
Bisimulations in SSCC

Lúıs Cruz-Filipe
Ivan Lanese

Francisco Martins
António Ravara

Vasco Vasconcelos

DI–FCUL TR–2007–37

December 2007

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Bisimulations in SSCC

Lúıs Cruz-Filipe
Dept. Informatics

Faculty of Sciences
University of Lisbon

Ivan Lanese
Computer Science Department,

University of Bologna

Francisco Martins
Dept. Informatics

Faculty of Sciences
University of Lisbon

António Ravara
SQIG, Instituto de Telecomunicações

and Dept. Mathematics, IST,
Technical University of Lisbon

Vasco Vasconcelos
Dept. Informatics

Faculty of Sciences
University of Lisbon

December 2007

Abstract

This report studies different definitions of bisimulation within the Stream-
Based Service-Centered Calculus (SSCC) and shows that both strong and
weak ground bisimulation are non-input congruences.

Keywords: Process calculus, bisimulation, services.

1 Introduction

The Stream-based Service-Centered Calculus (SSCC) [3] looks for solutions to
expressiveness problems posed by the original Service-Centered Calculus [2]. It
differs from the latter in the existence of streams, which are the privileged means
of communication between services and the processes invoking them.

This note studies two notions of bisimilarity in SSCC, based on what was
already proposed in the original paper. We show that both strong and weak
bisimilarity are non-input congruences in the class of SSCC processes. Although
the general strategy is the same as for π-calculus, the proof techniques them-
selves differ significantly.

We define a labeled transition system (LTS) in the early style, and study
notions of bisimilarity known in the literature as strong ground bisimilarity and
weak ground bisimilarity. The reason for choosing these is simple: we are inter-
ested in capturing contextual equivalence, so bisimilarity should be a congru-
ence. Therefore, we choose the simplest possible setting where this may happen.
It is well-known already from the π-calculus that ground bisimilarity over a late
LTS is not preserved by parallel composition, requiring the more demanding

1

notions of late and early bisimilarity (which in turn are not preserved by input
prefix, since they are not closed under general substitutions). Not surprisingly,
this fact also occurs in SSCC: ground bisimilarity is a non-input congruence.
Sangiorgi and Walker present counter-examples for the preservation of both
strong and weak bisimulation in the synchronous π-calculus without sum and
match (see pages 224 and 225 of [4]). Of these, the first can be easily translated
to our language, using sessions to mimic π’s input and output constructors; for
the weak case, the counter-example is not so directly transposable, but it can
still be adapted.

The LTS we define herein adapts the original one (albeit in an insignificant
way in terms of expressive power, as discussed below) to allow for the results
we are seeking.

2 Language

Recall the definition of SSCC processes.

Definition 1. The (run-time) processes of SSCC are generated by the following
grammar.

P,Q := 0 [] v.P [] (x).P [] P | Q [] (νa)P [] X [] rec X.P

[] a⇒ P [] a⇐ P [] r . P [] r / P [] (νr)P
[] feed v.P [] f(x).P [] stream P as f = ~v in Q

To simplify notation, when stream f is empty, we write stream P as f in Q
for stream P as f = 〈〉 in Q.

In processes (x).P , f(x).P , (νa)P , and (νr)P , occurrences of names x, a, r
are bound in P . We assume the Barendregt convention on variables (i.e., bound
occurrences are all distinct, and differ from all the free variables [1]); further-
more, a process is well-formed only if it contains no free process variables. Ab-
breviations like r ./ P and a⇔ (r) are defined in [3].

Definition 2. The set of actions, ranged over by µ, is defined by the following
grammar.

µ ::= τ []↑v []↓v [] (a) ↓v []⇑v [] f ⇓v [] (a)f ⇓v
a⇐ (r) [] a⇒ (r) [] r ./ ↑v [] r ./ (a) ↑v [] r ./ ↓v [] r ./ (a) ↓v

The intended meaning of these actions is as follows:

• τ is the internal action;

• for every value v, ↑v and ↓v are the output and input actions, respectively;

• for every value v and every stream f , ⇑v and f ⇓v are the feed and read
actions, respectively;

• for every service name a and session name r, a⇐ (r) and a⇒ (r) are the
invocation and acknowledge actions, respectively;

• for every output or feed action µ, the name a is restricted in (a)µ;

2

• for every session name r and (restricted) output or input action µ, r ./ µ
is the corresponding action within session r.

The labeled transition system for SSCC is slightly different from that of [3].
The reason of this is that the presence of the congruence rule L-struct poses
unique problems when doing proofs by induction; see the discussion at the end
of Section 4.

Definition 3. The labeled transition system for SSCC contains all the rules
in [3] except for L-struct, together with the following new rules:

Q
µ−→ Q′ bn(µ ∩ fn(P)) = ∅

P | Q µ−→ P | Q′
L-par’

P
[
rec X.P /X

] µ−→ P ′

rec X.P
µ−→ P ′

L-rec

P
r./(a)↑a−−−−−→ P ′ Q

r./↓a−−−→ Q′

P | Q rτ−→ (νa)(P ′ | Q′)
L-par-close

P
r./↓a−−−→ P ′ Q

r./(a)↑a−−−−−→ Q′

P | Q rτ−→ (νa)(P ′ | Q′)
L-par-close’

P
(a)⇑a−−−→ P ′

stream P as f = ~w in Q
τ−→ (νa)(stream P ′ as f = a :: ~w in Q)

L-feed-close

P
r./(a)↑a−−−−−→ P ′ Q

r./↓a−−−→ Q′

stream P as f in Q
rτ−→ (νa)(stream P ′ as f in Q′)

L-sess-com-close

P
r./↓a−−−→ P ′ Q

r./(a)↑a−−−−−→ Q′

stream P as f in Q
rτ−→ (νa)(stream P ′ as f in Q′)

L-sess-com-close’

The following lemmas show the derivability of the new transition rules in
the original system.

Lemma 1. Rule L-par’ is admissible in the original LTS for SSCC.

Proof. The following derivation shows that any instance of L-par’ can be de-
rived in the old LTS.

Q
µ−→ Q′ bn(µ ∩ fn(P)) = ∅

Q | P µ−→ Q′ | P
L-par

Q | P ≡ P | Q Q′ | P ≡ P | Q′

P | Q µ−→ P | Q′
L-str

Lemma 2. Rule L-rec is admissible in the original LTS for SSCC.

Proof. The following derivation shows that any instance of L-rec can be derived
in the old LTS.

P
[
rec X.P /X

] µ−→ P ′ P
[
rec X.P /X

]
≡ rec X.P P ′ ≡ P ′

rec X.P
µ−→ P ′

L-struct

3

Lemma 3. Let P and P ′ be processes and a be a name.

(i) If P
(a)↑a−−−→ P ′ then P ≡ (νa)R for some R such that R

↑a−→ P ′.

(ii) If P
r./(a)↑a−−−−−→ P ′ then P ≡ (νa)R for some R such that R

r./↑a−−−→ P ′.

(iii) If P
(a)⇑a−−−→ P ′ then P ≡ (νa)R for some R such that R

⇑a−→ P ′.

Proof. All three parts of the lemma are proved by induction on the proof of the
transition.

For (i), the base case is when rule L-extr is applied. Then the thesis follows
immediately from the premise of the rule and reflexivity of ≡. The induction
cases are when one out of L-par, L-par’, L-stream-pass-P, L-stream-pass-
Q, L-res or L-rec is applied.

The first four cases are analogous. Suppose rule L-par was applied; then

P is P1 | P2, P ′ is P ′1 | P2, P1
(a)↑a−−−→ P ′1 and a is not a free name of P2. By

induction hypothesis, P1 ≡ (νa)R with R
↑a−→ P ′1; also P1 | P2 ≡ (νa)R | P2.

By rule L-par, R | P2
↑a−→ P ′. The case of L-rec is also straightforward: since

rec X.P ≡ P
[
rec X.P /X

]
, the induction hypothesis immediately establishes the

result. Finally, for L-res, simply apply the induction hypothesis and use S-
swap to conclude the thesis.

The proof of (ii) is completely similar except for the base case. Here, the
rule being applied may also be L-sess-val, in which case P is r ./ Q and P ′ is
r ./ Q′. By (i), also Q ≡ (νa)R with R

↑a−→ Q′, whence r ./ R
r./↑a−−−→ P ′. Since

r ./ (νa)R ≡ (νa)r ./ R, the thesis follows.
The last case is analogous to the first.

Lemma 4. Rules L-par-close and L-par-close’ are admissible in the orig-
inal LTS for SSCC.

Proof. Suppose P | Q rτ−→ (νa)P ′ | Q′ by L-par-close. By (ii) of Lemma 3,

there exists R such that P ≡ (νa)R and R
r./↑a−−−→ P ′. The following derivation

shows that this instance of L-par-close can be derived in the old LTS.

R
r./↑a−−−→ P ′ Q

r./↓a−−−→ Q′

R | Q rτ−→ P ′ | Q′
L-par

(νa)R | Q rτ−→ (νa)P ′ | Q′
L-res

(νa)R ≡ P Q ≡ Q
P | Q rτ−→ (νa)P ′ | Q′

L-struct

For rule L-par-close’, apply the previous construction with L-par’ instead
of L-par and invoke Lemma 1.

Lemma 5. Rules L-sess-close and L-sess-close’ are admissible in the orig-
inal LTS for SSCC.

Proof. Analogous to the previous one.

Lemma 6. Rule L-feed-close is admissible in the original LTS for SSCC.

4

Proof. Suppose stream P as f = ~w in Q
τ−→ (νa)stream P ′ as f = a :: ~w in Q by

L-feed-close. By part (iii) of Lemma 3, P ≡ (νa)R for some R such that

R
⇑a−→ P ′. The following derivation shows that this instance of L-par-close

can be derived in the old LTS.

R
⇑a−→ P ′

stream R as f = ~w in Q
τ−→ stream P ′ as f = a :: ~w in Q

L-stream-feed

(νa)stream R as f = ~w in Q
τ−→ (νa)stream P ′ as f = a :: ~w in Q

L-res

stream P as f = ~w in Q
τ−→ (νa)stream P ′ as f = a :: ~w in Q

L-struct

Observe that the application of L-struct is sound: from (νa)R ≡ P , it follows
that (νa)stream R as f = ~w in Q ≡ stream P as f = ~w in Q (for the lefthand-
side); also ≡ is reflexive (for the righthand-side).

This LTS is strictly weaker than the original one, since it is not always the
case that two structurally congruent processes can always evolve via the same
action to the same process, as the following example shows.

Example 1. In the original LTS, a | b ↑a−→ b | 0, whereas this does not hold with
the new LTS: the proof uses L-send, L-par and L-struct, and this last step
cannot be captured in the modified LTS.

However, it is always the case that structurally congruent processes can
evolve via the same action to structurally congruent processes; this is precisely
the statement of the Harmony Lemma, proved in the next section. Observe
that this is sufficient for both LTSs to yield the same notion of bisimilarity: the
Harmony Lemma implies that structural equivalence is a bisimulation, while all
other transition rules are preserved.

Example 1 (contd). In the modified LTS, L-send and L-par can be used to

infer that a | b ↑a−→ 0 | b. The latter process is structurally congruent to b | 0.

3 The Harmony Lemma

Theorem 1 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If
P

α−→ P ′, then Q
α−→ Q′ with P ′ ≡ Q′, and vice-versa.

Proof. By induction on the proof that P ≡ Q.

• Equivalence relation

– Reflexivity. Immediate, taking Q′ to be P ′.

– Symmetry. Immediate consequence of the induction hypothesis, since
the thesis of the theorem is symmetric.

– Transitivity. Assume P ≡ Q because P ≡ R and R ≡ Q, and suppose
that P α−→ P ′. By induction hypothesis, R α−→ R′ with P ′ ≡ R′;
hence, again by induction hypothesis, Q α−→ Q′ with R′ ≡ Q′. By
transitivity of ≡, it follows that P ′ ≡ Q′.

• Congruence properties

5

– Parallel composition. Suppose P ≡ Q. For each of the possible
transitions of P | R, it is straightforward to verify that Q | R can
simulate them, eventually using the induction hypothesis; similarly,
R | Q can simulate R | P . Notice that the side conditions in the
transition rules always hold since structurally congruent processes
have the same free names.

– Composition with stream. Analogous.

– Name restriction. Suppose P ≡ Q and let a be a name. For each of
the possible transitions of (νa)P , it is again easy to check that (νa)Q
can simulate them, eventually using the induction hypothesis.

– Session input/output. Straightforward, observing (for input) that
structural congruence is preserved under substitution.

– Stream input/output. Analogous.

– Service definition/invocation. Straightforward.

• Monoid structure

– Unit. Let Q be P | 0. If P α−→ P ′, then by rule L-par also P | 0 α−→
P ′ | 0, since 0 has no free names, and the latter process is congruent
to P ′. Reciprocally, if P | 0 α−→ P ’, then the only rule that can have
been applied is L-par (since 0 6→), whence P ′ is P ′′ | 0 with P α−→ P ′′.

– Commutativity. Assume P is R | S and Q is S | R. Take any
proof of R | S α−→ T and replace occurrences of L-par by L-par’, of
L-sess-com-par by L-sess-com-par’, of L-serv-com-par by L-
serv-com-par’ and vice-versa; it is straightforward to verify that
this yields a proof that S | R α−→ T ′ with T ≡ T ′. The converse is
analogous.

– Associativity. Let P be R | (S | T) and Q be (R | S) | T . Suppose
that P α−→ P ′; there are six rules that can be used in the last step
of the proof of this transition. For simplicity, in the proofs below
we omit side conditions related to bound names, since it is simple to
verify that they always follow from the assumptions.

∗ L-par: then R
α−→ R′ and P ′ is R′ | (S | T). The following

proof shows that (R | S) | T α−→ (R′ | S) | T , which establishes
the thesis.

R
α−→ R′

R | S α−→ R′ | S
L-par

(R | S) | T α−→ (R′ | S) | T
L-par

∗ L-par’: then S | T α−→ U ; there are six sub-cases, according to
the rule used to derive this transition.
· The rule applied is L-par, so S α−→ S′ and U is S′ | T ; then

the following proof establishes the thesis.

S
α−→ S′

R | S α−→ R | S′
L-par’

(R | S) | T α−→ (R | S′) | T
L-par

6

· The rule applied is L-par’, so T α−→ T ′ and U is S | T ′; then
the following proof establishes the thesis.

T
α−→ T ′

(R | S) | T α−→ (R | S) | T ′
L-par’

· The rule applied is L-sess-com-par, so S
r./lv−−−→ S′, T

r./lv−−−→
T ′, U is S′ | T ′ and α is rτ for some fresh r; then the following
proof establishes the thesis.

S
r./lv−−−→ S′

R | S r./lv−−−→ R | S′
L-par’

T
r./lv−−−→ T ′

(R | S) | T rτ−→ (R | S′) | T ′
L-sess-com-par

· The rule applied is L-serv-com-par, so α is τ , S
a⇔(r)−−−−→

S′, T
a⇔(r)−−−−→ T ′ and U is (νr)(S′ | T ′); then the following

proof establishes the thesis, since (νr)((R | S′) | T ′) ≡ R |
((νr)(S′ | T ′)) as r is not a free name of R.

S
a⇔(r)−−−−→ S′

R | S a⇔(r)−−−−→ R | S′
L-par’

T
a⇔(r)−−−−→ T ′

(R | S) | T τ−→ (νr)((R | S′) | T ′)
L-serv-com-par

· The rule applied is L-par-close, so S
r./(a)↑a−−−−−→ S′, T

r./↓a−−−→
T ′, U is (νa)(S′ | T ′) and α is rτ . This case is analogous to
that of L-sess-com-par, the extra name restriction in the
resulting processes posing no additional problem.

· The rule applied is L-par-close’, so S
r./↓a−−−→ S′, T

r./(a)↑a−−−−−→
T ′, U is (νa)(S′ | T ′) and α is rτ . This case is analogous to
the previous one.

∗ L-sess-com-par: then R
r./lv−−−→ R′ and S | T r./lv−−−→ U ; there are

two similar sub-cases, according to whether the last transition
is proved via L-par or via L-par’. Without loss of generality,
assume that the former is the case; then the following proof es-
tablishes the thesis.

R
r./lv−−−→ R′ S

r./lv−−−→ S′

R | S rτ−→ R′ | S′
L-sess-com-par

(R | S) | T rτ−→ (R′ | S′) | T
L-par’

∗ L-serv-com-par: then R
a⇔(r)−−−−→ R′ and S | T a⇔(r)−−−−→ U ; again

there are two similar sub-cases, according to whether the last
transition is proved via L-par or via L-par’. Without loss of
generality, assume that the former is the case; then the following

7

proof establishes the thesis.

R
a⇔(r)−−−−→ R′ S

a⇔(r)−−−−→ S′

R | S τ−→ (νr)(R′ | S′)
L-serv-com-par

(R | S) | T τ−→ (νr)(R′ | S′) | T
L-par’

Since r is not a free name of T , the latter process is structurally
congruent to (νr)(R′ | (S′ | T)).

∗ L-par-close: then R
r./(a)↑a−−−−−→ R′ and S | T r./↓a−−−→ U . This case

is analogous to that of L-sess-com-par, the extra name restric-
tions in the resulting processes posing no additional problem.

∗ L-par-close’: then R
r./↓a−−−→ R′ and S | T r./(a)↑a−−−−−→ U . This case

is again analogous to the previous one.

The case when Q
α−→ Q′ is dealt with by a similar case analysis.

• Name restriction

– Parallel composition. Suppose P is ((νn)R) | S and Q is (νn)(R | S).
Assume first that P α−→ P ′; there are three different cases, according
to which transition rule was used.

∗ L-par: then (νn)R α−→ R′. There are three possible sub-cases.
· Suppose (νn)R α−→ R′ follows by L-res. Then n is not a

name in α, R′ is (νn)R′′ and R
α−→ R′′. Since n is also not a

name in S, the following derivation establishes the thesis.

R
α−→ R′′

R | S α−→ R′′ | S
L-par

(νn)(R | S) α−→ (νn)(R′′ | S)
L-res

· Suppose (νn)R α−→ R′ follows by L-sess-res. Then α is τ ,
R′ is (νn)R′′ and R

nτ−−→ R′′. Again, since n is also not a
name in S, the following derivation establishes the thesis.

R
nτ−−→ R′′

R | S nτ−−→ R′′ | S
L-par

(νn)(R | S) τ−→ (νn)(R′′ | S)
L-sess-res

· Suppose (νn)R α−→ R′ follows by L-extr. Then α is (n) ↑n
and R

↑n−→ R′. Again, since n is also not a name in S, the
following derivation establishes the thesis.

R
↑n−→ R′

R | S ↑n−→ R′ | S
L-par

(νn)(R | S)
(n)↑n−−−→ (R′ | S)

L-extr

In either case, it is easy to verify that (νn)(R | S) evolves to a
process structurally congruent to the evolution of ((νn)R) | S.

8

∗ L-par’: then S
α−→ S′. Since (νn)R | S is well-formed, n does

not occur in S; therefore n cannot occur in α. Then the following
derivation establishes the thesis.

S
α−→ S′

R | S α−→ R | S′
L-par’

(νn)(R | S) α−→ (νn)(R | S′)
L-res

∗ L-sess-com-par: then α is rτ , (νn)R
r./lv−−−→ R′ and S

r./lv−−−→
S′. Then necessarily R′ is (νn)R′′ and the former transition
is inferred via L-res. The following derivation establishes the
thesis.

R
r./lv−−−→ R′′ S

r./lv−−−→ S′

R | S rτ−→ R′′ | S′
L-sess-com-par

(νn)(R | S) rτ−→ (νn)(R′′ | S′)
L-res

The cases when the rule applied is L-serv-com-par, L-par-
close or L-par-close’ are similar, except that further applica-
tions of S-swap may be necessary to verify that both processes
evolve to structurally congruent processes.

Assume now that Q α−→ Q′. Since the top-level constructor in Q is
name restriction, there are three possible cases.
∗ Assume the last rule applied is L-res. Then R | S α−→ T , with
Q′ being (νn)T and n a name not occurring in α. There are six
sub-cases, corresponding to the six different rules that may be
used to infer the transition of R | S.
· L-par: then T is R′ | S with R

α−→ R′; then the following
proof establishes the thesis.

R
α−→ R′

(νn)R α−→ (νn)R′
L-res

((νn)R) | S α−→ ((νn)R′) | S
L-par

· L-par’: then T is R | S′ with S
α−→ S′; the following proof

establishes the thesis.

S
α−→ S′

((νn)R) | S α−→ ((νn)R) | S′
L-par’

· L-sess-com-par: then α is rτ , R
r./lv−−−→ R′, S

r./lv−−−→ S′ and
T is R′ | S′. Care must be taken to distinguish whether n is
v.
If n is not v, then the following derivation establishes the
thesis.

R
r./lv−−−→ R′

(νn)R
r./lv−−−→ (νn)R′

L-res
S

r./lv−−−→ S′

((νn)R) | S rτ−→ ((νn)R′) | S′
L-sess-com-par

9

If n is v, then by well-formedness the process performing the
output must be R (otherwise S would contain a binder n,
which violates the assumption that all bound names in R | S
are distinct); the following proof establishes the thesis.

R
r./lv−−−→ R′

(νn)R
r./(n)lv−−−−−→ R′

L-extr
S

r./lv−−−→ S′

((νn)R) | S rτ−→ (νn)(R′ | S′)
L-sess-close

· L-serv-com-par: then α is τ , R
a⇔(r)−−−−→ R′, S

a⇔(r)−−−−→ S′ and
T is (νr)(R′ | S′). Notice that from the hypothesis it follows
that n is distinct from r. Consider the following derivation.

R
a⇔(r)−−−−→ R′

(νn)R
a⇔(r)−−−−→ (νn)R′

L-res
S

a⇔(r)−−−−→ S′

((νn)R) | S τ−→ (νr)(((νn)R′) | S′)
L-serv-com-par

Finally, (νr)(((νn)R′) | S′) ≡ (νr)(νn)(R′ | S′) ≡ Q′ follows
by S-extr-par and S-swap.

· L-par-close: then α is rτ , R
r./(a)↑a−−−−−→ R′, S

r./↓a−−−→ S′ and
T is (νa)(R′ | S′). Again, by well-formedness, a is distinct
from n. The following derivation establishes the thesis.

R
r./(a)↑a−−−−−→ R′

(νn)R
r./(a)↑a−−−−−→ (νn)R′

L-res
S

r./↓a−−−→ S′

((νn)R) | S rτ−→ (νa)(((νn)R′) | S′)
L-sess-close

· L-par-close’: then α is rτ , R
r./↓a−−−→ R′, S

r./(a)↑a−−−−−→ S′ and
T is (νa)(R′ | S′). Again, by well-formedness, a is distinct
from n. The following derivation establishes the thesis.

R
r./↓a−−−→ R′

(νn)R
r./↓a−−−→ (νn)R′

L-res
S

r./(a)↑a−−−−−→ S′

((νn)R) | S rτ−→ (νa)(((νn)R′) | S′)
L-sess-close’

∗ Assume the last rule applied is L-sess-res. This case is very
similar to the previous one, but simpler: since session names
may not be communicated, there are less possible cases and no
need arises to use close rules.
∗ Assume the last rule applied is L-extr. Then α is (n)µ, where
µ is an output (session or stream). By well-formedness, n does
not occur in S, whence necessarily R

µ−→ R′ and Q′ is R′ | S.
Then the following proof shows that P α−→ Q′.

R
µ−→ R′

(νn)R
(n)µ−−−→ R′

L-extr

((νn)R) | S (n)µ−−−→ R′ | S
L-par

10

– Composition with stream. There are two congruence rules for this
case; both of them require a case analysis that is completely similar
to that in the previous case (since composition with a stream is very
similar to parallel composition). The extra case arising from L-feed-
close is similar to the other close rules.

– Session. Assume P is r ./ ((νa)R) and Q is (νa)(r ./ R). Suppose
first that P α−→ P ′; there are two different cases.
∗ L-sess-val: then α is r ./ µ, where µ is an input/output action.

There are two possible sub-cases, according to how the transition
of (νa)R is inferred (since L-sess-res does not apply).
· L-res: then P ′ is r ./ ((νa)R′) with R

µ−→ R′, and the
following derivation establishes the thesis.

R
µ−→ R′

r ./ R
r./µ−−−→ r ./ R′

L-sess-val

(νa)(r ./ R)
r./µ−−−→ (νa)(r ./ R′)

L-res

· L-extr: then P ′ is r ./ R′, µ is ↑ a, and the following
derivation establishes the thesis.

R
↑a−→ R′

r ./ R
r./↑a−−−→ r ./ R′

L-sess-val

(νa)(r ./ R)
r./(a)↑a−−−−−→ r ./ R′

L-extr

∗ L-sess-pass: this case is very similar with only two differences.
In the case of L-extr, µ is now ⇑ a, and the rest follows as
before. There is also the extra case of L-sess-res, which is
straightforward.

Assume next that Q α−→ Q′. The proof is very similar, so we will only
sketch it; there are three cases.
∗ L-res: then Q′ is (νa)S with r ./ R

α−→ S. There are two cases
for the latter transition; in either of them, S must be of the form
r ./ R′ and the thesis follows by swapping the application of the
two rules.

∗ L-sess-res: similar, but now there is only one sub-case, corre-
sponding to L-sess-pass.

∗ L-extr: then r ./ R
µ−→ Q′ and either α is (a)µ or α is s ./ (a) ↑a

and µ is s ./ a for some session name s. Again there are two
cases for the latter transition, and a straightforward swapping of
the two rules yields the proof that P α−→ Q′.

– Commutativity. Straightforward, since two different names are in-
volved and well-formedness of the processes guarantees that all side
conditions in the relevant rules will hold.

– Zero. Straightforward, since (νa)0 6→ and 0 6→.

• Recursion This case is completely straightforward: if rec X.R
α−→ P ′, then

the only rule that can have been used to infer that transition is L-rec,
whence it immediately follows that R

[
rec X.R/X

] α−→ P ′. Reciprocally, if
the latter condition holds, then by L-rec also rec X.R

α−→ P ′.

11

4 Strong bisimilarity

Strong bisimilarity, hereafter referred to simply as “bisimilarity”, is defined as
usual over the class of all processes.

Definition 4.

• A symmetric binary relation R on processes is a (strong) bisimulation if,
for any processes P , Q such that PRQ, if P α−→ P ′ for some process P ′

and action α such that no bound name in α is free in P or Q, there exists
a process Q′ such that Q α−→ Q′ for some Q′ with P ′ R Q′.

• (Strong) bisimilarity ∼ is the largest bisimulation.

• Two processes P and Q are said to be (strongly) bisimilar if P ∼ Q.

Notice that bisimilarity can be obtained as the union of all bisimulations or
as a fixed-point of a suitable monotonic operator; also it is well defined, as the
next result shows.

Theorem 2. Structurally congruent processes are bisimilar.

Proof. It suffices to show that ≡ is a bisimulation, which is an immediate con-
sequence of the Harmony Lemma.

We now show that bisimilarity is a non-input congruence, just as in π-
calculus. The strategy of the proof is the same as in [4], based on the notion
and properties of a relation progressing to another relation.

Definition 5. A relation R on processes strongly progresses to another relation
S, denoted R S, if, whenever PRQ, P α−→ P ′ implies Q α−→ Q′ for some Q′

with P ′SQ′, and vice-versa.

Definition 6. A function F on processes is strongly safe if R ⊆ S and R S
imply F(R) ⊆ F(S) and F(R) F(S).

Lemma 7. If F is strongly safe and ∼⊆ F(∼), then F (∼) =∼.

Proof. See [4].

Given a function F , define F∗ such that F∗(R) is the transitive closure of
F(R).

Lemma 8. If F is such that R ⊆ S and R S imply that F(R) ⊆ F∗(S) and
F(R) F∗(S), then F∗ is strongly safe.

Proof. See [4].

The proof relies on defining functions Fni1 and Fni like those for π-calculus;
however, the definition of the former has to be slightly adapted.

Definition 7.

• A context C is a process where exactly one occurrence of 0 has been re-
placed by a hole [·]. Given a process P , C[P] is the process obtained by
replacing the hole in C by P .

12

• An n-ary multi-hole context C is a process where some occurrences of 0
have been replaced by holes [·]i; each hole may occur zero or more times.
Given n processes P1, . . . , Pn, C[P1, . . . , Pn] is the process obtained by uni-
formly replacing all occurrences of all holes in C by the corresponding
process.

• A (multi-hole) context is said to be non-input if no hole occurs under an
input prefix (x) or f(x).

• Functions Fni1 and Fni are defined as follows.

Fni1(R) = {〈C[P], C[Q]〉 [] PRQ and C is a non-input context}
Fni(R) = {〈C[P1, . . . , Pn], C[Q1, . . . , Qn]〉 [] PiRQi

and C is an n-ary non-input context}

Lemma 9. Fni = F∗ni1.

Proof. As for π-calculus.

Lemma 10. Function Fni is strongly safe.

Proof. Applying Lemma 8, it must be shown that, wheneverR ⊆ S andR S,
both Fni1(R) ⊆ Fni1(S) and Fni1(R) Fni(S). The first of these is trivial by
definition of Fni1.

Assume that PRQ. It must be shown that, for every context C, if C[P] α−→
P ′, then C[Q] α−→ Q′ for some P ′ and Q′ such that there exist an n-ary context
C ′ and processes P1SQ1, . . . , PnSQn for which P ′ is C ′[P1, . . . , Pn] and Q′ is
C ′[Q1, . . . , Qn].

The proof is by induction on the derivation tree for C[P] α−→ P ′. In all
steps, there are two cases to consider, according to whether C is [·] or not; the
former case is always trivial, since the hypothesis R S establishes the thesis.
Therefore, we always assume below that C is not [·]. The proof looks at the last
rule being applied.

• L-send: then C is v.C0 and α is ↑v for some v. Furthermore, v.C0[Q]
↑v−→

C0[Q]; since C0 is also a multi-hole context and R ⊆ S, it follows that
〈C0[P], C0[Q]〉 ∈ Fni(S), hence the thesis holds.

• L-receive: then C is (x).C0, and since C is a non-input context (by
definition of Fni1), it follows that C0 does not contain holes; hence in this
case C[P] and C[Q] coincide, and the result is trivial.

• L-feed: then C is feed v.C0 and α is ⇑ v for some v. Furthermore,
feed v.C0[Q]

⇑v−→ C0[Q]; since C0 is also a multi-hole context and R ⊆ S,
it follows that 〈C0[P], C0[Q]〉 ∈ Fni(S), hence the thesis holds.

• L-read: then C is f(x).C0, and since C is a non-input context (by defini-
tion of Fni1), it follows that C0 does not contain holes; hence in this case
C[P] and C[Q] coincide, and the result is trivial.

13

• L-call: then C is a⇐ C0 and α is a⇐ (r) for some r not occurring free

in C0[P]. Furthermore, a⇐ C0[Q]
a⇐(r)−−−−→ r / C0[Q], since by definition of

bisimulation r does not occur free in C0[Q]. Taking C ′ to be the context
r / C0 establishes the thesis.

• L-inv: analogous.

• L-par: there are two cases to consider.

– If C is C0 | R, then C0[P] α−→ P ′ and α and R share no bounded
names. By induction hypothesis there exists a process Q′ such that
C0[Q] α−→ Q′ and P ′, Q′ are C ′0[P1, . . . , Pn] and C ′0[Q1, . . . , Qn],
respectively, for some n-ary multi-hole context C ′0 and processes
P1SQ1, . . . , PnSQn. Thus C0[Q] | R α−→ Q′ | R, hence taking C ′ to
be C ′0 | R establishes the thesis.

– If C is R | C0, then R
α−→ R′ and C0[P] and R share no bounded

names. By the hypothesis of L-par, C0[Q] and R also share no
bounded names, hence R | C0[Q] α−→ R | Q′, and taking C ′ to be
R | C ′0 establishes the thesis.

• L-par’: analogous (the two cases are reversed).

• L-stream-pass-P and L-stream-pass-Q: analogous to L-par and L-
par’, respectively.

• L-stream-feed: there are two cases to consider.

– If C is stream C0 as f = ~w in R, then C0[P]
⇑v−→ P ′; by induction hy-

pothesis, there exists a process Q′ such that C0[Q]
⇑v−→ Q′, and P ′

and Q′ are respectively C ′0[P1, . . . , Pn] and C ′0[Q1, . . . , Qn] for some
n-ary multi-hole context C ′0 and processes P1SQ1, . . . , PnSQn. Thus
stream C0[Q] as f = ~w in R

τ−→ stream Q′ as f = v :: ~w in R, hence
taking C ′ to be stream C ′0 as f = v :: ~w in R establishes the thesis.

– If C is stream R as f = ~w in C0, then R
⇑v−→ R′, hence taking C ′ to

be stream R′ as f = v :: ~w in C0 immediately establishes the thesis.

• L-stream-cons: analogous (the two cases are reversed).

• L-sess-val: then C is r ./ C0, α is r ./ µ for some µ, and C0[P]
µ−→ P0.

By induction hypothesis, C0[Q]
µ−→ Q0 for some Q0 such that there exist

a multi-hole context C ′0 and processes P1SQ1, . . . , PnSQn for which P0

is C ′0[P1, . . . , Pn] and Q0 is C ′0[Q1, . . . , Qn]. Taking C ′ to be r ./ C ′0
establishes the thesis, since then r ./ C0[Q]

r./µ−−−→ C ′[Q1, . . . , Qn].

• L-sess-pass: then C is r ./ C0, α is neither an input nor an output, and
C0[P] α−→ P0. The proof then follows as above except that the action does
not change when the session is added to C ′0.

• L-sess-com-par: C is either C0 | R or R | C0; the two cases are analo-

gous, so assume the first holds. Then C0[P]
r./lv−−−→ P ′, R

r./lv−−−→ R′, α is

14

rτ for some r and C0[P] | R rτ−→ P ′ | R′. By induction hypothesis there

exists a process Q′ such that C0[Q]
r./lv−−−→ Q′, and P ′, Q′ are respectively

C ′0[P1, . . . , Pn] and C ′0[Q1, . . . , Qn] for some n-ary multi-hole context C ′0
and processes P1SQ1, . . . , PnSQn. Then C0[Q] | R rτ−→ Q′ | R′, hence tak-
ing C ′ to be C ′0 | R′ establishes the thesis.

• L-serv-com-par,L-par-close, L-par-close’, L-feed-close, L-sess-
com-close, L-serv-com-close, L-sess-com-stream and L-serv-com-
stream: these cases are all very similar to the previous one.

• L-res: then C is (νa)C0, (νa)C0[P] α−→ (νa)P ′, a is not a name in
α and C0[P] α−→ P ′. By induction hypothesis there exists a process
Q′ such that C0[Q] α−→ Q′, and P ′, Q′ are respectively C ′0[P1, . . . , Pn]
and C ′0[Q1, . . . , Qn] for some n-ary multi-hole context C ′0 and processes
P1SQ1, . . . , PnSQn. Thus (νa)C0[Q] α−→ (νa)Q′, hence taking C ′ to be
(νa)C ′0 establishes the thesis.

• L-sess-res: analogous, only now α is τ and the induction hypothesis is
applied to a transition via aτ .

• L-extr: analogous, only now α is an action extruding a and the induction
hypothesis is applied to a transition without the extrusion; furthermore,
the context C ′ is simply C ′0.

• L-rec: the C is rec X.C0 and C0[P]
[
rec X.C0[P]/X

] α−→ P ′. Since P is
a well-formed process, it contains no free occurrences of X; hence there
exists a context C1 such that C1[P] is C0[P]

[
rec X.C0[P]/X

]
and C1[Q] is

C0[Q]
[
rec X.C0[Q]/X

]
. Hence the induction hypothesis applies, and there

exist a process Q′ and a context C ′ such that C1[Q] α−→ Q′, P ′ is C ′[P]
and Q′ is C ′[Q]. Therefore also rec X.C0[Q] α−→ Q′, and C ′ is the required
context.

Theorem 3. Bisimilarity is a non-input congruence.

Proof. Straightforward consequence of Lemmas 7 and 10.

At this point we can explain in more detail why the original LTS for SSCC
had to be changed. Consider any derivation containing an application of L-
struct.

P
µ−→ P ′ P ≡ Q P ′ ≡ Q′

Q
µ−→ Q′

L-struct

In general, the induction hypothesis will not be applicable to the subtree
that shows P

µ−→ P ′, since there is no obvious relationship between P and Q;
furthermore, the thesis of the induction hypothesis does not help in establishing
the final result, since again there is no obvious relationship between Q′ and P ′.

Observe also that this is not a problem of this particular proof technique.
Whether the induction were on the derivation tree (as above), on contexts (as
the proof for π-calculus, see [4]) or on processes (arguably an alternative) the
same problem would arise, since the issue arises from the fact that the theo-
rem assumes hypotheses on the actual process performing the transition. This
justifies the attempt to eliminate L-struct from the LTS altogether.

15

5 Weak bisimilarity

Weak bisimilarity treats internal actions as irrelevant. As usual, we introduce
some abbreviations.

P
τ=⇒ Q iff P

τ−→ · · · τ−→ Q

P
α=⇒ Q iff P

τ=⇒ α−→ τ=⇒ Q for α 6= τ

Notice that, in particular, P τ=⇒ P for every process P .

Definition 8.

• A symmetric binary relation R on processes is a weak bisimulation if, for
any processes P , Q such that PRQ, if P α=⇒ P ′ for some process P ′ and
action α such that no bound name in α is free in P or Q, there exists a
process Q′ such that Q α=⇒ Q′ for some Q′ with P ′ R Q′.

• Weak bisimilarity ≈ is the largest weak bisimulation.

• Two processes P and Q are said to be weakly bisimilar if P ≈ Q.

Again, weak bisimilarity can be obtained as the union of all weak bisimula-
tions or as a fixed-point of a suitable monotonic operator.

Theorem 4. Let ' be the largest relation such that, whenever P ' Q, for every
process P ′ and action α, if P α−→ P ′, then Q

α=⇒ Q′ for some Q′ with P ′ ' Q′

and vice-versa. Then P ≈ Q iff P ' Q.

Proof. The direct implication is straightforward, since P
α−→ P ′ implies that

P
α=⇒ P ′. For the converse, assume that P α=⇒ P ′. If P ′ is P and α is τ , then

result is trivial; otherwise, there exist processes P1, . . . , Pn and P ′1, . . . , P
′
m such

that P is P1, Pi
τ−→ Pi+1 for i < n, Pn

α−→ P ′1, P ′j
τ−→ P ′j+1 for j < m and

P ′m is P ′. By hypothesis, there exist processes Q1, . . . , Qn and Q′1, . . . , Q
′
m (not

necessarily distinct) such that Qi
τ=⇒ Qi+1 for i < n, Qn

α=⇒ Q′1 and Q′j
τ=⇒ Q′j+1

for j < m; furthermore, Pi ' Qi and P ′j ' Q′j for all i ≤ n and j ≤ m. In
particular, Q α=⇒ Q′m and P ′ ' Q′m, so ' is a weak bisimulation.

The reason for introducing ' is that this relation is simpler to work with
when proving properties by induction. In turn, the definition of ≈ is more
symmetric and its relationship with ∼ is immediate.

We now show that bisimilarity is a non-input congruence, again like in π-
calculus. The strategy of the proof is once more the same as in [4].

Definition 9. A relation R on processes progresses to another relation S, de-
noted R S, if, whenever PRQ, P α−→ P ′ implies Q α=⇒ Q′ for some Q′ with
P ′SQ′, and vice-versa.

Definition 10. A function F on processes is safe if R ⊆ S and R S imply
F(R) ⊆ F(S) and F(R) F(S).

Lemma 11. If F is safe and ≈⊆ F(≈), then F (≈) =≈.

Proof. See [4].

16

As is the case with π-calculus, proving that Fni is safe must be done directly,
since chaining is not secure.

Lemma 12. Function Fni is safe.

Proof. Let R ⊆ S and R S. It must be shown that Fni1(R) ⊆ Fni1(S) and
Fni(R) Fni(S). As before, the first of these is trivial by definition of Fni1.

Assume that PiRQi for i = 1, . . . , n. It must be shown that, for ev-
ery multi-context C, if C[P1, . . . , Pn] α−→ P ′, then C[Q1, . . . , Qn] α=⇒ Q′ for
some P ′ and Q′ such that there exist another multi-context C ′ and processes
P1SQ1, . . . , PmSQm for which P ′ is C ′[P1, . . . , Pm] and Q′ is C ′[Q1, . . . , Qm].

Once more we use induction on the derivation tree for C[P1, . . . , Pn] α−→
P ′. Most cases are very similar to the proof of Lemma 10; however, since the
induction hypothesis now gives a weak transition some care must be taken.

As before, the case when C is [·] is straightforward; also, the cases of rules
L-send, L-receive, L-feed, L-read, L-call, L-inv, L-sess-val, L-sess-
pass, L-sess-com-par, L-serv-com-par, L-sess-com-stream, L-serv-com-
stream,L-par-close, L-par-close’, L-feed-close, L-sess-com-close, L-
serv-com-close, L-res, L-sess-res, L-extr and L-rec are dealt with as
in the proof of Lemma 10, with an extra step at the end (to take care of the
possible extra τ steps) similar to the cases detailed above.

The only remaining cases are those when C is either a parallel composition
or a stream composition, since now both subprocesses may be contexts.

• L-par: then C is C1 | C2, C1[P1, . . . , Pn] α−→ P ′, and α and C2[P1, . . . , Pn]
share no bounded names. By induction hypothesis there exists a pro-
cess Q′ such that C1[Q1, . . . , Qn] α=⇒ Q′, and P ′, Q′ are respectively
C ′1[P ′1, . . . , P

′
m] and C ′1[Q′1, . . . , Q

′
m] for some multi-hole context C ′1 and

processes P ′1SQ′1, . . . , P ′mSQ′m. By applying L-par to all steps of the se-
quence of transitions C1[Q1, . . . , Qn] τ−→ . . .

α−→ . . .
τ−→ Q′, we conclude that

C1[Q1, . . . , Qn] | C2[Q1, . . . , Qn] α=⇒ C ′1[Q′1, . . . , Q
′
m] | C2[Q1, . . . , Qn],

hence taking C ′ to be C ′1 | C2 establishes the thesis1.

• L-par’: analogous (the roles of C1 and C2 are reversed).

• L-stream-pass-P and L-stream-pass-Q: as before, these are analogous
to L-par and L-par’, respectively.

• L-stream-feed: C is stream C1 as f = ~w in C2 and C1[P1, . . . , Pn]
⇑v−→

P ′. By induction hypothesis, there exists Q′ such that C1[Q1, . . . , Qn]
⇑v
=⇒

Q′, and P ′ and Q′ are respectively C ′1[P ′1, . . . , P
′
n] and C ′1[Q′1, . . . , Q

′
n] for

some n-ary multi-hole context C ′1 and processes P ′1SQ′1, . . . , P ′nSQ′n. In

other words, C1[Q1, . . . , Qn] τ=⇒ Q∗
⇑v−→ Q∗∗

τ=⇒ Q′; using L-stream-pass-

1We assume that a n-hole context does not have to contain occurrences of all its holes, so
in particular C1 and C2 are n-hole contexts in which some holes may not occur.

17

P for the τ transitions, we conclude that

stream C1[Q1, . . . , Qn] as f = ~w in C2[Q1, . . . , Qn]
τ=⇒ stream Q∗ as f = ~w in C2[Q1, . . . , Qn]
τ−→ stream Q∗∗ as f = v :: ~w in C2[Q1, . . . , Qn]
τ=⇒ stream C ′1[Q′1, . . . , Q

′
n] as f = v :: ~w in C2[Q1, . . . , Qn],

hence taking C ′ to be stream C ′1 as f = v :: ~w in C2 establishes the thesis.

• L-stream-cons: analogous (the roles of C1 and C2 are reversed).

Theorem 5. Weak bisimilarity is a non-input congruence.

Proof. Straightforward consequence of Lemmas 11 and 12.

6 Conclusions

We introduced strong and weak ground bisimulations for SSCC and proved that
they enjoy several desirable properties. In particular, the Harmony Lemma
holds, and both ∼ and ≈ are non-input congruences. Furthermore, the known
counter-examples for π-calculus show that it is not reasonable to expect that
they be preserved under substitution.

Acknowledgments

This work was partially sponsored by project FET-GC II IST-2005-16004 Sen-
soria and by FCT and FEDER via LASIGE.

References

[1] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amster-
dam, revised edition, 1984. Its syntax and semantics.

[2] M. Boreale, R. Bruni, L. Caires, R. de Nicola, I. Lanese, M. Loreti, F. Mar-
tins, U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Za-
vattaro. SCC: a Service Centered Calculus. In M. Bravetti, M. Núñez,
and G. Zavattaro, editors, Proceedings of WS-FM 2006, 3rd International
Workshop on Web Services and Formal Methods, volume 4184 of LNCS,
pages 38–57. Springer, 2006.

[3] I. Lanese, V. Vasconcelos, F. Martins, and A. Ravara. Disciplining orches-
tration and conversation in service-oriented computing. In 5th IEEE Inter-
national Conference on Software Engineering and Formal Methods, pages
305–314. IEEE Computer Society Press, 2007.

[4] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge, 2001.

18

