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Combining logics in an important topic in applied logics [7, 1] that raises
interesting theoretical problems related to transference results. The objective is
to produce a new logic from two (or more) given logics by using a meta operator
– the combination mechanism. Of special interest is to investigate whether the
mechanism preserves logical properties of the original logics. In general, sufficient
conditions can be given for preservation.

Fibring, proposed by Gabbay in [5], is one of the most challenging mech-
anisms for combining logics, which includes fusion of modal logics [10] as a
particular case. Fibring can be and has been investigated from a deductive point
of view (mainly using Hilbert calculi [11], labelled deductive systems [8] and
tableau systems [2]) and also from a model-theoretic perspective (using either
an algebraic approach or a modal-like semantics [6]). Several transference results
have been obtained for these constructions, namely for soundness and complete-
ness [11], several guises of interpolation and semi-decidability.

Up to now, work on fibring sequent calculi has not been considered. A pos-
sibility (following the approach for fibring Hilbert calculi) would be to say that
the fibring of two sequent calculi includes the rules of both calculi written in
a schematic way. However, this definition does not put into evidence how the
proofs in the fibring are related to the proofs in the given sequent calculi. Herein,
we present a novel notion of fibring sequent calculi where derivation is the prim-
itive concept and where a translation technique is used to allow the mapping
of a formula of the fibring into a formula of each component. This approach
is inspired upon the work on fibring of abstract proof systems [3]. In this con-
text, preservation of cut elimination and decidability can be proved. Moreover,
derivation-wise both ways of defining fibring of sequent calculi are equivalent.

Definition 1. A signature C is a family of sets indexed by the natural numbers.
The elements of each Ck are called constructors or connectives of arity k. We
say that C ⊆ C ′ if Ck ⊆ C ′

k for every k ∈ IN.

Definition 2. Let C be a signature and Ξ = {ξn : n ∈ IN} be a countable set
of meta-variables. The language L(C,Ξ) is the free algebra over C generated by
Ξ. The elements of L(C,Ξ) are called formulas.

The elements of Ξ are schema variables that will allow the definition of schematic
derivations. A derivation can be obtained from a schematic derivation by replac-
ing schema variables with formulas.



Definition 3. A substitution is a map σ : Ξ → L(C). Substitutions can be
inductively extended to formulas and to sets of formulas: σ(γ) is the formula
where each ξ ∈ Ξ is replaced by σ(ξ) and σ(Γ ) = {σ(γ) : γ ∈ Γ}.

We assume that Ξ is fixed and abbreviate L(C,Ξ) to L(C).

Definition 4. The fibring of the signatures C ′ and C ′′ is the family C ′ ∪ C ′′

where (C ′ ∪ C ′′)k = C ′
k ∪ C ′′

k for each k.

That is, formulas in the fibring can have a mixture of the connectives of each
component logic.

Definition 5. A sequent over a signature C is a pair 〈∆1,∆2〉, denoted by
∆1 −→ ∆2, where ∆1 (the antecedent) and ∆2 (the consequent) are multi-sets
of formulas in L(C).

We denote by SeqC the set of sequents over C.

Definition 6. A sequent calculus is a pair D = 〈C,P 〉 where C is a signature
and P = {P∆ : ∆ ∈ ℘finSeqC} is a family of predicates P∆ ⊆ Seq∗C × SeqC

satisfying the following conditions.

– Conclusion: if P∆(ω, s) holds, then s is the first element in ω.
– Monotonicity: if ∆1 ⊆ ∆2, then P∆1 ⊆ P∆2 .
– Closure under substitution: if P∆(ω, s) holds and σ is a substitution, then

Pσ(∆)(σ(ω), σ(s)) also holds.

If P∆(ω, s) holds for some ω, we say that s is derivable from ∆ in sequent calculus
D, denoted ∆ `D s.

Example 1. The traditional presentation of a sequent calculus is via rules. A rule
is a pair 〈{θ1, . . . , θn}, γ〉, indicated by

θ1 . . . θn

γ
,

where θ1, . . . , θn (the premises) and γ (the conclusion) are sequents. A presenta-
tion of a sequent calculus is a set R of rules including structural rules (e.g. cut
and weakening) and specific rules for the connectives (like R →).

A derivation of a sequent s from a set of sequents ∆ is a finite sequence
∆1,1 −→ ∆2,1 . . .∆1,n −→ ∆2,n of sequents such that:

– ∆1,1 −→ ∆2,1 is s;
– for each i = 1, . . . , n, one of the following holds:

• ∆1,i −→ ∆2,i is an axiom (justified by Ax), that is, ∆1,i ∩∆2,i 6= ∅;
• ∆1,i −→ ∆2,i ∈ ∆ (justified by Hyp);
• there exist a rule r = 〈{θ1, . . . , θk}, γ〉 and a substitution σ such that

∆1,i −→ ∆2,i = σ(γ) and, for each j = 1, . . . , k, there is i < ij ≤ n with
σ(θj) = ∆1,ij −→ ∆2,ij (justified by r, i1, . . . , ik).



Let R be a set of rules and define D(R) = 〈C,P 〉 where P∆(ω, s) holds iff ω
is a derivation of s from ∆. Then D(R) is a sequent calculus.

Example 2. The sequent calculus S4 for minimal logic with an S4 modality
(characterized by Kripke structures with a transitive accessibility relation) has
two unary connectives � and ♦ and a binary connective →. It is presented by the
set RS4 containing the usual structural rules (cut, weakening and contraction)
together with the following rules for the connectives.

Γ −→ ∆, ξ1 ξ2, Γ −→ ∆

(ξ1 → ξ2), Γ −→ ∆
L → ξ1, Γ −→ ∆, ξ2

Γ −→ ∆, (ξ1 → ξ2)
R →

Γ, ξ1, (�ξ1) −→ ∆

Γ, (�ξ1) −→ ∆
L�

�Γ1 −→ ξ1,∆1

Γ2,�(Γ1) −→ (�ξ1),♦(∆1),∆2
R�

ξ1, Γ1 −→ ♦(∆1)
(♦ξ1),�(Γ1), Γ2 −→ ∆2,♦(∆1)

L♦
Γ −→ ∆, ξ1, (♦ξ1)
Γ −→ ∆, (♦ξ1)

R♦

In these rules, �(Γ ) = {(�ϕ) : ϕ ∈ Γ} and ♦(Γ ) = {(♦ϕ) : ϕ ∈ Γ}.
The following derivation ωN shows that {−→ ξ1} `S4−→ (�ξ1).

1. −→ (�ξ1) R�, 2
2. −→ ξ1 Hyp

It is worth stressing that 6`S4 ξ1 −→ (�ξ1), so allowing hypotheses in the deriva-
tions is an essential feature of our definition – as is quite well-known by people
working in modal logic.

Example 3. The sequent calculus D for propositional logic with connectives ¬
and → together with a D modality (characterized by Kripke structures where
every world can access at another one) is presented by the set RD containing the
same structural rules, the two rules L → and R → from the previous example,
and the following four rules.

Γ −→ ∆, ξ1

Γ, (¬ξ1) −→ ∆
L¬ Γ, ξ1 −→ ∆

Γ −→ (¬ξ1),∆
R¬

Γ −→ ξ1

�(Γ ) −→ (�ξ1)
R�

Γ −→ ξ1

�(Γ ) −→ (♦ξ1)
R♦

The following derivation ωD shows that −→ ξ2 `D−→ (♦(ξ1 → ξ2)).

1. −→ (♦(ξ1 → ξ2)) Cut, 2, 5
2. (�ξ2) −→ (♦(ξ1 → ξ2)) R♦, 3
3. ξ2 −→ (ξ1 → ξ2) R →, 4
4. ξ2, ξ1 −→ ξ2 Ax
5. −→ (♦(ξ1 → ξ2)), (�ξ2) RW, 6
6. −→ (�ξ2) R�, 7
7. −→ ξ2 Hyp



Before we can define fibring of sequent calculi, we need to be able to represent
“mixed” formulas (built from connectives in C ′ and in C ′′) in either component.
This is done by a general mechanism of translation that takes advantage of the
fact that the set of variables is infinite.

Definition 7. Let C and C ′ be signatures with C ⊆ C ′ and g : L(C ′) → IN be
a bijection. The translation τg : L(C ′) → L(C) is defined inductively as follows:

– τg(ξi) = ξ2i+1 for ξi ∈ Ξ;
– τg(c) = c for c ∈ C0;
– τg(c(γ′1, . . . , γ

′
k)) = c(τg(γ′1), . . . , τg(γ′k)) for c ∈ Ck and γ′1, . . . , γ

′
k ∈ L(C ′);

– τg(c′(γ′1, . . . , γ
′
k)) = ξ2g(c′(γ′

1,...,γ′
k)) for c′ ∈ C ′

k \ Ck and γ′1, . . . , γ
′
k ∈ L(C ′).

The translation of a set of a formulas, a sequent or a sequent of sequents is
defined in the natural way.

Definition 8. With C, C ′ and g as above, τ−1
g : Ξ → L(C ′) is the substitution

such that τ−1
g (ξ2i) = g−1(i) and τ−1

g (ξ2i+1) = ξi.

From this point on, we assume g is fixed and write simply τ and τ−1. It is
easy to see that τ−1 ◦ τ = id and τ ◦ τ−1 = id.

Definition 9. Let D′ = 〈C ′, P ′〉 and D′′ = 〈C ′′, P ′′〉 be sequent calculi given
by derivations. The fibring D′ ] D′′ is the sequent calculus 〈C ′ ∪ C ′′, P 〉, where
P∆ is inductively defined as follows.

– if P ′
τ ′(∆)(τ

′(ω), τ ′(s)) holds, then P∆(ω, s) also holds;
– if P ′′

τ ′′(∆)(τ
′′(ω), τ ′′(s)) holds, then P∆(ω, s) also holds;

– for finite Σ = {s1, . . . , sk} ⊆ SeqC , if P∆(ωi, si) holds for i = 1, . . . , k and
PΣ(ωs, s) holds, then P∆(ωs · ω1 · . . . · ωk, s) holds.

In this definition, τ ′ and τ ′′ denote the translations of L(C) to L(C ′) and L(C ′′).

The intuition is as follows: a derivation in the fibring is either a derivation in
one of the components (modulo translation) or recursively built from derivations
using these derivations as justifications for the hypotheses used. In particular, if
D′ and D′′ are presented by rules, then each justification Hyp occurring in ωs is
interpreted as “postponing” the proof of si until the point where ωi begins.

Example 4. Consider the systems S4 and D defined above, with the modalities
renamed �′ and �′′, respectively. We can prove that

`D(S4)]D(D)−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))



considering the derivation σ(ωD) · ωN , where σ(ξ1) = ξ1 and σ(ξ2) = (�′(ξ1)).

1. −→ (♦′′(ξ1 → (�′(ξ1)))) Cut, 2, 5
2. (�′′(�′(ξ1))) −→ (♦′′(ξ1 → (�′(ξ1)))) R♦′′, 3
3. (�′(ξ1)) −→ (ξ1 → (�′(ξ1))) R →, 4
4. (�′(ξ1)), ξ1 −→ (�′(ξ1)) Ax
5. −→ (♦′′(ξ1 → (�′(ξ1)))), (�′′(�′(ξ1))) RW, 6
6. −→ (�′′(�′(ξ1))) R�′′, 7
7. −→ (�′(ξ1)) Hyp
1. −→ (�′ξ1) R�′, 2
2. −→ ξ1 Hyp

The boxes are shown for clarity. The reader can verify that this derivation does
indeed satisfy the definition of derivation in the fibring.

This example shows that this sequent calculus is equivalent to the one pre-
sented by RS4∪RD. This is a general fact: the fibring of two calculi presented by
rules is equivalent to the calculi presented by the union of the rules. However, the
definition given captures the essence of a proof in the fibring in a much clearer
way: a proof in the fibring consists of proofs in the components joined together
at a higher level by concatenation. This is not the case in the system presented
by the union of the rules, where derivations do not bear any relationship to the
ones in the original calculi.

We conclude by stating some properties of fibring. The first result concerns
the ability of removing the cut rule in a system presented by rules.

Definition 10. A sequent calculus presented by a set of rules R has cut elim-
ination iff, for any ∆ ⊆ SeqC and s ∈ SeqC , whenever ∆ `D(R) s there is a
derivation ω for ∆ `D(R) s that does not use the cut rule.

Proposition 1. Let D′ and D′′ be sequent calculi presented by the sets of rules
R′ and R′′, respectively, with cut elimination. Then the system presented by
R = R′ ∪R′′ also has cut elimination.

The proof proceeds by considering the fibring D′ ] D′′, which is equivalent to
the calculus presented by R, but where derivations can only be joined by con-
catenation.

Another useful property of a sequent calculus is the ability to decide whether
a given derivation proves a sequent from a set of hypotheses. In order for this to
hold, it is reasonable to assume that the set of hypotheses is recursive.

Definition 11. A sequent calculus given by derivations D = 〈C,P 〉 is decidable
iff, for every recursive set ∆ ⊆ SeqC , the relation P∆ is recursive.

Proposition 2. Let D′ and D′′ be decidable sequent calculi given by deriva-
tions. Then their fibring D = D′ ] D′′ is decidable.



As a conclusion, we were able to capture the relationship between derivations
in the fibring with the derivations in the component logics by introducing a novel
notion of fibring sequent calculi. This notion relies upon a translation technique
that allows us to map a formula of the fibring into a formula of each component.

This new notion of fibring sequent calculi is compared with a more usual one
in which the sequent calculi are presented by rules. It is then shown to preserve
cut elimination and decidability.

Natural extensions of this work are to consider fibring sequent calculi for
display logics [4, 9] and fibring of labelled sequent calculi. Also of interest would
be to extend the work to the context of logics with quantifiers.
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ics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal, 2005. Submitted for
publication.
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