tions; in other words, if A : Prop and S : Set, then case analysis on elements
of type A is not allowed when defining an element of type S.

But this is precisely what mathematicians do all the time! Defining func-
tions by cases (i.e., analyzing the structure of a term of type A ∨ B) is a
daily task when proving theorems in Analysis, and this is precisely one of
the things that the previous rule forbids—even though it is clearly justified
in constructive mathematics.

There are two known solutions to this problem. The first one is to add
the desired elimination rule as an axiom; however this raises consistency
problems, as it is then necessary (at least from a moral point of view) to check
that not all types become inhabited when this axiom is assumed. Another
option is to ignore Prop altogether, and simply redefine all the logic in Set.

The latter approach was taken in the FTA-project. Although this means
that rather uncommon notations are used for the logical connectives, this fact
will be ignored throughout this work and conjunction, disjunction and the
like will be printed using the usual symbols. Still, predicates and relations
on a type S will have types S→Set and S→S→Set, respectively, instead of
the standard S→Prop and S→S→Prop.

In Chapter 6 the issue of logic will be brought up again and analyzed in
more detail. At the end of that chapter a better solution will be proposed,
corresponding to the current day situation within C-CoRN.

2.3 The C-CoRN project

After the FTA-project was completed, i.e., after a proof of the FTA had been
completely formalized, it was clear that most of the goals had been success-
fully achieved. The abstract way of working was patent in the Algebraic
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Hierarchy, with nice consequences like e.g. the fact that real numbers, com-
plex numbers and polynomials over both could be manipulated in a similar
way thanks to a number of general lemmas about rings. The documentation
was there, allowing humans to access the contents of the library in a way
designed for them, rather than having to browse through the source code.
And there were general purpose tools (not specifically geared towards the
proof of the FTA) available, such as nice algebraic notation and powerful
automation facilities.

To test the reusability of the library, though, it was fundamental that
work be done in an altogether different direction, preferably by people not
involved with the FTA-project. The subject of Real Analysis was a natural
candidate, with the Fundamental Theorem of Calculus as emblematic target
for formalization.

It soon turned out that, if the spirit of the original FTA-project was to be
preserved, it would be advisable to develop a methodology to follow during
work. And thus C-CoRN gradually began to emerge.

C-CoRN, the Constructive Coq Repository at Nijmegen, is meant as an
extension of the FTA-library to a more general purpose repository. One of
the goals of C-CoRN is to provide an environment where significant portions
of mathematics can be formalized, and where the formalization process can
be studied. The aim is to gain insight into how one can eventually build a
computer system with which mathematicians will want to work developing
real mathematics.

The methodology of C-CoRN basically systematizes the philosophy be-
hind the FTA-project. This is described in more detail in the remainder of
this section.

Documentation

Providing a good documentation for the formalized library in parallel with
its development was a central preoccupation since the early stages of the
FTA-project. Having a human-readable description of what has been for-
malized can be very useful in communicating not only content but also ideas,
notations and even some technical aspects of the formalization process.

Such a documentation should at any given moment reflect the state of
the library, and as such should be intrinsically linked to the script files.
At present, Coq provides a standard tool, called coqdoc (see [29]), that
automatically generates postscript and html documentation from the Coq
input files. Additional information can be introduced in the documentation
via comments in the script file.
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The C-CoRN documentation is presently produced using coqdoc. It in-
cludes all definitions, axioms and notation as well as the statements of all
the lemmas in the library, but no proofs, as discussed earlier. In line with
the idea of what a good documentation should contain, tactic definitions are
omitted from the documentation, but not their description: although the
actual code is not presented, the behaviour of the existing C-CoRN specific
tactics is explained as well as how and when they can be used.

In the html version, hyperlinks between each occurrence of a term and
its definition allow the users to navigate easily through the documentation,
being able to check quickly any notion they are not familiar with.

Structuring

There are several ways that the lemmas and files in a library of formalized
mathematics can be organized. As mentioned earlier, the current trend in
most major systems seems to be adding individual files to the library as
independent entities, and seldom if ever changing them afterwards.

However, C-CoRN is intended as a growing system upon which new
formalizations can be made. The approach above described directly con-
flicts with this purpose, for it typically leads to dispersion of related lemmas
throughout the library and unnecessary duplication of work: each user will
be focused on finishing his proofs, not on placing his auxiliary lemmas where
everyone can find them.

For this reason, lemmas in C-CoRN are organized in files according to
their statements, and files are distributed among directories according to
their subjects. Thus, different areas of mathematics appear in different di-
rectories and different subjects within one area will be different files in the
same directory. Of course, this requires central control over the repository:
after an extension, the library has to be reconsidered to put the definitions
and lemmas in the “right” place. So far this works well due to the still small
dimension of C-CoRN, but in the future this may become problematic if
many files are contributed within a short time.

No part of the library is, strictly speaking, immutable: new lemmas can
be added at any time to existing files, if they are felt to belong there. In
this way, new lemmas then become immediately available to other users. In
practice, though, more basic and older parts of the library tend to change
less.

Coupled with this method of working, the documentation system de-
scribed above makes looking for a particular statement a simpler process
than in most other systems discussed in Section 2.1. But in addition to this,
naming conventions are adopted throughout C-CoRN that allow experienced
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users to find a specific lemma even quicker without needing to consult the
documentation. These naming conventions are too specific to be explainable
in an abstract way, but hopefully their flavour can be felt from the examples
throughout this thesis.

Automation

An important part of the C-CoRN library consists in tools designed to aid
in its own development. Together with definitions, notations and lemmas,
several automated tactics are defined throughout C-CoRN. These will be the
subject of Chapter 4, so they will not be discussed further at this stage.

Program Extraction

Besides the direct interest of formalizing mathematics per se, one particular
application was explored in the setting of C-CoRN.

One of the consequences of working constructively, and therefore without
any axioms5, is that, according to the Curry–Howard isomorphism, every
proof is an algorithm. In particular, any proof term whose type is an exis-
tential statement is also an algorithm whose output satisfies the property at
hand.

In Coq there is an extraction mechanism available which readily trans-
forms proof terms into executable ML-programs (see [47]). Marking tech-
niques are used to significantly reduce the size of extracted programs, as
most of the information in the proofs regards correctness rather than ex-
ecution of the algorithm and can thus safely be removed. Chapter 6 will
extensively discuss program extraction.

2.4 The mathematics

The next chapters revolve around the formalization of Real Analysis which
marked the transition from the FTA-library to C-CoRN.

As mentioned earlier, the reference for this formalization was Bishop’s
constructive development of Real Analysis presented in [10, Chapter 2]. This
section describes the mathematics developed there in some extent, focusing
on some of its constructive aspects.

5Although an axiom R is assumed, elsewhere in the library a concrete term of that type
is built.
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As Bishop’s intent is to develop from scratch a constructive version of
classical Real Analysis, he begins by constructing the real numbers. First
regular sequences are defined:

Definition 2.4.1 A regular sequence {xn}n∈N of rational numbers is a se-
quence such that

∀m,n∈N. |xm − xn| ≤ 1

m
+

1

n
.

The regular sequences are the real numbers in Bishop’s work.
The definitions of apartness and equality on this set are immediate:

x < y ⇔ ∃n∈N.yn − xn >
2

n
x # y ⇔ x < y ∨ y < x

x = y ⇔ ∀n∈N. |xn − yn| ≤ 2

n
⇔ ¬x # y

These definitions yield an irreflexive and cotransitive apartness which is
tight with respect to the equality; the latter is an equivalence relation.

Definition 2.4.1 is stronger than the usual definition of Cauchy sequence
(and in particular from the definition used in the model of the reals included
in the FTA-library). This fact has some nice consequences. In the first
place, the definition of the operator that assigns to any Cauchy sequence
of real numbers its limit becomes much easier because of the fixed rate of
convergence. Also proving the equation x = y ⇔ ¬x # y becomes trivial.

Section 2 of [10, Chapter 2] deals with the basic properties of these real
numbers, and includes material that was already present in the FTA-library:
the algebraic operations and their properties; order relation and its relation
with the operations; and the concept of (partial) function.

These results can be summarized as follows.

Proposition 2.4.2 With these definitions, the regular sequences of rational
numbers form a real number structure in the sense of the FTA-library.

Due to the isomorphism result mentioned at the end of Section 2.2, the fact
that this model is different from the one in [31] becomes a minor issue. This
can be seen even more directly, as from the definition of Cauchy sequence
the following is trivial to prove.

Proposition 2.4.3 Every Cauchy sequence of rational numbers has a reg-
ular subsequence.
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The next section deals with sequences of real numbers. Part of this ma-
terial was also developed in the FTA-library, namely most of what regards
definition and main properties of Cauchy sequences and completeness of real
number structures, but there is an important part missing on subsequences
and series. This theory is very close to its classical analogue, so it will not
be discussed further.

At the end of this section, e and π are defined as examples of sums of
specific series.

Continuity

Section 4 of [10, Chapter 2] starts dealing with functions, namely with con-
tinuity, and some subtle issues arise which make the theory start to differ
somewhat from the classical one.

The first problem has to do with compactness. The classical definition of
compact set (a set S is compact iff for every open cover {Fi}i∈I of S there
is a finite subcover {Fik}k=1,...,n which still covers S), while constructively
making sense, is too strong for practical purposes: it is not even possible to
prove that the interval [0, 1] is compact with the usual topology on the real
line without assuming extra axioms; in recursive mathematics this is actually
even not true, as is shown in [5]. Therefore, Bishop turns his attention to
the property of total boundedness:

Definition 2.4.4 A set A ⊆ R is totally bounded iff for every ε > 0 there
exist points x1, . . . , xn ∈ A such that

∀y∈A.∃i∈{1,...,n}. |y − xi| < ε.

Classically, the previous definition of compactness is equivalent to Cauchy
completeness (a set A is Cauchy complete if it contains the limit of every
Cauchy sequence with values in A) and total boundedness. Constructively
this is obviously not so, as the interval [0, 1] is easily seen to be complete
and totally bounded but is not provably compact; but being totally bounded
turns out to be a sufficient condition in most situations. Therefore, the
following is a satisfactory definition of compact sets of real numbers:

Definition 2.4.5 A set S ⊆ R is compact iff it is Cauchy complete and
totally bounded.

A compact interval is defined to be a set {x ∈ R | a ≤ x ∧ x ≤ b},
with a ≤ b, denoted usually by [a, b]. This is consistent with the previous
definition, since it can be proved that compact intervals are compact sets.
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The next problem that shows up is the definition of continuous function
itself. Classically, this is a pointwise notion (a function f is continuous at a
point x); however, this notion is constructively too weak. The usual theorems
about continuous functions fail to hold unless extra axioms are assumed;
for example, the fact that functions that are continuous at all points in a
compact interval I are uniformly continuous in that interval is constructively
not provable: there is a recursive counter-example, which can be found in [5].

It should be noticed that this same problem has been pointed out by peo-
ple doing Nonstandard Real Analysis, showing that it is not a serious flaw of
constructive mathematics but rather a coincidental feature of classical math-
ematics. Exercise III.3.15 on page 131 of [43] discusses how, in a nonstandard
world, the classical definition of pointwise continuity does not imply uniform
continuity on compact sets because it does not quantify over “enough” points.
In that context, this issue is solved by using a different notion of pointwise
continuity which does imply uniform continuity on compacts.

The same problem of not being able to quantify over enough points is
encountered in Point-free Topology. In [53] it is shown how, once again, this
can be avoided by using the topological definition with open sets instead of
the problematic ε-δ definition.

Bishop has a more practical approach: simply forget about pointwise con-
tinuity altogether (which as argued above is not such an interesting concept
anyway) and directly define uniform continuity. Interestingly, it has also been
argued by Bridger and Stolzenberg in [12] that this approach also yields a
simpler and equally powerful theory of classical Real Analysis.

Definition 2.4.6 A function f : R → R is continuous in a compact interval
[a, b] iff there is a function δ : R+→R+ such that

∀ε>0.∀x,y∈[a,b]. |x − y| ≤ δ(ε) → |f(x) − f(y)| ≤ ε.

Notice that this definition still differs from the classical one in the use of ≤
instead of <; but it is easy to see that they are equivalent, and constructively
≤ is a negative concept, which will make reasoning with it somewhat easier
(in particular, goals of the form a ≤ b can be proved by contradiction). This
is a feature of constructive analysis that will be present throughout this whole
section.

The function δ is called a modulus of continuity for f . For practical pur-
poses, though, it is not needed that it be a function; that is, the definition
of continuity could have been stated instead in the usual ε-δ way, and this
would have been equivalent to Definition 2.4.6 in the presence of the Axiom
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of Choice6. Since the extensionality of δ plays no visible role in this develop-
ment, the option was taken to choose for the more usual formulation when
formalizing this concept.

The notion of continuity can be generalized to arbitrary proper intervals
(intervals with more than one point):

Definition 2.4.7 A function f is continuous in a proper interval J iff it is
continuous (in the sense of Definition 2.4.6) in every compact interval I ⊆ J .

This definition is consistent with the previous one in the sense that if I
is a proper compact interval and f is continuous in I then it will also be
continuous in I under this generalized interpretation.

Continuity of functions in both senses is preserved by the ring opera-
tions (pointwise addition, subtraction and multiplication) and also by taking
of the maximum and the absolute value. However, composition is slightly
more complicated because, although continuous functions have a supremum
and an infimum in every compact interval, they do not necessarily attain it.
Therefore, continuity of the composition must be stated read as follows:

Lemma 2.4.8 Let I and J be intervals and f : I → J and g : J → R be
two continuous functions such that every compact interval included in I is
mapped by f into a compact subinterval of J . Then g ◦ f is continuous in I.

The extra condition can be restated as: for every [a, b] ⊆ I, there exist c and
d such that f([a, b]) ⊆ [c, d] ⊆ J . Though this is true in many settings, such
as classical or intuitionistic mathematics and formal topology, constructively
one can only prove the weaker f([a, b]) ⊆ (c, d) ⊆ J , which might not suffice;
therefore, the stronger hypothesis has to be assumed.

A particular situation is division, where the side condition can be simpli-
fied using the knowledge of the precise domain of the function being composed
with (taking of the reciprocal):

Lemma 2.4.9 Let f : I → R be a continuous function such that for every
compact J ⊆ I there is a real number c > 0 with |f(x)| ≥ c for every x ∈ J .
Then 1

f
is continuous on I.

This section concludes with a theory of sequences and series of (contin-
uous) functions. For reasons similar to those discussed above only uniform
convergence of sequences is considered. This part of the theory again closely
parallels the development of the analogue theory for real numbers.

6Without assuming this axiom δ will be an operator, i.e., not necessarily (strongly)
extensional.
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Differentiation

The “real” Real Analysis begins in Section 5 of [10], which focuses on dif-
ferentiation, differentiable functions and one-variable differential calculus in
general.

All of what was said before about the problems of pointwise continuity
can be applied mutatis mutandis to the constructive analysis of the notion
of pointwise derivative. Therefore, it should come as no surprise that the
uniform concept is considered the fundamental one.

However, there is still one small detail left. If the classical definition is
directly used, the condition for g to be a derivative of f in an interval [a, b]
reads as follows:

∀ε>0.∃δ>0.∀x,y∈[a,b]. |x − y| ≤ δ →
∣∣∣∣f(x) − f(y)

x − y
− g(x)

∣∣∣∣ ≤ ε. (2.1)

This definition poses a tricky problem: the division on the left of the
equation can only be done if x and y are apart. And adding x # y as a side
condition yields something which is too awkward to use, requiring always
two separate cases to be analyzed (when x # y and when x and y are “close
enough”, which is always a fuzzy concept and is often used where a long and
tedious proof would be due). In order to bypass this problem, the following
(equivalent) definition is used instead:

Definition 2.4.10 Let f and g be real-valued functions continuous on the
proper7 compact interval [a, b]. Then g is said to be a derivative of f iff

∀ε>0.∃δ>0.∀x,y∈[a,b]. |x − y| ≤ δ → |f(x) − f(y) − g(x)(x − y)| ≤ ε |x − y| .
This definition generalizes to arbitrary proper intervals in a similar way

to that shown for continuity.
Now it is straightforward to show that the usual rules for the derivative

of the sum, product, division and composition hold; for the last two, side
conditions similar to those in Lemmas 2.4.8 and 2.4.9 are needed.

It can also be shown that any two derivatives of f on an interval [a, b]
must coincide on that interval. This justifies the following notation, which
will be used from this point on: if f is a differentiable function in [a, b], then
f ′ is the derivative of f whose domain is precisely the interval [a, b].

As usual, the nth derivative of a function f is defined as

f (0) = f

f (n+1) =
(
f (n)

)′
if f (n) is differentiable

7An interval is proper if it contains more than one point.
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With these definitions, constructive versions of both Rolle’s and Taylor’s
theorem can be proved. These will now be discussed in some detail.

The classical version of Rolle’s theorem reads as follows.

Theorem 2.4.11 Let f be a differentiable function on the interval [a, b]
such that f(a) = f(b). Then there exists an x ∈ [a, b] such that f ′(x) = 0.

Constructively, this statement is too strong. However, the conclusion
of the theorem can be just slightly modified to yield a constructively valid
statement:

Theorem 2.4.12 Let f be a differentiable function on the interval [a, b]
such that f(a) = f(b). Then, for any ε > 0, there exists an x ∈ [a, b] such
that |f ′(x)| ≤ ε.

(This situation is similar to that of the Intermediate Value Theorem,
described in detail in Chapter 6, from page 156 onwards. As is shown there,
the hypotheses of the theorem can also be strengthened to yield a constructive
version with the same conclusion. Beeson [5] discusses from a more general
perspective the different ways in which constructive analogues to classical
theorems can be found.)

The following important corollary of this theorem is usually known as the
Law of the Mean:

Corollary 2.4.13 Let f be a differentiable function on [a, b]. Then, given
ε > 0, there exists an x ∈ [a, b] such that

|f(b) − f(a) − f ′(x)(b − a)| ≤ ε.

At first sight, these constructive results seem much weaker than their
classical counterparts. Although this is in part true, it is worthy to point out
that in practice this apparent weakness tends to disappear. There is a very
simple reason for this: even though both theorems, in their classical versions,
state equalities concerning the value of f ′, they do so at an unspecified point,
that is, they speak about an x which is existentially quantified. Therefore,
when used in practice (and the Law of the Mean is in fact the version of
Rolle’s theorem which is the most useful in practice, as it makes almost no
requirements over f), these theorems are used to obtain bounds: the classical
version of the Law of the Mean trivially yields

|f(b) − f(a)| ≤ ‖f ′‖[a,b] × |b − a| (2.2)
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where ‖f ′‖[a,b] is the norm of f ′ in [a, b], defined as the supremum of the
image of [a, b] through |f ′|.

Interestingly, Equation (2.2) is also constructively provable. This hap-
pens because, even though Corollary 2.4.13 does not provide an equality, it
provides an approximation which can be made as good as desired. Therefore,
one immediately sees that

|f(b) − f(a)| ≤ (‖f ′‖[a,b] + ε
) |b − a|

for any positive ε, from which it is easy to conclude that Equation (2.2) also
holds.

It should be noted that Equation (2.2) is even presented by some (clas-
sical) authors as the actual Law of the Mean, as exemplified by Dieudonné’s
discussion in [25, 26].

A similar situation holds regarding Taylor’s Theorem.

Definition 2.4.14 Let f be an n times differentiable function on an interval
I and let a be a point in I. The Taylor polynomial for f around a with degree
n is the function

x �→
n∑

k=0

f (k)(a)

k!
(x − a)k

Taylor’s Theorem states how good an approximation to f this really is.

Theorem 2.4.15 Let f be an (n + 1) times differentiable function on an
interval I and let a and b be points in I. Define R as

R
def
= f(b) −

n∑
k=0

f (k)(a)

k!
(b − a)k;

then there is a point c between a and b such that

R =
f (n+1)(c)

(n + 1)!
(b − a)n+1.

Like the previous two, it is also a theorem which classically states an
equality involving an existentially quantified point, and whose constructive
counterpart becomes an approximation theorem; but the same analysis of the
main applications of Taylor’s Theorem shows that this difference is essentially
irrelevant.

However, Bishop’s version of this theorem differs from the classical in yet
another respect. The classical proof of Taylor’s theorem as presented for
example in [3] proceeds by defining an auxiliary function whose derivatives



2.4. THE MATHEMATICS 25

from order 0 to n all assume the value 0 at the endpoints of [a, b] and iterating
Rolle’s Theorem. Unfortunately, this reasoning doesn’t work directly with
the constructive version of Rolle’s Theorem, as this does not give exact zeroes
of the auxiliary function. Bishop therefore gives a modified version of this
proof in [10], which requires just one application of Rolle’s Theorem, but
which has the drawback of providing a slightly worse approximation.

Theorem 2.4.16 If the conditions of Theorem 2.4.15 hold, then for any
positive ε there is a point c between a and b such that∣∣∣∣R − f (n+1)(c)

n!
(b − c)n(b − a)

∣∣∣∣ ≤ ε.

It has been pointed out that there are other variants of Taylor’s Theorem
which can be directly constructivized and therefore constitute an improve-
ment on this formulation. An example is the version where the remainder is
written as an integral, see Exercise 7.8.8 (page 370) of [3]. It was chosen not
to formalize one of these in the first place because, as was discussed above,
one of the goals of this work was to show how a chapter of an existing book
could be directly translated into a computer-checkable proof.

Finally, in the case that f is an infinitely differentiable function, the
sequence of Taylor polynomials around a fixed point defines a convergent
series, known as the Taylor series. A corollary to Taylor’s Theorem is

Corollary 2.4.17 Let c be a positive number such that for every r ∈ (0, c),

rnf (n)

n!
→ 0 (as a sequence of functions).

Then the sum of the Taylor series for f around a coincides with f on the
open interval (a − c, a + c).

If this equation holds for any positive r, then the sum of this series defines
a total function on the real line.

Integration

In the setting of Bishop’s work, integrating real-valued functions is in some
sense a more straightforward task than in classical mathematics. One of the
reasons is the following: intuitively (although it cannot be proved without
assuming non-classical axioms), every function whose domain includes an
interval [a, b] is continuous on that interval. This certainly simplifies the work
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where integration is concerned, as it implies that the Riemann integral—or
some slight variation of it—is “enough”.

The classical definition of the Riemann integral proceeds in two stages.

Definition 2.4.18 A partition P of an interval [a, b] is a finite ordered8

sequence of points {x0, . . . , xn} such that x0 = a and xn = b.

The maximum of the numbers {x1 − x0, . . . , xn − xn−1} is called the mesh of
P . Given a partition P and a function f the partial sums

SP
def
=

n−1∑
i=0

sup
y∈[xi,xi+1]

{f(y)} (xi+1 − xi)

and

sP
def
=

n−1∑
i=0

inf
y∈[xi,xi+1]

{f(y)} (xi+1 − xi)

constitute first approximations of the integral of f in [a, b]. The lower integral
of f is then defined as the supremum of the sP ’s and the upper integral of
f as the infimum of the SP ’s. If the two coincide, f is said to be integrable
and

∫ b

a
f , the integral of f in [a, b], is defined to be this common value.

Constructively this is again a very problematic process, as there is no
guarantee that all the necessary infima and suprema will exist (since it is not
constructively true that every upper bounded set of reals has a supremum).
Instead, closely following the classical proof that every continuous function
is integrable provides a simple and elegant way around this problem.

This proof proceeds as follows: consider for the moment only even parti-
tions , that is, partitions where the distance between two consecutive points
is constant, and use (uniform) continuity to show that the difference between
the lower and upper integral can be made as little as possible by making this
distance small enough.

This reasoning is constructive and can be readily adapted to provide an
alternative definition of integral. Given a function f continuous on an interval
[a, b], Bishop defines for every natural number n the even partition

Pn
def
= {a + i

b − a

n
}n

i=0

def
= {xi}n

i=0

8In the classical case, being ordered is not, strictly speaking, relevant, as any list of
points can always be ordered. However, this definition will also be used constructively,
and there this requirement is essential.
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with (n + 1) points. To this the sequence of sums

Sn
def
=

n−1∑
i=0

f(xi) (xi+1 − xi)

=
b − a

n

n−1∑
i=0

f(xi)

is naturally associated. The proof above then can be read as saying that this
is a Cauchy sequence, and its limit is defined to be the integral of f , denoted
by

∫ b

a
f .

In order to show that this definition makes sense, Bishop proves that
this integral behaves as the classical one in the following manner: given any
ε > 0, there is a positive real δ such that for every partition P = {x0, . . . , xn}
with mesh smaller than δ and any choice of points {y0, . . . , yn−1} such that
xi ≤ yi ≤ xi+1 the following inequality holds:∣∣∣∣∣

∫ b

a

f −
n−1∑
i=0

f(yi) (xi+1 − xi)

∣∣∣∣∣ ≤ ε.

The usual properties (linearity, monotonicity) of the integral are then
proved by proving similar properties of sums and passing to the limit.

The most important theorems in this section are, of course, the Funda-
mental Theorem of Calculus and its corollaries.

Bishop’s formulation of the Fundamental Theorem of Calculus reads as
follows:

Theorem 2.4.19 Let f be a continuous function on a proper interval I and
a ∈ I. Let g be the function defined in I by the expression g(x) =

∫ x

a
f(t)dt;

then:

1. f is a derivative of g in I;

2. for any function g0, if f is a derivative of g0 in I, then the difference
g − g0 is a constant function in I.

The following corollary (not included in [10]) is also frequently referred to
as “the” Fundamental Theorem of Calculus (for example in [3]); in particular,
it is the version of the theorem which is formalized in most of the work
discussed in Section 2.1.

Corollary 2.4.20 In the conditions of Theorem 2.4.19, for every g0 such
that f is a derivative of g0 in I and for all x, y ∈ I,

∫ y

x
f(t)dt = g0(y)− g0(x).
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Important consequences of this theorem are the possibility of permuting
limits with integrals or derivatives when working with sequences of functions:

Corollary 2.4.21 Let {fn} be a sequence of functions converging to a
function f on a non-void interval I and let a be a point of I. Write

gn(x) =

∫ x

a

fn(t)dt

and

g(x) =

∫ x

a

f(t)dt

for each positive integer n. Then gn → g on I.

Corollary 2.4.22 Let {fn} be a sequence of functions converging to a
function f on a proper interval I. Assume that {f ′

n} converges to a continuous
function g on I. Then g is a derivative of f on I.

Transcendental Functions

The last section of Bishop’s chapter on Real Analysis deals with transcen-
dental functions. This section may be regarded in some sense as application
and examples regarding all the theory that has been developed so far, as
well as further evidence to support the claim that constructive mathematics
allows as much to be done as its classical counterpart.

In Section 5, Bishop presented the constructive analogue of Taylor’s The-
orem, as well as some corollaries which provide sufficient conditions for con-
vergence of series of functions. Among these are power series, i.e., series of
the form

∞∑
n=0

anx
n;

and of particular interest is the case when an itself is of the form a′
n/n!, which

is the form that gives rise to most of the usual functions used in Analysis.
These series can be shown to converge on the whole real line assuming very
general conditions on the an; for example, assuming that an+1 ≤ c × an for
some positive c.

In order to motivate his definition of the exponential and elementary
trigonometric functions, Bishop begins by examining the properties these
functions are expected to have. In the case of the exponential function, these
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boil down to the differential equations

exp′ = exp

exp(0) = 1

which imply that any such function f must have as Taylor representation the
series ∞∑

n=0

1

n!
xn.

This is in turn a convergent series, therefore defining a total real-valued
function which is its own derivative.

At this point it is trivial to prove that exp(1) = e, where e was defined
at the end of Section 3, which will justify the use from this point onwards of
the notation ex for exp(x).

Corollary 2.4.17 provides a method for proving that two functions are
equal:

Corollary 2.4.23 Let f and g be real-valued functions satisfying the con-
ditions in Corollary 2.4.17 for every positive r, and suppose there is a point
x ∈ R such that, for all n ∈ N, f (n)(x) = g(n)(x). Then f and g coincide.

This fact is used to prove the well-known rule ex+y = exey: taking y as a
parameter, two auxiliary functions are defined by

fy(x) = ex+y

gy(x) = exey

and it is then easy to show that Corollary 2.4.23 applies for any y.
From the two equations e1 = e and ex+y = exey all of the usual properties

of the exponential function can then be easily derived.
This reasoning is very similar in spirit to the coinductive approach to

calculus described e.g. in [57]. The option of formalizing such a development
of transcendental functions was not considered, though, since as said earlier
one of the main motivations for this work was to see how closely one could
follow a reference book.

The logarithm is introduced directly as an indefinite integral, rather than
as the inverse function to the exponential. There is a very good reason for
this. If one wants to give a constructive definition of an inverse function to
the exponential function, there are three steps involved:

• providing an algorithm that, given y, returns a witness x such that
exp x = y;9

9Assuming, of course, that y is in the image of exp.
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• proving that this witness does indeed satisfy the condition expx = y;

• showing that this construction is functional, i.e., if two different repre-
sentations of the same real number are given then the witnesses con-
structed will also represent the same real number.

After these three steps are finished, the logarithm can then be (finally)
defined.

Alternatively, assuming that there is an inverse function log to the ex-
ponential and applying the chain rule for the derivative yields the relations
log′(x) = 1

x
and log(1) = 0. This justifies defining directly log(x) =

∫ x

1
1
y
dy,

thus taking care of the first and third points at once. One can then prove as
a lemma that this function is indeed the inverse to the exponential—which
is precisely Bishop’s approach. Once this is proved, all usual properties of
the logarithm are then quite straightforward to obtain.

Once again, it should be pointed out that many presentations of classical
mathematics also choose for this way to define the logarithm, as it has in
itself more content than the definition as an inverse to the exponential.

Trigonometric functions are dealt with in a similar way. Sine and cosine
are characterized by the four equations

sin′ = cos

cos′ = − sin

sin(0) = 0

cos(0) = 1

and the same procedure which was used above gives rise to the usual power
series representations for these two functions, which can then be shown to
satisfy all their usual properties.

The cosine function is positive at the origin and then strictly decreases
until it reaches the value −1. This fact is used by Bishop to define a Cauchy
sequence which converges to a zero of this function, which he denotes by π

2
.

Although this gives rise to a definition of π which coincides with the one
given earlier, this fact is not mentioned in [10].

Their two inverse functions arcsin and arccos are defined as indefinite
integrals, as was the case with the logarithm. Although Bishop doesn’t treat
the tangent function, it can also be defined directly by tanx = sin x

cos x
and

shown to satisfy all its usual properties.

This concludes Chapter 2 of [10], the presentation of constructive Real
Analysis to be formalized. Even without any further considerations, sev-
eral problems which will arise during the formalization part can already be
identified. These will be considered in the next section.
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2.5 What had to be solved before formalizing

The previous sections show two different ways to look at mathematics, which
must be in some sense reconciled in order to achieve a successful formalization
of Bishop-style constructive Real Analysis in the setting of the FTA-project.
Besides that, Bishop’s work presents some new challenging issues that require
some thought before and throughout the formalization process. In particular,
the following questions must be addressed.

• In the FTA-project, much work was put in developing a general theory
and a general setting where future developments could be made; there-
fore, many lemmas were proved in a very general and abstract form,
and real numbers a.o. were characterized by an algebraic specification
of their properties rather than through the analysis of a particular con-
struction. However, Bishop was not concerned with generality, but with
developing Real Analysis; hence, a concrete model of the real numbers
was constructed and worked upon, and when needed, its specific prop-
erties were used rather than the properties of the algebraic structures
they happened to instantiate.

• In the FTA-project, the main focus was on polynomials. These are very
well-behaved functions: they are infinitely differentiable, analytic and,
most important, total. In Real Analysis, though, many useful functions
are not differentiable (e.g., absolute value in any interval containing the
origin), analytic or even total (like the logarithm or the tangent). As a
consequence, a satisfactory theory of partial functions is needed at the
level of the Algebraic Hierarchy.

• After derivatives are introduced, they become omnipresent in proofs in
Real Analysis. Both the proof of the Law of the Mean and of Taylor’s
Theorem require computing the derivative of very nasty-looking aux-
iliary functions and analyzing them. Also, manipulation of complex
expressions involving real numbers is often required. In order to make
these steps of the formalization feasible and user-friendly, substantial
automation must to be present.

• Finally, at every stage implementation choices have to be made. Often
there are several different, but equally appealing, ways to formalize the
same mathematical concept. Which should be chosen, and what factors
should be taken into account in this choice?

The first point is the easiest one to deal with. Even though Bishop starts
by constructing a concrete model of real numbers, by the end of Section 2 he
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has proved lemmas equivalent to those in the FTA-library, which had been
proved there from the axioms of the real number structures; and thereafter
the proofs rely mostly on these lemmas rather than on the specific represen-
tation of the reals. This allows his work to be directly written in terms of a
generic real number structure, with only some minor changes here and there.

Similarly, the question of generality of the lemmas can be solved quite
straightforwardly. Consider as an example the proof that the integral is
linear, that is, the equality

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

This equality is proved as follows:

∫ b

a

(αf + βg) =

= lim
n→∞

n−1∑
i=0

(αf(xi) + βg(xi)) (xi+1 − xi)

= lim
n→∞

(
α

n−1∑
i=0

f(xi) (xi+1 − xi) + β
n−1∑
i=0

g(xi) (xi+1 − xi)

)

= α

∫ b

a

f + β

∫ b

a

g

In this proof, the first and the last step are simply folding and unfolding
of the definition of integral. The relevant step is, therefore, the middle one;
this can in turn be justified by two simple lemmas:

Lemma 2.5.1 Let x and y be two Cauchy-sequences of real numbers. If, for
all n ∈ N, xn = yn, then lim x = lim y.

Lemma 2.5.2 Let ai and bi denote real numbers, for i = 0, . . . , n. Then the
following equality holds for any α, β ∈ R:

n∑
i=0

αai + βbi = α

n∑
i=0

ai + β

n∑
i=0

bi.

These lemmas are implicitly assumed without proof in [10]. Of course,
this is common practice in mathematics, as they are direct consequences of
the properties of real number structures. But in the setting of a formalization
they must be somehow proved before they are used; and here the philosophy
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of the FTA-project comes into play, saying that these lemmas should in the
first place be recognized as useful and non trivial facts that have a right to
be stated and proved on their own. Furthermore, they should be stated in
as general a form as possible.

Lemma 2.5.1 states a general property of limits, which is valid for con-
vergent Cauchy sequences in any structure where these concepts make sense.
In the Algebraic Hierarchy the minimal such structure is an ordered field;
therefore, this lemma should be restated and proved in terms of a generic
ordered field.

Lemma 2.5.2 just deals with addition and sums; by a similar reasoning,
it should be stated and proved in any abelian group.10

Finally, the linearity of the integral—which only makes sense in a real
number structure—can be proved by application of these two lemmas, which
speak about simpler algebraic structures.

This example should provide a clear picture of the methodology used
throughout the whole of C-CoRN: in every proof, identify the steps which
are instances of more general lemmas that can be stated in a more abstract
form; then prove these lemmas for the simplest structure where they still
hold.

Partial functions will be discussed in detail in Chapter 3. There different
ways of representing partial functions will be analyzed, both from an in-
formal mathematical perspective and a type-theoretic perspective; different
representations will be compared by taking different aspects in consideration.
Special attention will be paid to the faithfulness of the representation, i.e.,
how closely working with the different representations resembles the math-
ematician’s approach; to the efficiency of the representation, both in terms
of size and time required to manipulate the resulting terms; and to the user-
friendliness of the representation, addressing questions such as readability
and usability of each different definition.

Automation is the subject of Chapter 4. A lot of automatic routines had
already been developed in the FTA-project, and these turned out to be ex-
tremely helpful in formalizing Real Analysis; but they did not suffice. The
different methods to develop automated tactics available in Coq will be pre-
sented, briefly discussed and exemplified through the tactics present in the
FTA-library. Then it will be shown how these tactics were extended to deal
with the new concepts that were added to the Algebraic Hierarchy, in partic-
ular partial functions. Furthermore, the new tactics specific to C-CoRN (for
example, that prove continuity or compute derivatives of functions with long
expressions) are described in some detail and their performance is discussed.

10For simplicity, sums are only formalized at the level of abelian groups.
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The formalization itself is the subject of Chapter 5. The mathematical
theory described in Section 2.4 above is again presented, but this time in its
formalized version as part of C-CoRN. All issues related to the process of
formalization are addressed here, in particular why definitions and lemmas
were stated in a specific way and what factors were taken into account when
choosing between different possible representations of the same mathematical
concept.



Chapter 3

Partial Functions

At the end of the previous chapter the need for a careful treatment of partial
functions was stated and briefly explained. This chapter is devoted to the
detailed analysis of this problem and some of its possible solutions.

Partial functions arise everywhere in real mathematics, and any serious
attempt at formalization must at some point deal with the question of how
to treat them. In some systems, such as PVS [61], this is taken care of by
a mechanism of side conditions: each time a partial expression is typed in,
a goal is generated requiring the user to prove that that expression is well
typed. However, this has other disadvantages—in particular, type checking
becomes undecidable in the presence of side conditions in the typing rules.

Another approach was followed in Mayero’s development of classical Real
Analysis in Coq, described in [49]. Here, all functions are simply assumed to
be total; but in statements of lemmas side conditions are explicitly included
to ensure that they are never applied outside of their domain. A similar
approach is taken in other (classical) formalizations on systems based on
type theory, such as HOL-light (see [38]) and Mizar (see [51]).

Unfortunately, this approach only works in a classical setting; in a con-
structive world there are examples of functions which are intrinsically partial,
that is, that cannot be extended to a total function. One such function is
the reciprocal function x �→ 1

x
on the reals. Since there are extensions of con-

structive mathematics where all functions are continuous on their domain,
any total function coinciding with the reciprocal function everywhere the
latter is defined would have to be continuous (see [5]). But no such contin-
uous function exists, therefore the reciprocal function can not be extended
to a total function in a purely constructive setting. An approach such as de-
scribed above would totally exclude such intrinsically partial functions from
the theory.

The need for a more satisfactory way to formalize partial functions there-

35
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fore remains. The analysis of the FTA-library, which in particular deals with
division and square roots (two good examples of functions which are certainly
not total), will be used as a departure point for discussion. Even though both
of these functions were treated in this context as ad hoc cases and no effort
was made at extending the library to include partial functions in their full,
these two examples turn out to be generalizable and naturally give rise to
two definitions of partial functions. In the next two sections these two defi-
nitions will be introduced and their basic properties established. Later, they
will be compared regarding their behaviour from the point of view of the
formalization.

Other treatments of partiality which might be usable in a formalization
occur e.g. in topos theory. These will not be considered here, however, since
they lie too far away from the setting of the FTA-library, where this work
was done.

3.1 The FTA approach: subsetoids

The simplest example of a partial function is division.
As every child learns early in school, in order to be allowed to write an

expression of the form x
y

it must first be verified that y is not equal to 0.
Of course, in everyday practice one just forgets about explicitly justifying
why the divisions are allowed. There are several reasons for this; if y is a
concretely given number, say 2, then the fact that it is not 0 is in principle
self-apparent, and to provide a justification for it would be perceived by most
as silly. But even in other cases, when y is for example an expression such
as (b− a), the reader is supposed to “know” that it is not zero (usually from
hypotheses which are explicitly or implicitly assumed); if this is not deemed
to be obvious, then a small note might be included which explains why it is
the case. In any case, it would certainly be treated as a side issue not really
relevant to the mathematics being done.

The Calculus of Constructions, like many usual type systems, does not
allow terms to be partially defined; in other words, if a function term f has
type A→B then (f x) will be a valid term of type B for any x of type A.
Therefore, when formalizing e.g. division, some way must be found to tell
the computer that its second argument must be different from zero.

Instead of looking directly at division, attention can be restricted to the
reciprocal function, i.e., the function x ∈ R �→ 1

x
. In the presence of such a

function, division can be defined simply via the relation x
y

= x × 1
y
.

One simple way to define the reciprocal function is to formalize it as a
function on the set R \ {0}, viewed as a subset of R, rather than on the
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whole real line. This was the original approach in the FTA-project, and it
has some interesting features which make it easily generalizable to arbitrary
partial functions.

The first step along this path is to define a notion of subset. This is
formalized in the FTA-library as follows.

Definition 3.1.1 Let S : CSetoid and P : S→Set be a predicate on (the
carrier of) S. Then the carrier of the subsetoid of elements of S that satisfy
P has the following record type.

Record subcsetoid crr (S:CSetoid) (P:S→Set) : Set :=
{scs elem :> S;
scs prf : (P scs elem)}.

Intuitively, elements of type (subcsetoid crr S P) are pairs 〈x, H〉, where
x : S and H : (P x). This is written down as (Build subcsetoid crr S P x H).
This is exactly the form of proof terms of existential statements; this is not a
coincidence. In fact, since records are just a syntactical notation for inductive
types, the previous structure will generate a type isomorphic to the Σ-type
defining the existential quantifier; this correspondence between subsets and
existential proofs has often been observed in Type Theory, as is mentioned
for example in [48].

Notice that scs elem is declared as a coercion. This means that, from
the user’s point of view, elements of subsetoids of S should always be usable
where an element of type S is expected, conforming to the standard situa-
tion in everyday mathematics; but unfortunately scs elem does not satisfy
the uniform inheritance condition (see [17]) so it must be inserted by hand,
though it is not displayed. Also, the parameters S and P will be assumed as
implicit arguments, meaning that they will be inserted by the system and do
not need to be typed in by the user. Thus, (scs elem x) will be interpreted
as (scs elem S P x) and displayed as x.

At this stage nothing is required about P. Even though the work on par-
tial functions will later require this predicate to be extensional (as will be
discussed further ahead), this definition of subsetoid is perfectly general and
there are applications where it is interesting to work with non-extensional
predicates. One such example, due to Pollack, is the representation of ratio-
nal numbers as irreducible fractions, which can be formalized as a subsetoid
of the rational numbers seen as pairs of integers with the usual equality
between fractions. The characteristic predicate of this subsetoid is not ex-
tensional. (However, it has also been remarked by Capretta that subsetoids
should not be used at all in this situation.)
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Furthermore, strong extensionality is even undesirable, as the most ele-
mentary predicates (in Real Analysis) such as λx.a ≤ x ≤ b are not strongly
extensional.

The subsetoid apartness, subcsetoid ap, and equality, subcsetoid eq, are
defined in terms of the apartness and equality on S by simply forgetting the
proof terms. In particular, if two different proofs H1, H2 : (P x) are used to
form an element of the subsetoid, the two pairs 〈x, H1〉 and 〈x, H2〉 will be
two different representations of the same element.

This phenomenon, which will be reoccurring throughout this chapter and
is essential to this whole work, is known as the principle of proof irrelevance,
and states the fact (well known to mathematicians) that the concrete proofs
of side conditions which need to be verified before the application of a func-
tion or theorem do not in any way influence the output of the function or
the result of the theorem.

The concrete definitions of subcsetoid ap and subcsetoid eq are omitted
here as they bring nothing new to the discussion. It is then straightforward to
prove that the structure formed by these relations is a setoid, and these facts
are used to define an operator such that, given S and P as in Definition 3.1.1,
{S|P} is the desired subsetoid structure.

An example is the following definition.

Definition 3.1.2 The subsetoid of non-zero elements is defined on any
monoid M.

Definition NonZeros (M:CMonoid) : CSetoid := {M | λx:M.(x # 0)}.

For simplicity, if x : M and H : (x # 0), then x//H : (NonZeros M) will
denote the corresponding subsetoid element1.

Now, a reciprocal function on a ring R can be defined as a setoid function
cf rcpcl over (NonZeros R) such that, given x : R and H : (x # 0), the lemma
x × (scs elem (cf rcpcl 〈x, H〉)) = 1 can be proved.

The type CField of fields is defined in the FTA-library as a record type
consisting of a ring and such a function. On these structures division can
always be defined.

Definition 3.1.3 Let F : CField. Then division is defined on F by

Definition cf div (x:F) (y:(NonZeros F)) : F := x × (cf rcpcl y).

The term (cf div x y) is denoted by x/y.

1The full representation of this term is (Build subcsetoid crr M λx:M.(x # 0) x H).
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In general, an element of (NonZeros F) will not be directly given, but its
components (an element y : F and a proof-term H : (y # 0)) will be provided
instead. In this situation, the division of x by y will be written down as

x/y//H, (3.1)

which is translated internally by Coq into

cr mult F
x
(scs elem F λx:F.(x # 0)

(cf rcpcl (Build subcsetoid crr F λx:F.(x # 0) y H)))

plus some extra coercions to go from F : CField to a term of type CSetoid.
This definition as such is not yet suitable for generalization to an arbitrary

partial function. The problem is that the reciprocal function happens to be
an automorphism of its domain, but this is not true of partial functions in
general; for example, the logarithm function has domain R+ but image R.
Therefore, some fine-tuning must be done before proceeding.

As it happens, there is a very trivial simplification which can be done. If
one looks at the expanded form of x/y//H above, there is a projection (the
function scs elem) being applied to the result of the application of cf rcpcl,
which is an element of a subsetoid. So why not simply axiomatize cf rcpcl as
to produce only the first projection as output? This function will then have
a different type, as it will no longer be a setoid function on (NonZeros F) but
a setoid function from this setoid to F; but in return the expanded form of
division will look more simply like

cr mult F
x
(cf rcpcl (Build subcsetoid crr F λx:F.(x # 0) y H))

plus the same extra coercions as before.
It should be remarked that the mathematical statement 1

x
# 0 can ac-

tually be proved from the condition x × 1
x

= 1, so the theory with this new
definition is in fact equivalent to the old one but the stored terms will be
smaller.

And, more interestingly, this definition can now be directly generalized
to partial functions by abstracting over the domain.

Definition 3.1.4 Let S : CSetoid. The type of partial functions over S is
defined to be the following record type.
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Record PartFunct :=
{dom : S→Set;
dom wd : (pred well def S dom);
fun :> (CSetoid fun {S | dom} S)}.

This definition will be referred to as the subsetoid approach to partial func-
tions.

The first field of this record is a predicate on the setoid, which will be
the condition characterizing the domain of the function. This predicate is
required to be extensional; although this is not, strictly speaking, necessary,
it is a property that all common examples of function domains share (since
domains of most usual functions can be expressed as unions of intervals, and
these are always extensional) and that much simplifies further development
of the theory. Finally, fun corresponds to the computational part of the
function, and it is simply a function from the subsetoid of elements of S
satisfying dom back into S. Declaring it as a coercion simplifies the usage
of this type, allowing the user to write simply (F x) instead of the more
cumbersome and less intuitive (fun F x). Finally, the parameter S will be
implicit in all expressions using any of the record projections.

Proof irrelevance and extensionality of partial functions are implicit in
the type of fun. The latter is a consequence of its computational part being
a setoid function, which is extensional and therefore respects also the setoid
equality (as this coincides with the subsetoid equality). The first is taken
care of, as explained above, by the fact that the equality on the subsetoid
identifies any two terms which just differ on their proof components.

From a mathematical perspective, though, this definition has some unsat-
isfactory characteristics. The use of subsetoids requires pairing operations to
be used which will mix the computational part (the element of the original
setoid) with a proof term (to show that it satisfies the characteristic predi-
cate), and this is very unmathematical. As noted above, the usual approach
to partiality consists of checking that side conditions are met, and not mixing
them with the data with which one is working.

Also, as the example of division clearly shows, the user will most often
provide the argument and the proof term separately, so an extra pairing
operation will have to be inserted before applying the function; and most
algorithms will require these two terms separately at different places, which
means that the first thing they will do will be to unpair these terms. This
turns out to have some very undesirable consequences in practice which will
be discussed in the sequel.

Another particularly annoying problem arises with restriction of func-
tions. Suppose that F : (PartFunct S) represents a partial function f , with
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S : CSetoid, and that A is included in the domain of f . This last condition
is expressed by the existence of a term H : ∀x:S.(A x)→(dom F x).

In informal terms, if x is an element of {y ∈ S|A(y)}, then x is a pair,
with π1(x) ∈ S and π2(x) a proof of A(π1(x)). To apply f to x one needs to
build an element of the setoid {y ∈ S|domf (y)}. This will in turn be a pair
whose first component is π1(x); and a proof of domf (π1(x)) is for example
H(π1(x), π2(x)). Hence, f |A can be represented by the term

λx∈{y∈S|A(y)}.f(〈π1(x), H(π1(x), π2(x))〉).

This can be translated almost directly in Coq. According to the previous
definitions, π1 is scs elem and π2 is scs prf; therefore the functional part of
f |A can be formalized as

λx:{S|A}.
(fun F

(Build subcsetoid crr S (dom F) (scs elem x)
(H (scs elem x) (scs prf x))))

which is strongly extensional because F is a partial function.
The worrying part is that if the expressions for f(x) and f |A(x) are now

built, given an x such that both applications make sense, proving that they
are equal will be painstakingly slow. Even though f and f |A intuitively have
the same computational part, they are represented by very different terms;
and to prove the desired equality extensive δβι-reduction is required on both
of them to yield equal expressions, as well as resource to the extensionality
of f .

Although this is not a serious drawback, it is somewhat counter-intuitive
and time consuming; and this issue of time consumption is a serious one
which, rather than arising out of theoretical considerations, was identified
through the practical problems encountered during the formalization. At
two distinct places simplifications were needed to prove (mathematically)
obvious statements, and these turned out to be too difficult for Coq, causing
the system to run out of memory.

The first problematic point was proving the chain rule for the derivative
of the composition of two functions. This proof involves manipulating some
equalities involving two real numbers x and y. These appear both as ar-
guments to two partial functions with a given domain and as real numbers
which have to be subtracted and multiplied; this requires going back and
forth between the real numbers x and y and (intuitively the same) subse-
toid elements 〈x, Hx〉 and 〈y, Hy〉 of the domains of the said functions. As a
result, some proof steps (the most time-consuming ones) are needed simply
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to replace e.g. π1(〈x, Hx〉) with x. These steps are extremely inelegant and
counter-intuitive, but necessary.

A different problem arises when proving the additivity rule for the inte-
gral, that is, ∫ b

a

f(x)dx =

∫ c

a

f(x)dx +

∫ b

c

f(x)dx,

assuming that a ≤ c ≤ b and f is continuous in all three intervals. The
“natural” way to define the integral on a compact interval I is for functions
whose domain is exactly I, so the expression above will actually correspond
to ∫ b

a

f |[a,b](x)dx =

∫ c

a

f |[a,c](x)dx +

∫ b

c

f |[c,b](x)dx.

Now a problem arises: to prove the required equalities, one eventually gets
down to proving that f |[a,b](x) = f |[a,c](x) for x ∈ [a, b] (and similarly for
x ∈ [b, c]), which should be trivial. However this requires unfolding the
formal definition of f |[a,b] and f |[a,c] and checking that they only differ in
the occurring proof terms; but these proof terms have such long expressions
that, at the time when this work was done, Coq ran out of resources while
performing the simplification.

3.2 The Automath way: explicit proof-terms

The discussion at the end of the previous section apparently suggests that
the interaction between computational and non-computational objects, or
between data and proofs, has a negative effect on both the clarity and sim-
plicity of the notation and on the internal representation of partial functions
and actual performance of the proof engine. In this section a different exam-
ple from the FTA-library, the square root, will be used as departure point for
the analysis of a totally different way to look at partial functions which was
originally used in the Automath system, as is explained for example in [7].

It is worth mentioning that there is no intrinsic reason for the difference of
treatment between division and square root in the FTA-library; square root
could equally well have been formalized in a similar way to that above pre-
sented, using subsetoids, and division could also be defined following the ap-
proach about to be described. The difference is a mere coincidence, brought
about by the facts that there was no a priori emphasis on treating the gen-
eral case of partial functions and that different people with different ideas
participated in the FTA-project.

The square root on the real numbers is only defined for non-negative
numbers, i.e., numbers which are greater than or equal to zero. The definition
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of this function in the FTA-library is done in several steps. First, a lemma
is proved that says that nth roots of non-negative real numbers exist, for any
n > 0. This is formalized as an existential statement.

Lemma nrootIR : ∀c:R.∀n:N.(0 ≤ c)→(0 < n)→∃x:R.(0 ≤ x) ∧ (xn = c).

The square root is then defined by filling in some of these arguments with
fixed parameters: n is 2, and an explicit proof term lt z two : (0 < 2) can be
given. Here, ProjS1 is the projection that extracts the witness from a proof
of an existential statement.

Definition 3.2.1 Let R be a real number structure. The square root is
defined2 on R as follows.

Definition sqrt (x:R) (H : (0 ≤ x)) : R:= ProjS1 (nrootIR x 2 H lt z two).

An immediate consequence of this definition is that the square root will
become a binary function: besides its actual argument x, it also requires as
input a proof that this x is positive.

From a purely mathematical perspective, this is a very strange situation.
But it is far from being a novelty; as early as in the Automath project,
more than thirty years ago, partial functions were formalized in precisely
this manner, as described in [7]. This is therefore considered by some to be
the “standard” way to model partiality in Type Theory.

In order to yield a workable theory (also from the mathematician’s point
of view), the presence of the proof term should however play no role: the proof
irrelevance which has already been discussed. This is not a big problem in the
setting of the FTA-library since, in constructive mathematics, extensionality
must always be proved anyway. In this case, this reduces to the following
statement.

Lemma sqrt wd : ∀x,y:R.∀xpos:(0≤x).∀ypos:(0≤y).
(x = y)→(sqrt x xpos) = (sqrt y ypos).

Unfortunately, because of the presence of the proof terms, the square
root cannot be used to define a setoid function. Therefore, the properties of
setoid functions do not apply to it, and in particular this lemma has to be
used every time extensionality of the square root is needed. For this reason
this definition is not totally satisfactory.

On the positive side, plugging in the same term t for x and y but different
proof terms H1 and H2 that it represents a nonnegative real number, this

2Notice that this definition by itself does not yield a function but an operation, since
it need not be strongly extensional.
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lemma directly yields (sqrt t H1) = (sqrt t H2), which is the desired proof
irrelevance.

It should be pointed out that proof irrelevance, rather than being directly
shown, is a trivial consequence of extensionality; and this is in turn a corollary
of strong extensionality, as was discussed in Section 2.2.

Strong extensionality seems then to be the key property from which ev-
erything else can be proved. This suggests the following simple definition of
partial function, known as the propositional approach.

Definition 3.2.2 Let S : CSetoid. The type of partial functions over S is
defined to be the following record type.

Record PartFunct : Type :=
{dom : S→Set;
dom wd: (pred well def S dom);
fun :> ∀x:S.(dom x)→S;
strext : ∀x,y:S.∀Hx:(dom x).∀Hy:(dom y).(fun x Hx) # (fun y Hy)→(x # y)}.

A comparison with the subsetoid approach is in place. The first two
fields are the same as before, focusing on the same idea that there is an
explicit predicate characterizing the domain of the function and that this
predicate should be extensional, for the reasons previously discussed. But
now the functional part has a simpler type, being an arrow type instead of
a more complicated setoid function type. The price to pay is the need for
the extra field, which states that this functional part really defines a strongly
extensional function. Notice however that this condition was in fact present
in the previous definition inside the type of the functional part of the record.

As before, the parameter S will be assumed to be an implicit argument.
In line with what was said earlier, the following lemma is easily provable.

Lemma 3.2.3 Let S : CSetoid and F : (PartFunct S). Then there are terms

pfwdef : ∀x,y:S.∀Hx:(dom F x).∀Hy:(dom F y).(x = y)→(F x Hx) = (F y Hy).

and, as a consequence,

pr irr : ∀x:S.∀Hx,Hx′:(dom F x). (F x Hx)=(F x Hx’).

It should once again be pointed out that the user will usually provide the
argument and the proof term separately. This definition works then much
better than the previous one: given S : CSetoid and F : (PartFunct F), if x : S
and H : (dom F x) then the functional application of F to x can be directly
written as (F x H) without further ado; Coq will insert the appropriate coer-
cion, and the complete term will be simply
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fun S F x H

which looks much nicer than the previous representation. Division has been
formalized also with this definition, for the purpose of the comparison; the
same notation as before can be used, but now the full expression of the term
x/y//H, which should be compared with (3.1), is now

cr mult F x (fun (cf rcpcl F) y H)

plus the extra coercions needed to take F to a term of type CSetoid.

This shorter representation, which is an intrinsic property of this def-
inition of partial function and holds not only for the case of division but
in general, provides faster computation and lower simplification times. In
the next section, both definitions are compared from different perspectives
in more detail. Before that, though, it will be shown that this different
approach in fact avoids most of the problems discussed at the end of the
previous section.

One of the criticisms made to the subsetoid approach was the fact that
it mixed computational and proof terms in an unnatural way at the time
of function application, due to the use of subsetoids. The propositional
approach totally avoids this problem, since proof terms are a separate ar-
gument. In fact, experience shows that during interactive theorem proving
this approach also interacts with the user in a nicer way, since this separation
between computational arguments and proof terms makes it much easier to
ignore the latter, which the mathematician would not even want to see.

Another nice consequence of this separation between computational argu-
ments and proofs is that simplification of expressions becomes much faster.
Both problems discussed at the end of the previous section were solved simply
by changing to this definition of partial function.

A specific case is when the partial function being applied happens to
be total. Then, the proof argument is immediately thrown away—which in
the previous case still required applying one projection and performing one
ι-reduction step, but is now immediate.

The problem of restricting functions is also solved. As this is a process
which only changes the domain of the function, it can be modeled simply
by composing proofs (since identifying domains with predicates translates
inclusion into implication); and this can now be done without ever touching
the first argument. As before, suppose that F : (PartFunct S) represents a
partial function f , with S : CSetoid, and that H : ∀x:S.(Ax)→(dom F x). Let
x : S with Hx : (A x). Reasoning informally, f can now be directly applied to
x, while the proof term needs only a small transformation; and the restriction
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f |A can hence be represented by the lambda term

λx∈S.λHx.f(x,H(x,Hx)).

In Coq, this translates as the much simpler than before

λx:S.λHx:(A x).(fun F x (H x Hx)) (3.2)

which trivially defines a strongly extensional function. Furthermore, if the
term for f |A(x) is written down, then two steps of βδ-reduction3 are enough
to produce a term which only differs from that for f(x) in the proof argu-
ment, and proof irrelevance can be now used to deduce that they represent
extensionally equal elements.

3.3 Comparative analysis

The subsetoid approach and the propositional approach exemplify the two
main ways to formalizing partiality in Type Theory which are consistent
with constructive mathematics. In this section, the properties of these defi-
nitions will be examined in more detail and they will be compared in terms
of expressiveness. Other approaches, such as assuming every function to be
total and ignoring its behaviour on points outside the intended domain (as
described by Mayero in [49]), are not constructively valid and will therefore
not be considered.

Complexity and Expressive Power

It should be intuitive that the two definitions of partial function being con-
sidered are equivalent, as the propositional approach is simply an unfolding
coupled with simplification of the notion of setoid function used in the sub-
setoid approach. A more formal proof of this fact will now be given.

The duality between the subsetoid approach and the propositional ap-
proach has been discussed in some detail by Carlström in [14] focusing, as
was done above, on the particular case of the reciprocal function.

In the afore-mentioned paper, Carlström shows that representing the re-
ciprocal function using subsetoids and as a propositional function yields for
any x # 0 two different representations for 1

x
, one of which is a βδ-reduct

of the other, and he argues that because of this it can be much more efficient
to use the reduced representation.

3Not only the fact that only two steps are needed is important, but also that ι-reduction
is avoided, as this is the most time-consuming of the three.



3.3. COMPARATIVE ANALYSIS 47

This argument can be made for the general case. Let S : CSetoid, suppose
F : (PartFunct S) is a defined partial function (i.e., not a variable of that
type), and x : S with H : (dom F x). Assuming Definition 3.1.4 (subsetoid
approach) for the type of F, the form of the functional application of F to x
will be

fun F (Build subcsetoid crr S (dom F) x H)

According to this definition, (fun F) has type

CSetoid fun {S | (dom f)} S

which is not immediately a function type. In order for this term to type-
check, the appropriate projection of this record type (which is a coercion)
has to be inserted. This is the term

csf fun : ΠS1,S2:CSetoid.(CSetoid fun S1 S2)→(S1→S2);

the original expression in full form thus reads

csf fun (Build SubCSetoid S (dom F)) S
(fun F)
(Build subcsetoid crr S (dom F) x H)

where there are six δι-redexes: δ-reduction of F will give a term of the form

Build PartFunct S D D wd f

by the rules of inductive types, and this yields a ι-redex with both fun, which
reduces simply to f (the setoid function implicit in F), and dom, which reduces
to D (its domain) in two places. The resulting term is

csf fun {S | D} S
f
(Build subcsetoid crr S D x H)

But the type of f is itself inductive, which means that f must in turn
δ-reduce to a term of the form

Build CSetoid fun {S | D} S f’ f’ strext

and this forms a ι-redex together with csf fun, simplifying to f ′. That is, the
original term (fun F x H) becomes, after δι-simplification, simply

f’ (Build subcsetoid crr S D x H)
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and most of the proof terms have been thrown away.
Finally, to compute f ′ one will in general need to access both x and H, and

the previous expression will often δι-reduce to a term of the form (F′ x H).
If one pursues the same reasoning assuming PartFunct to be defined ac-

cording to Definition 3.2.2 (propositional approach), then the application of
F to x looks like

fun F x H

where, as before, there is a δι-redex. Because (PartFunct S) is an inductive
type, F must δ-reduce to

Build PartFunct S D D wd F’ F’ strext

and like in the previous case this can now be ι-reduced by fun, whence the
whole term simplifies to (F′ x H).

In conclusion, both definitions will produce exactly the same reduced
terms when a concrete partial function is being applied. However, the corre-
sponding reduction sequences deserve a comparison: the first one is

f(x) is the term
csf fun {S | (dom F)} S

(fun F)
(Build subcsetoid crr S (dom F) x H)

→δ csf fun {S | (dom (Build PartFunct S D D wd f))} S
(fun (Build PartFunct S D D wd f))
(Build subcsetoid crr S (dom (Build PartFunct S D D wd f)) x H)

→ι csf fun {S | D} S
f
(Build subcsetoid crr S D x H)

→δ csf fun {S | D} S
(Build CSetoid fun {S | D} S f’ f’ strext)
(Build subcsetoid crr S D x H)

→ι f’ (Build subcsetoid crr S D x H)
→δι F’ x H

whereas the second is simply

f(x) is the term
fun F x H

→δ fun (Build PartFunct S D D wd F’ F’ strext) x H
→ι F’ x H
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In short, the subsetoid approach requires ten steps of δι-reduction (five of
each type), while the propositional approach only requires two (one δ-step,
one ι-step). Also, the intermediate terms in the first case are much longer,
and will therefore take more space in memory. This allows the following
conclusion to be drawn: the propositional approach is more efficient than
the subsetoid approach if simplification is needed.

The practical implications of this difference in efficiency will also be dis-
cussed in Chapter 6.

From the theoretical perspective, this has another important consequence.
The reasoning above can be precisely formalized in Coq (using the inversion
tactic) to define a map from the record type of Definition 3.1.4 to that of
Definition 3.2.2.

In order to go in the other direction, Definition 3.1.1 (subsetoid) is needed
together with some packaging. Given F : (PartFunct S) and x : {S | (dom F)},
the term (fun F (scs elem x) (scs prf x)) is well typed and abstraction on x,
using the strong extensionality of F, defines a setoid function to S. Together
with (dom F) and the proof that this predicate is extensional a partial func-
tion in the sense of Definition 3.1.4 is obtained. This completes the proof of
the following theorem.

Theorem 3.3.1 The representations of partial functions via the subsetoid
approach and via the propositional approach are equivalent.

As discussed at the end of Section 3.2, though, the performance of both
definitions is quite different. The next paragraphs examine other aspects in
which these definitions differ.

The user’s perspective

A different way to compare different formalizations of the same concept is via
their user-friendliness. This section aims at doing this for both definitions of
partial function above presented.

The typical situation in mathematics when one is confronted with the
issue of partiality is when an expression must be built which includes appli-
cation of (potentially) troublesome functions—for example, taking a square
root or a logarithm. Usually, in such a situation, a comment might be in-
serted as a footnote or in the text justifying that such a function application
is legal.

In formalizing mathematics within Coq, this situation occurs whenever
the context includes terms F : (PartFunct S), with S : CSetoid, and x : S and
the user wants to apply F to x. Regardless of which definition of partial
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function is being used, this requires the introduction of a proof term of type
(dom F x).

In Coq one can use the tactics cut or assert to introduce such a hypoth-
esis in the context and prove it (i.e., provide an explicit term of the required
type) in an apart subproof. This provides a very good approximation to
the mathematical approach, where proving that expressions are defined is
in general kept separate from the main proof, although this kind of forward
reasoning is not what Coq is best designed to do. Proof irrelevance ensures
that the specific form of this term can make no difference in what follows;
and this technique allows the user to work with smaller terms (as hypothe-
ses typically have names consisting of a few letters, while proof terms are in
general long) where the proof parts will not make reading the expressions a
herculean task.

When the term that the user must type is considered, however, there can
be some difference in both definitions.

If the subsetoid approach is used, the argument to the partial function
must be a subsetoid element, hence a pairing operation must still be done. Of
course, syntactic definitions can be used (and these have been implemented)
to do part of this automatically, since the implicit arguments mechanism of
Coq is strong enough to figure out the relevant information.

Following the propositional approach, the user can directly type the term
in as a functional application; and no further processing of the input term is
required other that the insertion of the fun coercion.

Therefore, from the perspective of the mathematically minded user, both
definitions are equally satisfactory: in any case, a cut needs to be made
to insert the necessary additional hypothesis in the context and prove it
in a separate subproof; and thereafter the desired term can be input as
a direct functional application. However, while this directly yields a legal
term (modulo one coercion) when the propositional approach is used, the
subsetoid method requires some extra notation to be defined in order for the
same term to be accepted by Coq. This means, as was noted before, that
the term internally built and stored will be bigger in the latter case.

In the future, it would also be interesting to devise a mechanism that
would allow one just to write (f x) and have the system automatically insert
the appropriate proof term, either finding it using some tactic or cutting
it and inserting it into the context. This would bring working with partial
functions in Coq closer to the situation in systems like PVS from the user’s
perspective. While such a tool does not exist, and implementing it would
require changing the parsing mechanism of Coq, it sounds plausible that it
might one day come to be; and once again it seems that the propositional
approach to partial functions would prove better for this task.
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Abstraction

From what was said so far, one might get the impression that the packaging
of concepts into record structures and unpacking in order to use them is
never a good idea. However, this is far from being the case. The whole idea
of using subsetoids to formalize division corresponds to what is done most
often in type theory in similar situations; both the type theory of PVS [61]
and that of Nuprl [16] rely on side conditions on the typing rules to be able
to deal with partial functions, and these conditions are determined from the
type of the arguments of the function.

The difference in the underlying type systems, when compared to Coq, is
in practice translated in the nonexistence of the explicit pairing and projec-
tion operators encountered in Definition 3.1.1; the price to pay is that type
checking in these type theories becomes undecidable, because in order to be
able to type (f x) one has to find a proof of the side condition x ∈ domf

generated by the typing rule.

Compared to the definition of partial functions as propositional functions,
this approach is from a methodological point of view more structured.

On the one hand, the ability to use the existing definition of setoid func-
tion makes it clear that the (strong) extensionality of partial functions is re-
ally the same thing as (strong) extensionality of total functions—something
that is not at all obvious in Definition 3.2.2. Furthermore, the domain of
a function is never seen as a setoid in its own right when the propositional
approach is used, whereas it is very explicitly made so using the subsetoid
mechanism.

On the other hand, algebraic structures are usually built in a struc-
tured way that heavily relies on the use of records and projections. Such
an approach has been taken not only in the Algebraic Hierarchy of the
FTA-project [32] but also more recently in that of Metaprl [64]; in both
situations this has been seen as a major advantage (and a more abstract way
to work) rather than as a drawback.

Why then did problems arise when the same method was applied to the
definition of partial functions? One very clear reason is the fact that func-
tions are intrinsically computational objects where one will always want and
need to perform reduction and simplification, whereas algebraic structures
are by their own nature objects one wants to talk about but never compute
with. In fact, all the reasons previously presented relate to the computa-
tional behaviour and performance of both definitions; this will once again be
relevant in Chapter 6. Unless computation is relevant (and, as was argued,
in this case it was a fundamental issue), there is little doubt that the more
abstract approach using records extensively is probably the most satisfactory.
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Compatibility

In Section 3.1, it was shown how the definition of division originally present in
the FTA-project could be generalized in a natural way to produce a notion of
partial function of which division would then be a particular instance. Later,
in Section 3.2, the example of the square root was treated in a similar way
and a second (equivalent) definition was obtained of which the definition of
the square root in the FTA-project was but a special case.

One question that naturally arises is the following: if these notions of
partial functions are indeed generalizations of those particular concepts, does
this mean that the formalization can be changed using these new concepts
without making significant changes to the proofs?

In this section not only a positive answer to this question is given, but it
is also argued that the new formalization is even simpler than the original
one.

An important aspect related to this question is how the behaviour of the
automated tactics is affected by these changes. At this stage it is enough to
say that these can be updated without too much effort to a version which
works equally well in this new setting. These changes will be thoroughly
described in Chapter 4 when tactics are discussed in detail.

Changing the existing library to use the general notion of partial func-
tion means in fact changing the definition of division, in the first case, and of
square root, in the second, to make them instances of partial functions; and
then appropriately change everything that is built using these functions so
that the whole library remains consistent. As in both situations the method-
ology is quite similar, only the slightly more complicated case of division will
be discussed.

The first step to take is to redefine division. This requires simply changing
the definition of the reciprocal function in the definition of CField so that
(cf rcpcl F) will have type (PartFunct F). Since records with defined fields
are not allowed in Coq, this was done by requiring only the functional part
of this function together with the proof that it is strongly extensional. The
definition of CField thus becomes the following.

Record CField : Type :=
{cf crr :> CRing;
cf rcpcl : Πx:cf crr.(x # 0)→cf crr;
cf rcpsx : ∀x,y:cf crr.∀x :(x#0).∀y :(y#0).

(cf rcpcl x x ) # (cf rcpcl y y )→(x # y);
cf proof : (is CField cf crr cf rcpcl)}.

Then a partial function f rcpcl is built with computational part cf rcpcl,
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and division is defined as

Definition cf div (F:CField) (x y:F) (y :y # 0) : F := x × (f rcpcl y y ).

The reason for not defining this directly in terms of cf rcpcl is a practical
one: with this definition, the types of its sub-terms ensure extensionality
of the resulting function, which otherwise would be less straightforward to
prove. In practical terms this definition works much more nicely.

The immediate effect of this change is that the construction of instances
of reciprocal functions must now be changed. This is present in two different
places of the FTA-library: in the construction of the Cauchy model of the
real numbers; and in the definition of a field of complex numbers from an
arbitrary real number structure. To define F : CField from R : CRing, one
needs now to give a term of type Πx:R.(x # 0)→R and a proof that this is
well defined. But both of these components are already present in the old
formalization:

• the function: the functional part of the old reciprocal function had
type (NonZeros R)→(NonZeros R). This can be directly translated to
a function of type Πx:R.(x # 0)→R by applying the pairing operation,
then the original implementation of the function, and then a projec-
tion. In practice, it turns out that this can be done in an even better
way: since all implementations of cf rcpcl in the FTA-library started
by unpacking its argument, the pairing step can be removed altogether;
and instead of adding a projection at the end it is of course simpler to
omit the part that builds the second component of the pair;

• the proof of strong extensionality: this was also already present, being
required for setoid functions; and since the new definition of the func-
tion follows the old one so closely the existing proof script can always
be directly used.

The only thing lost is the fact that 1
x

# 0, which was the second com-
ponent of the pair built by original models of cf rcpcl. Once again, this is
not a problem: the corresponding part of the original definition can directly
be used to provide a proof of that lemma for the specific implementation.
Better yet, the lemma can be algebraically proved just from the (required)
fact that x × 1

x
= 1.

The next step is to recover the basic properties of the reciprocal function.
This turns out to be extremely easy, because once again they depend mostly
of the axiomatic properties of the reciprocal function, i.e., of the two prop-
erties 1

x
# 0 and x × 1

x
= 1. The only changes that need to be made refer
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to the fact that the output of cf rcpcl now has type F and not (NonZeros F);
and rather surprisingly this actually simplifies many of the proofs.

The definition of division is then also simplified as was shown in the
discussion following Definition 3.1.3. Once again, this requires some (very)
minor changes in the immediate lemmas, which state the basic properties of
division; and these few changes usually amount, as before, to simplifications.

The rest of the library, amazingly enough, requires almost no further
changes. This may come at first as a surprise, but is actually a direct conse-
quence of the modular approach followed throughout the whole FTA-project.

The process for changing the representation of the square root function
is even simpler, as this is a defined function on an arbitrary real number
structure. Here only the proofs of the basic properties need to be changed.

Typing issues

There is however one unsatisfactory characteristic of both definitions of par-
tial functions above presented, and that is their type. According to the
typing rules of the Calculus of Constructions, (PartFunct S) has type Type
for every setoid S; intuitively this arises because the type of partial functions
over S is parameterized on subsets of S, and becomes therefore “too large”
to still fit into Set.

In practice, this has two undesirable consequences.
The first one is that it is impossible to formulate existential statements

of the form “there is a partial function f such that. . . ” directly. The type
T corresponding to such a statement would itself forcefully live in Type,
and it would not be possible to extract f from a proof-term of type T. In
Section 5.3 a way around this problem is presented for a specific situation
(actually the only one which actually arose during the formalization).

The second problem is that the collection of partial functions over a setoid
S also forms a setoid, which both inherits part of the algebraic structure of
S and has a monoid structure itself (with composition as binary operation).
Once again, this is not directly representable in the FTA-library, as the car-
rier of any setoid must itself have type Set. This question will be addressed
again in Section 5.1.

3.4 The final choice

Hopefully this chapter will have made clear that a uniform concept of partial
function is not only interesting from the theoretical sense and important
for the formalization of Real Analysis, but is also desirable as it allows the
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FTA-library, in particular the Algebraic Hierarchy, to be made more uniform,
as functions such as division and square root can now be viewed as instances
of a more general concept.

The discussion in the last section should also make it clear that while
the subsetoid approach to partial functions is arguably a more abstract one
and more natural from the mathematical point of view, it actually produces
results of a poorer quality from various perspectives. Not only does the
representation yield larger terms which take much longer to simplify, but
also from the user’s point of view there are some unmathematical things
going on.

Therefore, it should come as no surprise that the propositional approach
prevailed and Definition 3.2.2 was chosen as the definition of partial function
to be used in extending the FTA-library. In Chapter 5 it will be shown how
the Algebraic Hierarchy can be extended with this concept and how Real
Analysis is developed thereupon. In Chapter 6 the efficiency issues will be
brought up again, and the propositional approach will yet again be shown to
be superior in quality to the subsetoid approach.



Chapter 4

Automation

As any person attempting at formalizing mathematics using a proof assistant
or theorem prover soon discovers, having a nice theoretical basis and well
thought definitions is not enough. Almost immediately, one finds oneself
constantly spending time proving boring and mathematically obvious results,
which in any informal presentation would be ignored or deemed as obvious
but for which any computer system will require a proof.

It should therefore come as no surprise that all successful proof assis-
tants nowadays have built-in automation tools. These exist in many different
styles, as can be seen from a few examples.

• In the Mizar system [51], the automation is totally built in. All steps
in the proof are followed by a justification (by), which is checked by a
highly complex mechanism which the user cannot control.

The type system of Mizar is also quite complicated, and the type check-
ing algorithm can perform some complex reasoning to verify that terms
are well typed.

Apart from these two mechanisms, there is no extra automation avail-
able, and there is no interface which allows the user to define his own
routines.

• The PVS system is very similar in mostly not allowing the user to
control or see the details of what its automatic procedures (known as
strategies) do. However, there are tools which allow the user to define
new strategies, hence making the system more powerful. These new
strategies can be defined totally inside the language of the system, but
the user is also allowed to write LISP code (thereby accessing the level
of the implementation).

A more detailed description of these mechanisms can be found in [61].

56
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• The HOL and HOL-light systems are similar to each other in this re-
spect. In these systems, the user interacts with the proof assistant
directly via an ML programming environment shell.

Interaction happens through proof procedures, which are described in
detail in [62], for the HOL system, and in [38] for HOL-light. These
proof procedures are in reality no more than small ML-programs; defin-
ing new automation procedures is simply writing new programs. Thus,
the standard user can easily define his own routines and control their
behaviour in an easy way.

• The behaviour of Isabelle, by contrast, is totally controlled by the user,
as can be seen in [56]. There are automation tactics available which
can be parameterized (e.g., there is a search tactic which can be given
names of lemmas to include in the search space), but like in Mizar the
user has no way to add his own procedures to the system.

Compared to these different systems, Coq lies at a midpoint. On the
one hand, there is quite a bit of automation available in the system, not
only decision procedures for specific domains but also generic tactics which
are parameterized and can easily be made more powerful. On the other
hand, Coq is open source, so it is, at least theoretically, always possible
to descend to the level of the implementation and add new tactics to the
system written directly in the ML programming language. Furthermore,
since version 7.0, there is an easy-to-use tactic language which also allows
the user to define altogether new tactics without needing to jump into the
implementation language. These user-defined tactics can be quite powerful,
as will be exemplified.

In the following section several different approaches to automation in Coq
will be described, compared and exemplified through tactics present in the
standard distribution of Coq. Then it will be shown how the same methods
were used in the FTA-project to define two tactics (Algebra and Rational)
to help formalize equational reasoning; these were extended in C-CoRN so
that they would work within the Algebraic Hierarchy extended with the par-
tial functions of Definition 3.2.2. Equational reasoning in C-CoRN was also
made easier thanks to the development of the Step tactic, whose evolution
from its original version in the FTA-library will be presented.

Afterwards, some of the tactics specific to C-CoRN, dealing with typical
problems in Real Analysis, will be shown and discussed: Included, Contin
and Deriv.

The chapter ends with a comparative analysis of the different possibilities
for automation in Coq.
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4.1 Automation in Coq

In this section the different ways to automate reasoning in Coq will be dis-
cussed and illustrated with examples from the standard distribution of Coq.

One way to classify the Coq tactics, due to Wiedijk, is along the following
two orthogonal lines.

• Search techniques vs. decision procedures : on the one hand, search
methods from Artificial Intelligence can be used to define general-
purpose tactics which search parts of the library according to some
algorithm and eventually find a proof term of the desired type.

On the other hand, inside specific domains one can directly program
a decision procedure as a tactic that will also produce a valid proof of
goals of some particular family.

• Internal vs. external tactics: tactics of the first kind are totally defined
in the type theory, and they can be proved correct inside the system;
this has as a consequence that they will usually yield more compact
proof terms.

By contrast, in some situations it is easier (or more efficient) to write
a program (outside the Calculus of Constructions) that will directly
output a proof term for goals of some form. The price to pay for this
is having to extensively type-check every term thus generated; and the
method cannot be proved correct inside the system.

This situation is graphically depicted in Figure 4.1, where examples of
tactics of each kind are presented. Some of these tactics will be discussed in
the sequence. More detailed information on these tactics can be found in the
Coq Reference Manual [17]. Notice the absence of internal search tactics: by
their own nature, search tactics look for a proof term, which is much more
efficient to do outside of the system.

Internal External

Search — auto (with hints)

Dec. Proc.




ring
field
romega




omega
tauto
intuition

Figure 4.1: Classification of Coq tactics
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Guided search: auto with hints

The easiest automation tool to use among those that are available in Coq is
doubtless the auto tactic family. Tactics in this family automate in a generic
way reasoning in a variety of domains.

At the basis of auto’s functioning lie a number of hints databases. These
contain several already proved lemmas, categorized according to their field
of application; the databases provided with the standard distribution of Coq
include lemmas on natural numbers (arith), integers (zarith) and booleans
(bool), besides a special database core which contains very basic facts about
the logical connectives.

Within each database, lemmas are categorized according to the goals to
which they can be applied: a lemma of type Πx1:A1 . . . . Πxn:An .(Tt1 . . . tk) will
be classified as “a lemma that can be applied if the head of the goal is T”.

Finally, each lemma is assigned a cost, defined to be the number of sub-
goals that its application generates—which is the number of non-dependent
products in its type.

By default, auto uses only the core database along with the hypotheses
in the context. The user can override this by calling auto with database

... database . Then, the system implements a limited depth, Prolog-style
depth-first search for a term which has as type the current goal. The available
lemmas are tried in order of cost, so that the produced proof is (hopefully)
as short as possible. If no such term is found, the tactic leaves the goal
unchanged.

Practice shows that this tactic is very good at solving simple goals, namely
those which follow from the context by higher-order unification. However,
if the proof starts to become more complicated, and in the presence of a
moderately large hints database, auto might not only not find it, but also
take a very long time before discovering it cannot do so.

Furthermore, this tactic is somewhat unstable and occasionally displays
erratic behaviour. It has been noticed to change its result when the place of
a lemma is changed within a file, for example; or when used in combination
with Undo in specific contexts. These are, however, minor issues that do not
significantly hamper the development.

External decision procedures

In many specific areas there are decision procedures which can decide whether
a given statement is a valid theorem. These are natural candidates to encode
as tactics in theorem provers, solving the problem of proof search for concrete
domains.
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Often these decision procedures are just too complicated to implement
directly in the type theory. When this is the case, one usually has the op-
tion of descending to the implementation level of Coq and implementing the
decision procedure as an ML program.

An example of such a tactic is Coq’s tauto, a decision procedure for
intuitionistic propositional calculus described in [17, Section 8.11.4]. This
tactic can solve any goal that follows from the context by purely propositional
(intuitionistic) reasoning. Although its scope of application is not very wide,
it usually does a good job when it can be used, quickly providing proofs of
not-so-simple goals.

A more complicated example is the omega tactic included in the Coq
standard distribution. This tactic implements a decision procedure for Pres-
burger arithmetic, as described in more detail in [17, Chapter 16]. It is in
practice a very useful tool when working with linear arithmetic; but it also
has its limitations.

The main disadvantage of this approach is that all decision procedures
thus implemented have no existence in the type theory of Coq. Therefore,
nothing can be proved about them—in particular their correctness. They
need to produce an explicit proof term which they then pass to the system,
and this term is type-checked as any other proof term.

In the case of omega, this results in practice in relatively long waiting
times unless the goals are trivial, and in very long proof terms even when
they are.

In the case of tauto, the waiting time is usually not very long if the
tactic succeeds, but failure can take a while to be reported. The proof terms
produced, though not very long, are not very interesting either: a proof done
by hand would in most cases be shorter.

In the next paragraphs it will be discussed how these problems can be
at least partially overcome by internalizing decision procedures. Since no
external decision procedures besides the ones from the standard distribution
of Coq were used in either the FTA-project or C-CoRN, they will not be
discussed further.

Reflection

As a motivation for the method of reflection, consider the following situation.
After one has worked with concepts such as continuity for a while, one no

longer relies on the basic lemmas to prove that a given function is continuous.
For example, let f be the function defined by

f(x) = 5x3 +
esin x + cos e−x2

4
.
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When asked if this function is continuous and why, most people would answer
affirmatively, and justify this by saying that it is a direct consequence of its
structure. No one would think of saying that it is a sum of two functions,
the first of which is continuous because it is a scalar multiplied by a power
of the identity function, which is continuous; and the second of which is
a scalar multiplied by a sum of two functions which in turn are continuous
because. . . However, if applied to this situation, all methods described so far
would produce a proof that would correspond in some sense to this reasoning.

It was therefore suggested by Barendregt that some effort should be made
to try to find a method to mimic the human reasoning in a proof assistant,
thereby (hopefully) obtaining a more efficient and more general proof tech-
nique.

According to him, the idea would be as follows: within the class of all real-
valued functions, there are some “basic” functions (constant functions, iden-
tity, exponential, trigonometric functions) which are by nature continuous;
and there are some internal operations on the class of continuous functions,
such as addition, multiplication, division and composition (although the last
two may require some extra restrictions). Then, any function that can be
built from the basic functions using these operations must be continuous—
directly. In Section 4.4 the actual implementation of such a procedure will
be discussed.

Abstracting from this idea, one arrives at the method known as reflection,
originally introduced in [2] and which has now been around for some decades.
This method is briefly explained in the following paragraphs; a more detailed
description can be found for example in [34].

Let D be a predicate over a domain S and suppose that there exist an
inductive type T and an interpretation [[·]] : T →S together with a function
f : T →{⊥,�} such that1

f(x) = � iff D([[x]]) holds.

This situation is graphically depicted in the following diagram.
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f
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��
��

{⊥,�}
1The equivalence is relevant if one wants completeness. However, in many applications,

the direct implication is already helpful enough.
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In Coq terms, this is formalized as follows: S and T are types and
D : S→Prop.2 The type T is usually called the syntactic level, S is the
semantic level and int : T→S is the interpretation function. The function
f : T→Prop is defined inductively, and the following must be proved as a
lemma.

Lemma reflection lemma : ∀x:T.(f x)→(D (int x)).

Suppose now that a situation arises where the goal is (D t), and t is
convertible with (int x) for some x. Then the goal can be simply proved by
the term

reflection lemma x I

where I is the canonical term of type �. There is a trade-off here between
space and time: this term is evidently compact (in general the length of x
will be linear in the length of t), but type-checking it requires verifying that
(f x)→δβι�.

The only thing missing is a way to tell the system how to find x given a
specific t. This cannot, in general, be done directly: the inverse operation
to int is usually not a type-theoretic function. This happens because S will
typically have no inductive structure (otherwise T would not be needed), so
one cannot reason by cases over it.

However, using the tactic language of Coq, a small program can usually
be written that, given t, returns such an inverse x when it exists (and possibly
produces frightening error messages when it does not). Then the goal can
be proved, as said above, by the term (reflection lemma x I). (Notice that,
unless t is previously replaced with (int x) using e.g. change, the parameter
x must be given explicitly.)

The ring tactic is a good example of reflection at work. This tactic,
described in detail in [17, Chapter 18], simplifies algebraic expressions over
an arbitrary ring R in a syntactic way, making use of the ring equations.

In this case, the syntactic level T is the set of polynomial expressions
over a ring generated from a countable set of variables. These variables will
be assigned the actual atomic terms—those that cannot be decomposed in
terms of ring operations, e.g. a or f(x)—in concrete expressions.

Instead of directly defining the function f , one first implements a nor-
malization procedure3 N : S → S and proves that it satisfies the property

2In fact, the type of D can also be S→Set or S→Type, and the remainder of the
discussion remains valid without change.

3In the case of boolean rings, this normalization procedure coincides with reduction to
the disjunctive normal form.
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∀x:R.[[x]] = [[N (x)]]. The correctness lemma now reads as follows.

∀x,y:T .N (x) = N (y)→x = y

Thus, the function f is a (syntactic) check of the equality of the normal
forms.

Actually, the ring tactic is more powerful, because it allows not only to
decide equalities but also to simplify expressions in the goal making use of
the normalization function. The tactic behaves as follows: the user calls ring
with any number of terms as arguments. Each term t is then represented as
the interpretation of a specific polynomial, which is normalized; this normal-
ized form is translated back into the ring, and the resulting expression t′ is
substituted for t everywhere in the goal.

Further on a similar tactic which works in the setting of the FTA-library,
Rational, will be described together with more sophisticated examples of
reflection. Among these will be an implementation of a tactic capable of
solving the goal introduced as motivation at the beginning of this section.

4.2 Equational reasoning in the FTA-library

While formalizing algebra, most of the proofs one has to do deal with equality.
The widely used fact that almost all functions and relations are extensional
translates in practice in the ability to replace in the goal any element a : S,
where S : CSetoid, with another element b : S, generating the subgoal (a = b).

However, many of the goals thus generated are frustratingly trivial. Most
fall into one of three categories:

• two structurally similar expressions that differ only in a subterm which
is assumed to be equal; for example:

a = b
(x + 1) × a = (x + 1) × b

• two expressions which can be proved equal directly from group, ring or
field axioms; for example:

(2 × x) + (0 × y) = (x + x)

• two expressions that combine both of the previous; for example:

x = a
(2 × x) + (0 × y) = (x + a)
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As it turns out, the goals in the first category can usually be directly and
quickly solved by simple tactics based on auto.

The goals of the second group, however, are much more difficult to prove
using simple search techniques. The problem here is the absence of any
relationship between the expressions and the proofs of their equality, unlike
in the previous case. In this situation, the simple heuristics used by auto

are just not powerful enough, in general, to find the possibly complicated
corresponding proof terms.

As for the third group, the situation is even worse and it will be seen later
that cooperation between tactics of different families is needed to deal with
them in a satisfactory way.

Simple search: Algebra

At the time of developing the Algebraic Hierarchy, all lemmas stating equal-
ities which involve the algebraic operations were added to a hints database
called algebra.4 Then, Algebra was defined as an abbreviation of auto

with algebra.
The behaviour of Algebra is simple to describe: it chooses from the

algebra database the lemmas that apply to the current goal—typically only
one or two—and eventually reduces it to directly provable equalities like
(x = x) or hypotheses in the context.

The strong point of Algebra is its ability to look at the context. Further
ahead another family of tactics will be presented that can solve a much wider
class of goals in a much more efficient way, but which lacks this ability.

The possibility of dynamically extending the hints databases should also
not be underestimated. The Algebra tactic is defined at the same time as
the CSetoid structure, but this does not prevent it to be enlarged and later
used to prove equalities among real numbers which use properties of these
that cannot even be stated outside real number structures. For interactive
development this is a very useful feature, the importance of which can hardly
be overstated; this point will be re-stressed further ahead.

A clear illustration of this point can be obtained by considering the exten-
sion of the Algebraic Hierarchy to include partial functions. In the discussion
following Definition 3.2.2, one of the key lemmas proved (Lemma 3.2.3) stated
extensionality of partial functions. This lemma can be added to the algebra
database immediately after it is proved; from that moment onwards, Algebra

4The lemmas were in fact split among different databases in order to avoid repeated
and unnecessary application of the symmetry axiom for equality, which can always be
applied and has a very low cost. For the purpose of this discussion, however, that is not
a relevant point and will be ignored in the presentation.
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will know how to use it to prove equalities between expressions involving par-
tial functions.

Reflection: Rational

Recall the three classes of equational problems described above on page 63.
An enhanced version of reflection will now be shown to solve most of those
in the second category.

In the original FTA-library, reflection was successfully implemented in
the Rational tactic to solve any equality between two expressions on a given
F : CField that could be proved by equational reasoning only using the field
axioms. This implementation is described in some detail in [34].

The construction here differs from the abstract method of reflection pre-
sented earlier in two ways. First, the FTA-project was developed using Coq
version 6.3.1, where the tactic language wasn’t available; for this reason the
partial inverse to int had to be programmed directly in ML.

Secondly, because of the possible presence of proof terms (due to the par-
tiality of division, see Section 3.1), a tactic based directly on reflection would
require the type of syntactic expressions and the interpretation function to
be defined in parallel. Although this is in theory possible (it is a very sim-
ple example of an inductive-recursive definition, where an inductive type is
defined which depends on a function having the type itself as domain), it is
not allowed in Coq. Therefore, a generalization of reflection, called partial
reflection, was implemented.

Partial reflection generalizes reflection by allowing the interpretation func-
tion int itself to be partial—or even be a non-functional relation. This allows
undefined expressions (such as 1

0
) to be written at the syntactical level, as

long as they are not interpretable in the semantic domain. A more detailed
explanation of partial reflection can be found in [34].

The mechanism of Rational is very similar to that of the ring tactic
previously described when goals of the form (t = t′) are considered. The
syntactic domain E is the set of rational functions over an abstract field; a
countable set of variables is used for the atomic subterms occurring in the
goal. The definition of E is as follows5.

E ::= V | Z | E + E | E × E | E/E

Here V is a set of variables indexed on N (i.e., if n : N then vn : E).
On this syntactic type a normalization function N is defined. Normal

forms are best described in three steps.

5Informal mathematical notation, rather than the actual Coq representation, is used
for E to make the presentation more readable.
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1. A monomial is in normal form if it is of the form vn1 × . . . × vnk
× i

with the indices of the variables in non-decreasing order.

2. A polynomial is in normal form if it is of the form e1 + . . .+ ek + i with
each ei a monomial in normal form and such that the ei’s appear in
lexicographical order with no expression occurring twice.

3. An expression is in normal form if it is of the form e/f , where e and f
are polynomials in normal form.

Intuitively, monomials are lists of variables (with × corresponding to the cons
constructor and the integer coefficient to the empty list) and polynomials are
lists of monomials (with + as cons and again integers as the empty list). A
normal form is then a (formal) quotient of two sorted lists of monomials
without repetitions, the monomials themselves being again sorted lists of
variables.

For example, the normal form of 1/(v0 − v1) + 1/(v0 + v1) is

v0 × 2 + 0

v0 × v0 × 1 + v1 × v1 × (−1) + 0
.

Unfortunately, these normal forms are not unique, since common factors
may appear in the two polynomials and eliminating these common factors
is known to be a difficult problem. This is not a major drawback, though:
the normal form of any expression representing 0 is of the form 0/f, so
given a goal of the form (t = t′) the tactic first applies a lemma to reduce
it to (t − t′) = 0 and then normalizes the syntactic representation of (t − t′),
checking whether this is zero.

The behaviour of the tactic, from the situation where the goal to be
proved is (t − t′) = 0, can be represented schematically as follows.

e N
��

int
��

f

int

��

t − t′ =
�� 0

Practice shows that Rational is an indispensable tool. Thanks to it,
arbitrarily complex equalities can be concisely proved. Also, the proof terms
produced by Rational are roughly linear in the size of the input, in contrast
with the potentially exponential ones produced by Algebra.

Upgrading Rational to work within the extended Algebraic Hierarchy,
however, is far less trivial than the corresponding procedure for Algebra.
First, the inductive domain must be extended with a constructor for partial
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functions. This is done by adding a constructor providing a countable set
of operators to the syntactic type; these operators will be interpreted as the
partial functions occurring in any goal to which the tactic is applied. The
type E now becomes the following.

E ::= V | F(E) | Z | E + E | E × E | E/E

Next, new rules have to be added to the rewriting system to treat expres-
sions built using this constructor. The tricky part is to define the ordering
on monomials, since these may now include expressions built from functional
application. This is done by defining an order on the whole set of syntac-
tic expressions. Variables come first, followed by integers, then by sums,
products, division and partial function application. Within each category
expressions are again ordered using either the order on the set of variables
or integers or (recursively) the ordering on expressions.

Unfortunately, the result is not as satisfactory as the original Rational,
due to the non-uniqueness of normal forms mentioned above. This is because
the tactic now needs to decide whether arguments of a partial function are
equal or not, and this is done by comparing their normal forms.

The practical consequence is that Rational, when extended with partial
functions, will not be able to solve goals such as f(x) = f(x

2
+ x

2
). Assuming

f is represented by f0 and x by v0, the normalized syntactic expression for
f(x) − f(x

2
+ x

2
) will look like

f0

(
v0·1+0

1

) · 1 + f0

(
v0·4+0

4

) · (−1) + 0

1
;

the 4’s in the argument of the second operator coming from the cross multi-
plications when normalizing the argument of the function.

However, the tactic will solve f(2x) = f(x + x). In this case, both f(2x)
and f(x + x) will normalize to

f0

(
v0·2+0

1

) · 1 + 0

1
,

which allows the normalization procedure to continue and yield as result 0
1
.

In practice, this limitation turns out to be more of a minor inconvenience
than a serious drawback. The present version of Rational is this extended
one, developed jointly with Wiedijk. It should be pointed out that if no
partial functions (apart from division) appear in the goal then the tactic
behaves just like the old one.

Still, there is no such thing as a perfect solution for all problems; and
there are two big drawbacks to Rational even in its original formulation.
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In the first place, there is no dynamic knowledge database for reflection
tactics. Therefore, Rational is a fixed and immutable tactic, in the sense
that it cannot be extended with some extra knowledge. For example, it would
be nice to teach Rational to work with the exponential function using its
basic properties, but doing that would require changing it in a fundamental
way, and afterwards it would no longer work in an arbitrary field. Sym-
metrically, it cannot be used in situations where less knowledge is available.
One would like to be able to ignore division and use Rational’s wonderful
capabilities in structures of type CRing; but this is not possible, because of
the typing of the almighty lemma on which everything hangs. The only so-
lution is again to clone the code, afterwards removing everything that does
not make sense for rings. This duplication is present in the FTA-library.

The second problem, which is somewhat related, is that Rational has
no way of looking at the context. Therefore, even though it can prove very
complex equalities which fall in the second of the three categories above
discussed, it will fail in even the simplest of those in the first group. And
obviously, as a consequence, it cannot tackle any of those from the third class
either.

This last point is not a fundamental property of reflection tactics. Both
ring and field look at the context, and in Section 4.4 other tactics will be
defined which also do so; it simply wasn’t done for Rational because it was
felt that the benefits that would come from such an improvement did not
compensate for the extra work.

The first point can be solved by defining a hierarchy of Rationallike
tactics on top of each other that are usable at all levels of the Algebraic
Hierarchy. A description of how this has been done can be found in [23].

4.3 Plugging it all together: the Step tactic

In the previous section Algebra and Rational were introduced and shown
to be very useful for proving equalities within the FTA-library. However, in
order to do equational reasoning in an efficient and appealing way, a nicer
interaction with the system is needed. With this in mind, the Step tactic is
motivated and introduced in its original version from the FTA-project.

This tactic can be optimized using the tactic language of Coq, and a
more satisfactory version (from the point of view of easy usability), which
was originally developed within C-CoRN, is presented. The last version is
at the basis of the present-day Step tactic, implemented at the ML-level in
cooperation with the Coq team and to be distributed with future versions of
that system.
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The need for Step

Besides proofs of specific equalities, to formalize a specific chain of equational
steps other lemmas are needed.

As an example, consider the proof that the sum of two continuous func-
tions is continuous.

Lemma 4.3.1 Let f and g be continuous functions on [a, b] with moduli of

continuity respectively δf and δg. Then δ(ε)
def
= min{δf (

ε
2
), δg(

ε
2
)} defines a

modulus of continuity for f + g.

Proof. Let x, y ∈ [a, b] such that |y − x| ≤ δ(ε). Then:

|(f(y) + g(y)) − (f(x) + g(x))| = |(f(y) − f(x)) + (g(y) − g(x))|
≤ |f(y) − f(x)| + |g(y) − g(x)|
≤ ε

2
|y − x| + ε

2
|y − x|

= ε|y − x| �

In order to formalize this proof, one needs not only to prove the first and
last equalities, but also to use the fact that ≤ is an extensional relation in
order to be allowed to replace expressions on the left or on the right of the
inequality with equal ones. Thus, the original goal is

|(f(y) + g(y)) − (f(x) + g(x))| ≤ ε|y − x|.

To this one must apply extensionality of ≤ on the left and prove the first
equality above, reducing the goal to

|(f(y) − f(x)) + (g(y) − g(x))| ≤ ε|y − x|.

Next, one applies extensionality of ≤ on the right and proves the last equality,
thus being left with

|(f(y) − f(x)) + (g(y) − g(x))| ≤ ε

2
|y − x| + ε

2
|y − x|,

to which one can apply transitivity of ≤ to reduce to the two subgoals

|(f(y) − f(x)) + (g(y) − g(x))| ≤ |f(y) − f(x)| + |g(y) − g(x)|

and
|f(y) − f(x)| + |g(y) − g(x)| ≤ ε

2
|y − x| + ε

2
|y − x|,
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which can then be proved.
This proof can be translated into Coq in a straightforward way. The

beginning of the resulting proof script6 is shown in Figure 4.2. Not only does
this look very confusing, as it mixes applications of extensionality lemmas
with calls to Algebra and Rational, but it also requires the user to know
the names of the lemmas which state extensionality of ≤.

Goal: |(f(y) + g(y)) − (f(x) + g(x))| ≤ ε|y − x|.
apply leEq_wdl with |(f(y) − f(x)) + (g(y) − g(x))|.
Rational.

apply leEq_wdr with ε
2
|y − x| + ε

2
|y − x|.

Rational.

Figure 4.2: Proof script for the proof of Lemma 4.3.1

The Step family of tactics was originally designed to address these issues.
For each relation in the Algebraic Hierarchy (apartness, equality, less than,
less or equal than, less than in absolute value) two tactics Step rel lft and
Step rel rht were defined; here rel is the standard name for each relation
(as defined in the FTA-library, e.g., ap for apartness and leEq for less or
equal) and lft or rht indicates on which side of the relation the term is
to be substituted. For equality these names are shortened to Step lft (or
Step) and Step rht (or Stepr).

All of these tactics work in a similar way: they apply the relevant exten-
sionality lemma and try to prove the generated equality with Algebra. As
a consequence, a sequence of (in)equalities in an informal proof is translated
into a sequence of calls to Step in the proof script.

If the equality is to be solved using Rational instead of Algebra, vari-
ants of these tactics named Step Rat rel lft and Step Rat rel rht are
available which work in an analogous way.

The script in the previous example could now be much more simply writ-
ten down as shown in Figure 4.3.

Step_Rat_leEq_lft |(f(y) − f(x)) + (g(y) − g(x))|.
Step_Rat_leEq_rht ε

2
|y − x| + ε

2
|y − x|.

Figure 4.3: Proof script for the proof of Lemma 4.3.1, using Step

6Since the interest of this script lies on the actual tactics being used, the intervening
Coq terms are presented in informal mathematical notation.
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Notice that the uniformity in names is the greatest advantage of these
tactics, allowing the user to focus more on the proof and less on memorizing
(or looking for) names of technical lemmas.

The next Step

As the FTA-project evolved into C-CoRN, it became clear that this kind of
tactics could be written in a more uniform way using the tactic language of
Coq. The previous definition of Step is very unaesthetic, as for every new
relation four different tactics have to be written, all of which differ only in
minor details.

Early in the development of C-CoRN it became apparent that a better
solution to the same problem could be found with the tools at hand. The idea
is very simple: since for every relation and each argument (left or right) there
is only one lemma available, and this is only unifiable with goals involving
that particular relation, the first tactical7 can be used to merge all tactics
in just two: Step lft (or simply Step) and Step rht (or Stepr), plus the
corresponding versions using Rational.

The definition of this new version of Step reads as follows.

Ltac Step_lft x := first

[ apply eq_transitive_unfolded with x

| apply ap_well_def_lft_unfolded with x

...

| apply leEq_wdl with x];

[idtac | Algebra].

The last line has the following meaning: first will leave two goals; the first
should be left alone, while Algebra will be applied to the second one.

The names of these tactics were later changed to AStepl, AStepr, RStepl
and RStepr to reflect their common identity: their name is Step, to which
the A for Algebra or the R for Rational is prefixed and the l for left or the
r for right is appended.

The nice feature of these tactics is that they can be defined at the begin-
ning of the formalization8, even if the relevant lemmas do not exist. Thus,
their definitions can be kept apart from the development, and whenever (if
ever) a new basic relation is added to the Algebraic Hierarchy the defini-
tion of the tactic can be changed independently without any difference in
behaviour in the old scripts.

7This tactical chooses the first lemma of a list that can be applied to the goal.
8This was true until Coq version 7.4.
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The final version

The tactics of the Step family can all be viewed as implementing a three
parameter algorithm; this algorithm takes as arguments a Coq-term c, a
tactic tactic and a boolean argument left? and acts on a goal of the form
(R a b), where a and b have the same type T and R : (T→T→s), with s a
Coq-sort (Set, Prop or Type). Assuming a list of extensionality lemmas
is stored somewhere, together with the indication, for each lemma, of the
relation and the argument whose extensionality they assert, the algorithm
acts as follows.

1. If left?, apply the left extensionality lemma for R to replace the goal
by (R c b); otherwise apply the right extensionality lemma to obtain
(R a c).

2. Prove the generated subgoal b = c or a = c using tactic.

There is absolutely no reason to restrict the equality to setoid equality;
this algorithm would work equally well if Leibniz equality was being used—
or any other binary relation. Likewise, there is no reason to consider only
Algebra and Rational as usable tactics.

If these considerations are taken into account, it becomes clear that Step
can be a very powerful tactic indeed, and applicable in a context much more
general than that of C-CoRN. With this in mind, the suggestion was made
by the Coq-team to write this more general tactic directly in ML and include
it in the standard distribution. The actual ML code of the tactic is due to
Herbelin.

The behaviour of the tactic depends on two lists of lemmas, one for left
extensionality and the other for right extensionality. These lemmas have a
fixed form: if R is a binary relation on a type T and eq is an equality9 on T,
then the lemma for left extensionality will have type

∀x,y,z:T.(R z y)→(eq x z)→(R x y),

and similarly for right extensionality.
Lemmas are added to the database using the Declare Step tactic:

Declare Left Step lemma.

will add lemma as a left extensionality lemma, and similarly for the right
extensionality. This lemma will then be tried when the user types in stepl

9From the point of view of the tactic, it can be any binary relation on T; but the
motivation comes from equality, as explained earlier.
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t tactic, where t is the term to be replaced in the goal and tactic is the
tactic to be used to prove the equality.

Using these tactic the old C-CoRN tactics can be redefined; for example,
AStepl is now defined as follows.

Ltac AStepl x := stepl x Algebra.

Using this approach, the new extensionality lemmas have to be added to
the database using Declare Step at the time that the relations they speak
about are defined, i.e., those for # and = after the definition of CSetoid,
and those for <, ≤ and AbsSmall after the definition of COrdField. And
of course, Step can also be used in contexts not involving setoids; some
experiments within number theory (using Leibniz equality) have been made
within C-CoRN.

Cooperation is the key

In the last paragraphs it was shown how cooperation between different tactics
could work to solve goals on which no individual tactic could make progress.
This issue will now be more thoroughly explored, focusing on the central
issue of equational reasoning in C-CoRN.

On page 63 three classes of problems were presented. In Section 4.2 it was
shown how Algebra could deal with those of the first group and Rational

with those in the second group. It is now time to show how these two tactics
can cooperate to successfully tackle the problems of the third kind.

This class of problems is characterized by its requiring both context-
dependent information and heavy equational reasoning. While Rational

can successfully deal with the second problem, it cannot take any context
information into account; and Algebra does this naturally, but it only solves
simple goals.

Some sort of cooperation between both tactics, then, seems to be desir-
able. In fact, this turns out not to be such a difficult task. Let the following
example, which was presented already on page 63, be considered:

x = a
(2 × x) + (0 × y) = (x + a)

The trick here is to separate the reasoning in two steps—equational steps
on one side, congruence and extensionality properties on the other. This
can be done applying transitivity of equality with the term (x + x). Even
though Algebra cannot solve the original goal, it can solve the new subgoal
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(x + x) = (x + a), since this only depends on very basic congruence and re-
flexivity properties. Furthermore, this proof is structural, which means that
it is found very quickly and is not very long.

The remaining goal, though, can be directly solved using Rational, as
it no longer depends on the context. Thus, the following proof script solves
the original problem.

AStepr x+x.
Rational.

Notice that this not simply a clever trick. This method also embodies
the typical presentation of equational reasoning in mathematics books: for
clarity’s sake, authors tend to separate algebraic steps where only the field
equations are used from those where specific properties of concrete functions
need to be applied.

This same method allows the user to solve more complicated goals taking
advantage of the extensibility of the algebra hints database. In the current
version of C-CoRN, this contains all sort of information over basic trigono-
metric identities; the following example shows how powerful this tactics can
be.

Suppose that at some point the equality sin(2x) = (cos(x) + sin(x))2 − 1
needs to be established. This can be shown to hold via the following chain
of equations:

sin(2x) = 2 sin(x) cos(x)

= 2 sin(x) cos(x) + 1 − 1

= 2 sin(x) cos(x) + (cos2(x) + sin2(x)) − 1

= (cos(x) + sin(x))2 − 1

As it turns out, this level of detail is already enough for the machinery of
C-CoRN; alternate steps of Algebra and Rational can prove the successive
equalities: the first and the third rely on lemmas that Algebra knows about,
while the second and the fourth are purely equational reasoning. Figure 4.4
shows how this piece of informal mathematics can be mimicked quite closely
in a valid proof script.

4.4 The C-CoRN tactics

In the previous two sections it was shown how the various tactics from the
FTA-library made equational reasoning easy.
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Goal: ∀x:R.(Sin 2 × x) = ((Cos x) + (Sin x))2 − 1

Proof script:

intro x.

AStepl 2 × (Sin x) × (Cos x).
RStepl (2 × (Sin x) × (Cos x) + 1) − 1.
AStepl (2 × (Sin x) × (Cos x) + ((Cos x)2 + (Sin x)2)) − 1.
Rational.

Qed.

Figure 4.4: Step in action

However, equational reasoning is not everything in the domain of Real
Analysis. Among the common problems encountered during the formaliza-
tion of e.g. differential calculus are: proving that a given function f is defined
in a given interval I; that it is continuous and differentiable in that same in-
terval; and computing its derivative f ′ on I, or proving that this function
coincides with another function g. The techniques earlier explained can be
used to define tactics which will tackle these problems more or less success-
fully. Case by case, it will also be discussed which is the best way to proceed
and why.

Domains of partial functions

Partiality of functions often generates goals which are tedious but straight-
forward to prove. Automating these was an early step in the development of
C-CoRN.

The operations on any algebraic structure can be directly extended to the
set of partial functions on that structure by simply defining them pointwise
and computing the domain where the resulting expression is defined. In most
cases this is simply the intersection of the domains of the original functions.
If f and g are partial functions with domains respectively A and B, then
f + g, f − g and f × g all have domain A∩B, while −f has domain A. Only
in the cases of division and composition do other conditions appear: the
domain of f/g is A∩{x ∈ B | g(x) �= 0}, that of g ◦ f is {x ∈ A | f(x) ∈ B};
but since Bishop-style constructive mathematics avoids the use of division,
as discussed in Section 2.4, these last situations do not occur that often.

It seems reasonable to define a tactic that can deal with the most common
goals of the form A ⊆ domf . This can be achieved quite easily using the
auto with mechanism. First, a number of lemmas are proved that show
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how the domain is (not) affected by the algebraic operations. The first one
applies to total functions; the following to the ring operations. In all of them,
R : R→Set and F, G : PartIR10.

Lemma included IR : (included R λx:R.�).

Lemma included FPlus :
(included R (dom F))→(included R (dom G))→
(included R (dom F+G)).

Lemma included FInv :
(included R (dom F))→(included R (dom − F)).

Lemma included FMinus :
(included R (dom F))→(included R (dom G))→
(included R (dom F−G)).

Lemma included FMult :
(included R (dom F))→(included R (dom G))→
(included R (dom F×G)).

Lemma included FScalMult :
(included R (dom F))→∀c:R.(included R (dom c × F)).

Lemma included FNth :
(included R (dom F))→∀n:N.(included R (dom Fn)).

These lemmas are then added to a database included. Practice shows
that auto with included can solve the most common goals of this type.

On occasion, composition and/or division do appear; it is then usually
helpful to use assert or cut at the beginning of the proof to add the infor-
mation that the division or composition being done is defined in the relevant
domain to the context. These facts will often be needed repeatedly through-
out the proof, so adding them at the beginning will make the proof shorter;
also, the following lemmas, which are also part of the included database,
can then be used to treat these more complicated situations.

Lemma included FRecip : (included R (dom G))→
(∀x:R.(R x)→∀Hx:(dom G x).(G x Hx) # 0)→
(included R (dom 1/G)).

10PartIR is short for (PartFunct R)
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Lemma included FDiv :
(included R (dom F))→(included R (dom G))→
(∀x:R.(R x)→∀Hx:(dom G x).(G x Hx) # 0)→
(included R (dom F/G)).

Lemma included FComp : (included R (dom F))→
(∀x:R.(R x)→∀Hx′:(dom F x).(dom G (F x Hx′)))→
(included R (dom G ◦ F)).

Still, in some situations the user would like the system to prove the in-
clusion as far as possible and just leave the side conditions as subgoals. The
auto tactic is not able to do this, as it either completely solves the goal it is
applied to or leaves it untouched. The tactic language of Coq then comes in
handy: since the structure of the function uniquely determines which lemma
should be used, either the first or the match tacticals can be used to reduce
the function to its simplest terms. In the first case, the tactic would look like

Ltac Lazy_Included := repeat first

[ apply included_IR

| apply included_FPlus

| (...)

| apply included_FDiv

| apply included_FComp ].

Using match, the following can also be defined.

Ltac Lazy_Included’ := repeat match goal with

| |-(included _ (dom (λx._))) => apply included_IR

| |-(included _ (dom FId)) => apply included_IR

| |-(included _ (dom (_+_))) => apply included_FPlus

(...)

| |-(included _ (dom (_/_))) => apply included_FDiv

| |-(included _ (dom (_◦_))) => apply included_FComp

end.

Even though the latter probably looks more sophisticated and more effi-
cient, both tactics actually behave similarly; the explicit matching that the
second tactic does is implicit in the first one, since first will try to unify
each of the lemmas presented to it with the goal, and that is precisely what
is done explicitly in the second case using match.
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Continuity and differentiability vs. search techniques

A similar approach can also be applied in the case of proving that compli-
cated expressions denote continuous or differentiable functions. However, the
resulting tactics’ performance is surprisingly poorer. In the case of continu-
ity, the result is still usable for not-too-big expressions; as before, a number
of lemmas are first proved about the preservation of continuity through alge-
braic operations, such as the following. Here, Hab is a compact interval and
the context contains information about the continuity of F and G in Hab as
well as about the side conditions referred to in Lemma 2.4.8.

Lemma Continuous I const : ∀c:R.(Continuous I Hab λx.c).

Lemma Continuous I plus : (Continuous I Hab F+G).

Lemma Continuous I div : (Continuous I Hab F/G).

These lemmas are then collected in a hints database continuous and, as
before, this database can be used by auto to prove many such goals.

Also in parallel with the previous situation, first and match can be used
to define similar tactics that do not need to solve the goal totally.

Unfortunately, the situation here is less simple than when only defined-
ness is concerned. As was discussed in Section 2.4, there are two notions
of continuity, both of which were formalized; and therefore all the previous
results have to be established for both of them and added to the database.
Furthermore, the contexts typically assume hypotheses stronger than those
expected by these lemmas: one might know that f is a continuous func-
tion on R, from which it should be straightforward to show that f + 1 is
continuous on [0, 1]. But this requires also the presence of extra lemmas
regarding preservation of continuity through restriction of functions and the
simultaneous use of the included database.

The effect is that the search procedure at this stage begins to take too
long to be useful, and the proof terms too deeply nested to be found by
auto. And even though first and match perform somewhat better, a more
powerful approach feels needed.

Differentiation is an even worse case. Building a similar hints database
including the usual derivation rules is practically useless: when one needs to
prove a goal of the form f ′ = g, it is very seldom the case that the derivation
rules are directly applicable. Consider the proof of the Law of the Mean
(Corollary 2.4.13), where given a function f and parameters a, b ∈ R, the
following auxiliary function is defined:

h(x)
def
= (x − a)(f(b) − f(a)) − f(x)(b − a).
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The derivative of h is then given by the expression

h′(x) = f(b) − f(a) − f ′(x)(b − a) (4.1)

but direct application of the derivation rules gives

h′(x) = (1−0)(f(b)−f(a))+(x−a)(0−0)−(f ′(x)(b−a)+f(x)(0−0)) (4.2)

or, with some good will and careful bracketing,

h′(x) = (1 − 0)(f(b) − f(a)) − f ′(x)(b − a) (4.3)

where both products are being regarded as multiplications by a scalar rather
than as products of two functions. Still this last form differs from Equa-
tion 4.1; hence in order to profit from this kind of automation, the user must
type in by hand a larger expression than would be desirable.

Reflection—again

It will now be seen that reflection can also be used to yield more elegant proofs
of continuity of functions. Furthermore, the resulting tactic will directly be
adaptable, with only the need for an extra layer at the top, to the more
complicated situation of differentiable functions.

Because division and composition seldom occur within C-CoRN, the sim-
pler method of pure reflection, which cannot treat these cases, was chosen
for implementation instead of the more powerful but also much more diffi-
cult partial reflection. It should be noted, still, that even these cases can be
addressed by the resulting tactic with little extra effort, as will become clear
in the next few paragraphs.

To put the situation in terms of the reflection approach, the (semantic)
domain S being considered is the type PartIR of real-valued partial functions.
Rather than a specific decision problem D, the method can in this case be
used to solve a family of decision problems11 {D[a,b]}[a,b]⊆R, where for each
a and b the problem D[a,b] is the predicate λF:PartIR.(Continuous I Hab F) for
some proof term Hab : (a ≤ b). From this point on, a, b : R are supposed to
be fixed parameters.

The syntactic type of continuous functions on the interval [a, b] contains
the basic functions λx.c (constant function with value c) and FId (identity
function on the reals). Besides these, extra constructors are available to allow
hypotheses from the context to augment the family of known continuous
functions. There are four such constructors hyp c, hyp d, hyp d′ and hyp diff:

11This example uses notation which is explained in Section 5.2.
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the first one takes care of functions assumed to be continuous in the interval
being considered, the second and third rely on the fact that if g is a derivative
of f on an interval then both f and g are continuous on that interval; and the
last deals with differentiable functions, which are also continuous wherever
differentiable.

The presence of these constructors allows the user to bypass the lack of
knowledge about division and composition built in the tactic: by cut’ting,
assert’ing or generalize’ing appropriate hypotheses in the context, these
cases will also be considered. For example, if one adds to the context the
hypothesis (Continuous I Hab 1/FId), the tactic will also use the fact that the
reciprocal function is continuous.

The full inductive definition of the syntactic type cont function of contin-
uous functions can be seen in Figure 4.5.

The next step is to define the injection cont to pfunct going from this type
into PartIR. This is totally straightforward to do, and the resulting function
is shown in Figure 4.6. Afterwards, it is proved that all the functions in the
co-domain of cont to pfunct are continuous. This is very simple to do, using
induction and the lemmas already proved about preservation of continuity
through the algebraic operations. Hence the following term is defined.

continuous cont : ∀Hab:(a≤b).∀f . (Continuous I Hab (cont to pfunct f)).

The last step is to define a partial inverse to cont fun. Using the tactic
language, taking advantage of the match tactical, this operator can be de-
fined as a meta function pfunct to cont (i.e., not a term in the Calculus of
Constructions) as shown in Figure 4.7. The only tricky part is to benefit
from the presence of hyp c and similar constructors; this is done through the
call to match goal with, which allows also the context to be examined.

Finally, for usability, and since the typical user will not even want to
know that all these auxiliary functions exist, the tactic shown in Figure 4.8
is defined to deal with goals of the form (Continuous I Hab F). The algorithm
is as follows.

1. Apply pfunct to cont to F; if this fails to return a Coq-term, the tactic
fails. Otherwise, let r be the resulting term.

2. Let a and b be the endpoints of the interval (which can be found by
match’ing with the goal).

3. Replace F in the goal with (cont to pfunct a b r) using the fact that
these terms are convertible.

4. Apply the lemma continuous cont to solve the goal.
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Inductive cont function : Type :=
| hyp c : ΠHab:(a≤b).ΠF:PartIR. (Continuous I Hab F)→cont function
| hyp d : ΠHab:(a<b).ΠF,F′:PartIR. (Derivative I Hab F F′)→cont function
| hyp d’ : ΠHab:(a<b).ΠF,F′:PartIR. (Derivative I Hab F F′)→cont function
| hyp diff : ΠHab:(a<b).ΠF:PartIR. (Diffble I Hab F)→cont function
| cconst : Πc:R.cont function
| cid : cont function
| cplus : cont function→cont function→cont function
| cinv : cont function→cont function
| cminus : cont function→cont function→cont function
| cmult : cont function→cont function→cont function
| cscalmult : R→cont function→cont function
| cnth : cont function→N→cont function
| cabs : cont function→cont function.

Figure 4.5: The syntactic type of continuous functions

Fixpoint cont to pfunct (r:cont function) : PartIR := match r with
| hyp c Hab F H ⇒ F
| hyp d Hab F F’ H ⇒ F
| hyp d’ Hab F F’ H ⇒ F’
| hyp diff Hab F H ⇒ F
| cconst c ⇒ λx.c
| cid ⇒ FId
| cplus f g ⇒ (cont to pfunct f)+(cont to pfunct g)
| cinv f ⇒ −(cont to pfunct f))
| cminus f g ⇒ (cont to pfunct f)−(cont to pfunct g)
| cmult f g ⇒ (cont to pfunct f)×(cont to pfunct g)
| cscalmult c f ⇒ c×(cont to pfunct f)
| cnth f n ⇒ (cont to pfunct f)n

| cabs f ⇒ FAbs (cont to pfunct f)
end.

Figure 4.6: Translation from cont function to PartIR
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Ltac pfunct to cont a b f := match constr:f with
| (λx.?X3) ⇒ constr:(cconst a b X3)
| FId ⇒ constr:(cid a b)
| ?X3+?X4 ⇒

let t1:=pfunct to cont a b X3 with t2:=pfunct to cont a b X4
in constr:(cplus a b t1 t2)

| −?X3 ⇒ let t1:=pfunct to cont a b X3 in constr:(cinv a b t1)
| ?X3−?X4 ⇒

let t1:=pfunct to cont a b X3 with t2:=pfunct to cont a b X4
in constr:(cminus a b t1 t2)

| ?X3×?X4 ⇒
let t1:=pfunct to cont a b X3 with t2:=pfunct to cont a b X4
in constr:(cmult a b t1 t2)

| c×?X4 ⇒ let t:=pfunct to cont a b X4 in constr:(cscalmult a b c t)
| ?X3?X4 ⇒ let t1:=pfunct to cont a b X3 in constr:(cnth a b t1 X4)
| (FAbs ?X3) ⇒ let t1=pfunct to cont a b X3 in constr:(cabs a b t1)
| ?X3 ⇒ let t:=constr:X3 in match goal with

| H:(Continuous I (a:=a) (b:=b) ?X1 t)|- ⇒
constr:(hyp c a b X1 t H)

| H:(Derivative I (a:=a) (b:=b) ?X1 t ?X4)|- ⇒
constr:(hyp d a b X1 t X4 H)

| H:(Derivative I (a:=a) (b:=b) ?X1 ?X4 t)|- ⇒
constr:(hyp d’ a b X1 X4 t H)

| H:(Diffble I (a:=a) (b:=b) ?X1 t)|- ⇒
constr:(hyp diff a b X1 t H)

end
end.

Figure 4.7: The inverse to cont to pfunct

Ltac Contin := match goal with

| |-(Continuous_I (a:=?X1) (b:=?X2) ?X4 ?X3) =>

let r := pfunct_to_cont X1 X2 X3 in

(change (Continuous_I X4 (cont_to_pfunct X1 X2 r));

apply continuous_cont)

end.

Figure 4.8: Tactic script for Contin
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Notice that the only step in the tactic that might fail is the first one. If
this happens, then the goal is not provable by this specific tactic: it deals
with functions that are not syntactically representable in cont function, and
the context does not provide enough information to proceed.

If the first step succeeds, then everything must also go through due to
typing conditions and the fact that pfunct to cont, where defined, is inverse
to cont to pfunct. Therefore, the original goal is then completely solved. In
no case is the user left with goals involving the auxiliary functions.

The same principle can be applied, although with some extra complexity
added now, to situations where derivatives of functions are involved.

When the goal at hand consists simply in showing that a given function is
differentiable, a tactic can be written in pretty much the same fashion as the
one previously shown. Two constructors have to be omitted in the syntactic
type, as continuous functions need by no means to be differentiable (and
indeed, some are not) and the absolute value of a differentiable function is also
not always differentiable (as the simple case of the identity function clearly
exemplifies). Once these two constructors are removed, however, everything
runs in pretty much a parallel way and this is thus not such an interesting
case to study at this point.

When the goal to be proved is of the form (Derivative I Hab F G), requiring
one to prove that the derivative of F on a given interval with endpoints a and
b (and Hab : (a < b)) is G, the situation changes drastically. Whereas tactics
based on auto or a reflection approach perform equally well when continuity
is concerned, the higher complexity of the latter paying off only when the
functions involved began to have large expressions, in this situation reflection
must be used. And a more intricate version of reflection, as it happens, even
though it is still total reflection: the same trick as before will be used to
make the inability to deal with division and functional composition a minor
drawback.

The key thing to notice in this situation is that there is a domain, which
can be inductively defined, of functions that not only are differentiable, but
whose derivative can actually be computed just from the expression of the
function.

Defining such a domain deriv function is straightforward, as Figure 4.9
shows. The interpretation function deriv to pfunct is analogous to the above
cont to pfunct, and has thus been omitted.

Structurally computing the derivative from the syntactic representation is
done by the deriv deriv function of Figure 4.10. In this function, the second
case (dealing with differentiable functions) needs some explanation: being
differentiable is defined via an existential quantifier, i.e., saying that “there



84 CHAPTER 4. AUTOMATION

Inductive deriv function : Type :=
| hyp : ΠHab:(a<b).Πf,f′:PartIR. (Derivative I Hab f f ′)→deriv function
| hyp’ : ΠHab:(a<b).Πf:PartIR. (Diffble I Hab f)→deriv function
| const : Πc:R.deriv function
| id : deriv function
| rplus : deriv function→deriv function→deriv function
| rinv : deriv function→deriv function
| rminus : deriv function→deriv function→deriv function
| rmult : deriv function→deriv function→deriv function
| rscalmult : R→deriv function→deriv function
| rnth : deriv function→N→deriv function.

Figure 4.9: The syntactic type of differentiable functions

Fixpoint deriv deriv (r:deriv function) : PartIR := match r with
| hyp Hab f f’ H ⇒ f’
| hyp’ Hab f H ⇒ PartInt (ProjS1 H)
| const c ⇒ λx.0
| id ⇒ λx.1
| rplus f g ⇒ (deriv deriv f)+(deriv deriv g)
| rinv f ⇒ −(deriv deriv f)
| rminus f g ⇒ (deriv deriv f)−(deriv deriv g)
| rmult f g ⇒

(deriv to pfunct f)×(deriv deriv g)+(deriv deriv f)×(deriv to pfunct g)
| rscalmult c f ⇒ c×(deriv deriv f)
| rnth f n ⇒ match n with
| O ⇒ λx.0
| S p ⇒ λx.(p + 1)×(deriv deriv f)×(deriv to pfunct (rnth f p))
end

end.

Figure 4.10: Computation of derivatives from the syntactic representation
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exists a function which is the derivative of. . . ”. This should make the use of
the ProjS1 constructor clear; then, a map is applied that maps this function
(a total function on the interval [a, b]) into a partial function.

This function is a type-theoretic function, and it can be proved to be
correct in the sense that the following lemma holds.

Lemma deriv deriv function : ∀Hab:(a<b).∀f:deriv function.
(Derivative I a b Hab (deriv to pfunct f) (deriv deriv f)).

The partial inverse pfunct to deriv is then defined just like in the case of
continuity, so it will not be displayed here.

The actual tactic implements the following algorithm.

1. Find a syntactic representation r of F.

2. Compute, syntactically, a derivative F′ of (deriv to pfunct r).

3. Using the fact these terms are convertible, replace in the goal F by
(deriv to pfunct r).

4. Using extensionality of the derivative relation, replace G by F′. This
will leave two subgoals.

5. Use the fact that the syntactic computation of the derivative is correct
to solve (Derivative I Hab (deriv to pfunct r) (deriv to pfunct r′)).

The actual script is shown in Figure 4.11.

Ltac Deriv := match goal with
| |-(Derivative_I (a:=?X1) (b:=?X2) ?X4 ?X3 ?X5) =>

let r := pfunct_to_deriv X1 X2 X3 in
(change (Derivative_I X4 (deriv_to_pfunct X1 X2 r) X5);
apply Derivative_I_wdr with (deriv_deriv X1 X2 r);
[unfold deriv_deriv, deriv_to_pfunct in |- *

| apply deriv_deriv_function])
end.

Figure 4.11: Tactic script for Deriv

As was the case with Contin, the only step that may fail is the first.
However Deriv always leaves as goal the proof that G is equal to the derivative
syntactically computed. This is an extremely non-trivial problem: when
doing mathematics, everyone has a tendency to simplify expressions as they
appear, as was discussed earlier with the example of the Law of the Mean.
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Using this tactic in this proof, the goal which will be left for the user to prove
is the equality between the expressions in Equations 4.1 and 4.2.

Now, even though this seems to be an equality that can be proved simply
through equational reasoning using the ring axioms, there is a problem: there
is no ring structure on PartIR. In fact, there is no algebraic structure at all
on this type, since there is an additive identity (the zero function) but no
additive inverse in general, since there is no way to add a function to a
(strictly) partial function and obtain a total function. Similarly, there is
a multiplicative identity (the constant one function) but no multiplicative
inverse.

Still, one could in principle unfold the definition of equality between two
functions to reduce it to proofs of definedness and pointwise equality to make
use of Rational and Included. Unfortunately, even though this works in
the specific case of the Law of the Mean, in general it is still not enough;
and worse, in many situations (e.g., in the proof of Taylor’s Theorem) these
tactics take so long even to fail that just trying them proves a very bad idea
indeed.

The reason is that, in the intuitive reasoning that is usually followed when
working with derivatives, one constantly makes use of another property that
has barely been mentioned so far: the uniqueness of the derivative function.
That is, one usually writes f ′ for the derivative of f regardless of the specific
representation of that function, since extensional equality is all one usually
cares about. But in the formalization different representations of the same
function are not the same object, and explicit use of this lemma is then
required.

Therefore, after using this tactic, the user still has to do a proof of equality
by hand. Nevertheless, this is felt as a great improvement, as typically using
Included and Rational in an intelligent way and resorting to the uniqueness
of the derivative this goal can typically be solved by hand much more quickly
than the original one would have been.

As an example, in the proof of the Law of the Mean Deriv is called on
the following goal, where a and b are real numbers, F is a partial function
with derivative F′, and HA and HB are proofs that F is defined at a and b,
respectively.

Derivative I Hab
(FId−λx.a) ×λx.((F b HB)−(F a HA))−F×λx.(b−a)
λx.((F b HB)−(F a HA))−F’×λx.(b-a)

The user is left with the following goal.
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Feq [a,b]
((FId−λx.a)×λx.0+(λx.1−λx.0)×λx.((F b HB)−(F a HA)))−

F×λx.0+F’×λx.(b−a)
λx.((F b HB)−(F a HA))−F’×λx.(b-a)

The gigantic expression in this goal is the derivative computed by the tactic.

4.5 Comparative analysis

Figure 4.12 summarizes the C-CoRN tactics presented in the previous sec-
tions and their applicability.

Intuitively, there are many differences between the two kinds of tactics
described in the previous sections, not only at the level of how the algorithms
that they implement work, but also as regards the ideas behind them. These
differences also create a big difference in the way that they are useful for
interactive theorem proving.

Being simple guided search algorithms, all tactics built from auto by
adding hints to databases share the limitations of these algorithms. In par-
ticular, they all have exponential complexity in the worst case scenario (i.e.,
when they cannot solve the goal), which in the case of Algebra has practical
consequences: since symmetry of equality and commutativity of addition and
multiplication can always be applied, the tactic will always have many paths
to explore.

Also, there is no guarantee that the proof terms found by auto are at all
like anything a human being would write. In the FTA-library several strange
examples have been found, including a situation where the final proof term
had a proper subterm of the same type12.

Finally, when the context grows large, even goals that can be proved
exactly by one of the hypotheses can take absurdly long to prove. If the
user is familiar with how the Coq system works, he can avoid this problem
by using a different tactic; but one of the objectives of defining tactics like
Algebra is precisely to prevent the user from having to do so. And of course,
if the goal can be reduced to the type of a hypothesis in the context by
application of a lemma in the algebra database, then avoiding this problem
requires knowing the name of the relevant lemma.

These problems are all avoided by tactics built using reflection. As regards
complexity, they usually take some time to build the term in the syntactic
type that will allow them to solve the goal; but once that is done the proof
term can be directly written down without further ado, as it has a fixed

12This was pointed out by Letouzey.
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Tactic Description Example

Algebra

Search tactic for equational
reasoning; looks at both the
context and algebra hints
database

Will solve

a=b
(x+1)×a=(x+1)×b

Rational
Reflection tactic for equa-
tional reasoning

Will solve

(2×x)+(0×y)=(x+x)

Step

Allows the user to replace
expressions on either side
of an (in)equality by equals

From the goal a+b≤e, the
tactic RStepr e/2+e/2 will
produce a+b≤e/2+e/2

Included

Search tactic to prove
inclusion of a set in the
domain of a function

Will prove that the interval
[0, 1] is included in the do-
main of 2 × Sine × Cosine

Contin

Reflection tactic to prove
continuity of a function;
can look at the context

Is able to prove that
(F + FId) × (λx.2)3 − 4 × F
is continuous from the
hypothesis that F is contin-
uous

Deriv

Reflection tactic that
reduces a proof that a
function G is the derivative
of F to a proof of equality
between G and the com-
puted derivative of F

In a context stating that
Cosine is the derivative of
Sine, it will reduce the goal
“the derivative of Sine2

is 2 × Sine × Cosine” to
“2 × Sine × Cosine is equal
to 2 × Cosine × (Sine1)”

Figure 4.12: C-CoRN tactics and their use
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form. Afterwards there is some work to be done by the type checker, as was
discussed above in Section 4.1, but it is important to notice that this step
will be done only when the tactic is successful: it is necessary because at
some stage a partial inverse is defined which is not a term in the type theory,
and so nothing about it can be proved (namely, that it is a partial inverse to
some function). But if it is indeed well defined, then it will fail if the tactic
cannot completely solve the goal, and it will do so rather quickly.

The proof terms produced by reflection tactics also do not in general
resemble anything a human would write down. Nevertheless, they embody
human-like reasoning in a different way, representing the fact that something
so trivial is being proved that it is not interesting to show the details. This is
in direct contrast to proof-terms produced by auto, which show all the steps
in the reasoning they represent.

Another important feature of proof terms generated via reflection is that
they grow linearly with the input. This is a great advantage when comparing,
for example, Algebra with Rational: the presence of symmetry of equal-
ity, commutativity and distributivity laws means that direct proofs (those
generated by Algebra) will typically contain many steps that do not reduce
the size of the expressions involved, hence yielding proofs whose size can be
exponential in the size of the input. In the case of Rational, these steps are
only implicitly present when the output proof term is type-checked (in the
computation of the normalization function); the proof term itself is linear in
the size of the input.

When dealing with the other examples that were presented earlier, how-
ever, this argument becomes less powerful. When proving continuity of a
function all applicable lemmas either solve the goal or reduce it to prov-
ing the continuity of functions with a smaller representation; because of the
dependent types that these lemmas have, the resulting proof-term is still
super-linear, but not necessarily larger than the one generated by reflection,
since that one has linear complexity but with large coefficients. For the tac-
tics dealing with derivatives the situation is pretty much the same; but as
was said before, the crucial step is computing derivatives syntactically. Doing
this requires setting up the full machinery of reflection, and then defining a
tactic becomes such a trivial step that it seems unreasonable not to take it.

In spite of all this, it is most certainly not the case that reflection is
always the best option. There are several reasons why the clumsy-looking
search tactics are sometimes preferable, and very often cooperation between
both kinds turns out to be the best solution.

The major disadvantage of reflection is its lack of flexibility. When con-
tinuity and differentiation were treated, this was in part compensated for by
adding special constructors that allowed hypotheses from the context to be
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used in building syntactic expressions.
As a complement, a database derivative has also been defined, and it

contains all lemmas about differentiation and differentiation rules. This can
be at any time extended; for example, when transcendental functions were
defined, the lemmas about them were also added to this database.

As an example of this combined use of search and reflection tactics, sup-
pose that H : (0 < 1) and the goal to prove is

Derivative I H Sine2 2× Sine × Cosine.

It would be nice to use Deriv to solve this goal as far as possible, but this
will fail as this tactic knows nothing about trigonometric functions. What one
can do is use assert to add (Derivative I H Sine Cosine) to the context. This
very simple goal can be automatically proved by auto with derivative

(not requiring the user to know the name of the relevant lemmas), and Deriv

will now work on the original goal and leave for the user the much simpler
goal of equality between 2 × Cosine × (Sine1) and 2 × Sine × Cosine in the
interval [0, 1].

At this stage, all the machinery is in place for the more detailed descrip-
tion of the formalization which will be presented in the next chapter.

From the beginning automation was perceived as a very important ques-
tion to be addressed before and throughout the formalization process. In this
chapter the two major methods of developing tactics for Coq were examined,
their merits and disadvantages presented and discussed, and examples from
the FTA-library shown alongside with their extension to C-CoRN and new
tactics in this new setting.

In order to fulfill the proposed task of formalizing Bishop-style Real Anal-
ysis following [10], these tactics have to be used in an intelligent way, taking
advantage of the capabilities of each of them. Cooperation turns out to be
the key, as was exemplified in the previous section.

With all the pieces in place, the formalization itself can now be presented
from a more technical perspective. This will be done in the next chapter.



Chapter 5

Building a Library of Real
Analysis

In the previous two chapters it was shown how partial functions could be
added to the Algebraic Hierarchy of the FTA-library and how several tactics
were defined to make the task of formalizing Real Analysis easier.

In this chapter the concrete formalization will be discussed, care being
taken to explain the design choices. As presentation is concerned, the order
of Bishop’s book [10, Chapter 2] will be followed; however, in contrast to
Chapter 2, the focus will be now on the actual formalization, and its technical
aspects will be analyzed. For this reason, actual (albeit pretty printed) Coq
code will be shown in several places; this code is correct input except when
explicitly stated. Although this code is sometimes complex, displaying it
makes it easier to examine the relationship between the informal and formal
presentations of the same results, one of the goals of this chapter.

A brief introduction to Coq syntax and the notation herein used is pro-
vided in Appendix A. The specific notation and results from the FTA-library,
which will be used without comment, have all been introduced in Section 2.2.

The work described here represents a larger amount of Coq code than
that originally present in the FTA-library. Therefore, it was decided to
abandon that name for the existing library, and thus was born C-CoRN:
the Constructive Coq Repository at Nijmegen, the goals and methodology of
which were already discussed in Section 2.3.

5.1 Extending the Algebraic Hierarchy

The first step in the formalization of Real Analysis was to extend the Alge-
braic Hierarchy with the necessary notions. These can be divided into two

91
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groups: generic algebraic results, dealing mostly with partial functions, their
properties and operations on them; and results about real numbers, includ-
ing in particular many new lemmas on Cauchy sequences and subsequences,
as well as a theory of series of real numbers.

Algebraic Structure of Partial Functions

As was discussed extensively in Chapter 3, it was decided to formalize partial
functions using a propositional approach similar to that of Automath [7].
Hence, an n-ary partial function is simply an (n + 1)-ary function whose
last argument is a proof term. Throughout this chapter, only unary partial
functions will be used; furthermore, since only partial functions on the reals
are needed, their type (PartFunct R) will be abbreviated to PartIR.

In statements of lemmas, for the sake of generality, the proof arguments
of partial functions will usually be universally quantified. Since their type is
always clear from the context, it will be omitted in the quantifier.

Definition 3.2.2 showed how the type of partial functions over an arbitrary
setoid S was defined. The pros and cons of this definition having already been
debated, it is now time to start using it.

The first question which naturally arises is whether the algebraic structure
of a setoid propagates to the collection of its partial functions. The answer
to this question, as was briefly discussed in Section 4.4, is negative: although
any algebraic operation on a setoid can be extended to the collection of par-
tial functions on that setoid simply by pointwise definition, partiality breaks
down most properties of that operation. For example, in any monoid struc-
ture M the constant function with value the unit of the monoid is trivially
the unit for the addition of partial functions on that monoid; however this
operation can have neither a left nor a right inverse: if f is the everywhere
undefined function on M , then f + g = f = g + f for every partial function
g on M—and in particular f cannot have an inverse on either side.

There is a crucial question, however, which must be answered before this
argument can be made more precise: just what notion of equality is being
used to compare two functions? As it turns out, there are at least two
different possibilities—and the one which is perhaps the most natural is not
the one which is the most useful for the purposes of this work. The reason
for this will be explained below.

Another point worth mentioning is that, where the formalization is con-
cerned, there is another, more subtle, issue at hand: as was explained at the
end of Section 3.3, the type of partial functions on a setoid is Type, and thus
partial functions cannot form a setoid altogether simply because of typing
constraints (as the carrier of a setoid must have type Set). After discussing
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the possible equalities between partial functions, though, a partial solution
to this will turn out to exist.

Any plausible notion of equality of partial functions should satisfy two
basic properties:

• it should be an equivalence relation;

• values of two equal functions should coincide at points where both of
them are defined.

The most natural definition is the traditional one: f and g are equal iff
f(x) is defined precisely when g(x) is, and if that happens then f(x) = g(x).

In practice, though, such a definition has two disadvantages: on the one
hand, it generates goals that can be quite hard to prove; on the other hand,
it is too strong in many circumstances.

Both problems can be easily understood if one considers the intended
use of this equality. Since extensionality is a central concept in constructive
mathematics, it is to be expected that the properties of being continuous,
differentiable and the like should be extensional. In other words, if f is e.g.
a continuous function and g is equal to f , then g should be continuous.

However all these notions are parameterized by intervals, as was men-
tioned in Section 2.4. Suppose then that f is continuous on an interval I;
then it has to be everywhere defined on that interval (see Definition 2.4.6,
where this is implicitly assumed though not explicitly stated). Therefore,
what is in fact being required of g is that it be defined at least on I. Typ-
ically, this will be easier to prove directly (rather than that f(x) defined
implies g(x) defined for x ∈ I). And, on I, f is everywhere defined, whence
proving [g(x) defined] implies [f(x) defined] is also somewhat redundant.

As for what happens outside I, it is totally irrelevant for the purpose of
this specific application! Even the request that f and g coincide wherever
they are both defined can be safely dropped.

This argument is not tailored to the notion of continuity: since all prop-
erties of functions are relativized to an interval, a similar reasoning can be
made for all of them.

Hence, rather than formalizing the standard definition, it is more inter-
esting to consider a parameterized family of equality relations {=I}I⊆R. In
practice, I will be taken to be an interval, but this is not necessary.

Definition 5.1.1 Let I be a subsetoid of R. Two partial functions f and
g on R are said to be equal on I, denoted f =I g, iff the following three
conditions hold:

• if x ∈ I then f(x) is defined;
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• if x ∈ I then g(x) is defined;

• for all x ∈ I, f(x) = g(x).

Even though this definition can be made in general for any setoid S, it was
only needed in the field of Real Analysis. Therefore, it was only formalized
in this particular case.

Before the formal definition can be presented, though, some thought has
to be given to the issue of how sets of real numbers are to be represented.

For reasons similar to those discussed in Chapter 3, it is not useful to
work with the subsetoids of Definition 3.1.1; rather, sets of real numbers will
be identified throughout this chapter with predicates of type R→Set. Thus,
a statement like x ∈ A ⊆ R will be formalized by means of x : R and the
existence of a term of type (A x).

Operations on subsets (inclusion, intersection) can then be directly trans-
lated as logical operations on the corresponding predicates (implication, con-
junction); the improper subset of the real numbers corresponds to the pred-
icate λx:R.�.

The greatest advantage of this approach is that it becomes very easy to
deal with elements assumed to be in different subsets at the same time. That
is, if the real number x is an element of A and B it will be represented by
x : R (which can be added, multiplied and the like to any other real number,
thanks to its type) with extra hypotheses in the context which can be used
whenever needed.

With this in mind, the formal version of Definition 5.1.1 should now be
clear.

Definition Feq (I:R→Set) (F G:PartIR) :=
(included I (dom F)) ∧ (included I (dom G)) ∧
(∀x:R.(I x)→∀Hx,Hx′ .(F x Hx) = (G x Hx′)).

It is worth pointing out that this definition could be written in an equiv-
alent way using existential quantification:

f =I g ↔ ∀x∈I .∃Hx,H′
x
.f(x,Hx) = g(x,H ′

x)

However, the latter characterization is in practice much more difficult to use.
Using Definition 5.1.1, to prove f =I g one has to prove two inclusions,
which can often be dealt with using the automation tactics described in
Section 4.4, and an equality of setoid elements, which can also often be
dealt with using the Step tactic as explained in Section 4.3; and the proof
terms are universally quantified, meaning they will be perceived as irrelevant
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(which they are, since values partial functions do not depend on their logical
argument) and have short names (since they are variables).

Proving equality via an existential statement, on the other hand, requires
explicitly giving proof terms as arguments to the system; and these will be
fully displayed throughout the whole proof, making everything much harder
to read and to interact with. Also, there is no obvious way to automate any
but the last part of the proof.

It should be pointed out, however, that the equivalence between these two
definitions highly depends on the assumption of proof irrelevance. Without
it, Definition 5.1.1 is not only stronger, but also more intuitive. Also, it is
interesting to note that, with this definition, the relation f =I f holds iff
proof irrelevance holds for f within I.

For any subset I of the real numbers, the relation =I is an equivalence
relation. Furthermore, it is a congruence with respect to the (pointwise
defined) algebraic operations: if f1 = f2 and g1 = g2, then f1 + g1 =I f2 + g2,
−f1 =I −f2, f1 × g1 =I f2 × g2, 1/f1 =I 1/f2 and f1/g1 =I f2/g2. All these
properties are proved in the C-CoRN library.

There is another interesting insight provided by this definition. To define
=I one looks only at functions which are always defined on I; this suggests
that a parallel Algebraic Hierarchy of partial functions could be built pa-
rameterized by a subsetoid. This turns out to work quite nicely: given a
subsetoid I of a setoid S, the collection of total setoid functions from I to S
also forms a setoid, with apartness given by

f #I g
def
= ∃x∈I .f(x) # g(x).

On the other hand, these functions can be bijectively mapped to partial
functions on S, as described in the proof of Theorem 3.3.1. It then turns out
that f =I g iff ¬f #I g, identifying functions with their image through this
bijection.

Unfortunately, though as much algebraic structure exists on these struc-
tures as on the original setoid S, Coq’s coercion mechanism is not strong
enough to allow this algebraic structure to be used in practice. If one uses
algebraic notation to write e.g. F + G for F, G : (CSetoid fun {S | I} S), then a
term like ((F + G) a Ha) will fail to type check because the system isn’t able
to coerce (F + G) to an abstraction.

For this reason, no such notation is ever used throughout C-CoRN. In-
stead, algebraic operations on partial functions are defined pointwise and
denoted by tokens differing from their setoid equivalents in the use of curly
braces. Thus, F{+}G denotes f+g, and so on. Throughout this presentation,
however, this distinction will be ignored and notations like F + G and F × G
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will be used uniformly, as it is always clear from the context whether the
arguments to the operations are elements of an algebraic structure or partial
functions. Notice that, unlike for numbers, division of two partial functions
is always defined, so that F/G and 1/F are partial functions without the need
for any extra proof term.

Composition of two partial functions F and G is defined by the Coq term
(Fcomp F G), hereafter denoted1 G ◦ F. Given c : S, the constant function
(Fconst c) and the pointwise multiplication (Fscalmult c F) are defined, as
well as the identity function FId. The first two will be denoted in this text
by λx.c and c × F, respectively; in the latter, the types of c and F make it
clear that the operator is not multiplication of ring elements or of partial
functions.

Sequences and Series of Real Numbers

The original FTA-library included very little material on sequences. Present
were several (equivalent) definitions of Cauchy sequences and elementary
properties of limits. However, for the purpose of formalizing Real Analy-
sis many more results were needed, in particular to pave the way for the
definition of functions as power series.

There were two different directions in which this section of the library
was extended.

First, there was a concern for completeness. The choice of lemmas for-
malized in the FTA-project was very strongly geared towards the proof of
the Fundamental Theorem of Algebra, and results which weren’t relevant
for that end were more often than not left unstated. In C-CoRN, care was
taken to complete the set of existing results with similar or related ones in
a more systematic way. The new results include (strong) extensionality of
the limit function; generalization of the facts proved regarding inequalities
to apartness, e.g.

lim
n→∞

xn # lim
n→∞

yn → ∃N∈N.xN # yN ;

and more results regarding arithmetic operations, such as

lim
n→∞

x−1
n =

(
lim

n→∞
xn

)−1

under suitable conditions.
In the second place, the remaining results in Bishop’s book—many of

them only implicitly assumed—were also formalized. The emphasis here lies

1The order of the arguments is inverted, following common mathematical practice.
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on results about subsequences: even though he never mentions it, Bishop
often uses results about Cauchy sequences whose hypotheses place restric-
tions on all terms of the sequences in situations where these only hold from
some point onwards. Of course, this is known to mathematicians to be no
problem; but using it in the formalization required some extra lemmas to be
added to the library. As an example, consider the following already existing
result.

Lemma leEq seq so leEq Lim : ∀seq:(CauchySeq R).∀y:R.
(∀i:N.y ≤ (seq i))→(y ≤ (Lim seq)).

The following new version is much more useful.

Lemma str leEq seq so leEq Lim : ∀seq:(CauchySeq R).∀y:R.
(∃N:N.∀i:N.(N ≤ i)→y ≤ (seq i))→(y ≤ (Lim seq)).

A notion of almost everywhere equal is also introduced (two sequences are
almost everywhere equal iff their terms coincide from some point on) and it
is proved that two almost everywhere equal sequences will both converge if
one of them does, and in this case to the same limit.

Then, Bishop’s theory of series was formalized. To begin with, for every
sequence the sequence of its partial sums is defined. This is formalized as an
operator on sequences.

Definition seq part sum (x:N→R) := λn:N.(sum0 n x).

Here sum0 sums the first n terms of a sequence.
If the sequence of partial sums of {xn} is Cauchy, then {xn} is said to be

convergent (as a series). The sum of the series is defined as the limit of the
sequence of partial sums.

Definition convergent (x:N→R) := (Cauchy prop (seq part sum x)).

Definition series sum (x:N→R) (H:(convergent x)) :=
(Lim (Build CauchySeq (seq part sum x) H)).

The comparison test and the ratio test (Propositions 9 and 10 of [10,
Chapter 2]) were formalized. Even though the formalization of these proofs
presents nothing new, it is interesting to compare the statements of the
theorems in the informal and the formal presentation. The comparison test is
examined as an example; for the ratio test, the situation is pretty analogous.

Proposition 5.1.2 If {yn} is a convergent series of nonnegative terms, and
if |xn| ≤ yn for each n, then {xn} converges.
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A straightforward formalized counterpart of this proposition would be the
following.

∀x,y:N→R.(convergent y)→(∀n:N.(0 ≤ (y n)))→
(∀n:N.(AbsIR (x n)) ≤ (y n))→(convergent x).

Interestingly, just writing down the lemma in this way makes very clear
something which is not obvious at all in the informal statement: the hypothe-
sis that each yn is nonnegative is redundant, since this is a trivial consequence
of the facts that |xn| ≤ yn and that absolute values are always nonnegative.

Therefore, the following (simpler) version was formalized instead.

Lemma comparison : ∀x,y:N→R.(convergent y)→
(∀n:N.(AbsIR (x n)) ≤ (y n))→(convergent x).

In practice, though, the hypotheses in this lemma are still too strong.
Asymptotic behaviour is what determines convergence or divergence of a
series, so the requirement that |xn| ≤ yn can be made only after a certain
point. Thus the following was also formalized.

Lemma str comparison : ∀x,y:N→R.(convergent y)→
(∃k:N.∀n:N.(k ≤ n)→(AbsIR (x n)) ≤ (y n))→(convergent x).

For the proof of the ratio test, one relies on the fact that geometric series
of ratio between 0 and 1 converge; this was never explicitly mentioned in
Bishop, but it had to be formalized and proved.

The C-CoRN library also includes some results on algebraic operations:
if f and g are convergent series and c is a real number, then f + g, −f , f − g
and c × f are also convergent series with the expected sums.

Bishop’s definitions of e and π as series are also formalized; the latter
requires proving a criterion for convergence of alternate series. In each case,
three steps are needed: first, defining the sequence to be summed; then,
proving that this sequence is convergent (as a series); finally, defining the
constant as the sum of that series. For example, for e =

∑∞
n=0

1
n!

this is
translated as follows, where2 H : ∀n:N.(fac n) # 0.

Definition e series := λn:N.1/(fac n)//(H n).

Lemma e series conv : (convergent e series).

Definition E := (series sum e series e series conv).

In the case of π, the formalized proof of convergence turned out to be
much more complex than the one in the reference book. Bishop’s proof reads
as follows.

2Recall the notation for division presented in Chapter 3.
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Proposition 5.1.3 A series
∑∞

n=1(−1)nxn converges whenever xn ≥ 0 for
all n and the sequence {xn} is decreasing and converges to 0.

Proof. Consider positive integers m and n, with m ≥ n. Then

0 ≤ (xn − xn+1) + (xn+2 − xn+3) + . . . + (−1)m+nxm

= (−1)n

m∑
k=n

(−1)kxk

= xn − (xn+1 − xn+2) − . . . + (−1)m+nxm

≤ xn �

The problem is, this proof uses too many “obvious” facts about general-
ized associativity. When formalizing it, difficulties arise because there is no
simple way to write the expression in the first line (at least without know-
ing whether the total number of terms is even or odd); and proving both
equalities and the last inequality is best done by induction.

Thus, the formalized proof has to be done by even/odd-induction on
m, i.e., by induction on m with two different induction cases according to
whether m is even or odd. Besides being significantly more complicated than
the simple proof above presented, this sheds no more light on why the stated
result holds.

5.2 Continuous Functions

Bishop’s presentation of continuous functions and differential calculus turned
out to be quite precise, and yielded itself to formalization almost without any
need for changes either in statements of lemmas or in their proofs (in contrast,
as will be seen, to the situation that arose with integral calculus).

Interestingly, the main difficulties were met when dealing with some of
the simplest notions.

First, Bishop’s definition of totally bounded set (Definition 2.4.4) is an ex-
ample of a frequently arising notion in mathematics where a variable number
of existential quantifiers is present—namely, it depends on the first variable
which is itself existentially quantified. Formalizing this requires some way to
deal with finite sets, which is generally considered problematic within Type
Theory.

The second problem is of a more general nature, and is related to the
way concepts such as continuity and differentiability are defined for partial
functions. Bishop defines such concepts first for compact intervals, and only
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later for arbitrary intervals, as is seen in Definitions 2.4.6 and 2.4.7. Although
this is in itself not too difficult to handle, it requires some preliminary thought
on how to represent the concept of “interval”, and whether the first definition
should be an instance of the second.

Finite sets and existential quantification

In mathematics and, in particular, in Real Analysis, statements of the form

∃n∈N.∃x0 . . . ∃xn .ϕ

very often appear. Common examples include the classical definition of com-
pact set (more exactly, the notion of finite subcover); the notion of finitely
derivable in logic; the property being in the transitive closure of a relation;
the definition of uniform space; and, of course, the notion of totally bounded.

Formalizing these concepts always presents the same problem: the num-
ber of existential quantifiers at the beginning is itself an existentially quan-
tified variable, and as such the whole expression cannot be written down
directly in first order logic.

However, careful analysis of the examples presented above reveals a com-
mon characteristic: the number of quantifiers is not so relevant as the fact
that the set of these is finite; i.e., the emphasis is on the existence of a finite
set of elements satisfying some property, rather than on how many elements
that set actually has.

A natural idea is, then, to regard the leading quantifiers as a single en-
tity saying “there exists a finite set such that. . . ”, which can of course be
expressed with a single existential quantifier. But how is the concept of finite
set defined?

There are three different solutions commonly used in Type-Theory–based
proof assistants in similar situations. One is to represent finite sets as func-
tions with domain set {0, . . . , n} (with n existentially quantified); this is the
standard approach in both PVS [61] and Mizar [51]. Another option is to
identify finite sets with data structures such as lists and trees; this is a typical
solution in programming languages, and is also part of the standard library
of Coq [17]. A third approach is to define finite sets inductively: the empty
set is finite, adding an element to a finite set yields a finite set; this has also
been implemented in several different ways in Coq.

The last option was not considered when developing C-CoRN, the main
reason being that it diverges significantly from standard mathematical prac-
tice. The advantages and disadvantages of representing finite sets as func-
tions and as lists will now be discussed.
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Mathematical tradition includes writing expressions like x0, . . . , xn to rep-
resent a finite set of x’s. Taking into account that the notation xi is also used
in many contexts to denote the application of a function x with domain N,
it is natural to try to represent finite sets also as functions from an initial
segment of the set of natural numbers.

Unfortunately, this is not trivial to do in Coq, and the same problems arise
as with representation of partial functions in general. The type of a function
from {x0, . . . , xn} to a set A will typically be something like Πi:N.(i ≤ n)→A;
and all the questions discussed at the beginning of Chapter 3 arise again. The
type of natural numbers has no setoid structure, so proof irrelevance has to
be explicitly stated; and the result is that, although the original motivation
was to stay as close as possible to mathematical tradition, the formalized
statement looks very different indeed.

As a concrete example, Definition 2.4.4 of totally bounded set would look
as follows.

Definition totally bounded (P:R→Set) : Set:=
∀e:R.(0 < e)→∃n:N.∃x:Πi:N.(i≤n)→R.

(∀i,j:N.∀Hi,Hj.(i = j)→(x i Hi) = (x j Hj)) ∧
(∀y:R.(P y)→∃k:N.∃Hk.(AbsSmall e y − (x k Hk))).

(This is a little simplified; the inability to existentially quantify over propo-
sitions to obtain a proof in Set makes the final part of the statement slightly
more complicated than the above presentation suggests.)

Even though it diverges somewhat more from standard mathematical
practice, the use of lists proves to be a little bit more satisfactory in general,
and certainly in this case in particular. For every type A, (list A) is the type
of (finite) lists over A; and existential quantification is now direct. The only
issue is, one can not directly quantify over members of a list, so a membership
predicate member must be used. This can be defined using either intensional
or extensional equality; in this situation, the latter is preferable, as all work
is being done using extensional equality.

The previous definition now looks much simpler3.

Definition totally bounded (P:R→Set) : Set:=
∀e:R.(0 < e)→∃l:(list R).

∀x:R.(P x)→∃y:R.(member y l) ∧ (AbsSmall e x − y).

3In both this and the previous example, the side conditions stating that the finite set
is not only a set of real numbers, but also of real numbers satisfying P have been omitted
for simplicity.
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A small library of lists of real numbers, including among others mapping
functions, minimum and maximum, was developed.

In contrast to this example, in Section 5.4 a similar situation will be
described where the formalization via finite domain functions proves more
satisfactory than its counterpart using lists. So far, the situation in C-CoRN
seems to indicate that the choice between one way to formalize finite sets
and the other must be made again and again for each specific application.

Intervals

Intervals form a particular class of subsets of the real line. Every interval I
enjoys several nice properties: it is connected; it is extensional (in the sense
that if x ∈ I and x = y, then y ∈ I, for any real numbers x and y); and
properties such as being non-empty or proper (having more than one point)
can be nicely stated as relations which only involve its endpoints.

In order to deal with intervals in a nice way, it is useful to have a special
(syntactic) type of intervals rather than just identifying them with a par-
ticular class of predicates on the real numbers. In this type there are nine
constructors, corresponding to the nine kinds of intervals: the real line (one),
semi-lines, open or closed at their endpoint (four), and finite intervals, open
or closed at either end (four). The names of the constructors are supposed
to be mnemonic.

To each element of this syntactic type a predicate is assigned in the obvi-
ous way by a function iprop. This function is then declared as a coercion, so
that from the user’s perspective an interval is a subset of the real numbers.

In Figure 5.1 the inductive definition of the type of intervals and the iprop
function on that type are shown.

The notions of proper, finite and compact are all similarly defined for
this inductive type. For every interval I, the term (iprop wd I) proves that
the characteristic predicate of I is extensional.

However, at the first stage of formalizing notions like continuity and dif-
ferentiability, when only compact intervals are considered, this type is not
useful at all. The fact that a compact interval is of the form [a, b] is central
to many applications, and it is handy to be able to access a and b directly
rather than via some operation on intervals. Therefore, such definitions will
always be made by explicitly parameterizing on a, b and a proof that a ≤ b.

Continuity

Once the problems addressed above have been solved, formalizing Bishop’s
notion of continuity is quite straightforward. Continuity is defined in two
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Inductive interval : Set:=
| realline : interval
| openl : R→ interval
| openr : R→ interval
| closel : R→ interval
| closer : R→ interval
| olor : R→R→ interval
| olcr : R→R→ interval
| clor : R→R→ interval
| clcr : R→R→ interval.

Definition iprop (I:interval) :=
λx:R.match I with
| realline ⇒ �
| (openl a) ⇒ a < x
| (openr b) ⇒ x < b
| (closel a) ⇒ a ≤ x
| (closer b) ⇒ x ≤ b
| (olor a b) ⇒ a < x < b
| (olcr a b) ⇒ a < x ≤ b
| (clor a b) ⇒ a ≤ x < b
| (clcr a b) ⇒ a ≤ x ≤ b
end.

Figure 5.1: The inductive type of intervals and iprop

steps: first for compact intervals, parameterizing on the endpoints a and b,
left implicit, and a proof Hab : (a ≤ b); [a, b] denotes the compact interval
[a, b]4. The possibly weird-looking application of a compact interval to a real
number can be understood if one remembers that, subsets being predicates,
membership is simply application.

Definition Continuous I (F:PartIR) := (included [a, b] (dom F)) ∧
(∀e:R.(0 < e)→∃d:R.(0 < d) ∧ ∀x,y:R.([a, b] x)→([a, b] y)→

∀Hx,Hy.((AbsIR x − y) ≤ d)→((AbsIR (F x Hx) − (F y Hy)) ≤ e)).

Continuity is then defined for an arbitrary interval I.

Definition Continuous (F:PartIR) := (included I (dom F)) ∧
(∀a,b:R.∀Hab:(a≤b).(included [a, b] I)→(Continuous I Hab F)).

The image of a continuous function on a compact interval has a supremum
and an infimum; the formalized proof follows Bishop’s closely. The least
upper bound of a set is defined; the least upper bound of a function f in an
interval I is simply the relativization of that notion to the image f [I]. For
the greatest lower bound the situation is similar. Using these notions, the
norm of a continuous function is defined.

Definition set lub IR (P:R→Set) (a:R) :=
(∀x:R.(P x)→(x ≤ a)) ∧ (∀e:R.(0 < e)→∃x:R.(P x) ∧ ((a − x) < e)).

Definition fun image (F:PartIR) (P:R→Set) : R→Set:=
λx:R.∃y:R.(P y) ∧ (dom F y) ∧ ∀Hy.(F y Hy)=x.

4The actual Coq term is (compact a b Hab), where Hab : (a ≤ b).
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Definition fun lub IR (F:PartIR) (P:R→Set) (a:R) :=
(set lub IR (fun image F P) a).

Lemma Continuous I imp lub : ∀a,b:R.∀Hab:(a≤b).
∀F:PartIR.(Continuous I Hab F)→∃x:R.(fun lub IR F [a, b] x).

Definition lub funct
(a,b:R) (Hab:(a ≤ b)) (F:PartIR) (contF:(Continuous I Hab F)) :=
(ProjS1 (Continuous I imp lub a b Hab F contF)).

Definition Norm Funct
(a,b:R) (Hab:(a ≤ b)) (F:PartIR) (contF:(Continuous I Hab F)) :=
(Max (lub funct a b Hab F contF) −(glb funct a b Hab F contF)).

This norm operator has all the expected properties: it is nonnegative and
it is the least upper bound of the absolute value of f on I. The first four
arguments of lub funct and Norm Funct can and will be left implicit.

Continuity is preserved through the algebraic operations (addition, sub-
traction and multiplication), as well through the taking of the maximum, the
minimum or the absolute value. For composition and division, side conditions
have to be assumed as was discussed following Lemmas 2.4.8 and 2.4.9. To
deal with these situations, auxiliary notions of a function f “mapping com-
pacts of an interval I into compacts in the domain of g” and “being bounded
away from 0 on an interval I” were defined, both assuming I compact and
in the general case. In the following lemmas, F, G : PartIR are universally
quantified.

Definition maps into compacts (a b c d:R) (Hab:(a ≤ b)) (Hcd:(c ≤ d)) :=
(c < d) ∧ (included [c,d] (dom G)) ∧

(∀x:R.∀Hx.([a, b] x)→([c, d] (F x Hx))).

Definition maps compacts into (I J:interval) := ∀a,b:R.∀Hab:(a≤b).
(included [a, b] I)→∃c,d:R.(c < d) ∧ (included [c, d] J)∧

(∀x:R.∀Hx.([a, b] x)→([c, d] (F x Hx))).

Definition bnd away zero (P:R→Set) := (included P (dom F)) ∧
∃c:R.(0 < c) ∧ (∀y:R.(P y)→∀Hy.(c ≤ (AbsIR (F y Hy)))).

Definition bnd away zero in P (P:R→Set) := ∀a,b:R.(a ≤ b)→
(included [a, b] (dom F))→(bnd away zero [a, b] F).

It should be stressed that the last two definitions, while both refer-
ring to arbitrary sets of reals, are not equivalent. The reciprocal func-
tion is bounded away from zero in every compact interval contained in
(0, +∞), but it is not bounded away from zero on the latter set. That
is, the lemma (bnd away zero in P 1/FId (openl 0)) is provable, whereas con-
structively (bnd away zero 1/FId (openl 0)) does not hold.
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At this stage of the formalization, there is everywhere an apparent dupli-
cation of all results due to their presentation first for compact intervals and
only then for arbitrary ones. Although this might at first appear strange, it
is in fact very close to Bishop’s way of working. Besides the point that the
definitions are made in two steps, his proofs always begin with “it is enough
to consider the case when I is compact. . . ” or words to that effect; therefore,
also his proofs are implicitly in two stages. Formalizing everything at these
two levels clearly separates the core of the proof (which is always done at
the level of compact intervals) from the justification of the “without loss of
generality” step.

It is worth pointing out that the proofs of results in arbitrary intervals
usually amount to no more than simply manipulating inclusions and using
the like results for compact intervals.

Sequences and Series of Continuous Functions

Bishop’s theory of sequences and series of functions, defined only for contin-
uous functions, can be likewise straightforwardly formalized.

The formalized counterparts of these definitions and results resemble very
closely the similar material on sequences and series of real numbers. Further-
more, since once again all definitions are first made only on compact intervals
and later on generalized for arbitrary intervals, they are also presented twice.

As before, the results stated for compact intervals require formalizing
the core of the proof as presented in Bishop, whereas the proofs of their
generalizations to arbitrary intervals amount to a justification of the “without
loss of generality” step.

All the results in this section which generalize results already proved for
sequences or series of real numbers are uniformly named: if lemma refers to
a result about real numbers, then fun lemma refers to the same result about
real functions on a compact interval, and fun lemma IR its generalization to
arbitrary intervals. The various definitions of Cauchy sequence do not always
correspond directly to previously existing ones, though, so this rule does not
hold for their names.

For the remainder of the chapter, the following terms will be relevant:

• (conv fun seq a b Hab f contf) states that the sequence of continuous
functions f : N→PartIR converges on the compact interval [a, b];

• the term (conv fun seq′ a b Hab f F contf contF) also indicates that the
limit is the continuous function F;
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• if an arbitrary interval J is considered instead, the corresponding terms
are (conv fun seq IR J f contf) and (conv fun seq′ IR J f F contf contF).

An important new feature of this piece of the formalization (as compared
to the corresponding theory of real number series) is the ability to define
functions by power series. Power series are defined, given a sequence {an}
and a point x0, by the formula

∑∞
n=0 an(x−x0)

n; the sequence being summed
is directly formalized5 as follows.

Definition FPowerSeries := λn:N.(a n) × ((FId − λx.x0)
n).

This is defined together with the Dirichlet criterion establishing its conver-
gence as a series on an interval (x0 − r, x0 + r) under suitable hypotheses6.

Hypothesis Ha : ∃N:N.∀n:N.(N ≤ n)→
(AbsIR (a (S n))) ≤ (1/r)×(AbsIR (a n)).

Lemma Dirichlet crit :
(fun series abs convergent IR (olor x0−r x0+r) FPowerSeries).

Of special interest for the applications to transcendental functions are
power series of the special kind

∑∞
n=0

an

n!
(x − x0)

n, which under similar con-
ditions on a converge absolutely on the whole real line.

Definition FPowerSeries’ := λn:N.((a n)/(fac n)) × ((FId − λx.x0)
n).

Hypothesis Ha’ : ∃N:N.∃c:R.(0 < c) ∧
(∀n:N.(N ≤ n)→(AbsIR (a (S n))) ≤ c × (AbsIR (a n))).

Lemma FPowerSeries’ conv’ :
(fun series abs convergent IR realline FPowerSeries’).

5.3 Differential Calculus

After the discussion in the previous section, the formalization of Bishop’s
definition of derivative (Definition 2.4.10) should come as no surprise. In
the first definition, a, b : R are implicit arguments and Hab : (a < b); in the
second, I : interval is implicit and pI : (proper I).

Definition Derivative I (F F’:PartIR) := (included [a, b] (dom F)) ∧
(included [a, b] (dom F’)) ∧ ∀e:R.(0 < e)→∃d:R.(0 < d)
∀x,y:R.([a, b] x)→([a, b] y)→∀Hx,Hy,Hx′ .((AbsIR x − y) ≤ d)→

(AbsIR ((F y Hy)−(F x Hx))−(F’ x Hx’)×(y−x)) ≤ e×(AbsIR y−x).

5Recall the notation introduced in Section 5.1.
6Where the proof term for r # 0 has been left out.
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Definition Derivative (F F’:PartIR) :=
(included I (dom F)) ∧ (included I (dom F’)) ∧

(∀a,b:R.∀Hab:(a<b).(included [a, b] I)→(Derivative I Hab F F′)).

There is one slight difference between Definition 2.4.10 and this formaliza-
tion: Bishop only states the property of “being a derivative of” for continuous
functions, whereas here it is done without that assumption. As it turns out,
these formulations are equivalent, since from this definitions it is trivial to
prove that both functions involved are continuous.

Lemma deriv imp contin I : ∀F,G:PartIR.∀a,b:R.∀Hab′:(a<b).∀Hab:(a≤b).
(Derivative I Hab′ F G)→(Continuous I Hab F).

Lemma deriv imp contin’ I : ∀F,G:PartIR.∀a,b:R.∀Hab′:(a<b).∀Hab:(a≤b).
(Derivative I Hab′ F G)→(Continuous I Hab G).

Notice the difference in the two inequalities which are being quantified
upon. In the definition of continuity, all that is needed is for [a, b] to be
a compact interval, i.e., a ≤ b; however, the notion of derivative is only
meaningful for proper compact intervals (with more than one point). It is
straightforward to prove that a ≤ b whenever a < b; but for generality it
is better to formalize the lemmas as just stated, as they will then be more
widely applicable.

The usual rules for computing the derivative of a function are all for-
malized and proved. In the case of division and composition, similar side
conditions to those of Lemmas 2.4.8 and 2.4.9 must be assumed. Of course,
all these lemmas must be proved both for compact and for arbitrary inter-
vals: if a, b : R, Hab : (a < b) and F, G : PartIR with derivatives respectively
F′ and G′, then the following hold.

Lemma Derivative I const : ∀c:R.(Derivative I Hab λx.c λx.0).

Lemma Derivative I plus : (Derivative I Hab F+G F’+G’).

Lemma Derivative I mult : (Derivative I Hab F×G F×G’+F’×G).

Lemma Derivative I recip : (bnd away zero [a, b] F)→
(Derivative I Hab 1/F −(F’/(F×F))).

If J : interval and pJ : (proper J), the following are the corresponding lemmas.

Lemma Derivative const : ∀c:R.(Derivative pJ λx.c λx.0).

Lemma Derivative plus : (Derivative pJ F+G F’+G’).

Lemma Derivative mult : (Derivative pJ F×G F×G’+F’×G).

Lemma Derivative recip : (bnd away zero in P F J)→
(Derivative pJ 1/F −(F’/(F×F))).
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The assumption a < b for compact intervals is needed to prove the fun-
damental fact, only briefly referred to by Bishop, that there is extensionally
at most one derivative of a function on a given interval.

Lemma Derivative I unique : ∀F,G,H:PartIR.∀a,b:R.∀Hab:(a<b).
(Derivative I Hab F G)→(Derivative I Hab F H)→(Feq [a, b] G H).

This last result has some interesting consequences, and illustrates quite
well some of the difficulties arising when formalizing mathematics. Since
there is at most one derivative of f on an interval I, the notation f ′ is used
informally to represent this function, and any derivative of f on that interval
will be represented by f ′—which represents no problem from the mathemat-
ical perspective, since any such function will always be extensionally equal
to f ′ and all mathematics is extensional.

But this is simply not doable inside a formal system. If f ′ and g are
two derivatives of f on I then the previous lemma will always have to be
explicitly invoked to justify replacing one by the other. This in turn often
significantly complicates proofs, especially algebraic proofs where some terms
are applications of f ′ and others are applications of g to the same arguments.

Furthermore, in this situation automation can be of little help. Though
tactics have been implemented to help proving that a function is the deriva-
tive of the other, and these can be combined with the previous lemma to
prove f ′ =I g by reducing this to “f ′ is a derivative of f on I” and “g is a
derivative of f on I”, several problems still remain. First, even in this simple
situation, how can the system figure out what f should be? Even worse,
in most situations the goal is not directly f ′ =I g, but rather an expression
like f ′(c) = g(c); the user can easily recognize this as being a consequence
of f ′ =I g for a specific I, but teaching the system to do this is quite an-
other matter. So far all proofs of this kind have to be begun by the user,
automation only being able to help after the initial two or three steps of
reasoning.

Another unexpected consequence is the at first sight strange aspect that
some of the familiar theorems of Analysis get. Results like Rolle’s Theorem
or Taylor’s Theorem, which speak about the derivative(s) of a function, now
must become universally quantified over those derivatives. As an example,
given a proper compact interval [a, b] with Hab : (a < b) and F : PartIR, the
formalized counterpart of Theorem 2.4.12 looks like this.

Theorem Rolle : ∀F′:PartIR.(Derivative I Hab F F′)→
(∀Ha,Hb.(F a Ha) = (F b Hb))→∀e:R.(0 < e)→

∃x:R.([a, b] x) ∧ ∀Hx.(AbsIR (F’ x Hx)) ≤ e.
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On a different note, a related problem arises when the notion of differen-
tiability is considered. Once again, from the mathematical perspective, this
is no problem: f is differentiable on I if it has a derivative on that interval,
and since derivatives are unique this function can be denoted by f ′. But how
is f ′ precisely defined?

Trying to answer this question in Coq reveals some interesting issues.
First, as was discussed in Chapter 3, the type of partial functions over a
setoid has itself type Type; this is unfortunate, as it means that the following
“definition” fails.

“Definition” Diffble I (Hab:(a < b)) (F:PartIR) :=
∃F′:PartIR.(Derivative I Hab F F’)

The problem is, even though the previous statement is possible to write
down in Coq, there will be no way to extract the function F′ from a proof
of (Diffble I Hab F). This arises because of the restrictions to the elimination
rules for inductive types—with such a definition, the type of (Diffble I Hab F)
is Set, and it would be eliminated to create an object of type PartIR which
itself has type Type.

Instead of being a drawback, this limitation actually turns out to be an
advantage because it leads to a more careful analysis of the concept being
formalized. In fact, the previously proposed definition is not totally satis-
factory for reasons other than just typing constraints. Take the derivative
function itself. It is reasonable to assume (and probably expected by most)
that, if f is differentiable on an interval I and J ⊆ I, then the derivative of
f on I will extend the derivative of f on J , in the sense that these two func-
tions will coincide where they are both defined, and the first one should be
defined whenever the second one is. But this is not true: since the quantifier
ranges over all partial functions but the predicate in its scope only specifies
their behaviour on the interval under consideration, there is no restriction on
what a derivative of f on J would do outside J . In particular, it could very
well not be a derivative of f on I.

But this situation is very unnatural. There is, however, a very nice and
easy way around it, and that is also in line with the discussion following
Definition 2.4.10: the canonical derivative of f on I is defined to be the
derivative of f on I whose domain is exactly I. A function f is said to be
differentiable on I iff it has a canonical derivative on I.

This notion clearly coincides with the previous one, since any function can
be restricted to a subset of its domain. Also, it solves the typing problem
above discussed: since the domain I of the would-be derivative is now known,
there is no need to quantify over all partial functions, but only over partial
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functions with that domain. These are exactly7 the setoid functions from I
to R, and “differentiable function” can now be defined.

Definition Diffble I (Hab:(a < b)) (F:PartIR) :=
∃f′:(CSetoid fun {R|[a,b]} R).(Derivative I Hab F f’).

The (canonical) derivative of f is just the witness extraction from a proof
term of this type.

Using this predicate a second version of Rolle’s Theorem can be written.

Theorem Rolle’ : ∀H:(Diffble I Hab F). let F’:=(ProjS1 H) in
(∀Ha,Hb.(F a Ha) = (F b Hb))→∀e:R.(0 < e)→

∃x:R.([a, b] x) ∧ ∀Hx.(AbsIR (F’ x Hx)) ≤ e.

Interestingly, this statement looks much closer to the usual presentation
in standard mathematics texts, but it is not so useful as the previous one
in practice. The problem is, it can only be applied to goals involving the
canonical derivative of F, whereas the previous version can be used in general.

The main corollary of Rolle’s Theorem is the Law of the Mean, already
stated as Corollary 2.4.13. Just like Rolle’s Theorem, it can also be stated
with or without making the derivative of f explicit.

Lemma Law of the Mean I : ∀F′:PartIR.(Derivative I Hab F F′)→∀Ha,Hb.
∀e:R.(0 < e)→∃x:R.([a, b] x) ∧ ∀Hx.

((AbsIR ((F b Hb)−(F a Ha))−(F’ x Hx)×(b−a)) ≤ e).

Lemma Law of the Mean’ I : ∀HF:(Diffble I Hab F).∀Ha,Hb.
∀e:R.(0 < e)→∃x:R.([a, b] x) ∧ ∀Hx.

(AbsIR ((F b Hb)−(F a Ha))−((ProjS1 HF) x Hx)×(b−a)) ≤ e.

The proof of the Law of the Mean relies heavily on the automation tactics
which were built in parallel with the formalization, as described in detail in
Section 4.4, from page 79 onwards.

For practical applications, it is useful to generalize the Law of the Mean
in two different ways. First, the restriction above, that a and b are the
endpoints of a proper interval, can be too strong; one can imagine wanting
to apply the Law of the Mean without knowing whether a < b! Suppose then
that I : interval with pI : (proper I).

Theorem Law of the Mean : ∀F′:PartIR.(Derivative pI F F′)→
∀a,b:R.(I a)→(I b)→∀e:R.(0 < e)→

∃x:R.([(Min a b),(Max a b)] x) ∧ ∀Ha,Hb,Hx.
(AbsIR ((F b Hb)−(F a Ha))−(F’ x Hx)×(b−a)) ≤ e.

7More precisely, these are isomorphic to these functions; the isomorphism will be left
implicit in this presentation.
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A few remarks are due about this lemma.
First, it is important to notice that it makes indeed no requirements over

the order relation between a and b, therefore solving the restriction above
mentioned.

Second, there is no need to generalize Rolle’s Theorem in a similar way:
since this last lemma can be proved directly from the first version of the Law
of the Mean, the proof does not require it; and as no restrictions are placed at
all on f(a) and f(b), Rolle’s Theorem is simply a special case of this lemma.
It should also be pointed out that when Rolle’s Theorem is explicitly called
for, its formulation in terms of compact intervals is usually more practical.

For a similar reason, it is not very interesting to formulate this lemma
in terms of a differentiable function f . Even in the presence of a goal which
involves the derivative of f as obtained from a proof that f is differentiable,
this lemma can be applied, and the remaining goal (to prove that f ′ is indeed
a derivative of f) is trivial to prove.

Finally, as was also discussed in Section 2.4, the most useful formulation
of the Law of the Mean is Equation (2.2). This is straightforward to formalize
and prove given all the previous results. As before, F : PartIR and I : interval
are implicit.

Theorem Law of the Mean ineq : ∀F′:PartIR.(Derivative pI F F′)→
∀a,b:R.(I a)→(I b)→∀e:R.∀c:R.

(∀x:R.([(Min a b), (Max a b)] x)→∀Hx.(AbsIR (F′ x Hx)) ≤ c)→
∀Ha,Hb.((F b Hb)−(F a Ha)) ≤ c×(AbsIR b−a).

Taylor’s Theorem

Taylor’s Theorem presents some more subtle issues of a different kind. The
theorem, stated as Theorem 2.4.16, gives a polynomial approximation of an
(n + 1) times differentiable function in terms of its derivatives together with
an estimate of the error.

The first step in its formalization is, therefore, defining the nth order
derivative of a function. This is an inductive definition, to which similar
comments apply as those made about the definition of differentiable function.

Fixpoint Derivative I n (Hab:(a < b)) (n:N) := λF,Fn:PartIR. match n with
| O ⇒ Feq I F Fn
| S p ⇒ ∃f′:(CSetoid fun{R|[a,b]} R).

(Derivative I Hab F f’) ∧ (Derivative I n Hab p f’ Fn)
end.
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Unlike the first order case, nth order differentiable functions are best
defined directly through a similar recursive definition than via an existential
quantifier.

Next, similar results are proved as those for the first order case: both
relations are preserved by functional equality; n times differentiable functions
are continuous; the same holds for their nth order derivative; if f has an nth

order derivative then f is n times differentiable; and nth order derivatives are
unique. Furthermore, when n = 1 these concepts coincide with the previous
notions of derivative and differentiable function.

Then, some more interesting (but nevertheless mathematically trivial)
results are proved: if f is n times differentiable then it is also m times
differentiable for every m ≤ n; and it is possible to define a finite sequence
{f (i)}n

i=0 of functions such that f (0) =I f and f (i+1) =I (f (i))′. From the last
result an operator can be defined which will be fundamental to state Taylor’s
Theorem.

All these results are straightforwardly generalized to arbitrary intervals
as usual.

The proof of Taylor’s Theorem is not too different from the one in [10].
The real difficulty lies in writing down all the auxiliary notions needed to
state the theorem.

The formalization proceeds in two steps. First, two distinct points a
and b are chosen within an interval I where the function f is n + 1 times
differentiable. In this context, the family of ith-order derivatives of f for
i ≤ n + 1 can be defined as a Coq term fi : Πi:N.(i ≤ n)→PartIR.

Next, the sequence of functions{
λx.

f (i)(a)

i!
(x − a)i

}n

i=0

is defined as another operator funct i. Here, a proof term (denoted by Ha) is
needed to ensure fi can be applied to a.

Local funct i := λi:N.λHi:(i≤n).(λx.(fi i Hi a Ha)/(fac i))×(FId−λx.a)i.

Then, Taylor seq is defined as the sum of all terms of this finite sequence.
This is still a function, which can be applied to b (naturally there is a proof
term Hb of this) and then subtracted from f(b).

Definition Taylor rem := (F b Hb)−(Taylor seq b Hb).

Similarly, deriv Sn is defined to represent the sequence{
λx.

f (i)(x)

i!
(b − x)i

}n+1

i=0
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whose last term appears in the statement of Taylor’s Theorem, but which is
needed as a whole in its proof.

Finally, the first formalized version of Theorem 2.4.16 reads as follows.

Lemma Taylor lemma : ∀e:R.(0 < e)→∃c:R.([(Min a b),(Max a b)] c) ∧
∀Hc.(AbsIR Taylor rem−(deriv Sn (S n) c Hc)×(b−a)) ≤ e.

The generalization proceeds by choosing two arbitrary points in I and
considering three cases:

• a < b: then Taylor’s Theorem can be trivially reduced to the previous
lemma, with min(a, b) = a and max(a, b) = b;

• a > b: similarly, but now min(a, b) = b and max(a, b) = a;

• else, |a− b| can be taken to be “sufficiently small”. This trivial step in
Bishop’s informal proof turns out to be quite tough to formalize, as a
precise (positive) upper bound on |a − b| has to be made explicit.

The final version of the Theorem looks like this.

Theorem Taylor’ : ∀e:R.(0 < e)→∃c:R.([(Min a b),(Max a b)] c) ∧
∀Hc.(AbsIR Taylor rem−(deriv Sn (S n) c Hc)×(b−a)) ≤ e.

This is strikingly similar to the previous one. The differences lie in the
context: now no order is assumed between a and b; and f is assumed to
be n + 1 times differentiable on I, rather than on the (potentially) smaller
interval [min(a, b), max(a, b)].

In the case where an explicit sequence of derivatives of order up to n + 1
of f is known, Taylor rem and deriv Sn can be defined directly in terms of
this sequence and a similar result can be proved. This turns out to be very
helpful when working with functions defined by series.

5.4 Integral Calculus

Integration turned out to be by far the most difficult process to formalize
following Bishop’s work. There were several reasons for this.

• The need for heavy computation involving sums—the results proved so
far had already required several computations and bounds, but these
usually involved little more than properties of the absolute value and
algebraic identities. As will be seen below, the situation turned out to
be quite different when dealing with integrals.
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• The need for technical lemmas, including very specific identities be-
tween sums, numerous results about proof irrelevance and formalizing
fuzzy concepts like “sufficiently close approximation”. Once again, all
these issues have already appeared in this chapter, but at this stage
they become much more prominent.

This section describes in detail the process of formalizing the definition of
the integral (as presented in page 27). Special attention will be paid to the
proof of one specific lemma, which was accidentally incorrect in the reference
book, and which illustrates quite well the kind of technicalities needed at the
level of formalization—as well as some examples of the kind of proof steps
that don’t seem likely to be automated in the near future.

Partitions

Partitions were introduced as Definition 2.4.18. Like totally bounded sets,
they are an instance of a concept where finite sets play a fundamental role
(although this time there is no existential quantifier lurking around), and
therefore formalizing them poses similar questions to those addressed at the
beginning of Section 5.2.

In this situation, however, it turns out that lists are not the best way
to represent finite sets. There is a good reason for this: when dealing with
totally bounded sets, all that was needed was to show that some point in
the finite set satisfied some property; but partitions are finite sets all of
whose elements must constantly be accessed, and this is much easier to do
by means of functional application. A partition with n points is therefore
defined as a function from the finite set {0, . . . , n − 1} to R satisfying some
extra properties, formalized as the following record type, where a, b : R are
implicit.

Record Partition (Hab:(a ≤ b)) (lng:N) : Set:=
{Pts :> Πi:N.(i ≤ lng)→R;
pr irr : ∀i,j:N.i = j→∀Hi,Hj.(Pts i Hi) = (Pts j Hj);
incr : ∀i:N.∀H,H′ .(Pts i H) ≤ (Pts (S i) H’);
start : ∀H.(Pts 0 H) = a;
finish : ∀H.(Pts lng H) = b}.

The correspondence with Definition 2.4.18 should be straightforward.
The functional part of the partition is the first component Pts of the record
type; this is declared as a coercion, so that instead of the cumbersome
(Pts P i Hi) the more intuitive (P i Hi) can be written for the ith element
of the partition (where Hi is an adequate proof term), corresponding to the
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informal Pi. The other four components of the record state the logical prop-
erties which must be satisfied by this function: it must not depend on its
proof argument (pr irr), be increasing (incr), begin at a (start) and end at b
(finish).

Notice that, in principle, one could define a partition simply as a function
with type N→R and require, besides the other properties, that this function
map all natural numbers greater than n onto b. Although this yields nicer
notation, allowing to dispense with the proof terms when referring to points of
the partition, it is felt not to be as close to mathematical usage as the previous
approach. Another disadvantage is that it requires many extra cases when
doing proofs about properties of partitions; and in particular the construction
of separated partitions (see below) becomes much more complicated.

The two first parameters of type of partitions of [a, b] with n points are
implicit; thus this type is written as (Partition Hab n). Also, everywhere a
partition is taken as argument, all of its four parameters can be left implicit.

Interestingly, to define the mesh of a partition it is useful to go back to
using lists. This is not totally surprising, as once again one faces a situation
when one is interested only in one of the elements of a finite set rather than
in arbitrarily accessing any of them. Thus, the definition of mesh proceeds
in two stages: first, given a partition P with n + 1 points, an auxiliary list
containing the values Pi+1−Pi, for i < n, is built; the mesh of P is defined to
be the maximum of this list, which can be obtained by applying the maximum
operator on lists defined earlier. (The minimum of this list will also be of
interest for technical reasons.) The formalized versions of these definitions
are not presented here, as they were constructed interactively: the need to
first destruct the type constructor for Partition renders the corresponding
Coq terms large and not easily readable.

Even partitions (see page 26) are straightforwardly defined by specifying
their functional part8

λi:N.λHi:(i≤n).a+(nring i)×((b−a)/(nring n)).

and proving that this indeed defines a partition.
Throughout the remainder of this subsection, a, b, Hab : (a ≤ b), n : N

and a specific partition P : (Partition Hab n) will be assumed fixed; they will
parameterize all definitions and lemmas, but will always be omitted. Fur-
thermore, in most of the definitions and lemmas below P itself can be derived
from other proof terms; whenever this is the case, it will be left as an implicit
argument.

8For any ring, (nring i) is the injection of the natural number i in that ring, defined
recursively by (nring 0) = 0 and (nring (S p)) = (nring p) + 1.
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A partition Q is said to be a refinement of P iff P is a subsequence of Q.

Definition Refinement (m:N) (Q:(Partition m)) :=
∃f:N→N. (f 0)=0 ∧ (f n)=m ∧ (∀i,j:N.i < j→(f i) < (f j)) ∧

∀i:N.∀H. ∃H′ .(P i H) = (Q (f i) H’).

Useful results about refinements of P are that their mesh is not greater
than P ’s and that any two consecutive points of a refinement are between
two consecutive points of P .

Lemma Mesh leEq : ∀m:N.∀Q:(Partition m).
(Refinement Q)→(Mesh Q) ≤ (Mesh P).

Lemma Refinement prop : ∀m:N.∀Q:(Partition m).(Refinement Q)→
∀i:N.∀Hi,Hi′ .∃j:N.∃Hj,Hj′ .(P j Hj) ≤ (Q i Hi) ∧ (Q (S i) Hi’) ≤ (P (S j) Hj’).

Given a continuous function f , Bishop loosely defines S(f, P ) as an arbi-
trary sum of the type

n−1∑
i=0

f(xi)(Pi+1 − Pi),

where xi ∈ [Pi, Pi+1]. This informal definition cannot be directly phrased in
Coq terms (or at least, not in such a way that it can easily be used later); its
formalization therefore proceeds in two steps: first, one defines a choice of
points respecting P to be a set {x0, . . . , xn−1} of points such that, for every
i, xi ∈ [Pi, Pi+1]. Once again, x will be formalized as a function type rather
than as a list for similar reasons as those presented above.

Definition Points in Partition (x:Πi:N.(i < n)→R) :=
∀i:N.∀H.([(P i H’),(P (S i) H”)] (x i H)).

Here, H′ and H′′ are proof terms built from H.
Given a function F defined on [a, b] and such a choice of points x, a specific

instance of one of Bishop’s S(f, P ) numbers can be defined.

Definition Partition Sum
(x:Πi:N.(i < n)→R) (F:PartIR) (H:(Points in Partition x)) :=
(Sumx λi:N.λHi.(F (x i Hi) Hi1))×((P (S i) Hi2) − (P i Hi3)).

The omitted proof terms are constructed from Hi.
In the previous definition, x can be obtained from the proof term H, and

will therefore be left implicit.
From this point onwards, the informal statement “for all S(f, P ). . . ”

should always be read as corresponding to “for all x : Πi:N.(i < n)→R and
H : (Points in Partition x), (Partition Sum F H) satisfies. . . ”.
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Just as given any natural number m there is a canonical partition of any
compact interval (the even partition with m points), there is a canonical
choice of points respecting any given partition: simply choose the left end-
point of each subinterval or, equivalently, take the first n − 1 points of the
partition.

Definition Partition imp points (m:N) (Q:(Partition m)) : Πi:N.(i < m)→R :=
λi:N.λH.i (Q i H’)

Lemma Partition imp points wd : ∀m:N.∀Q:(Partition m).
(Points in Partition Q (Partition imp points Q)).

The Integral

During this subsection, the interval [a, b] (together with the relevant proof
term Hab : (a ≤ b)) will be fixed; f is a continuous function with modulus of
continuity ω in [a, b]. Together with a, b and Hab, both F and the proof contF
of its continuity will be left implicit throughout. Afterwards, only the last
of these will have to be explicitly given, as it contains enough information to
construct the other four.

Coupling the last definitions above with the definition of even partition,
the following sequence (Bishop’s {S(f, a, b, n)}∞n=1) is defined9.

Definition Even Partition Sum (m:N) :=
(Partition Sum F (Partition imp Points wd (Even Partition m))).

Definition integral seq : N→R := λn:N.(Even Partition Sum (S n)).

In order to prove that the sequence of sums previously defined is a Cauchy
sequence, the two following lemmas are needed.

Lemma 5.4.1 If P and Q are partitions of [a, b] with mesh(P ) ≤ ω(ε) and
Q is a refinement of P , then, for any sums S(f, P ) and S(f,Q), the following
inequality holds:

|S(f, P ) − S(f,Q)| ≤ ε(b − a).

Lemma 5.4.2 If P and R are partitions such that mesh(P ) ≤ ω(ε) and
mesh(R) ≤ ω(ε′), and if there exists a partition Q which is simultaneously a
refinement of P and of R, then for any sums S(f, P ) and S(f,R) the following
inequality holds:

|S(f, P ) − S(f,R)| ≤ (ε + ε′)(b − a).

9See the remark on implicit arguments on page 115.
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The proof of the first result presents no problems other than technical is-
sues. It hangs mainly on the following fact: from the definition of refinement,
given i it is possible to find j and j′ such that Pi = Qj and Pi+1 = Qj′ ; this
allows S(f, P ) to be written in terms of points of Q, and use of the modulus
of continuity establishes the result. However, heavy manipulation of double
sums is required which involves a lot more than just trivial computation:
intuitively obvious results, like how to exchange the order of summation, are
extremely non trivial to formalize.

The formalized counterpart of this lemma, where d is defined to be ω(ε)
and fP and fQ are adequate choices of points (with corresponding proof terms
HfP and HfQ), reads as follows.

first refinement lemma : ∀m,n:N.∀P:(Partition n).∀Q:(Partition m).
(Refinement P Q)→∀e:R.(0 < e)→(Mesh P) ≤ d→∀fP,fQ.∀HfP,HfQ.

(AbsIR (Partition Sum HfP F)−(Partition Sum HfQ F)) ≤ e×(b−a).

The proof of the second lemma is quite simpler, as it just amounts to
two applications of the first one: |S(f, P ) − S(f,R)| is obviously equal to
|(S(f, P ) − S(f,Q)) + (S(f,Q) − S(f,R))|, and the desired result follows
from the triangle inequality. Similar notations as previously apply to its
formalization.

second refinement lemma : ∀j,n,k:N.∀P:(Partition j).∀Q:(Partition n).∀R:(Partition k).
(Refinement P Q)→(Refinement R Q)→∀e,e′:R.(0 < e)→(0 < e′)→

(Mesh P) ≤ d→(Mesh R) ≤ d′→∀fP,fR.∀HfP,HfR.
(AbsIR (Partition Sum HfP F)−(Partition Sum HfR F)) ≤

e×(b−a)+e’×(b−a).

It can now be proved that integral seq converges: since even partitions
always have a common refinement (given even partitions of [a, b] with n
and m points, the even partition of the same interval with m × n points is
such a refinement), the Cauchy property for integral seq follows trivially from
Lemma 5.4.2. The integral of f in [a, b] is defined as its limit.

Lemma Cauchy integral Seq : (Cauchy prop integral seq).

Definition integral := (Lim integral seq).

The full type of integral is

Πa,b:R.ΠHab:(a≤b).ΠF:PartIR.(Continuous I Hab F)→R,

and the first four arguments will be made implicit10.

10This makes the notation somewhat strange-looking, since one will write (Integral H)
where H is a proof of continuity, and both the function and the domain of integration are
not mentioned. However, it also makes the notation much lighter, which is very helpful
after one gets used to it.
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Linearity and monotonicity of the integral are proved by unfolding the
definition of integral and appealing to the corresponding properties of limits
of Cauchy sequences and of sums; also relevant for the sequel are the facts
that

∫ b

a
0 = 0 and

∫ b

a
1 = b − a. The absolute value of the integral of f in

[a, b] is bounded by ‖f‖[a,b] × (b − a).
The formalization of all these results is in C-CoRN.
Furthermore, the integral is strongly extensional in all its arguments: if∫ b

a
f #

∫ b

a
g then an x can be found such that f(x) # g(x), and if

∫ b

a
f #

∫ d

c
f

then either a # c or b # d.

Lemma integral strext : ∀a,b:R.∀Hab:(a≤b).∀F,G:PartIR.∀contF:(Continuous I Hab F).
∀contG:(Continuous I Hab G).(integral contF) # (integral contG)→

∃x:R.([a, b] x) ∧ ∀Hx,Hx′ .(F x Hx) # (G x Hx’).

Lemma integral strext’ : ∀a,b,c,d:R.∀Hab:(a≤b).∀Hcd:(c≤d).∀F:PartIR.
∀contFab:(Continuous I Hab F).∀contFcd:(Continuous I Hcd F).

(integral contFab) # (integral contFcd)→(a # c) ∨ (b # d).

The next step is to show that

∫ b

a

f =

∫ c

a

f +

∫ b

c

f (5.1)

whenever a ≤ c ≤ b. The motivation for this is as follows: removing the
order restrictions on a, b and c, a general relation is obtained which can be
used as a definition of integral in the general case.

However, the proof of this is both far from trivial, and significantly more
complicated than the informal presentation of Bishop; the next paragraph is
dedicated to its presentation.

The Generalized Integral

In order to show that Equation (5.1) holds, the following theorem is needed.

Theorem 5.4.3 Let f be a continuous function on a compact interval [a, b]
with modulus of continuity ω. If P is any partition of [a, b], if ε > 0, and if
mesh(P ) ≤ ω(ε), then, for any sum S(f, P ) the following relation holds:∣∣∣∣S(f, P ) −

∫ b

a

f

∣∣∣∣ ≤ ε(b − a). (5.2)

At first glance, the desired result can easily be obtained by applying
Lemma 5.4.2 to S(f, P ) and some (integral seq n) with n large enough, using
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properties of inequalities and limits. All that remains is to prove that the two
partitions in question share a common refinement, which was stated without
proof in [10].

Unfortunately, though classically this is a trivial statement, constructively
it does not hold11! The reason for that is that in a partition points must be
ordered, and the order relation on the real numbers is not decidable.

Notice that Theorem 5.4.3 holds if only even partitions are considered,
since these always have a common refinement. However, the full power of the
theorem is needed to prove Equation (5.1): in this situation, it is necessary
to define a partition of [a, b] given partitions of [a, c] and [c, b], and if the
ratio between the lengths of these intervals is irrational even partitions will
not suffice.

In [11] this problem was solved in the following way: first, two partitions
P and Q with respectively n and m points are defined to be separated iff for
all i and j in the appropriate ranges Pi < Pi+1 and Qj < Qj+1; furthermore,
if 0 < i < n and 0 < j < m then Pi # Qj.

Two separated partitions always have a common refinement. This is a
consequence of co-transitivity of the order: given i and j, it can be decided
whether Qj < Pi or Pi < Qj+1, which allows the points of both partitions
to be ordered. Formalizing this, though not complex, is still a very long and
tedious process, requiring several proofs by induction and formalizing many
intuitive, yet non trivial, auxiliary results.

The general form of theorem 5.4.3 is then proved by taking close enough
approximations of P and R that are separated.

Of course, this is enough for the informal presentation, but as was already
mentioned earlier, the concept of “close enough approximations” is all but
easy to formalize. In other words, to prove this result in Coq it is necessary
to actually construct these approximations. The next few paragraphs explain
how this can be done.

At this stage of the formalization, one really becomes aware of the fun-
damental difference between informal (no matter how precise) and formal
mathematics. In [11], the authors never need to go to this level of detail,
which is fundamental for the formalization of this proof.

The notion of separation is defined in two steps. A partition P is said to
be (simply) separated iff Pi < Pi+1 for all i.

Definition Separated (n:N) (P:(Partition n)) :=
∀i:N.∀Hi,Hi′ .(P i Hi) < (P (S i) Hi’).

11Actually, this is the only essential mistake in Bishop’s book that was found while
formalized; and it had been (almost) corrected in the second edition [11], as discussed
below.
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Two partitions P and Q are said to be (mutually) separated iff each of
them is separated and if Pi # Qj whenever 0 < i < n and 0 < j < m.

Definition Separated (n m:N) (P:(Partition n)) (Q:(Partition m)) :=
( Separated P) ∧ ( Separated Q) ∧
∀i,j:N.(0 < i)→(0 < j)→(i < n)→(j < m)→∀Hi,Hj.(P i Hi) # (Q j Hj).

The construction of separated approximations of two partitions is then
done in two steps. First, given a partition P and positive real numbers α
and ξ, an algorithm is developed to get a separated partition P ′ with the
following properties:

• mesh(P ′) ≤ mesh(P ) + ξ;

• for every sum S(f, P ) there is a corresponding sum S(f, P ′) such that
|S(f, P ) − S(f, P ′)| < α.

To do this, one takes δ to be min(ξ, α
n·M ), where n is the number of points

in P and M is the norm of f in [a, b]. It is clear that δ is positive, which
means that for every real number x either x > 0 or x < δ

2
. This allows one

to recursively define the following sequence of partitions:

• P 0 = P ;

• P i+1 is obtained from P in the following way: for every pair P i
j , P

i
j+1 of

consecutive points in P i, test whether P i
j+1 −P i

j > 0 or P i
j+1 −P i

j < δ
2
.

If there is a j for which the second case holds, choose the least such j
and define P i+1

m = P i
m for m ≤ j and P i+1

m = P i
m−1 for m > j (that is,

obtain P i+1 by removing the (j + 1)th point in P i)12; else P i+1 = P i.

This construction always gets to a fixed point; this is a partition P ′

satisfying both desired conditions (the first is trivial; for the second, take any
choice of points respecting P and simply remove the points that were removed
in the construction of P ′; continuity of f yields the desired inequality).

Now, given P and R, two separated partitions P ′ and R′ can be found by
the above construction; then, points in P ′ can be shifted by a similar (though
even trickier) construction to get a partition P ′′ which is also separated from
R′ and for which the previous two properties hold.

At this point, there turns out to be yet another small detail which has to
be corrected in the statement of the theorem. It was assumed that mesh(P ) ≤
ω(ε); however, although the approximations P ′ and P ′′ can have a mesh as

12Some care needs to be taken if j + 1 is the length of P i, but that level of detail is
unnecessary at this stage.
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close to that of P as desired, this mesh cannot actually be guaranteed to be
equal to that of P (to see this, consider the case when P is an even partition;
then any shifting of its points will necessarily increase its mesh).

This invalidates the reasoning through approximations, as if mesh(P ′) >
ω(ε) no bound for the sum can any longer be established. Still, this prob-
lem can be solved simply by requiring, in the statement of the theorem,
that mesh(P ) < ω(ε). Now the approximations can be built in such a
way that this inequality still holds (by taking α = 1

2
[ω(ε) − mesh(P )]), and

Lemma 5.4.2 can be applied. This allows the following generalization of that
same result, where the common refinement has been removed.

refinement lemma : ∀n,m:N.∀P:(Partition n).∀R:(Partition m).
∀e,e′:R.(0 < e)→(0 < e′)→

(Mesh P) ≤ d→(Mesh R) ≤ d′→∀fP,fR.∀HfP,HfR.
(AbsIR (Partition Sum HfP F)−(Partition Sum HfR F)) ≤

e×(b−a)+e’×(b−a).

The formalized version of Theorem 5.4.3 then reads as follows.

partition Sum conv integral : ∀n:N.∀P:(Partition n).∀e:R.(0 < e)→
((Mesh P) < d)→∀fP:Πi:N.(i<n)→R.(Points in Partition P fP)→

(AbsIR (Partition Sum fP F)−(integral F)) ≤ e×b−a.

Equation (5.1) can now be shown to hold using properties of limits, closely
following Bishop’s proof, and appealing to Equation (5.2). As discussed
above, this cannot in general be done only using even partitions, and therefore
the full power of Theorem 5.4.3 is needed.

It has been suggested that Theorem 5.4.3 could have been avoided in its
general form if one restricted one’s attention to partitions where all points are
rational and used approximations to deal with the general case. In practice,
though, this is at least as difficult as proving this general form of the theorem,
since it also requires specification of notions such as “close enough (rational)
approximation”; and there is another, trickier, issue involved: if (one of) the
endpoints of the interval in question are (is) irrational, then partitions of
that interval will be approximated by partitions of a different interval, and
it becomes much more complex to even state the approximation results that
should hold.

In the general case, the integral is defined by the relation∫ b

a

f =

∫ b

min(a,b)

f −
∫ a

min(a,b)

f,

where it is assumed that f is continuous in [min(a, b), max(a, b)]. In the for-
malization, Hab′ : (Min a b) ≤ a and Hab′′ : (Min a b) ≤ b are defined terms.
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Lemma Integral inc1 : (Continuous I Hab’ F).

Lemma Integral inc2 : (Continuous I Hab” F).

Definition Integral := (integral Integral inc2)−(integral Integral inc1).

Notice that the endpoints of the intervals as well as the function being inte-
grated are again implicit.

The arguments to Integral are slightly different than those to integral: two
real numbers a and b, a proof of min(a, b) ≤ max(a, b), a partial function f
and a proof that f is continuous in the interval [min(a, b), max(a, b)]. As
before, all arguments but the last are implicit.

This definition is consistent with the previous, as both coincide when
a ≤ b; and Equation (5.1) can now be seen to hold for arbitrary a, b and c
provided that f is continuous on all necessary intervals.

It is easy to prove that this new integral inherits all the properties of the
old one.

As a final step, a primitive operator Fprim is defined. This operator takes
as arguments a function f , an interval I, a point a of I and a proof that f is
continuous on I and yields the primitive of f defined by λx.

∫ x

a
f .

The definition goes in three steps. First, it is shown that if f is a con-
tinuous function on I, then it is continuous on every subinterval of I of the
form [min(a, x), max(a, x)], where x is arbitrary (this is an almost trivial
fact; the relevant step here is that it is folded into a lemma, and can thus be
used in further definitions). Here, (Min leEq Max a x) is a canonical proof of
min(a, x) ≤ max(a, x).

Lemma prim lemma : ∀x:R.(I x)→(Continuous I (Min leEq Max a x) F).

Next, the operation λx.
∫ x

a
f is shown to be strongly extensional.

Lemma Fprim strext : ∀x,y:R.∀Hx,Hy.
(Integral (prim lemma x Hx)) # (Integral (prim lemma y Hy))→(x # y).

And finally, a partial function is defined using this last fact.

Definition Fprim := (Build PartFunct R I (iprop wd I)
λx:R.λHx:(I x).(Integral (prim lemma x Hx)) Fprim strext).

This is a continuous function.
Now Theorem 2.4.19 and Corollary 2.4.20 can easily be proved.

Theorem FTC1 : ∀J:interval.∀F:PartIR.∀contF:(Continuous J F).∀x0:R.∀Hx0:(J x0).
∀pJ:(proper J).(Derivative pJ (Fprim contF x0 Hx0) F)

Theorem FTC2 : ∀J:interval.∀F:PartIR.∀contF:(Continuous J F).∀x0:R.∀Hx0:(J x0).
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∀pJ:(proper J).∀G0:PartIR.(Derivative pJ G0 F)→
∃c:R.(Feq J (Fprim contF x0 Hx0)−G0 λx.c)

Theorem FTC3 : ∀J:interval.∀F:PartIR.∀contF:(Continuous J F).∀x0:R.∀Hx0:(J x0).
∀pJ:(proper J).∀G0:PartIR.(Derivative pJ G0 F)→∀a,b:R.(J a)→(J b)→

∀H:(Continuous I (Min leEq Max a b) F).
(Integral H) = (G0 b Hb’)−(G0 a Ha’).

where Ha′ and Hb′ in the last theorem are proof terms defined from H.

The proof of these results follows Bishop’s without any detour.

5.5 Transcendental Functions

The last section of [10, Chapter 2] deals with the so-called elementary tran-
scendental functions: the exponential, the trigonometric functions (sine and
cosine) and their inverses.

The process of defining these functions, as described in the last section
of Section 2.4, follows a common strategy. Exponential, sine and cosine are
defined as the (unique) solution to some differential equation motivated by
the analysis of their expected properties. It is then proved that they do
satisfy these properties; and their inverses are defined as indefinite integrals
motivated by the chain rule for differentiation.

Beyond Taylor’s Theorem

The theory developed at this stage is not powerful enough to allow the for-
malization of this section to begin immediately. Rather, a number of results
already proved have to be strengthened or extended. These will now be de-
scribed in general terms. Since their formalization poses no new problems,
no actual Coq code will be presented.

The first step is to prove the corollaries to the Fundamental Theorem
of Calculus presented previously as Corollaries 2.4.21 (integrals and limits
commute) and 2.4.22 (derivatives and limits commute).

Corollary 2.4.21 is stated and proved first for compact intervals, then for
arbitrary intervals. The proof of the first case follows Bishop’s closely; the
generalization is quite straightforward.

As for Corollary 2.4.22, it can be proved directly in the general case, as
the proof in [10] does not make any use of the properties of compact intervals:
it relies only on Theorem 2.4.19 and Corollary 2.4.21, both of which are valid
in general.
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The formalized versions of these results are direct translations of the
original statements.

On another level, an operator Taylor Series is defined, assigning to any
infinitely differentiable function on an interval its Taylor series around a
point of that interval. Corollary 2.4.17 (the Taylor series converges to the
original function) can then be stated and proved.

Coupling the two last results yields a very nice and powerful result, which
states that two functions satisfying the hypotheses of Corollary 2.4.17 whose
derivatives of order 1 and greater all coincide must also be identical (see
Corollary 2.4.23). This will turn out to be the key result in this section.

Also, it is proved that two functions which coincide on one point and
have the same derivative on a given interval are equal on that interval. (This
is a straightforward consequence of the Fundamental Theorem of Calculus,
Theorem 2.4.19.)

Finally, the formula for the derivative of a function defined by a power
series is proved: the sequence of derivatives of (FPowerSeries′ x0 a) on the
real line is the sequence (FPowerSeries′ x0 λn:N.(a (S n))).

Exponential and Logarithm

The exponential function is defined by applying the FPowerSeries′ construc-
tor13 to the constant sequence with value 1. This defines a function over the
whole real line; therefore, every real number is in its domain.

Definition Exp ps := (FPowerSeries’ 0 λn:N.1).

Lemma Exp conv : (fun series convergent IR realline Exp ps).

Definition Expon := (Fun Series Sum Exp conv).

Lemma Exp domain : ∀x:R.(dom Expon x).

Using this, a total function Exp : (CSetoid un op R) can be defined.
This last definition is extremely useful, since it allows one to write (Exp x)

for exp(x) without further ado14.
Since Exp is defined in terms of a partial function, it is trivially (strongly)

extensional. Furthermore, from its definition it is straightforward to prove
that exp(0) = 1 and exp(1) = e, where e in the last expression refers to the
constant defined on page 98. Also the exponential is its own derivative.

13See definition on page 106.
14The notation exp(x) will be used in the informal discussion instead of the more usual

ex to emphasize the fact that (Exp x) represents the application of the exponential function
to the real number x rather than the real number e raised to the power x.
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Lemma Exp strext : ∀x,y:R.(Exp x) # (Exp y)→(x # y).

Lemma Exp zero : (Exp 0) = 1.

Lemma Exp one : (Exp 1) = E.

Lemma Derivative Exp : ∀H:(proper realline).(Derivative H Expon Expon).

The exponential is the only function that is its own derivative and has
value 1 at the origin. The proof, which is skipped in [10], is a quite straightfor-
ward consequence of the lemmas on Taylor series. Here, I : � is the canonical
proof of the true proposition.

Lemma Exp unique : ∀F:PartIR.(Derivative (I := realline) I F F)→
(∀H1.(F 0 H1) = 1)→(Feq realline Expon F).

A direct consequence is the relation exp(x + y) = exp(x)× exp(y), which
is proved closely following Bishop.

Bishop ends his analysis of the exponential function by proving that
exp(−x) = exp(x)−1 and thereby concluding that exp is always positive.

In order to study the usability of this formalization, the study of the
properties of the exponential was taken quite a bit further. The results
in the C-CoRN library include not only the above presented rules for the
exponential of the addition and subtraction of two real numbers, but also
that the exponential is monotonous and injective. These were all trivial to
state and prove.

The next step is to build the logarithm function. Bishop defines it to be
the indefinite integral of the function λx.

1
x

from 1. To do this, one first needs
to prove that the latter is a continuous function on the positive reals, which
is completely trivial.

Lemma log defn lemma : (Continuous (openl 0) 1/FId).

Definition Logarithm := (Fprim log defn lemma 1 (pos one R)).

Definition Log := λx:R.λHx:(0<x).(Logarithm x Hx).

Notice the introduction of the notation (Log x Hx); the main reason for
doing this is to separate clearly in the statements (and proofs) of lemmas the
functional properties (which hold for Logarithm) from the algebraic proper-
ties (referring always to a specific (Log x Hx)); this is similar to what hap-
pens with the exponential function. The types of these terms reflect this:
Logarithm has type PartIR, while Log has type Πx:R.(0 < x)→R.

From its definition it is also trivial to prove that the logarithm is (strongly)
extensional; that its derivative is (of course) the function λx.

1
x
; and that

log(1) = 0. All these proofs can be done in Coq in less than five lines.
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Lemma Log strext : ∀x,y:R.∀Hx,Hy.(Log x Hx) # (Log y Hy)→(x # y).

Lemma Derivative Log : ∀H:(proper (openl 0)).(Derivative H Logarithm 1/FId).

Lemma Log one : ∀H.(Log 1 H) = 0.

Bishop’s proof that log(xy) = log(x) + log(y), appealing to the chain
rule for the derivative and to the Fundamental Theorem of Calculus, also
translates directly.

The logarithm function is then proved to be the inverse of the exponential,
in the sense of the following two lemmas.

Lemma Log Exp inv : (Feq realline Logarithm ◦ Expon FId).

Lemma Exp Log inv : (Feq (openl 0) Expon ◦ Logarithm FId).

Once again, both proofs are direct transcriptions of Bishop’s.
As for the exponential, a more extensive analysis of the properties of the

logarithm function is done. Thus, the results in the C-CoRN library presently
include not only the above, but also the rule log(x/y) = log(x) − log(y)
(assuming all three logarithms are defined) and several order properties, of
which a sample is presented.

Lemma Log E : ∀He.(Log E He) = 1.

Lemma Log div : ∀x,y:R.∀Hx,Hy,Hy′,Hxy.
(Log (x/y//Hy′) Hxy) = (Log x Hx) − (Log y Hy).

Lemma Log cancel less : ∀x,y:R.∀Hx,Hy.(Log x Hx) < (Log y Hy)→(x < y).

Lemma Log resp less : ∀x,y:R.∀Hx,Hy.(x < y)→(Log x Hx) < (Log y Hy).

Lemma Log less Zero : ∀x:R.∀Hx.(x < 1)→(Log x Hx) < 0.

Lemma Zero less Log : ∀x:R.∀Hx.(1 < x)→0 < (Log x Hx).

The formalized versions of these results are clearly very similar to their
informal counterparts. This is felt to be the best evidence of the usability of
this formalization.

Powers with Real Exponents

In order to test the usability of the formalization so far, it was decided to
extend it with the generalization of exponentiation of positive numbers to an
arbitrary real power and prove the main properties of this operation.

In mathematics, this operation is motivated by the relation xy = exp(y×
log(x)), valid whenever x is positive and y an integer. This relation is then
used as a definition for all real y, yielding an extension of the usual exponen-
tiation function.
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Definition power := λx,y:R.λHx:0<x.(Exp y×(Log x Hx)).

Following the Coq notation closely, the term (power x y Hx) will be writ-
ten down as (x ↑ y//Hx).

The power operation is (strongly) extensional; it commutes with the al-
gebraic operations in the usual way.

Lemma power strext : ∀x,x′,y,y′:R.∀Hx,Hx′ .
(x ↑ y//Hx) # (x′ ↑ y′//Hx′)→(x # x′) ∨ (y # y′).

Lemma power plus : ∀x,y,z:R.∀Hx.
(x ↑ y + z//Hx) = (x ↑ y//Hx) × (x ↑ z//Hx).

Lemma power minus : ∀x,y,z:R.∀Hx,Hxz.
(x ↑ y − z//Hx) = (x ↑ y//Hx)/(x ↑ z//Hx)//Hxz.

Lemma mult power : ∀x,y,z:R.∀Hx,Hy,Hxy.
((x × y) ↑ z//Hxy) = (x ↑ z//Hx) × (y ↑ z//Hy).

Lemma div power : ∀x,y,z:R.∀Hx,Hy,Hy′,Hxy,Hyz.
((x/y//Hy′) ↑ z//Hxy) = (x ↑ z//Hx)/(y ↑ z//Hy)//Hyz.

Lemma power mult : ∀x,y,z:R.∀Hx,Hxy.
(x ↑ (y × z)//Hx) = ((x ↑ y//Hx) ↑ z//Hxy).

The presence of the proof terms, although making the notation a bit
heavier than one is accustomed to, guarantees that all terms in these lemmas
are defined whenever any of them is applied.

A next step is to prove that this operation extends the exponentiation
with natural and integer exponents; generalizes nth roots; and coincides with
Exp when the basis is E.

Lemma power nat : ∀x:R.∀n:N.∀Hx.(x ↑ (nring n)//Hx) = xn.

Lemma power zero : ∀x:R.∀Hx.(x ↑ 0//Hx) = 1.

Lemma power one : ∀x:R.∀Hx.(x ↑ 1//Hx) = x.

Lemma power int : ∀x:R.∀z:Z.∀Hx,Hx′ .(x ↑ (zring z)//Hx) = (x//Hx′)z.

Lemma power div : ∀x:R.∀p,q:N.∀Hx,Hx′,Hq,Hq′ .
(x ↑ ((nring p)/(nring q)//Hq)//Hx) = (NRoot x q Hx′ Hq′)p.

Lemma Exp power : ∀x:R.∀He.(E ↑ x//He) = (Exp x).

Finally, xy is always positive.

Lemma power pos : ∀x,y:R.∀Hx.0 < (x ↑ y//Hx).

This operation can easily be lifted to a functional operator that given two
functions f and g yields λx.f(x)g(x), defined wherever g is defined and f is
positive.
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Definition FPower (F G:PartIR) := Expon ◦ (G×(Logarithm ◦ F)).

Lemma FPower domain : ∀F,G:PartIR.∀x:R.(dom F x)→(dom G x)→
(∀Hx.0 < (F x Hx))→(dom (FPower F G) x).

The term (FPower F G) is denoted by F ↑ G.
The rule for the derivative of this operation is

(f g)′ (x) = g(x) × [(
f(x)g(x)−1

) × f ′(x)
]
+ f(x)g(x) × g′(x) × log(f(x)).

Formally proving this is a real test to the capabilities of the Coq system; but
the automation tactics currently available really suffice to make the proof
run quite smoothly and for the most part with only limited input from the
user.

Lemma Derivative power : ∀J:interval.∀pJ:(proper J).∀F,F′,G,G′:PartIR.
(positive fun J F)→(Derivative pJ F F′)→(Derivative pJ G G′)→

(Derivative pJ F↑G
(G×((F↑(G−λx.1))×F’))+(F↑G×(G’×(Logarithm ◦ F)))).

Basic Trigonometric Functions

Bishop’s treatment of trigonometric functions was also directly translated
into Coq. Sine and cosine are both defined as power series. The actual Coq
code is omitted, since it directly parallels the definition of the exponential
function (except in the sequences one begins from); thus two partial functions
Sine and Cosine are defined, with domain R. These are made into setoid
functions Sin and Cos.

The Tang function is defined to be the quotient of these two; as was done
for the logarithm, a constant Tan is introduced to distinguish results about
the function or about its output.

Definition Tang := Sine/Cosine.

Definition Tan := λx:R.λHx.(Tang x Hx).

The first step is to prove that the values of these functions at the origin are
as expected. This is done by simply unfolding their definition and computing
the sum of the resulting series.

Lemma Sin zero : (Sin 0) = 0.

Lemma Cos zero : (Cos 0) = 1.

Lemma Tan zero : ∀H.(Tan 0 H) = 0.
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The derivatives of Sine and Cosine are then proved, using one of the above
discussed corollaries.

Proving the rule sin(x+ y) = sin(x) cos(y)+ cos(x) sin(y) is more compli-
cated, as it requires rewriting both sides of this equation (seen as functions
of x) into their Taylor series representation and showing these to coincide, in
order to apply Corollary 2.4.23. Although this requires some work (namely
several proofs by induction with an unusual induction hypothesis, since the
derivatives of these functions form a sequence with period 4), there is nothing
essentially new in the formalized proof—which once again directly translates
Bishop’s.

Another key step (which Bishop does not mention) is verifying that the
side condition in Corollary 2.4.23 holds, i.e., that

rn (λx. sin(x + y))(n)

n!
−→ 0 for every positive r.

This is actually a bit more difficult to prove than the previous condition, but
still no real challenge.

Once this result has been formalized, one does not need to look inside
the actual definitions of Sin and Cos any more in order to prove a variety
of algebraic properties, including the Fundamental Formula of Trigonometry
(cos2(x)+sin2(x) = 1). The following are a few of these; they are all trivially
obtained: none of them requires more than a couple of lines long proof, and
many can be proved automatically from previous ones.

Lemma Sin plus : ∀x,y:R.(Sin x+y) = (Sin x)×(Cos y)+(Cos x)×(Sin y).

Lemma Tan plus : ∀x,y:R.∀Hx,Hy,Hxy,H.(Tan x+y Hxy) =
((Tan x Hx)+(Tan y Hy))/(1−(Tan x Hx)×(Tan y Hy))//H.

Lemma Sin inv : ∀x:R.(Sin −x) = −(Sin x).

Theorem FFT : ∀x:R.(Cos x)2+(Sin x)2 = 1.

Lemma FFT’ : ∀x:R.∀Hx,H.(1+(Tan x Hx)2) = 1/(Cos x)2//H.

The next step is to define π as twice the first positive zero of the cosine
function. The proof in [10] is too long to be presented here; but its general
lines will be sketched.

First, one defines an auxiliary sequence by

x1 = 1

xn+1 = xn + cos(xn) (5.3)

Then, the following facts are proved:
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• if 0 ≤ t ≤ xn for some n, then cos(t) > 0;

• {xn} is a monotone increasing sequence;

• for all n, sin(xn) ≥ 0;

• if 1 ≤ t ≤ xn for some n, then sin(t) ≥ sin(1);

• from these, one can conclude that {xn} is a Cauchy sequence and define
π to be twice its limit;

• taking limits in (5.3), one concludes that cos
(

π
2

)
= 0;

• from the first fact above one also concludes that cos(x) > 0 for 0 ≤
x < π

2
.

The details of the proof can be found in the reference book.
It is interesting to point out that once again the formalization really

follows this proof very closely, the only difference lying in the definition of
x: since Coq’s natural numbers begin at 0, it is easier to begin with x0 = 0,
which is consistent with the previous definition since cos(0) = 1.

The steps of Bishop’s one-and-a-half page long proof can be seen in the
sequence of lemmas formalized.

Fixpoint pi seq (n:N) : R:= match n with
| O ⇒ 0
| S p ⇒ (pi seq p)+(Cos (pi seq p))
end.

Lemma cos pi seq pos : ∀n:N.∀t:R.(0 ≤ t)→(t ≤ (pi seq n))→0 < (Cos t).

Lemma pi seq incr : ∀n:N.(pi seq n) < (pi seq (S n)).

Lemma sin pi seq nonneg : ∀n:N.0 ≤ (Sin (pi seq n)).

Lemma sin pi seq gt one : ∀n:N.∀t:R.
1 ≤ t→ t ≤ (pi seq (S n))→(Sin 1) ≤ (Sin t).

Lemma pi seq Cauchy : (Cauchy prop pi seq).

Definition pi := 2×(Lim (Build CauchySeq pi seq pi seq Cauchy)).

Lemma Cos HalfPi : (Cos pi/2) = 0.

Lemma pos cos : ∀x:R.(0 ≤ x)→(x < pi/2)→(0 < (Cos x)).

Although it is obvious to the human reader, Coq needs to be convinced
that π is a positive number. The C-CoRN library includes not only this, but
also all relations in the chain

−π < −π

2
< −π

4
< 0 <

π

4
<

π

2
< π,
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which are required again and again throughout the proofs of results about
trigonometric functions. The following are a sample of these.

Lemma pos HalfPi : 0 < pi/2.

Lemma neg invHalfPi : −(pi/2) < 0.

Lemma invHalfPi less HalfPi : −(pi/2) < pi/2.

These lemmas were added to a hints database piorder, and a tactic
PiSolve was written that first converts inequalities into strict inequalities,
and then calls auto with that database. This very simple tactic turned out
to be extremely helpful in proving side conditions during these proofs.

A number of other properties of trigonometric functions can now be
proved: Sine and Cosine have period 2π, whereas Tang has period π; several
interesting values of these functions are computed (e.g., sin(π/4) =

√
2/2).

Lemma Sin QuarterPi : ∀Hpos,H.(Sin pi/4) = 1/(sqrt 2 Hpos)//H.

Lemma Tan QuarterPi : ∀H.(Tan pi/4 H) = 1.

Lemma Sin periodic : ∀x:R.(Sin x+2×pi) = (Sin x).

Lemma Tan periodic : ∀x:R.∀Hx,Hx′ .(Tan x+pi Hx’) = (Tan x Hx).

Furthermore, monotonicity properties are shown for all three functions
and the derivative of the tangent is proved. In the last two lemmas, the term
H : (proper (olor − pi/2 pi/2)) is universally quantified.

Lemma Sin pos : ∀x:R.0 < x→x < pi→0 < (Sin x).

Lemma Sin resp less : ∀x,y:R.
−(pi/2) ≤ x→x < y→y ≤ pi/2→(Sin x) < (Sin y).

Lemma Derivative Tan 1 : (Derivative H Tang 1/(Cosine2)).

Lemma Derivative Tan 2 : (Derivative H Tang λx.1 + Tang2).

Inverse Trigonometric Functions

Finally, the inverse trigonometric functions ArcSin, ArcCos and ArcTan are
formalized.

Bishop’s work only includes a brief description of arcsin, but the relation
cos(x) = sin(π/2 − x) suggests the definition arccos(x) = π/2 − arcsin(x);
arctan is defined through an analogous process to arcsin.

The whole formalization is very similar to that of the logarithm function.
First, it is proved that the function λx.

(
1 − x−1/2

)
is continuous on the inter-

val (−1, 1), and this is used to define ArcSin. This is slightly less easy than in
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the previous case because of all the compositions occurring in the definition
of FPower, which generate side conditions that must be verified.

Lemma ArcSin def lemma : (Continuous (olor −1 1) (λx.1−FId2)↑(λx.−1/2)).

Lemma ArcSin def zero : ((olor −1 1) 0).

Definition ArcSin := (Fprim ArcSin def lemma 0 ArcSin def zero).

The domain of ArcSin is trivial to characterize; and Theorem 2.4.19 di-
rectly yields its derivative.

Lemma ArcSin domain : ∀x:R.−1 < x→x < 1→(dom ArcSin x).

Lemma Derivative ArcSin : ∀H:(proper (olor −1 1)).
(Derivative H ArcSin (λx.1−FId2)↑(λx.−1/2)).

From this, it can now be proved that this function is inverse to Sine. Once
again, this requires verifying a number of side conditions due to the presence
of composed functions (the proof proceeds by showing that both functions
have the same derivative).

Lemma ArcSin Sin inv : (Feq (olor −pi/2 pi/2) ArcSin ◦ Sine FId).

Lemma ArcSin Sin : ∀x:R.−pi/2 < x→x < pi/2→∀H.(ArcSin (Sin x) H) = x.

At this stage, Bishop once again skips a huge step with a short remark15:
in order to prove that the inverse composition is also the identity, it is nec-
essary to show that ArcSin totally maps the interval (−1, 1) into the interval
(−π/2, π/2). A formal proof of this requires some version of the Intermediate
Value Theorem, which was therefore formalized but which will not be shown
here16.

Lemma ArcSin range : ∀x:R.∀Hx.
−pi/2 <(ArcSin x Hx) ∧ (ArcSin x Hx) < pi/2).

Lemma Sin ArcSin : ∀x:R.∀Hx.x = (Sin (ArcSin x Hx)).

Lemma Sin ArcSin inv : (Feq (olor −1 1) Sine ◦ ArcSin FId).

As a curiosity, one shows that ArcSin is an increasing function.

Lemma ArcSin resp leEq : ∀x,y:R.−1 < x→x ≤ y→y < 1→
∀Hx,Hy.(ArcSin x Hx) ≤ (ArcSin y Hy).

The definition of ArcCos, as was said, is slightly different.

15This was corrected in the second edition [11].
16Several constructive substitutes of the Intermediate Value Theorem will be discussed

in Section 6.3.
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Definition ArcCos := λx.pi/2 − ArcSin.

All properties of ArcSin can now be used to state similar ones for ArcCos.
Finally, the formalization of the inverse tangent function ArcTan is anal-

ogous mutatis mutandis to that of ArcSin.

5.6 Conclusions

By the time the work described in this chapter had been completed, the
original FTA-library had grown to more than twice its original dimensions,
as measured by the total size of the input files (see Figure 5.2). Instead of
the FTA-library’s 1400 lemmas, C-CoRN now included about 3100 formalized
lemmas and over 800 definitions.

Description Size (Kb) % of total
Algebraic Hierarchy (incl. tactics) 533 26.4
Real Numbers (incl. Models) 470 23.3
FTA (incl. Complex Numbers) 175 8.7
Real Analysis (incl. Transc. Fns.) 842 41.6
Total 2020 100

Figure 5.2: Contents and size of C-CoRN (input files)

Size, however, isn’t all. Although the simple fact that it was possible to
formalize a whole chapter of Bishop’s book [10] can already be seen as a sign
of success by itself, there are other more interesting aspects which can be
observed from the formalization process itself.

One of the positive aspects of C-CoRN is its readability. As was hopefully
made clear by the frequent display of actual (correct) Coq code throughout
this whole chapter, the correspondence between the formalized statements
and their original formulation in [10] is almost always straightforward.

Another point which cannot be overemphasized is the clear parallel be-
tween most of Bishop’s informal proofs and the corresponding formalization.
Except for some specific key areas, most of the work consisted of simply
rewriting the original proofs in Coq input. The exceptions arose in areas
which are universally acknowledged to be difficult to formalize (such as finite
sets and multiply indexed sums) or had to do with mathematically fuzzy
concepts (like that of “close enough approximation”) or heavy overloading
(as in the notation f ′ for the derivative of f).

It is interesting to remark that in informal discussions with researchers
who formalized similar results in other theorem proving systems (see Sec-
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tion 2.1) it turned out that double sums had been recognized as a major
difficulty by people working with systems as diverse as Isabelle or PVS.

Yet another positive observation is that the places where the formalization
becomes significantly more difficult than the informal development tend to
occur at the lower stages of the theory. The whole section on elementary
transcendental functions was surprisingly easy to formalize; and, as shown in
Section 5.2, most of the problems in the area of continuous and differentiable
functions arose before these concepts had even been introduced.

All in all, the objectives of this work are felt to have been successfully
achieved. It was shown how a whole chapter of a mathematics book could be
formalized in a way that stays close to the original presentation, and there are
reasons to believe that this formalization can be used as a basis for further
work.



Chapter 6

Program Extraction

Earlier on, in Section 2.3, several reasons were given for developing a library
of constructive mathematics in Coq. One of the issues briefly addressed was
that of applications. This chapter focuses one such application: program
extraction.

Program extraction is a natural subject to address when one is working
in formalizing constructive mathematics.

On the one hand, constructive mathematics has intrinsic computational
meaning, as will be explained below; that is, every constructive proof of
a mathematical statement contains an implicit algorithm. In particular, a
proof of an existential statement implicitly provides a mechanism to actually
obtain a witness.

On the other hand, formalized constructive mathematics is by its own
nature spelled out in all detail, meaning that turning this implicit algorithm
into an explicit one (in some programming language) can be done mechani-
cally once the necessary translation has been defined.

Finally, the C-CoRN library is one of the largest formalizations of con-
structive mathematics, at least to the author’s knowledge, and thus provides
a unique opportunity to experiment with program extraction, which is avail-
able in Coq, on a much broader scale than ever before. This chapter is
devoted to a description and analysis of such an experiment.

Section 6.1 begins by formally introducing the theory behind program
extraction, namely the notion of “computational content” of a proof, and
the different ways this has been implemented in different theorem provers,
with a focus on how it is done in Coq. This section also includes an overview
of previous work in the area.

The C-CoRN library, in particular the part corresponding to the original
FTA-library, is then analyzed in Section 6.2. The reasons for deciding to
choose the Fundamental Theorem of Algebra as a test case will be presented,

136
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as well as the immediate difficulties encountered. This section describes
in detail how the size of the extracted program was brought down from
(in practice) infinity to a breathtaking 15Mb, and later to a more modest
200kb—the stage where for the first time it could actually be examined and
a little understood.

However extracting a computer program isn’t much use unless it can ac-
tually be executed, and this problem will be in turn addressed in Section 6.3.
There, some startling results are presented which show that very simple and
apparently innocuous changes in the formalization can bring about astro-
nomical differences in performance. Instead of focusing on the proof of the
FTA, two smaller examples are studied here: computing the real number e
and the square root function.

There is much to be learned from these two sections, and a more the-
oretical analysis is the subject of Section 6.4. Using the knowledge gained
from the experiments previously described, this section looks at how further
formalization should proceed so that program extraction will really come for
free. Among the issues discussed here, special attention will be paid to the
use of the sorts (type universes) in Coq.

Section 6.5 looks at the whole picture and tries to give an answer to
the fundamental issue: is program extraction a useful tool or merely an
interesting toy?

Most of the material in this chapter can be explained without dwelling
in the actual Coq code. For this reason, the presentation will be kept on
the mathematical level, insofar this is possible, and Coq code only presented
where necessary.

It is important to stress once again that the motivation behind this work
was to understand the possibilities of program extraction. In this sense,
everything program generated by extraction is obtained for free from the
formalization; therefore, all results described in this chapter are considered
to be positive.

6.1 Overview

The notion of computational content of a proof has been around since the late
19th century, being mentioned in the work of Kronecker. Brouwer, among
others, began to wonder about the intrinsic meaning of the logical connec-
tives, and how one should interpret a proof of a logical statement. This
eventually led to what is known as the Brouwer–Heyting–Kolmogorov (BHK)
interpretation of the logical connectives, presented in [10, 40, 45, 48].

Kleene made this more precise through the notion of realizability, pre-
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sented in [63]. Instead of interpreting proofs in the BHK style, proofs are
defined as formal objects: a proof of A → B is a function mapping proofs of
A into proofs of B, a proof of ∃x.P (x) consists of an object t and a proof of
P (t), and so on.

Realizability theory already has a flavour of what program extraction is
all about, since it speaks about datatypes (pairs,. . . ), objects and functions.
But this correspondence was made even more explicit via the Curry–Howard
isomorphism [4, 24, 42]. Through it, the same objects in a particular type
theory can be read both as formal proofs in a specific logical system and as
programs in a well-defined programming language.

However, the Curry–Howard isomorphism is a theoretical result; in prac-
tice, some work needs to be done to actually obtain a working program. The
main reason for this is that not all of the information contained in a proof is
relevant for computation, as two examples clearly show. On the one hand,
the “interesting” part of a proof of ∃x.P (x) is typically the witness t which
must be present. On the other hand, since ¬A corresponds to A → ⊥, and
there are no proofs of ⊥ (in other words, it is an empty datatype), proofs
of ¬A are really functions from A to the empty type, that is, they simply
spell out the fact that A is also empty. Therefore, no loss of computational
information occurs if these proofs are left out.

This is made more precise with the notion of “non-computational” part
of a proof introduced by Goad in [36].

Another important point is that computer languages are typically good
either for developing proofs or for executing programs, but seldom if ever for
both. Therefore, in practice it is also necessary to have a tool that translates
the prover’s language into an executable one.

Such tools usually kill two birds with one stone, combining the transla-
tion with some optimization on the resulting program by removing irrelevant
information. This whole mechanism—translating and optimizing—is what is
meant by program extraction.

Before presenting the extraction mechanism of Coq in more detail, it is
interesting to briefly survey the different ways in which such a tool can be
designed.

A priori vs. a posteriori methods

Extraction techniques can be divided into two categories according to the
time at which the identification of the irrelevant code is made. When some
method relies on the knowledge that some terms will never be extracted,
regardless of the concrete proof being manipulated, it is called an a priori
method; when the parts of the proof to be left out in the extracted program
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are determined at extraction time by actually examining the proof term, the
method is an a posteriori one.

Rather than being a formal distinction, this categorization really distin-
guishes two very different approaches which rely on totally unrelated methods
of working.

Most of the a priori methods of extraction rely heavily on typing. In the
type system of the proof assistant, some types are assigned computational
content, where others are deemed irrelevant. Then, a translation operator is
defined, which maps terms in the prover’s language to programs in a given
programming language.

This operator has to satisfy some nice properties. On the one hand, terms
without computational content should not be extracted (since they represent
parts of the proof that are irrelevant for the algorithm being computed). On
the other hand, this operator should be proved correct, not only in the sense
that the extracted program does compute the algorithm in the proof, but
also by showing that, whenever given a correct term in the type theory, the
operator will return a correct program in the output language.

The first extraction method for Coq, due to Paulin, was an a priori one,
described in [54]; this was generalized by Letouzey [47] to the present-day
extraction mechanism of Coq (see [17]). A similar mechanism is available in
Nuprl [44].

A different way of working is to look at the concrete proof term and
analyze its structure, trying to identify parts of the code which are not needed
and removing them (pruning). Of course, this has to be done in such a way
that the resulting program is still a valid program which is equivalent to the
original one. Techniques which follow this approach are known as a posteriori
methods.

Such methods look at the extracted program. Pruning techniques for
simply typed λ-calculi have been discussed by Berardi in [8]; these were gen-
eralized to the F2 system (polymorphic second order λ-calculus) by Boerio [9].
Prost [59] has proposed a more general method, in the setting of the Calculus
of Constructions, based on marking computationally irrelevant subterms of
the proof term, and has shown how his approach was a generalization of both
Berardi and Boerio’s methods and of Paulin’s extraction mentioned above.

Both approaches have advantages and disadvantages. Intuitively, a pos-
teriori methods will in general yield more efficient programs (i.e., programs
containing less irrelevant code), since they can profit from the analysis of
the actual proof term they act on. But a priori methods tend to be much
faster, being linear in the length of the input instead of worst-case exponen-
tial. Also, as will be discussed later in this chapter, the sheer size of the proof
term can make it impossible to analyze it in practice, and a priori methods
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suffer less from this.
The best method, of course, is to use some a priori method to elimi-

nate most of the redundant code before extracting, and apply a posteriori
techniques to the obtained program. Simple as it sounds, though, no such
method seems to have been implemented to date.

Internal vs. external extraction

Another important aspect is the target language of the extraction. As was
mentioned above, typically one wants to extract a program in an efficient
programming language; but in some situations it is also useful to obtain
again a term in the language of the proof assistant. In this situation, one
speaks about internal extraction, as opposed to external extraction.

Internal extraction is very interesting from a theoretical perspective. The
pruning techniques mentioned in [8, 9, 59] are all examples of internal ex-
traction; correctness can then be expressed and analyzed in the meta-level of
the type theory. Another way to look at it is to see internal extraction as an
additional set of reduction rules, such that the original proof terms reduce
to the corresponding programs, as described in [28].

However, when the intended use of the extracted program is to have
something to compute with, it is more interesting to produce it in a tradi-
tional programming language. Besides being in general more efficient than
computation within proof assistants, these often have one very important
advantage: their type systems are often more permissive. For example, the
ML type system allows the user to write recursive functions which might not
terminate, unlike that of Coq. This means that, when extracting from Coq
to ML, one can forget termination proofs and obtain a shorter program. The
correctness of the extraction mechanism ensures that the result will still be
a terminating program.

The standard extraction mechanisms of Nuprl [44] and Coq [47] are both
examples of external extraction.

The Coq extraction

As mentioned in the previous sections, the extraction tool of Coq is an a
priori external extraction mechanism.

A detailed description of this mechanism can be found in [17] or [47]. In
this section, an informal overview will be given, focusing on the issues which
are relevant for the discussion in the remainder of the chapter.

The extraction mechanism of Coq is based on the typing. As explained
in Appendix A, there are three universes for types in the Calculus of Con-
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structions: Set, Prop and Type (the latter being in fact an infinite family
of types).

The sort Prop is used for the types of propositions; in other words, types
A : Prop are intended to represent properties with no computational content.

The sorts Set and Type are used for the datatypes. Intuitively, Type
is used for “large” types, whereas Set is meant for “small” types; but this
distinction has to be taken with a grain of salt. Until Coq version 7.4, Set
was an impredicative sort: one could define new types in Set by quantifying
over all terms of type Set, with some unexpected consequences which will
be discussed later. This was changed in version 8 of the system, so that now
one can think of the distinction between Set and Type as similar to that
between sets and classes in set theory.

With this in mind, the extraction mechanism is very simple to describe:
all types of sort Prop are forgotten, as well as their inhabitants; and all the
rest is kept1.

The correctness of this mechanism (in itself a far from trivial task) will be
assumed from this point onwards. Only one key issue needs to be explained.

Since Prop terms are forgotten by the extraction mechanism, it is impor-
tant to ensure that they really do not influence the outcome of any computa-
tion. This is achieved by restricting the elimination rules for inductive types:
one is not allowed to define a computational object (that is, an object whose
type lives in Set or Type) by analysis of an object with a non-trivial type
with sort Prop. In other words, if A : Prop is an inductive type with more
than one constructor, or with a constructor with a computational parameter,
and x : A is in the context, one is not allowed to do case analysis on x if the
current goal lives in Set or Type.

The two exceptions arise when A has zero or one constructors. A type
with no constructors is isomorphic to ⊥, so having a term of that type in the
context is equivalent to having an inconsistent context; from the extracted
program’s point of view this corresponds to an unreachable part of the code,
and the corresponding elimination principle is extracted as an exception. A
type with one constructor raises no problems provided that that constructor
takes no computational arguments, since elimination will then just replace
the logical context with an equivalent one, but will not give rise to branches
in the computation2.

1Of course this is a simplified view, but from the user’s perspective it is a detailed
enough description of what is happening; in particular it suffices for the discussion in this
chapter. More detailed information, particularly on how inductive types are dealt with,
can be found in the references.

2This is not true if the constructor takes a computational argument, since elimination
would then make a computational term “magically” appear.
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6.2 The problem of extracting

Since Coq comes equipped with an extraction mechanism, it was quite natu-
ral to try it on the formalized proof of the Fundamental Theorem of Algebra.
Unfortunately, early attempts at this invariably resulted in failure, with the
computer running out of memory or crashing altogether; as a result, the
FTA-library became widely considered as “too big” to be tackled by the
extraction mechanism altogether.

It is now time to recall the discussion about the use of sorts in Section 2.2.
There, it was mentioned that the logic had to be moved to Set in order to
complete the formalization without resort to axioms. Keeping in mind what
was said in the previous section, this can now be explained in more detail.

Logical connectives are defined inductively in Coq and, as was seen, elim-
ination of inductive types in Prop is where the restrictions above discussed
apply.

More specifically, the troubling connectives are disjunction and existential
quantification. Negation is defined as an abbreviation; falsity is an empty
type (which, as was already said, can be eliminated); and conjunction, though
inductive, has only one constructor with two arguments whose type lives in
Prop.

Inductive ⊥ := .

Definition ¬ (A:Prop) := A→⊥.

Inductive ∧ (A B:Prop) :=
| ∧I : A→B→A ∧ B.

Disjunction, however, has two constructors; and existential quantification
has one constructor parameterized by a computational type.

Inductive ∨ (A:Prop) :=
| ∨IL : A→A ∨ B
| ∨IR : B→A ∨ B.

Inductive ∃ (A:Set) (P:A→Prop) :=
| ∃I : Πx:A.(P x)→(∃x:A.(P x)).

Furthermore, these connectives are eliminated in constructive mathemat-
ics to define functions, and not just once or twice. A simple example is the
definition of reciprocal on the real numbers.

The model of the real numbers in the FTA-library, described in [31], is
the standard construction as Cauchy sequences: a real number is a Cauchy
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sequence of rationals, and two real numbers are equal iff their difference
(which is a Cauchy sequence of rationals) converges to zero.

So, given a real number x # 0, how does one define 1
x
? Well, one looks

at the proof of x # 0.
In this model, apartness is defined as a disjunction:

x # 0
def
= (x > 0 ∨ x < 0).

In turn, the order relation is defined via an existential:

x > y
def
= ∃N∈N.∃q∈Q.(q > 0) ∧ ∀n∈N.N ≤ n → q ≤ (xn − yn).

So, to define the sequence of rationals corresponding to 1
x
, first eliminate

the disjunction to decide whether x > 0 or x < 0; then eliminate the ex-
istential quantifier to find an appropriate N . Since 0 is represented by the
constant sequence λn∈N.0, xn is a rational different from 0 whenever N ≤ n,
and one can define (

1

x

)
n

def
=

{
0 n < N
1

xn
n ≥ N

and it should be clear that the concrete sequence very strongly depends on
the proof term (although the represented real number is the same).

This simple example shows that the logic cannot be kept in Prop; so
in the FTA-library everything was done in Set instead. However, this un-
dermines the whole mechanism of program extraction within Coq, since this
relies precisely on Prop being used to mark irrelevant terms!

To recover program extraction, then, a different approach is needed.

Positive and negative statements: CProp

The previous discussion suggests that the logic should be moved back to
Prop in order to use the program extraction tool. At the same time, however,
at least part of it has to stay in Set to allow constructive reasoning and
function definition by cases. How can these two conflicting demands be
satisfied?

Close inspection of the elimination rules for inductive types provides an
answer. Elimination of the empty inductive type (⊥) never causes any prob-
lem; this means that one can have ⊥ : Prop. Disjunction and existential
quantification, though, must always return a computational object. This
observation suggests that using two-sorted logic might be the key. And in
fact this approach is actually used throughout the Coq standard library,
though this is never stated as such: besides the standard logic connectives
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in Prop, there is a “boolean sum” operator, with type Prop→Prop→Set,
also known as “decidable or” or “informative disjunction”, which is needed
for precisely the same reasons that led to the non-standard use of logic in
the FTA-library.

Therefore, one should consider not only a sort Prop for types of proposi-
tions, but also a sort CProp for types of computationally meaningful propo-
sitions. For the time being, CProp will be taken to be Set; later on, the
side effects of this choice will be discussed and other possibilities will be con-
sidered. Notice that, even if CProp is defined as Set, it is useful to have
two different names for it, as this allows one to distinguish datatypes from
types of propositions just by looking at their type3.

In accordance with the terminology often used in constructive mathe-
matics, propositions living in CProp will sometimes be called positive state-
ments, those living in Prop negative statements.

The main question now is to determine, given a proposition A, whether
it should be represented by A : Prop or A : CProp.

Postponing the issue of how to type atomic propositions, most connectives
are easy to treat. The above discussion makes it clear that A ∨ B and ∃x.P
always have computational content, and should thus be typed in CProp; ⊥
does not, and can therefore go into Prop.

Conjunction is a more delicate matter. Although it is defined as an in-
ductive type with only one constructor, its computational content depends
on the computational content of the conjuncts. If both have sort Prop, then
their conjunction can also be safely typed in Prop; otherwise it will have
type CProp.

Finally, for implication and universal quantification one would like to use
the standard arrow and product rules from type theory. As it turns out, these
are easy to justify from a computational perspective. Considering the case of
implication (universal quantification is similar), the type A→B corresponds
to, under the Curry–Howard isomorphism, and is extracted as, a function
type. Suppose that B : CProp, i.e., B has computational content. Then,
as any term of type A→B can be used to produce elements of type B, this
type also has computational content regardless of the type of A. Dually, if
B has no computational content whatsoever, then a term of type A→B will
correspond to a function which only produces non-computational output,

3This had been pointed out as an undesirable characteristic of the FTA-library, as was
extensively discussed on the MoWGLI [52] mailing list. If one wants to define rendering
tools for Coq code, it is important to be able to distinguish between propositions and data
so as to know, for example, whether to render product types using ∀ (for propositions) or
Π (for data); notice that this is done in the display of Coq code throughout this thesis, as
explained in Appendix A.4.
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and is therefore itself computationally irrelevant. This coincides precisely
with the type-theoretical rule for the type of A→B.

As a consequence, ¬A always gets the type Prop (hence the name “neg-
ative” statements).

In Figure 6.1 the types of the logical connectives are summarized. Even
though [22] seems to be the first place where this precise formulation of how
computational content is passed through the logical connectives, it should be
noticed that several authors had already mentioned specific cases. Thus, the
typing rules for → and ∀ are simply the rules for products in type theory as
described e.g. in [4]; the fact that disjunction and existential statements al-
ways have computational content whereas negation never does is stated very
clearly by Goad in [36]; and the rule for conjunction is very similar to the in-
terpretation of this connective under the modified realizability interpretation
mentioned in [60].

⊥ : Prop
→ : s1 → s2 → s2

∨ : s → s → CProp

∧ : s1 → s2 →
{

Prop s1 = s2 = Prop
CProp otherwise

∀ : ΠA:t.(A → s) → s
∃ : ΠA:t.(A → s) → CProp

(s, s1 and s2 denote either Prop or CProp; t is a datatype)

Figure 6.1: Types of the logical connectives

As for the atomic propositions: when in doubt, play it safe. In other
words, if nothing is known about a proposition, then it should be typed in
CProp, as this is the less restrictive choice. But relations very often come
in pairs: equality is the negation of apartness (see page 11), less or equal is
the negation of the strict order (see page 13). So, if apartness and less than
have to be typed in CProp to be on the safe side (and the example in the
previous section shows that they do have computational meaning), equality
and less or equal are negative relations, and can be put into Prop with the
guarantee that no definition someone might want to make in the future will
ever be forbidden because of typing constraints.

Due to the absence of overloading in Coq4, implementing logic in this way

4And other technical harassments, such as the conventions for automatically naming
variables.
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was slightly less trivial than might be apparent—but updating the library
was still a more or less mechanical task.

Much to everyone’s surprise, after this simple change the program ex-
traction mechanism worked, and an ML program was actually obtained from
the formalized proof of the FTA. And not such a big program at that: 15Mb
(about half of which consists of white spaces), which, though impressive when
compared with typical sizes of ML programs, took a mere minute to extract.

The power of negation

Although unexpected at the time, the fact that putting negative statements
back in Prop is enough to make extraction feasible is with hindsight not
surprising. In fact, most of the FTA-library consisted in building the Alge-
braic Hierarchy; most of the proofs one had to do spoke about equality—the
FTA itself existentially quantifies an equality—; and all the tactics originally
present in the FTA-library, discussed in Section 4.2, were devoted to au-
tomating proofs of equalities. Since equality is apartness negated, all these
proofs are computationally irrelevant, and can now thrown away by the ex-
traction mechanism.

For comparison purposes, several other examples from the C-CoRN li-
brary were extracted after the success of the FTA. Interestingly, though
the files on Real Analysis are themselves bigger than the whole original
FTA-library, the extracted code was smaller by a factor of 100. Examina-
tion of the formalization revealed yet another important fact: as mentioned
in Section 2.4, Bishop’s definition preferably uses negative relations because
this makes reasoning somewhat easier. In particular, less or equal is used
rather than the strict order. In the formalization of the FTA, no such care
had been taken.

This turned out to be specially relevant in two places. First, the model
of the real numbers (which represented about 7.5Mb, or half of the extracted
code) was based on Cauchy sequences. These are formalized as records, con-
taining not only the functional part but also a proof of the Cauchy property:

x is a Cauchy sequence
def⇔ ∀ε>0.∃N∈N.∀m,n>N . |xm − xn| < ε. (6.1)

Everything in this proof is computational, which means everything will
be kept by extraction. However, the following definition is equivalent:

x is a Cauchy sequence
def⇔ ∀ε>0.∃N∈N.∀m,n>N . |xm − xn| ≤ ε. (6.2)

Equation 6.1 trivially implies Equation 6.2, since < is stronger than ≤;
and the other direction is a consequence of ε

2
< ε for positive ε. But the
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computational content of both definitions is very different: in the latter case,
only a function of type R→N is extracted (giving the N for each ε).

Accordingly changing the definition of Cauchy sequence is a relatively
trivial matter which yet again has dramatic consequences. The extracted
real numbers now shrank to one-fifth of their previous size, and the whole
program to a total of 8Mb.

A similar optimization can be done to the proof of the Kneser lemma
(described in [35]), which is the core of the FTA proof. The lemma basically
states that, given a complex polynomial p and a point z such that |p(z)| > 0,
a point z0 can be found with |p(z0)| < |p(z)|; iteration (under suitable con-
ditions) yields a Cauchy sequence which converges to a root of p.

Unlike the definition of Cauchy sequence, in the Kneser lemma it is fun-
damental that the inequality stated be strict. Still, a careful look at the proof
reveals that the extracted code can be much optimized.

To understand this, one should first look at the transitivity lemmas for
the order relation on an ordered field F.

Lemma less transitive : ∀x,y,z:F.(x < y)→(y < z)→(x < z).
Lemma less leEq trans : ∀x,y,z:F.(x < y)→(y ≤ z)→(x < z).
Lemma leEq less trans : ∀x,y,z:F.(x ≤ y)→(y < z)→(x < z).
Lemma leEq transitive : ∀x,y,z:F.(x ≤ y)→(y ≤ z)→(x ≤ z).

The type of the corresponding extracted functions is the following5.

less transitive : Πx,y,z:F.(x < y)→(y < z)→(x < z).
less leEq trans : Πx,y,z:F.(x < y)→(x < z).
leEq less trans : Πx,y,z:F.(y < z)→(x < z).

The last lemma, of course, is simply not extracted.
This means that, from the perspective of extraction, it is very different

to prove that a < b through a chain of inequalities

a < x1 < x2 < x3 < b,

which is how it is done in [35], or through a similar chain

a < x1 ≤ x2 ≤ x3 ≤ b.

The first proof is formalized as

5Abusing a bit the informal notation. It is important to stress that the two last ex-
tracted functions are not in themselves correct; it is the correctness of the extraction
mechanism that guarantees that they will only be applied to the “right” arguments.
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(less transitive a x1 b H a x1

(less transitive x1 x2 b H x1 x2

(less transitive x2 x3 b H x2 x3 H x3 b))),

where H x y is a proof term of x < y. The extracted term will have exactly
the same form.

The second proof can be formalized as

(less leEq trans a x1 b H a x1

(leEq transitive x1 x2 b H x1 x2

(leEq transitive x2 x3 b H x2 x3 H x3 b))),

which is extracted simply as

less leEq trans a x1 b H a x1

since the last argument to less leEq trans is negative.
Furthermore, the latter program should even be more efficient. The tran-

sitivity lemmas are all proved using cotransitivity of <, and this is imple-
mented in the model as follows:

1. given: x, y, z and a proof of x < y;

2. from the proof of x < y find an index Nxy and a positive rational q
such that xn ≤ yn − q for n greater than Nxy (see the definition of the
order above);

3. find Nx such that |xm − xn| ≤ q
24

whenever m,n ≥ Nx;

4. find Ny and Nz satisfying a similar condition;

5. define N = max{Nxy, Nx, Ny, Nz};
6. apply cotransitivity (of the order in the rationals) to decide whether

xN + q
3

< zN or zN < yN − q
3
;

7. return N , q
6

and the appropriate inequality x < z or z < y, according
to the previous step.

Not only is this algorithm not too simple, but also the N and q in the proof
being returned are potentially much more complicated than those in the
input. The less often this is invoked, the “simpler” the terms N and q being
kept.

This optimization brought the size of the extracted program down by a
further 1.5Mb (the Kneser proof itself was reduced to one-third of its original
size) to 6.5Mb.
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Division revisited

It was at this stage that partial functions were once again brought to the
foreground. In Chapter 3 the original definition of division in the FTA-library
was shown to generalize to a notion of partial function which was a posteriori
found out to be very inefficient, due both to the size of the terms stored and
to the time spent in δι-reduction. The changes to this definition described
in Section 3.3, which turned division into an instance of the C-CoRN notion
of partial function, were executed at this point.

Although division is not used a lot in the construction of the model of
the real numbers (except, of course, when the concrete division function is
defined), it occurs only too often in the proof of the FTA. Redefining it using
propositional partial functions reduced that part of the extracted program
by a breathtaking 60%, bringing the total extracted code to a mere 3.4Mb.

The final program size was eventually brought down to 3Mb by some
minor changes in the proofs, which are too localized and too specific to be of
interest to detail.

The changes in the formalization and their effects on the extracted code
are summarized in Figure 6.2.

Change Reals (Mb) fta (Mb) Total (Mb) ∆(%)
Original 7.5 7.5 15
New Cauchy seq. 1.5 6.5 8 47
New Kneser proof 1.5 5.0 6.5 19
New Division 1.4 2.0 3.4 48
Various 1.4 1.6 3.0 12

Figure 6.2: Changes on the FTA-library

It should be pointed out that the ratios between the sizes of the different
versions are actually more relevant than the actual sizes: one can safely
assume that if the changes had been done in a different order, these ratios
would be similar whereas the differences in size would obviously not.

Inlining and coercions

Throughout this section only the FTA part of the extracted program will be
considered.

Although reduced to 20% of its original size, the extracted program was
still quite large (1.6Mb) when one considers that the algorithm which it
implements is not so complex. Therefore, it was decided to examine the
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program carefully to try to understand precisely what was taking up so much
space.

One of the immediate things one noticed was that, even though the for-
malization included a constant C representing the type of complex numbers,
this constant was nowhere to be found in the extracted program. This was a
bit surprising, as after all the function being extracted operated on complex
numbers.

As it turned out, the definition of C had been fully expanded every time it
occurred in the proof term! Since the type of complex numbers was explicitly
mentioned around 130 times (every algebraic operation is parameterized on
it, for instance), and the definition was around 5000 characters long, this fact
alone accounted for nearly half of the program code.

Likewise, the ring of polynomials was another construction which was
fully spelled out each time. Although a bit smaller than the previous one,
it was mentioned more than sixty times and accounted for about one-fifth
of the code. Manually replacing these occurrences by a defined constant
therefore reduced the program to 300kb, and plainly showed that not much
more simplification was likely to be possible, as most of the functions now
became quite short.

(In fact, the only reason why the same thing did not happen with R

was because the FTA-library was parameterized on a generic real number
structure. Thus, there were actually two programs being extracted: one from
the FTA proof, with a parameter R, and one from the model of the reals;
only at compilation time were these two programs appropriately connected.)

Personal communication with Letouzey revealed this to be a bug in the
extraction mechanism, which was fixed in the distribution of Coq version 7.4.
This also had dramatic consequences, as will be discussed further ahead.

At this stage, the coercions now made up most of the program. For
example, the real number 0, whose representation in the notation of this
thesis is simply 0, and which can be written down in the notation of C-CoRN
as Zero, has as full form the staggering

cm unit (cg crr (cag crr (cr crr (cf crr (cof crr (crl crr R))))))

and a similar-looking extracted code.

The final program

The bug-fixed version of the extraction mechanism available brought the size
of the extracted program down to around 200kb, almost 100 times less than
the original value.
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There are two important points to be made before the analysis of the
actual execution of the program, which has not been mentioned so far.

First, this work raises the question of whether program extraction can be
really said to come “for free”. One gets rather the opposite idea, since the
changes described in the previous pages were made through a period of three
months; but this is a deceiving thought.

In fact, most of the changes were actually for the better also from a
mathematical perspective. It had already been shown in Section 3.3 that the
propositional approach to partial functions was better than the subsetoid
approach, so the new definition of division is more satisfactory for reasons
other than program extraction. The distinction between positive and nega-
tive statements is not an ad hoc one, but a meaningful one in constructive
mathematics—as is shown by the fact that the part of the C-CoRN library
which was built following a reference book privileged the use of negative re-
lations, whereas the FTA-library contained an adaptation of a classical proof
and was much less coherent. And although some of the changes can be said
at most to be irrelevant from a mathematical perspective, none are illogical
or counterintuitive.

Also, this section provided guidelines for future work. The C-CoRN li-
brary was originally written with no thought being given to program ex-
traction; but future additions to it can follow some very simple rules, like
using negative statements wherever possible, automatically yielding small
programs if these ever get extracted.

The second point relates to the bug found in the extraction mechanism.
When Coq version 7.4 came out, one of the tests that was made was to re-
extract the original 15Mb program, which turned out to be only 650kb now.
And—once again, much to everyone’s surprise—the original FTA-library,
with all the logic in Set, also extracted after 5 minutes producing. . . 7.5Mb
of output.

A look at this output quickly explained why early attempts at extraction
had failed. At the time, it was not possible to extract parameterized proofs
and later realize their axioms, so the parameter R in the proof of the FTA
had to be first instantiated with the model of the real numbers, within Coq,
and the whole thing then extracted. Because of the bug, the model would
not appear as a constant, but every occurrence of it would be replaced by its
definition—around 18.800 times. The size of the resulting program can then
be roughly estimated at 130Gb, which explains why it was never produced.

So was this whole work done because of a bug? Well, yes. But this
doesn’t mean that it was made irrelevant because the bug was fixed. In fact,
one should be grateful for the presence of the bug in the original extraction
mechanism; without it, everyone would probably have been content with the
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extracted program and no second thought would have been given to how
the sorts of Coq could be used in a better way. Thanks to this bug, the
very basics of C-CoRN have been rethought and can now be much more
convincingly presented as having been done in the right way.

6.3 The problem of computing

It is now time to switch focus to the problem of running the extracted pro-
grams. So far, only optimization of the size of the extracted code has been
discussed; arguably all the changes made either had no effect on the com-
plexity of the algorithm or lowered the execution time, since they referred
mostly to code elimination or simplification of subroutines. But how does
the extracted program actually perform?

There was incidentally a good reason for not testing any but the last
extracted program. Due to a known issue (not a bug!) in the extraction
mechanism of version 7.3 of Coq, the extracted programs did not completely
type check in ML, and some changes had to be done by hand. This meant (in
the first program) manually inserting around ten thousand so-called explicit
type casts, which understandably wasn’t done for the subsequent programs.
The problem was solved with the release of version 7.4 of the system, together
with the afore-mentioned bug, so the time was ripe to start executing the
extracted programs.

Experience shows that when one mentions “program extraction” and
“proof of the FTA” in the same sentence someone in the audience will in-
variably answer with “x2 − 2”. So this polynomial (as a polynomial in the
complex plane) was defined in Coq, proved to be non-constant, extracted to
ML and fed as argument to the FTA program in the hope that some time in
the future an answer would come out.

One week later, the only good news was that the program required almost
no memory to run. All that time it had been trying to compute the second
term6 in the Cauchy sequence representing the root of x2 − 2, and nothing
had happened.

The problem is, even after it was reduced to a reasonable size, the ex-
tracted program was still too complex for anyone to understand what ex-
actly was going on (even though the algorithm, in broad terms, is simply
the Newton–Raphson method, as explained in [35]). So, instead of looking
at the whole program, it was decided to focus on simpler examples from the

6In the model being used, the first approximation of any irrational real number is 0/1;
therefore the first approximation of this root is 0/1 + (0/1)i, which isn’t very hard to
compute.
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C-CoRN library in the hope that some insight could be gained on the broader
picture.

Rational arithmetic

Real numbers were being modeled as sequences of rationals. Therefore, the
obvious candidate for immediate testing was the performance of the extracted
program on computation with rational numbers. A number of simple tests
showed that arithmetic on Q was very fast (instantaneous, from a user’s
perspective).

A closer look at the program showed that an immediate improvement
could be made: rational numbers were formalized as pairs 〈p, q〉 with p : Z

and q : N, corresponding to the rational number p
q+1

. The natural numbers

(N) of Coq are Peano’s unary numbers (since the destructor for these is the
usual induction principle), whereas its integers (Z) are binary and therefore
computationally much faster (they were in fact developed to be used in com-
putation). Changing the type of rationals to pairs 〈p, q〉 with p : Z and q : Z+

not only performs better (since binary numbers are being used) but it also
makes the formalization easier, since Z+ does not contain 0 and 〈p, q〉 can
then be taken to represent p

q
.

Adding up to e

The type of real numbers in C-CoRN is simply that of ordered fields with two
added components: the Archimedean axiom and a limit operation that as-
signs to every Cauchy sequence a real number (its limit). Since rationals also
form an ordered field satisfying the Archimedean axiom, the only primitive
way to construct irrationals is as limits of Cauchy sequences.

All real and complex numbers defined in C-CoRN are in fact either (in-
jections or pairs of) rationals or limits of sequences. In the first category fall
numbers like 0, 1, 1

2
and i; the second is more interesting, since it contains

numbers like e, π or the root of x2 − 2. As expected, all the numbers in the
first category can be computed just as fast as their rational counterparts: im-
ages of rationals are constant sequences. But numbers which are computed
as limits behave very differently.

Within this category, the “simplest” numbers to compute are intuitively
those which are defined directly as the limit of a sequence of rationals: taking
the limit of a sequence of rationals is, in this concrete implementation of the
reals, simply taking the first rational in each sequence, and it is easy to
understand which numbers are being produced. In the general case some
diagonal construction has to be made, the details of which can be found
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in [31]. This means that in general computing the tenth approximation
of a real number x may require computing the hundredth or thousandth
approximation of another real x′, and it is very easy to start very heavy
computations without noticing just by asking for the second approximation
of an innocent-looking real number.

One example of a real number which is defined in C-CoRN as the limit
of a sequence of rationals is e.

As was shown in Section 5.1, e is defined as the sum of the series
∑∞

n=0
1
n!

.
This unfolds within Coq to the limit of the sequence of partial sums of
λn∈N.1/n!; and it can be seen7 that indeed the real number e will be repre-
sented by that same sequence of partial sums (seen as a sequence of rationals),
as shown in Figure 6.3.

Index 0 1 2 3 4 5 6 7
Num. 0 1 2 5 32 780 93888 67633920
Den. 1 1 1 2 12 288 34560 24883200
Value 0 1 2 2.5 2.66667 2.70833 2.71667 2.71806

Index 8 9 10
Num. 340899840000 13745206960128000 4987865758275993600000
Den. 125411328000 5056584744960000 1834933472251084800000
Value 2.71825 2.71828 2.71828

Figure 6.3: Computed values of e

The first results were not promising at all. Computing any of the first five
approximations of e was virtually instantaneous; the sixth took a few seconds;
and the seventh didn’t finish after more than one hour of computation.

It didn’t take long to find the problem. The defining sequence for e,
λn∈N. 1

n!
, is formalized as λn:N.1/(nring (fac n))//(fac ap zero n). The argu-

ment is a natural number; fac is the factorial function on natural numbers;
and the result of this function is then injected into the ring of real numbers
via nring, which is defined by induction on the natural numbers.

Thus, computing the nth approximation of e requires computing k! for
0 ≤ k ≤ n in unary notation, translating the result as a real number by
adding 1’s, computing its reciprocal and then adding everything together.
What’s worse, to compute the reciprocal the proof of k! # 0 is analyzed as
explained above; and in this case this proof extracts as “compute k! in the
ring as 1 added to itself so many times, and since 1 # 0 the result is also

7In other words, this is a proof by so-called “experimental induction”.
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apart from 0”, even though in the end the relevant information is that k! > 0
and, for all terms (k!)n of the Cauchy sequence representing k!, (k!)n > 1
holds!

This is hardly satisfactory, but fortunately it is also easy to fix. Instead
of computing factorials in N and injecting the result in the ring, one defines
a new operator nring fac : N→R, where R is a ring, that computes n! for a
given n using directly the multiplication in the ring.

Fixpoint nring fac (n:N) : R := Cases n of
| 0 ⇒ 1
| S p ⇒ (nring (S p))×(nring fac p)

It can then be proved by induction that (nring fac n) # 0 for every n : N,
yielding a proof term that will be linear in n.

These changes indeed make it possible to compute more approximations
of e, in particular the ones shown in Figure 6.3. However, the program’s
complexity still remains8 O(10n).

Once again, some ad hoc improvements both to the definition of nring
and to the model of the real numbers helped bring this value down to around
O(2n); but this is still exponential complexity, and it means that around
twenty approximations of e could be computed.

The most unsatisfactory thing about this situation is that profiling reveals
that the most time is spent. . . computing values of the zero function on
the natural numbers. Practically all of the computation is done within the
function extracted from the proof term in the division, which produces a
trivial output as was explained above. But the algebraic way in which the
operations are formalized requires resorting to a very sophisticated way to
find this trivial output.

It was with this in mind that a different approach was attempted by
Letouzey. Since the inefficiency seems to be arising from the highly abstract
way of computing the proof of n! # 0, why not compute it directly in the
model? His idea was: instead of trying to find a more efficient proof term
of that type, simply parameterize the definition of e on it. In other words,
extract e as a program of type Πn:N.n! # 0→R. Then, find in the model a
proof term of type ∀n:N.n! # 0; this will be a very simple term, containing the
information “greater than; 0; 1” (see definition of apartness in Section 6.2).
Extract a program from it and give it as argument to the e program.

8All estimates of the program’s complexity are strictly non rigorous, based on the
experimental data rather than on any theoretical analysis, and should thus be read as an
informal indicator of the program’s performance and not as mathematical statements. A
rigorous analysis of the complexity of the extracted programs is well beyond the scope of
this work.
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The computational behaviour of the extracted program is unrecognizable.
The new program can compute the 100th approximation of e in just over one
minute. Its complexity appears to still be exponential, but now with a factor
of around log2(10), meaning that in twice the time one can compute ten more
approximations.

The conclusions to draw from this example point in opposite directions.
At first sight, it seems that formalizing and computing require different tech-
niques, which means that the whole idea of getting an extracted program for
free simply doesn’t work. Some of the modifications needed to get a program
that works in reasonable time are difficult to justify from a mathematical
perspective, and one can argue that they make the formalization end up
being less elegant.

More careful analysis, though, reveals one small but important detail,
and that is the location of the changes. The potentially controversial modi-
fications described in this section took place either in the model of the reals,
which is by its own nature a part of the library where computational ef-
ficiency is more desirable than elegance of the formalization (at least to a
degree); or in the specific term which was being extracted. Nothing in the
general theory of series was changed, for example, even though most of it was
being used. Thus, one might expect that, in general, to make an extracted
program executable in reasonable time, one will only need to make a few
adjustments to the term being extracted.

This issue will be referred to again in the following section.

Bisecting towards
√

2

After the success with e, it was decided to tackle the next problem on the
road to the FTA. And this turned out to be square roots (or rather, generic
roots of non negative real numbers).

Roots are defined quite early in the Algebraic Hierarchy, as they are
needed for many elementary results (for example, to prove the fundamental
relation |x×y| = |x|×|y|). These are not obtained via the Fundamental The-
orem of Algebra, but rather more simply as a corollary of the Intermediate
Value Theorem (IVT).

Theorem 6.3.1 Let f be a continuous function on the interval [a, b] with
f(a) < f(b). For every c ∈ (f(a), f(b)) there is a point x ∈ (a, b) such that
f(x) = c.

This general case is a consequence of the following theorem.
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Theorem 6.3.2 Let f be a continuous function on the interval [a, b] with
f(a) < 0 < f(b). Then there is a point x ∈ (a, b) such that f(x) = 0.

Unfortunately, this formulation is only valid classically (as is to be expected,
as it implies decidability of equality); to be able to assert the conclusion
constructively, some extra assumptions about f have to be made.

It is easier to understand what such extra assumptions should look like
by examining the proof of Theorem 6.3.2. Classically, this is done iteratively:
one defines a0 = a and b0 = b. To define an+1 and bn+1, one looks at the
midpoint x of the interval [an, bn]. If f(x) ≥ 0, then one takes an+1 = an

and bn+1 = x; else an+1 = x and bn+1 = bn. It is easy to prove that {an} and
{bn} are convergent sequences whose common limit x satisfies f(x) = 0.

Constructively, however, the order on the reals is not decidable, so this
method does not work. However, if instead of taking the midpoint of [an, bn]
in the previous construction one chooses simply an x in the same interval such
that f(x) # 0 then the same method can be made to work (since knowing
f(x) # 0 one can decide whether f(x) > 0 or f(x) < 0). Of course, x has to
be “near” the middle of the interval, otherwise the sequences an and bn may
not converge to the same limit and the proof fails. Typically one demands
that x lie in the middle third of [an, bn].

The most general condition one can put on f is then to say that in any
proper interval [a, b] there is an x such that f(x) # 0. This was the version
of the IVT that was formalized in the FTA-library.

Proving that polynomials (except for the zero polynomial) satisfy this
property is not too difficult. Given p of degree n and a proper interval [a, b],
one can choose n+1 distinct points in [a, b] (for example, dividing the interval
in n + 2 parts of equal length and taking the border points between these
parts) and write p in the form

p(x) =
n∑

i=0

p (ai)
n∏

k=0,k �=i

x − ak

ai − ak

(6.3)

(the equality, in the ring of polynomials, holds because both expressions are
polynomials of degree at most n which coincide on (n + 1) points).

Since p is apart from 0, the expression on the right is also apart from 0;
strong extensionality of sum and the fact that if a product is not zero then
all its factors are not zero allow to conclude that p(ai) # 0 for some i.

Applying this to polynomials of the form x2 − a, with a > 0, one can
prove that they always have a root on the interval [0, a + 1]. This allows
square roots of positive numbers to be defined9. The actual formalization

9The formalized version improves on this, allowing square roots of non negative num-
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defines these as the limit of the sequence of lower endpoints of the successive
intervals considered; the Cauchy sequence representing

√
a will have as nth

term the left end of the interval obtained after (n− 1) iterations of the IVT.
Original experiments suggested that extraction from this proof yielded a

program computing
√

2 that ran forever (in practice), except of course for the
trivial first approximation. The success of the experiment with e, though,
gave reasons for optimism; and a little bit of patience showed that, after all,
the program did eventually provide a second approximation for

√
2. After

52 hours of intense computation it gave an output—0. Of course, one should
point out that it is a better 0 than the first approximation: it is now a “0”
between 0 and somewhere around 2, instead of a “0” between 0 and 3.

All but a few seconds of the computation time were spent in the iterative
part of the IVT, and a more detailed analysis10 showed that the bottleneck
was finding the point where the interval should be split. This is not too
surprising, as even for a simple polynomial like x2 − 2 Equation 6.3 yields
the polynomial (on x)

−23
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(
x − 3
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4

)(
x − 9

4
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)
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4
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+
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which then has to be analyzed by repeated calls to strong extensionality.
Is there no simpler way to proceed? Well, in fact there is. The con-

structive version of the IVT which is being used is a very general one which
makes minimal assumptions on the function; but it is precisely this lack of
information that makes the algorithm so complicated.

If one considers instead strictly monotonous (partial) functions defined
on [a, b], then it is immediate to see that the IVT holds; and the same proof
can be done in a much more immediate way. In the case the function is
increasing (the other case is analogous), given any two points x and y in
[a, b] such that x < y, necessarily f(x) < f(y); one appeal to cotransitivity
allows one to conclude that either f(x) < 0 or 0 < f(y), and the remainder
of the iterative construction goes through. As before, by choosing x and y
such that the new interval is sufficiently smaller than the original [a, b] (for
example, by dividing the interval in three and taking the resulting points)
one can prove convergence of the sequences of endpoints and obtain a zero
of the function.

This alternative constructive analogue of the IVT had already been for-
malized in C-CoRN (it was necessary for the definition of the inverse trigono-
metric functions), so adapting the definition of square root to use this theo-

bers.
10The data was provided by the gprof utility.
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rem instead was rather trivial. The difference in performance, however, was
amazing: the second approximation was now produced in just over 15 sec-
onds, and turned out to be 1—so not only did the new program run faster,
but it even seemed to converge more quickly.

As with e, it was now possible to look at the concrete code and find
out where further optimizations in the proof could be made. It was quickly
discovered that a more careful use of the transitivity lemmas, as previously
described, could make a huge difference in the result; and, since the expen-
sive part of the program seemed to be (once again) computing a proof term,
experiments have been made to compute this part of the proof in the model,
as this had been the key idea that made e computable. So far the program
still runs in exponential time (taking about 3 times longer to compute each
successive approximation), but there is hope this might be improved on. Fig-
ure 6.4 shows the approximations of

√
2 computed by the extracted program.

The 12th approximation took more than 30 hours to compute.

Index 0 1 2 3 4 5 6 7(= 8 = 9)
Num. 0 3 3 3 945 945 945 1172721820203
Den. 1 3 3 3 729 729 729 847288609443
Value 0 1 1 1 1.2963 1.2963 1.2963 1.3841

Index 10(= 11 = 12)
Num. 8972023290084239199282064334921354345290756185
Den. 6362685441135942358474828762538534230890216321
Value 1.4101

Figure 6.4: Computed approximations of
√

2

What about the FTA?

After the discussion in the previous sections, it should come as no surprise
that the program extracted from the proof of the Fundamental Theorem of
Algebra never terminated. In particular, it required computing square root of
two through a method that took 52 hours to produce its first approximation.

However, the results obtained so far are promising. One may hope that
in a not too distant future it will be possible to run the extracted program
in reasonable time, even if never at a speed that can rival computer algebra
systems. Of course, unlike those, all the programs that have been or ever will
be extracted from the C-CoRN library come with the guarantee of correctness
for free.
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Another point which has not been mentioned is the efficiency of the rep-
resentation of the reals. Optimizing this also fell beyond the purpose of this
work, which is a reason why only very basic changes (like changing the unary
denominators into binary) were made. In particular, it would probably make
a huge difference if fractions were at least simplified; the tenth approximation
of

√
2, which was

8972023290084239199282064334921354345290756185

6362685441135942358474828762538534230890216321
,

can be expressed as the irreducible fraction

27755

19683
;

intuition does seem to say that computing with the latter expression would
probably be quicker than with the former. . .

Still a lot can be learned from the experiments done so far. The next
section is devoted to a more theoretical analysis of the logic in C-CoRN and
to the use of sorts in Coq in a more general perspective which will hopefully
make large formalizations more easily yieldable to program extraction in the
future.

6.4 On the logic of sorts

In Section 6.2 it was shown how the C-CoRN library was changed, in partic-
ular its use of the types in the definition of the logical connectives, so that a
program could be extracted, and reduced to a reasonable size.

In this section the use of sorts will be brought up again; in particular
it will be argued that having CProp defined as Set is not desirable, and a
better solution will be presented.

The use of sorts in Coq has been a topic of disagreement since the time
of the FTA-project. As this chapter has shown, the logic was moved first
from Prop to Set, and then partly back to Prop, with the computational
statements in Set under the pseudonym of CProp.

Also, there have been some informal discussions on whether the setoids of
C-CoRN should not in fact be “typoids”; that is, it has been argued that the
carrier of a structure of type CSetoid should in fact have type Type instead
of Set.

There are several reasons for this.
One good reason, which has already been mentioned at the end of Sec-

tion 3.3, is that structures like the collection of partial functions over a setoid
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obviously have setoid structure themselves, but the typing rules forbid these
to be formalized in C-CoRN. An even simpler example is the type of subse-
toids of a subsetoid S, which must also be typed in Type (since one of its
fields has type S→CProp).

Another desirable structure, which cannot be defined with the previously
defined setoids, is the setoid of logical propositions with equivalence as an
equality relation11. Since Prop has itself type Type, moving the type of
setoids up in the hierarchy of the Coq sorts would also allow this example to
come to life.

However, there is one problem which arises if setoids are moved up to
Type, and that is again the issue of the logic. Since inductive types (such as
record types) of sort Set cannot be eliminated over Type because of consis-
tency issues, as explained in [18, 55], the C-CoRN library would immediately
collapse unless CProp were also redefined to be Type.

There are other reasons to think about redefining CProp as Type. For
example, the logical connectives presented in Figure 6.1 could be defined in
a much more elegant way with no need for overloading anymore, since Prop
is a subtype of Type. Also, one would be allowed to give an object of type
Prop whenever one of type CProp is expected—something that sounds very
intuitive, since a non-informative proposition can be seen as an informative
one where the computational content is void.

Unfortunately, the machinery to implement these changes only became
available very recently when version 8 of the Coq system was distributed.
The C-CoRN library has been changed accordingly, and the results are quite
satisfactory. In particular, the simplified notation for the logical connectives
that has been used throughout this thesis almost coincides with the notation
now used in C-CoRN.

Another interesting consequence of using a two-sorted logic is the possi-
bility of adding extra axioms at different levels with different consequences.
One good example of this is the principle of excluded middle.

The natural way to do classical logic on top of C-CoRN is by adding the
axiom scheme12

ΠA:CProp.A ∨ ¬A.

(As a curiosity, the type of this term is Type and not CProp: the indexing
mechanism of the Type universes works in such a way that CProp will

11Although here there are other subtle issues, like the non existence of an apartness
relation in this structure; but the typing question is in a precise sense much more funda-
mental.

12Notice the quantification over CProp: if this is defined as Type, this quantifier also
ranges over all terms of type Prop, see Appendix A.1.
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correspond to a specific Typei—which one, the user has no way to know—
and the typing rules then require the previous term to have type Typei+1.
In [19], a more detailed analysis of similar situations can be found.)

But this axiom destroys some of the nice properties of constructive for-
malizations, such as program extraction. One might wonder, then, if it would
be possible to add a similar axiom in a way that classical reasoning would
be permitted, but the core of the formalization would remain constructive.

There is a way to do this, and interestingly enough it proceeds by using
non-informative versions of disjunction and the existential quantifier which
are typed into Prop. These will be denoted as ∨ and ∃, to distinguish them
from the connectives previously introduced; therefore, the logic now contains
two disjunctions and two existential quantifiers:

∨ : s → s → CProp ∃ : ΠA:t.(A → s) → CProp
∨ : s → s → Prop ∃ : ΠA:t.(A → s) → Prop

where s is either Prop or CProp and t is a datatype.
The important point here is that ∨ and ∃ cannot be eliminated over Set;

in particular, they cannot be used to define functions by case analysis.
One can then add the axiom

ΠA:CProp.A ∨ ¬A,

which is typed in Prop, to the formalization without destroying its compu-
tational content. This can be interpreted as doing constructive mathematics
with classical reasoning on the meta-level. Classical statements can be proved
in Prop, but program extraction among others remains available; however
properties of the extracted programs can be proved using classical logic.

6.5 The moral of the story

This chapter is not intended as an exhaustive analysis of the topic of program
extraction within the framework of C-CoRN, but rather as an introduction
to the potential thereof.

Although much work was required first to extract a program from the
original FTA-library, then to reduce it to a reasonable size, and finally to
make its performance somewhat better, a number of positive results were
derived from it.

One of the main consequences of this experiment was that the sorts of
Coq are now used in a more satisfactory way in the logic of C-CoRN. The
distinction between positive and negative statements, which is known in con-
structive mathematics, is now built in the C-CoRN library by the use of
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Prop and CProp. Furthermore, this is done in an almost automatic way, so
that the user does not have to worry about the types of any but the atomic
propositions.

Redefining CProp to be Type also opens up several new directions for
further development within C-CoRN, which will hopefully be explored in
coming years.

On a different note, no such large-scale attempt at program extraction
had ever been made, and the fact that a working program could be obtained
is already a great victory. Even though the top goal, which was to be able
to extract roots of polynomials using the program extracted from the proof
of the FTA, is nowhere near being achieved, the partial successes which
were obtained on the way are encouraging enough and suggest that program
extraction might yet one day become a powerful mechanism. Although it
is doubtful that extraction will ever become the preferred way to develop
programs, it seems reasonable to expect that program extraction will one
day yield usable programs.



Chapter 7

Concluding Remarks

The main purpose of this work, as discussed in the Introduction, was to inves-
tigate the extent to which it is possible to formalize a chapter of a reference
book staying as close as possible to the original presentation; what machinery
is required to achieve this; and what the applications of such a formalization
are.

This thesis attempts to answer these questions in a satisfactory way.
Chapter 5 showed how a whole chapter of Bishop’s book on Constructive
Mathematics [10, Chapter 2] was formalized in the theorem prover Coq with
only minor modifications. The most difficult work turned out to be the begin-
ning, since as the mathematics get more advanced the list of available results
also gets much larger; and the formalization of the section on transcendental
functions (the last one in the reference chapter) was in fact an almost direct
translation of the natural language presentation into Coq input.

The result was the expansion of the original FTA-library to a broad and
general-purpose repository, C-CoRN. The present-day directory structure
of C-CoRN (each directory roughly corresponds to a subject; arrows denote
dependency upon) is shown in Figure 7.1. Figure 7.2 presents the relative
sizes of the directories.

As can be seen from this data, the present day repository is much broader
than the original FTA-library, which is contained in the four directories
algebra, reals, complex and fta. The first of these contains the formaliza-
tion of the Algebraic Hierarchy described in [32], while the original proof of
the Fundamental Theorem of Algebra [35] makes up the last directory.

The directories rings and fields include the model of real numbers
from [31]. The isomorphism theorem is included in reals, since it speaks
about generic real number structures.

More than one-third of the library consists of the formalization of Real
Analysis described in Chapter 5; this is mostly included in the directory ftc

164
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algebra

tactics

reals

complex transc

metrics

fta

ftc

rings

fields

Figure 7.1: Directory structure of C-CoRN

Directory # files # lemmas Size (Kb)
tactics 9 — 60
algebra 30 1694 583
reals 21 737 390
complex 4 197 81
fta 9 161 90
rings 2 55 11
fields 3 107 36
ftc 30 974 650
transc 9 297 191
metrics 7 175 90
Total 97 4397 2182

Figure 7.2: Contents of C-CoRN (input files)
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except for the results about transcendental functions, including the study of
the generalized power function, which are included in directory transc.

User-defined tactics are kept together in a separate directory tactics.
These include not only the original tactics from the FTA-library, Algebra
and Rational with the improvements described in Section 4.2, but also the
new Step tactic which was the subject of Section 4.3. The tactics described
in Section 4.4, specific for reasoning within the field of Real Analysis, are
also included here.

Later additions to C-CoRN include the formalization of metric spaces
by Loeb, which is included in directory metrics, and work by Hinderer [41]
proving that the complex numbers form a complete metric space and bringing
together the formalizations of complex numbers and of real-valued functions
by formally defining the complex exponential and proving its main properties.

However, C-CoRN is just in the beginning. Future plans for development
include formalizations of subjects less related to the present-day content of
the library, such as Number Theory and Group Theory. Formalizing such
subjects within C-CoRN, both reusing what it contains and extending it in
a coherent way, will be the real test of its potential.

Still, the fact that people already have started working using the library
of Real Analysis described in this thesis is the greatest measure of its success.
Unlike so often is the case, namely with many of the formalizations mentioned
in Section 2.1, one of the main goals in developing C-CoRN—to have a
reusable repository of formalized mathematics—seems to be in the good path
towards achievement.

But will formalized mathematics really be a part of our future?
While the results in this thesis are promising, there is still a long way

to go before the available machinery is powerful enough to convince math-
ematicians to do their real work using a proof assistant. Even though this
work showed that formalizing a whole chapter from a standard mathemat-
ics textbook is possible, the mathematics it refers to have nevertheless been
understood for some three hundred years; even if one takes the constructive
aspects into account, it is still a theory that has been fully developed for
almost half a century.

On the other hand, formalizations do exist of results which have just
been proved; however, these are not developed in the spirit of the C-CoRN
development, which was argued in Section 2.3 to be the best way to work,
but rather as ad hoc formalizations of specific theorems. In particular, they
typically suffer from all the characteristics often pointed out as negative
aspects of formalized mathematics: little reusability, lack of generality, being
geared towards the proof of a very concrete result. . .

Another problem, which was made very clear in Chapters 2 through 5, is
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the incipient state of the present day technology that makes some very trivial
proofs extremely hard or, at the very best, long. Although automation was
a big help (in fact, an indispensable tool specifically in the formalization of
Taylor’s Theorem, as explained from page 111 onwards), some issues remain
intrinsically difficult; and moreover, informal discussions with the people
mentioned in Section 2.1 strongly suggest that these issues are pretty much
system-independent.

No one has yet found out what the best way is to deal with partial func-
tions; although Chapter 3 tried to answer this question, and an ideal (yet
to be implemented) system was described on page 50, this discussion only
makes sense for Type-Theory–based systems—and even so, it is not clear
that the best way to do partial functions in Coq should be the best way to
treat them in Nuprl, for example. Also, as Section 3.3 shows, even within
the restricted framework of C-CoRN there are different ways of formalizing
partial functions, each with its own advantages and disadvantages; and for
other applications the choice made within C-CoRN may not be the best one.

At the moment, a desirable feature for Coq (and C-CoRN in particular)
would be a good interface to simplify the use of partial functions from the
user’s perspective. Since partial functions can be recognized from their type,
it shouldn’t be too difficult to teach the system to treat application of partial
functions to their arguments in a slightly different way than application of
total functions (as was briefly suggested in Section 3.3, page 50). Then, the
user could type in a lemma like

∀x,y:R. log(x/y) = log(x) − log(y)

and, from the types of the logarithm and division, the system would deduce
the necessary side conditions and translate this result as

∀x,y:R.x > 0→y > 0→y # 0→ log(x/y) = log(x) − log(y).

Similarly, if during an interactive proof the user typed in an expression such
as log(x), the system would recognize the need for the hypothesis x > 0
and either prove using some pre-determined tactic or add it to the context
and leaving it as a separate goal. An immediate advantage is that all proof
arguments to partial functions would no longer need to be printed (although
they would have to be kept by the system).

Implementing such an interface would bring Coq closer to systems like
Nuprl and PVS from the user’s perspective, but the nice properties of Coq’s
type system, namely decidability of type checking and type synthesis, would
not be lost, since the terms would not change.
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The chapter on integration, Section 5.4, presented another difficult task:
formalizing the intuitive equalities that one “knows” hold for sums, such as
the rule for changing the order of summation. The proof of Lemma 5.4.1, for
example, required proving an equality between two sums which was so intu-
itively obvious it wasn’t even clear how it should be stated. Once again, these
problems have been remarked upon by people working with other systems,
indicating that they are of a more general nature.

Until these issues have been solved, there is little hope of building a
system that mathematicians will want to use on a daily basis.

But not all is bad news. After all, even with all these problems it was
possible to formalize Bishop’s chapter on Real Analysis from [10], and the re-
sulting formalization stays quite close to the original. This is encouraging for
future work, and suggests that the obstacles above mentioned are probably
not unsurmountable; after all, the lemmas that were needed for working with
sums are now part of C-CoRN, so one can reasonably hope that future work
with sums will be significantly easier. And while the perfect way to represent
partial functions has not been found yet, the C-CoRN solution seems to be
pretty satisfactory so far.

Another very encouraging aspect is the fact that the automatically gen-
erated documentation (available from http://c-corn.cs.kun.nl/) is not
only very readable, but in many instances quite closely resembles the origi-
nal piece of mathematics it is meant to represent. This, of course, has also
been repeatedly pointed out throughout Chapter 5, where informal and for-
mal statements were presented side by side and can be seen very easily to
correspond to one another.

Finally, the work on program extraction, albeit once again far from pro-
viding an answer to all problems of mankind, does suggest that it may one
day become more than just a nice toy to play with. Although computing 150
digits of e is a feat that any computer algebra system can perform in almost
no time, it is still impressive that it can be done in just over a minute by a
program which was extracted automatically from an abstract formalization
of real numbers. One can once again reasonably hope that in the future
program extraction will be efficient enough to be a useful tool in applications
where correctness is more important than speed (at least to a reasonable
degree).



Appendix A

Coq in a nutshell

In this appendix, a very brief introduction to Coq is presented. This is not
meant as a thorough description of Coq, but only as a description of the
underlying type theory and of the notation used throughout this thesis.

For a complete overview of the Coq system the reader is advised to refer
to the Coq manual1 [17, Chapter 4].

A.1 The Calculus of Constructions

The language of the Coq proof assistant is a particular type theory known
as the Calculus of (Co)Inductive Constructions (CIC). This can be seen as a
Pure Type System (PTS) as defined in [4] to which a mechanism for defining
inductive and coinductive types is added.

This section presents the CIC in two stages: first, the underlying PTS is
described; afterwards, the mechanism for defining inductive types is intro-
duced. Coinductive types are not used in this work and will not be mentioned.

The PTS of the Calculus of Inductive Constructions has the following
specification:

S = {Set,Prop} ∪ {Typei | i ∈ N}
A = {Set : Typei,Prop : Typei | i ∈ N} ∪

∪ {Typei : Typej | i < j}
R = {(s1, s2) | s1 ∈ {Set,Prop} or s2 ∈ {Set,Prop}} ∪

∪ {(Typei,Typej,Typek) | i, j ≤ k}
In other words, the sorts of Coq are Set, Prop and an infinite family

Typei indexed on N. The index of Typei is hidden from the user, being

1Chapter numbers are taken from the manual for version 7.2 of the Coq system.
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necessary for consistency of the theory (since simply assuming Type : Type
leads to an inconsistency, see [4]), so that in practice one just “sees” three
sorts. Forgetting the indices, Set, Prop and Type all have type Type, with
the proviso that in the judgement Type : Type the index of the second term
is higher than that of the first one.

The product rules state that whenever A : s1 and B : s2 the product type
Πx:A.B has type s2. Again, when s1 and s2 are both Type, the index of the
resulting type has to be at least as large as that of both s1 and s2.

The rule (Type,Set), known as impredicativity of Set, is known to have
some unexpected consequences when coupled with the rules for dealing with
inductive types described below. Such consequences include making the prin-
ciple of excluded middle false, as shown in [30, 58]. Since version 8 of Coq
this has been replaced by the rule (Type,Set,Type).

Besides this PTS structure there is a cumulativity rule, which states that
if a term has type Set or Prop then it also has type Typei, for every i; and
a term of type Typei also has type Typej, for all j ≥ i. These rule allows
the sorts of Coq to be seen as growing universes, each of which contains the
previous ones.

A.2 Inductive Types

Besides the types that can be formed from the usual rules of the PTSs, the
Calculus of Inductive Constructions also allows the formation of inductive
types as described in [17, 18].

Inductive types correspond to least fixed points of monotone operators in
complete partial orders. An inductive type A is defined by giving a number
of constructors for that type; the inhabitants of A will then be the closed
terms which can be written down from those constructors. For example, the
type N of natural numbers is defined by

Inductive N : Set :=
| 0 : N

| S : N→N

and closed terms of type N are either 0 or generated by application of S to a
closed term of type N; that is, they are exactly the terms of the form Sn(0).

Each inductive type A that is defined generates some constant terms,
known as destructors, which will be used to eliminate terms of type A. Ex-
actly which destructors are defined depends on the type of A itself, as some
elimination rules lead to inconsistency, as explained in Chapter 6.1 and de-
scribed in more detail in [17, 55]. These destructors allow one to define new
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terms by case analysis on terms of type A; for example, if A is N, one will
be allowed to define functions by cases or primitive recursion, and to prove
properties of natural numbers by induction.

A special kind of inductive types are records, corresponding to the Σ-types
of Type Theory. Record types are inductive types with only one constructor,
corresponding to labelled tuples in programming languages; in the Calculus
of Inductive Constructors these tuples may even be dependent, i.e., the type
of its components may depend on the previous ones. They are implemented
in Coq using a special notation which, besides being more readable than the
corresponding inductive definition would be, allows the destructors (which
are simply [dependent] projections) to be given user-defined names. The
constructor for an inductive type A gets the name Build A.

An example of a record is the type of setoids (see page 11), defined as

Record CSetoid : Type :=
{ cs crr : Set;

cs eq : (Relation cs crr);
cs ap : (Relation cs crr);
cs proof : (is CSetoid cs crr cs eq cs ap)}.

Intuitively, an element X : CSetoid is a tuple which would be represented,
in informal notation, as

X = 〈|X|, =X , #X , pX〉

(the last component would be left out in a mathematics text and written
down in natural language).

The inductive type built by Coq is

Inductive CSetoid : Type :=
Build CSetoid : Πcs crr:Set.Πcs eq:(Relation cs crr).Πcs ap:(Relation cs crr).

(is CSetoid cs crr cs eq cs ap)→CSetoid.

A.3 Reduction Rules

There are a number of notions of reduction in the Calculus of Inductive Con-
structions, which will now be briefly described. Once again, more detailed
information can be found in [17, Chapter 4].

The main rule is β-reduction, which is the usual reduction in λ-calculus.
Besides this, there are some more specific notions of reduction available:



172 APPENDIX A. COQ IN A NUTSHELL

• In the CIC, one is allowed to define new terms from existing ones. If
A is defined to be the term t, then it is important that A reduce to t;
this reduction is known as δ-reduction.

• Besides this mechanism, Coq also has a mechanism of local definitions,
which slightly complicates the typing rules as can be seen in [17]. Un-
folding of local definitions is known as ζ-reduction. Local definitions
are seldom used in this thesis.

• Inductive types also give rise to a special kind of reduction, called ι-
reduction. This is the reduction caused by a destructor applied to a
term of an inductive type whose head is a constructor: since destructors
computationally perform case analysis on a term of the inductive type,
when applied to a term which has as head a constructor the result is
simply the case corresponding to that constructor.

The conversion rule for typing, which states that if t : A and A = B then
t : B, uses the equality generated by all the above reductions (β, δ, ζ and
ι) together with the cumulativity rule discussed earlier. This strong notion
of convertibility is central to the automation tactics based on reflection dis-
cussed in Chapter 4, since they leave the “hard” (but mechanical) part of
the proof to the type checker and thus can store relatively large proofs in a
small term.

It is important to stress that, even though this is far from being a trivial
notion of equality, type checking is still decidable.

A.4 Notation

The Coq system comes with an ASCII interface. Although this is quite
practical, it generates notation which is sometimes a bit hard to read. For
that reason, several conventions have been adopted throughout this thesis
for the display of Coq terms to make them easier to understand.

Coqterms will always be displayed using sans serif font.
Lambda abstraction is denoted as is usual in type theory: λx:A.t. Often,

in particular when the type of x is too long and can be easily inferred from
the context, this will be shortened to λx.t.

Pi abstraction (i.e. the type of a lambda abstraction) is denoted in two
different ways. Since product types are used, according to the Curry–Howard
isomorphism, both to denote functional types and universally quantified
propositions, dependent products are presented either as Πx:A.B, in the first
case, or as ∀x:A.B, in the second. As before, to prevent cluttering up of the
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terms, when the type of x can be easily inferred these will be shortened to
Πx.B and ∀x.B, respectively.

Nondependent products are denoted as usual by arrows.
Definitions are presented in the usual notation for Coq:

keyword term parameter list : type := body.

where the keyword is usually either Definition (for definitions) or Lemma (for
terms corresponding to propositions). The parameter list is a list of variables
with their corresponding types, which are universally quantified in the body
of the term. Finally, type is the type of term, and body is the definition of
term. Often (especially in the case of lemmas) the body will be omitted; the
keyword is also occasionally omitted.

Inductive types, records and recursive definitions are displayed in the
standard Coq notation. For inductive types, the keyword is Inductive and
the constructors are separated by the token “|”. Record types begin with the
keyword Record; the body is inserted in braces, with fields (components of
the tuple) in separate lines and divided by semicolons. A simple example of a
record definition can be found on page 11. Finally, recursive definitions have
as keyword Fixpoint and the body is a match construction with one clause for
each constructor of the corresponding inductive type. An example using the
inductive type of natural numbers, a variant of the factorial function, can be
found on page 155.

A.5 Implicit Arguments and Coercions

Finally, two important features of Coq, not related to the type theory but
rather to the user interface, are also important for the understanding of most
of the notation: implicit arguments and coercions.

The mechanism of implicit arguments of Coq [17, Chapter 5.7] is a tool
designed to make the notation lighter. Very often, due to the possibility of
defining type-dependent functions and types, the first argument(s) of a term
are types which are reconstructible from the remaining arguments (assuming
the term is fully applied). For example, the polymorphic mapping function
map on lists has type

ΠA,B.Πf:A→B.(list A)→(list B);

now, if map is totally applied, say in (map A B f l), it is clear that A and B can
be reconstructed from the types of the remaining arguments (in particular,
from the type of f). In Coq these two first arguments can be declared as
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implicit arguments, meaning that they will not have to be typed in; the
above term could then be entered as (map f l), and the system would figure
out its complete form.

A more general possibility, useful in some cases, is to replace an argument
by an underscore; the system then tries to figure out what term it should
place instead of the underscore (and hopefully succeeds).

Throughout this thesis, whenever arguments to a defined function or type
are implicit this will be stated, and afterwards the terms will always be
written down in the simplest way possible.

The second very useful feature is Coq’s mechanism of coercions [17, Chap-
ter 14]. Coercions are functions which the user tells the system to insert
automatically when a given term fails to type-check. That is, if a term t
has type A whereas it is expected to have type B, the system will look for a
term of type A→B that has been declared as a coercion and, if such a term f
exists, will replace t with (f t). Unlike implicit arguments, coercions are not
printed by the system; they are very useful to simulate subtyping—they are
used systematically throughout the Algebraic Hierarchy so that the user can
view and use for example a ring where a group is expected (see Chapter 2.2
for a more precise explanation of how this is done).

More specific notation is described throughout this thesis at the place
where it is introduced.
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partial function, 3, 18, 31, 33, 35–
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apartness, 95
bounded away from zero, 104
classical, 35, 46
composition, 75, 76, 96
continuous, see continuity
definition, 39–40, 44, 55, 92
derivative, see derivative
differentiation, see differentia-

tion
domain, 40, 51
equality, 92–95, 108, 112

definition, 94
is congruence, 95
is equivalence, 95

equivalent, 46–49
extensional, 44, 64
form a setoid, 54, 95, 161
ideal system, 50
image, 104
in Automath, 43
internal representation, 45
norm, 104

properties, 104
not automorphisms, 39
notation, 96
proof irrelevance, 44
propositional approach, 44
quantifying, 54
reduction sequence, 48
sequence, 21, 28, 105–106
series, 21, 105–106

convergent, 28
Dirichlet criterion, 28, 106
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power series, 28, 106, 125, 129
subsetoid approach, 40
total, 45
type, 161
type of, 54, 92, 109

partition, 114–117
alternative definitions, 115
canonical, 26, 117
choice of points respecting, 116

canonical, 27, 117
definition, 26, 114
endpoints, 115
even, 26, 115, 117

has refinement, 118, 120
not enough, 120, 122

has separated approximation, 121
mesh, 26, 115, 119, 122

of refinement, 116
ordered, 26, 115, 120
refinement, 116–118, 122

common, 120
properties, 116

separated, 120, 121
has refinement, 120

π, 19, 30, 98, 130–132
defining sequence, 130
definition, 131
equivalent definitions, 30
order, 132
positive, 132

point-free topology, 20
positive statement, 144, 151, 163
power function, 128–129, 133

definition, 129
derivative, 129
notation, 129

powers with real exponents, 127–
129, 166

basic properties, 128
definition, 127
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notation, 128
positive, 128

predicate, 40
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type of, 12
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126
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163

a posteriori, 139–140
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bug in, 150, 151
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e, see e, computing
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from the FTA, see Fundamen-

tal Theorem, of Algebra, ex-
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in Coq, 140–141
internal, 140
of the reals, see real numbers,

extraction
of transitivity, 147–148, 159
pruning, 139, 140√

2, see square root, extraction
proof

BHK-interpretation, 137
computational content, 14, 136–

139, 143–146
proof irrelevance, 38, 40, 43, 50, 95,

114, 115
Pure Type Systems, 169

for the Calculus of Construc-
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real numbers, 31
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isomorphism, 14, 18, 32, 164
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sequence, see sequence
series, see series
structure, 8, 18, 32, 43, 150,

153
realizability, 138
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definition, 36
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notation, 173

records, 171
and computation, 51
as inductive types, 171
as subtypes, 13
for algebraic structures, 12, 51
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convergent, 98–99
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convergent, 97
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and logic, 161
apartness, see apartness
definition, 11
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notation, 11
function, 40
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type of, 12

of logical propositions, 161
operator, 11
predicate, see predicate
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sine
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137
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as binary function, 43
as partial function, 52, 54
definition, 43, 157
extensional, 43
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proof irrelevance, 44
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37
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first, 71, 77, 78
match goal with, 80
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Declare Step, 72, 73
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Included, 57, 86, 88
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166
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change, 62
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field, 68
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inversion, 49
omega, 60
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definition, 30, 129
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Taylor
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Samenvatting

Constructieve Reële Analyse:
een Type-Theoretische Formalisatie en Toepassingen

Dit proefschrift beschrijft het formaliseren van wiskunde in het bewijssysteem
Coq, met name de formalisatie van Bishops ontwikkeling van Constructieve
Reële Analyse [10, Hoofdstuk 2]. Als voorbereiding voor die formalisatie
moest er aandacht worden besteed aan kwesties waar men nog nooit aan had
gedacht in deze context, zoals de representatie van bepaalde concepten en de
ontwikkeling van de nodige hulpmiddelen voor de automatisering.

Deze formalisatie werkt als motivatie voor algemener beschouwingen over
de beste manier om een grote bibliotheek te ontwikkelen en te organiseren
zodat de inhoud makkelijk kan worden hergebruikt.

Het werk waarover dit proefschrift gaat kan als volgt worden samengevat:

• opbouwen van de C-CoRN bibliotheek (formaliseren van Reële Analyse
en ontwikkeling van speciale tactieken);

• ontwikkeling van een werkmethodiek;

• toepassingen op programma-extractie (case study: extractie en opti-
malisatie van een programma uit de geformaliseerde bibliotheek).

Hoofdstuk 2 geeft een uitgebreider inleiding tot het werk. Hierin worden
zowel andere formalisaties van Reële Analyse beschreven, als de bestaande
bibliotheek waarop dit werk werd gedaan: de FTA-bibliotheek. Hierna volgen
algemenere overwegingen over de methodiek die door de hele formalisatie
is gevolgd. Dit hoofdstuk sluit af met een beschrijving van de betreffende
wiskunde, Hoofdstuk 2 van [10], en de identificatie van de problemen die
behandeld moeten worden.

Partialiteit is een van deze problemen, en daar gaat Hoofdstuk 3 over.
Hierin worden mogelijke manieren besproken om partiële functies te forma-
liseren, in Coq en in andere bewijssystemen, met nadruk op de twee natuur-
lijkste manieren in verband met dit werk. De voor- en nadelen van beide
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opties worden geanalyseerd voordat er één wordt gekozen. Delen van dit
hoofdstuk zijn gepubliceerd in [20].

Het volgende punt is automatisering. Hoofstuk 4 behandelt dit punt in
detail. Zowel verschillende methoden om tactieken in Coq te definiëren, als
voorbeelden en voordelen van elke methode worden gepresenteerd. In het
bijzonder wordt er aandacht besteed aan de nieuwe tactieken om bewijzen
in Reële Analyse te automatiseren. Dit hoofdstuk werd gedeeltelijk gepu-
bliceerd in [20]; delen daarvan zijn in samenwerking met Freek Wiedijk en
Hugo Herbelin gedaan.

Hoofdstuk 5 kijkt naar de formalisatie zelf. Daar worden de belang-
rijkste problemen besproken die voorkwamen, net als de keuzen die op iedere
stap moesten worden gemaakt. Dit hoofdstuk is een zeer uitgebreide versie
van [21].

Het laatste hoofdstuk onderzoekt één van de toepassingen van de gefor-
maliseerde constructieve wiskunde: programma-extractie. In Hoofdstuk 6
worden de ideeën achter programma-extractie gepresenteerd samen met een
overzicht van voorafgaand werk. Daarna komen er twee punten aan de orde:
hoe men een programma uit de bestaande bibliotheek krijgt ; en hoe men
een werkend programma uit diezelfde bibliotheek kan krijgen. Het grootste
deel van dit hoofdstuk komt voor uit samenwerking met Bas Spitters, eerder
gepubliceerd in [22]; het eerste deel van Sectie 6.3 komt voor uit samenwerk-
ing met Pierre Letouzey en Bas Spitters.

Aan het einde van het proefschrift is er een overzicht van de bereikte
doelen en algemene conclusies te vinden.

De hele formalisatie, samen met haar documentatie, is te vinden via de
C-CoRN webpagina, http://c-corn.cs.kun.nl/.
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